1
|
VanOudenhove J, Liu Y, Nelakanti R, Kim D, Busarello E, Ovalle NT, Qi Z, Mamillapalli P, Siddon A, Bai Z, Axtmayer A, Corso C, Kothari S, Foss F, Isufi I, Tebaldi T, Gowda L, Fan R, Seropian S, Halene S. Impact of memory T cells on SARS-CoV-2 vaccine response in hematopoietic stem cell transplant. PLoS One 2025; 20:e0320744. [PMID: 40294012 PMCID: PMC12036906 DOI: 10.1371/journal.pone.0320744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/24/2025] [Indexed: 04/30/2025] Open
Abstract
During the COVID-19 pandemic, hematopoietic stem cell transplant (HSCT) recipients had elevated mortality rates from SARS-CoV-2 infection, ranging between 10-40%. SARS-CoV-2 mRNA vaccines are important tools in preventing severe disease, yet their efficacy post-transplant remains unclear, especially in patients subjected to myeloablative chemotherapy and immunosuppression. We evaluated humoral and adaptive immune responses to the SARS-CoV-2 mRNA vaccination series in 42 HSCT recipients and 5 healthy controls. Post-vaccination responses were assessed by anti-spike IgG and nucleocapsid levels, and antigen specific T cell activity. Immune profiling was performed using clinical flow and mass cytometry. Patients were selected based on humoral and cellular responses for single-cell RNA with TCR and BCR sequencing. Our studies revealed defects in memory T cells that correlated with an absence of cellular response despite nearly universal humoral response. Several patients with a robust antibody response developed COVID-19 infection, but none developed severe disease or died from the infection.
Collapse
Affiliation(s)
- Jennifer VanOudenhove
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yuxin Liu
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Raman Nelakanti
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Dongjoo Kim
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Emma Busarello
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Natalia Tijaro Ovalle
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Zhihong Qi
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Padmavathi Mamillapalli
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Alexa Siddon
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Alfredo Axtmayer
- Bone Marrow Transplant and Cellular Therapy Program, Yale New Haven Hospital and Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Cheryl Corso
- Bone Marrow Transplant and Cellular Therapy Program, Yale New Haven Hospital and Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Shalin Kothari
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Francine Foss
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Iris Isufi
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Bone Marrow Transplant and Cellular Therapy Program, Yale New Haven Hospital and Yale Cancer Center, New Haven, Connecticut, United States of America
| | - Toma Tebaldi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Lohith Gowda
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America
| | - Stuart Seropian
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Stephanie Halene
- Section of Hematology, Department of Internal Medicine and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
2
|
Dhawan M, Thakur N, Sharma M, Rabaan AA. The comprehensive insights into the B-cells-mediated immune response against COVID-19 infection amid the ongoing evolution of SARS-CoV-2. Biomed Pharmacother 2025; 185:117936. [PMID: 40056829 DOI: 10.1016/j.biopha.2025.117936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 03/10/2025] Open
Abstract
The antibody-mediated immune response is crucial for the development of protective immunity against SARS-CoV-2, the virus responsible for the COVID-19 pandemic. Understanding the interaction between SARS-CoV-2 and the immune system is critical because new variants emerge as a result of the virus's ongoing evolution. Understanding the function of B cells in the SARS-CoV-2 infection process is critical for developing effective and long-lasting vaccines against this virus. Triggered by the innate immune response, B cells transform into memory B cells (MBCs). It is fascinating to observe how MBCs provide enduring immune defence, not only eradicating the infection but also safeguarding against future reinfection. If there is a lack of B cell activation or if the B cells are not functioning properly, it can lead to a serious manifestation of the disease and make immunisation less effective. Individuals with disruptions in the B cells have shown increased production of cytokines and chemokines, resulting in a poor prognosis for the disease. Therefore, we have developed an updated review article to gain insight into the involvement of B cells in SARS-CoV-2 infection. The discussion has covered the generation, functioning, and dynamics of neutralising antibodies (nAbs). Furthermore, we have emphasised immunotherapeutics that rely on nAbs.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab 141004, India; Trafford College, Altrincham, Altrincham, Manchester WA14 5PQ, UK.
| | - Nanamika Thakur
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, India
| | - Ali A Rabaan
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh 13328, Saudi Arabia; Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia; Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan.
| |
Collapse
|
3
|
Liu B, Gu Y, Ou Y, Liu L, Wang W, Zhou J, Wang Y, Du Y, Xie J, Liu Y, Zhang R, Zuo Q, Wang B. Protection conferred by mucosal novel bivalent Klebsiella pneumoniae vaccine immunization associates with presence of lung CD4 + T RM. Microbes Infect 2025:105483. [PMID: 40081566 DOI: 10.1016/j.micinf.2025.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Klebsiella pneumoniae is the principal cause of hospital-acquired infection with a high morbidity and mortality in immunocompromised individuals, yet no vaccine is approved. Here, we developed a novel bivalent subunit vaccine for the prevention of K. pneumoniae infection based on the outer membrane protein GlnH and the fimbriae protein FimA. The survival rate of immunized mice was significantly increased compared to that of unimmunized mice, while the bacterial burden, weight loss, and lung pathology were drastically reduced. Furthermore, vaccine-elicited CD4+ TRM cells were observed in lung tissues and appeared to play a critical role in vaccine efficacy. Transcriptomic analysis of total lung tissues from mice treated by FTY720 (S1PR1 inhibitor that blocks lymphocyte egress from secondary lymphoid structures) showed that cell activation, cytokine secretion and enhancement of the killing ability of neutrophils were related to the mechanism of protection against K. pneumoniae infection. These findings indicate that GlnH and FimA are effective candidate bivalent vaccine to fight K. pneumoniae infection.
Collapse
Affiliation(s)
- BiXia Liu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China
| | - YaRu Gu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 401320, PR China
| | - YangXue Ou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - LuXuan Liu
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - WenHao Wang
- College of Pharmacy, Henan University, Kaifeng, 475001, PR China
| | - JinRui Zhou
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China
| | - Ying Wang
- 953rd Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University, Shigatse, 857000, PR China
| | - YeXiang Du
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Jing Xie
- Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China
| | - Yuan Liu
- Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China
| | - Rui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China; Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China.
| | - QianFei Zuo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Bin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
4
|
Maliha ST, Fatemi R, Akter M, Zheng Q, Araf Y, Tabassum T, Munif MR, Saha S, Xue M, Wang H, Zheng C, Hossain MG. Exploring the dynamics of SARS-CoV-2 and HIV Co-infection: Mutation risks, therapeutic efficacy, and future variant prevention. Diagn Microbiol Infect Dis 2025; 111:116707. [PMID: 39854809 DOI: 10.1016/j.diagmicrobio.2025.116707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
High mutation rates in SARS-CoV-2, particularly among immunocompromised patients living with HIV, continue to complicate the current COVID-19 pandemic. The threshold for severe COVID-19 and a greater risk of mortality have increased in many immunocompromised individuals due to a weakened immune system. Low CD4+ T-cell counts in people living with both HIV and COVID-19 lead to prolonged disease duration and, therefore, an increased likelihood of viral infection with SARS-CoV-2 mutations in such individuals. These mutations could decrease the efficiency of ongoing vaccines and cause new outbreaks. Recently, the rise of new mutations in this patient population has created increasing concern; however, few data are currently available on the direct association of HIV infection with SARS-CoV-2 mutations. This review highlights the implications of SARS-CoV-2 and HIV co-infection, highlighting the need for extra caution and monitoring of the immune-compromised population during a pandemic. Access to HIV care and COVID-19 treatments, careful surveillance, and adapted health strategies are key to reducing risks and protecting these populations. Further research is required to elucidate the dynamics of mutations and develop intervention methods to manage COVID-19 among immunocompromised patients.
Collapse
Affiliation(s)
- Sumaiya Tasnim Maliha
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Rabeya Fatemi
- Department of Genetic Engineering and Biotechnology, East-West University, Dhaka 1212, Bangladesh
| | - Marjana Akter
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Qingcong Zheng
- Department of Spinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yusha Araf
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Tahani Tabassum
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, BRAC University, Dhaka, Bangladesh
| | - Mohammad Raguib Munif
- Department of Surgery and Obstetrics, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Sukumar Saha
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| | - Md Golzar Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.
| |
Collapse
|
5
|
Yang GJ, Lu M, Chen RR, Wang SQ, Wan S, Song XD, Cao GP, Lv L, He XJ, Zhan BD, Ma MJ. Neutralizing antibody responses to three XBB protein vaccines in older adults. Signal Transduct Target Ther 2025; 10:48. [PMID: 39894858 PMCID: PMC11788433 DOI: 10.1038/s41392-025-02132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/25/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
The ongoing COVID-19 pandemic has underscored the importance of strong immune defenses against emerging SARS-CoV-2 variants. While COVID-19 vaccines containing XBB subvariants have proven effective in neutralizing new SARS-CoV-2 variants, a gap remains in knowledge regarding neutralizing antibody responses in older adults aged >65 years against these newly emerged variants. This study was therefore undertaken to investigate and compare neutralizing antibody responses to three XBB-containing protein-based vaccines (trivalent XBB.1.5 vaccine, bivalent Omicron XBB vaccine, and tetravalent XBB.1 vaccine) head-to-head in 90 individuals aged >65 years. The results showed that all three XBB-containing vaccines substantially enhanced the neutralizing antibody response, with 100% of vaccinees having detectable antibody titers against ancestral D614G and variants BA.5, XBB.1.5, JN.1, KP.2, and KP.3 after booster immunization. Subsequent analysis indicated that the trivalent XBB.1.5 and tetravalent XBB.1 vaccines elicited higher levels of neutralizing antibodies compared to the bivalent Omicron XBB vaccine. The KP.2 and KP.3 variants displayed antibody resistance comparable to the JN.1 variant. Older adults produce similar neutralizing antibody responses to the vaccines regardless of their underlying medical conditions. These findings indicate that booster vaccination with XBB-containing vaccines can effectively elicit strong neutralizing responses against a number of SARS-CoV-2 variants in older adults over 65 years, which will help guide vaccine strategies in this elderly population.
Collapse
Affiliation(s)
- Guo-Jian Yang
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Mei Lu
- Kaihua Center for Disease Control and Prevention, Quzhou, 324300, China
| | - Rui-Rui Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuang-Qing Wang
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Sheng Wan
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Xue-Dong Song
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
- Department of Laboratory Medicine, Handan Central Hospital, Hebei Medical University, Handan, 056001, China
| | - Guo-Ping Cao
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Lei Lv
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China
| | - Xue-Juan He
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing-Dong Zhan
- Department of Infectious Disease Control and Prevention, Quzhou Center for Disease Control and Prevention, Quzhou, 324000, China.
| | - Mai-Juan Ma
- Department of Microbiological Laboratory Technology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China.
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Liang X, Yuan Y, Wang J, Tang C, Yang Y, Zhou Y, Yang H, Huang Q, Yu W, Wang H, Yan Y, Lin D, Li Y, Du X, Yuan L, Quan W, Wu D, Lu S. mRNA vaccines with RBD mutations have broad-spectrum activity against SARS-CoV-2 variants in mice. NPJ Vaccines 2025; 10:7. [PMID: 39805865 PMCID: PMC11729908 DOI: 10.1038/s41541-025-01066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
The emergence of SARS-CoV-2 variants with defined mutations that enhance pathogenicity or facilitate immune evasion has resulted in a continual decline in the protective efficacy of existing vaccines. Therefore, there is a pressing need for a vaccine capable of combating future variants. In this study, we designed new mRNA vaccines, BSCoV05 and BSCoV06, and generated point mutations in the receptor-binding domain (RBD) of the original Wuhan strain to increase their broad-spectrum antiviral activity. Additionally, we used the BA.1 RBD as a control. Both vaccines elicited a robust immune response in BALB/c and K18-hACE2 mice, generating high levels of specific binding antibodies against the BA.2 RBD. Moreover, all three vaccines induced neutralizing antibodies against the prototype viral strain and relevant variants, including the Alpha and Beta strains and the Omicron variants BA.1, BA.2, BA.5, XBB.1.5, XBB.1.16, EG.5.1, and EG.5.1.1, with BSCoV06 demonstrating broader neutralizing antibody activity. Both BSCoV05 and BSCoV06 also elicited a cellular immune response. After the challenge, both BSCoV05 and BSCOV06 provided protection against the EG.5.1 strain in both mouse strains. Therefore, these two vaccines merit further evaluation in nonhuman primates, and this vaccine design strategy should be explored for its potential application in combating future SARS-CoV-2 variants, offering valuable insights into broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Xiaoming Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yuxia Yuan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Junbin Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Cong Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yanan Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Hao Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Qing Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Wenhai Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Haixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yuhuan Yan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Dongdong Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Yanwen Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Xuena Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Longhai Yuan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Wenqi Quan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Daoju Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical college, Kunming, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, China.
- Yunnan Key Laboratory of Cross-Border Infectious Disease Control and Prevention and Novel Drug Development, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Kunming, China.
| |
Collapse
|
7
|
Fricke C, Ulrich L, Kochmann J, Gergen J, Kovacikova K, Roth N, Beer J, Schnepf D, Mettenleiter TC, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. mRNA vaccine-induced IgG mediates nasal SARS-CoV-2 clearance in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102360. [PMID: 39524696 PMCID: PMC11550364 DOI: 10.1016/j.omtn.2024.102360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
Coronavirus disease 2019 (COVID-19) mRNA vaccines that have contributed to controlling the SARS-CoV-2 pandemic induce specific serum antibodies, which correlate with protection. However, the neutralizing capacity of antibodies for emerging SARS-CoV-2 variants is altered. Suboptimal antibody responses are observed in patients with humoral immunodeficiency diseases, ongoing B cell depletion therapy, and aging. Common experimental mouse models with altered B cell compartments, such as B cell depletion or deficiency, do not fully recapitulate scenarios of declining or suboptimal antibody levels as observed in humans. We report on SARS-CoV-2 immunity in a transgenic mouse model with restricted virus-specific antibodies. Vaccination of C57BL/6-Tg(IghelMD4)4Ccg/J mice with unmodified or N1mΨ-modified mRNA encoding for ancestral spike (S) protein and subsequent challenge with mouse-adapted SARS-CoV-2 provided insights into antibody-independent immunity and the impact of antibody titers on mucosal immunity. Protection against fatal disease was independent of seroconversion following mRNA vaccination, suggesting that virus-specific T cells can compensate for suboptimal antibody levels. In contrast, mRNA-induced IgG in the nasal conchae limited the local viral load and disease progression. Our results indicate that parenteral mRNA immunization can elicit nasal IgG antibodies that effectively suppress local viral replication, highlighting the potential of vaccines in controlling SARS-CoV-2 transmission and epidemiology.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Kochmann
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | | | | | | | - Julius Beer
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | - Daniel Schnepf
- Institute of Virology, Medical Center University of Freiburg, 79104 Freiburg, Germany
| | | | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| |
Collapse
|
8
|
Pandey B, Wang Z, Jimenez A, Bhatia E, Jain R, Beach A, Maniar D, Hosten J, O'Farrell L, Vantucci C, Hur D, Noel R, Ringquist R, Smith C, Ochoa MA, Roy K. A Dual-Adjuvanted Parenteral-Intranasal Subunit Nanovaccine generates Robust Systemic and Mucosal Immunity Against SARS-CoV-2 in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402792. [PMID: 39352717 PMCID: PMC11615772 DOI: 10.1002/advs.202402792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/09/2024] [Indexed: 12/06/2024]
Abstract
Existing parenteral SARS-CoV-2 vaccines produce only limited mucosal responses, essential for reducing transmission and achieving sterilizing immunity. Appropriately designed mucosal boosters can overcome the shortcomings of parenteral vaccines and enhance pre-existing systemic immunity. Here, a new protein subunit nanovaccine is developed by utilizing dual-adjuvanted (RIG-I: PUUC RNA and TLR-9: CpG DNA) polysaccharide-amino acid-lipid nanoparticles (PAL-NPs) along with SARS-CoV-2 S1 trimer protein, that can be delivered both intramuscularly (IM) and intranasally (IN) to generate balanced mucosal-systemic SARS-CoV-2 immunity. Mice receiving IM-Prime PUUC+CpG PAL subunit nanovaccine, followed by an IN-Boost, developed high levels of IgA, IgG, and cellular immunity in the lungs and showed robust systemic humoral immunity. Interestingly, as a purely intranasal subunit vaccine (IN-Prime/IN-Boost), PUUC+CpG PAL-NPs induced stronger lung-specific T cell immunity than IM-Prime/IN-Boost, and a comparable IgA and neutralizing antibodies, although with a lower systemic antibody response, indicating that a fully mucosal delivery route for SARS-CoV-2 vaccination may also be feasible. The data suggest that PUUC+CpG PAL subunit nanovaccine is a promising candidate for generating SARS-CoV-2 specific mucosal immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Mucosal/immunology
- Immunity, Mucosal/drug effects
- SARS-CoV-2/immunology
- Administration, Intranasal/methods
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19/immunology
- COVID-19/prevention & control
- Nanoparticles/administration & dosage
- Vaccines, Subunit/immunology
- Vaccines, Subunit/administration & dosage
- Antibodies, Viral/immunology
- Female
- Adjuvants, Vaccine/administration & dosage
- Spike Glycoprotein, Coronavirus/immunology
- Adjuvants, Immunologic/administration & dosage
- Antibodies, Neutralizing/immunology
- Mice, Inbred BALB C
- Nanovaccines
Collapse
Affiliation(s)
- Bhawana Pandey
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Zhengying Wang
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Angela Jimenez
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Eshant Bhatia
- Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Ritika Jain
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Alexander Beach
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Drishti Maniar
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Justin Hosten
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Laura O'Farrell
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Casey Vantucci
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - David Hur
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Richard Noel
- Physiological Research LaboratoryGeorgia Institute of TechnologyAtlantaGAUSA
| | - Rachel Ringquist
- The Parker H. Petit Institute for Bioengineering and BiosciencesSchool of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Clinton Smith
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Miguel A. Ochoa
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaGAUSA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical EngineeringThe Parker H. Petit Institute for Bioengineering and BiosciencesMarcus Center for Therapeutic Cell Characterization and ManufacturingGeorgia Institute of TechnologyAtlantaGAUSA
- Department of Biomedical EngineeringDepartment of Chemical and Biomolecular EngineeringSchool of EngineeringDepartment of Pathology, Microbiology and ImmunologySchool of MedicineVanderbilt UniversityNashvilleTNUSA
| |
Collapse
|
9
|
Brook B, Checkervarty AK, Barman S, Sweitzer C, Bosco AN, Sherman AC, Baden LR, Morrocchi E, Sanchez-Schmitz G, Palma P, Nanishi E, O'Meara TR, McGrath ME, Frieman MB, Soni D, van Haren SD, Ozonoff A, Diray-Arce J, Steen H, Dowling DJ, Levy O. The BNT162b2 mRNA vaccine demonstrates reduced age-associated T H1 support in vitro and in vivo. iScience 2024; 27:111055. [PMID: 39569372 PMCID: PMC11576392 DOI: 10.1016/j.isci.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/05/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
mRNA vaccines demonstrate impaired immunogenicity and durability in vulnerable older populations. We hypothesized that human in vitro modeling and proteomics could elucidate age-specific mRNA vaccine actions. BNT162b2-stimulation changed the plasma proteome of blood samples from young (18-50Y) and older adult (≥60Y) participants, assessed by mass spectrometry, proximity extension assay, and multiplex. Young adult up-regulation (e.g., PSMC6, CPN1) contrasted reduced induction in older adults (e.g., TPM4, APOF, APOC2, CPN1, PI16). 30-85% lower TH1-polarizing cytokines and chemokines were induced in elderly blood (e.g., IFNγ, CXCL10). Analytes lower in older adult samples included human in vivo mRNA immunogenicity biomarkers (e.g., IFNγ, CXCL10, CCL4, IL-1RA). BNT162b2 also demonstrated reduced CD4+ TH1 responses in aged vs. young adult mice. Our study demonstrates the utility of human in vitro platforms modeling age-specific mRNA vaccine immunogenicity, highlights impaired support of TH1 polarization in older adults, and provides a rationale for precision mRNA vaccine adjuvantation to induce greater immunogenicity.
Collapse
Affiliation(s)
- Byron Brook
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abhinav Kumar Checkervarty
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Prevention of Organ Failure (PROOF) Centre of Excellence, St Paul's Hospital, University of British Columbia, Vancouver, BC V6Z 2K5, Canada
- UBC Centre for Heart Lung Innovation, Providence Research, St Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Soumik Barman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Cali Sweitzer
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Anna-Nicole Bosco
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amy C Sherman
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Lindsey R Baden
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Elena Morrocchi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Guzman Sanchez-Schmitz
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine- Chair of Pediatrics, University of Rome, 00133 Tor Vergata, Italy
| | - Etsuro Nanishi
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy R O'Meara
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Marisa E McGrath
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Matthew B Frieman
- Center for Pathogen Research, Department of Microbiology and Immunology, The University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dheeraj Soni
- Global Investigative Toxicology, Preclinical Safety, Sanofi, Cambridge, MA 02142, USA
| | - Simon D van Haren
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Al Ozonoff
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| | - Joann Diray-Arce
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Hanno Steen
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David J Dowling
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Ofer Levy
- Precision Vaccines Program, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT & Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Iyaniwura SA, Ribeiro RM, Zitzmann C, Phan T, Ke R, Perelson AS. The kinetics of SARS-CoV-2 infection based on a human challenge study. Proc Natl Acad Sci U S A 2024; 121:e2406303121. [PMID: 39508770 PMCID: PMC11573497 DOI: 10.1073/pnas.2406303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Studying the early events that occur after viral infection in humans is difficult unless one intentionally infects volunteers in a human challenge study. Here, we use data about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in such a study in combination with mathematical modeling to gain insights into the relationship between the amount of virus in the upper respiratory tract and the immune response it generates. We propose a set of dynamic models of increasing complexity to dissect the roles of target cell limitation, innate immunity, and adaptive immunity in determining the observed viral kinetics. We introduce an approach for modeling the effect of humoral immunity that describes a decline in infectious virus after immune activation. We fit our models to viral load and infectious titer data from all the untreated infected participants in the study simultaneously. We found that a power-law with a power h < 1 describes the relationship between infectious virus and viral load. Viral replication at the early stage of infection is rapid, with a doubling time of ~2 h for viral RNA and ~3 h for infectious virus. We estimate that adaptive immunity is initiated ~7 to 10 d postinfection and appears to contribute to a multiphasic viral decline experienced by some participants; the viral rebound experienced by other participants is consistent with a decline in the interferon response. Altogether, we quantified the kinetics of SARS-CoV-2 infection, shedding light on the early dynamics of the virus and the potential role of innate and adaptive immunity in promoting viral decline during infection.
Collapse
Affiliation(s)
- Sarafa A Iyaniwura
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Ruy M Ribeiro
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Carolin Zitzmann
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Tin Phan
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Ruian Ke
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
11
|
Bozkus CC, Brown M, Velazquez L, Thomas M, Wilson EA, O’Donnell T, Ruchnewitz D, Geertz D, Bykov Y, Kodysh J, Oguntuyo KY, Roudko V, Hoyos D, Srivastava KD, Kleiner G, Alshammary H, Karekar N, McClain C, Gopal R, Nie K, Del Valle D, Delbeau-Zagelbaum D, Rodriguez D, Setal J, Carroll E, Wiesendanger M, Gulko PS, Charney A, Merad M, Kim-Schulze S, Lee B, Wajnberg A, Simon V, Greenbaum BD, Chowell D, Vabret N, Luksza M, Bhardwaj N. T cell epitope mapping reveals immunodominance of evolutionarily conserved regions within SARS-CoV-2 proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619918. [PMID: 39484455 PMCID: PMC11527131 DOI: 10.1101/2024.10.23.619918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
As SARS-CoV-2 variants continue to emerge capable of evading neutralizing antibodies, it has become increasingly important to fully understand the breadth and functional profile of T cell responses to determine their impact on the immune surveillance of variant strains. Here, sampling healthy individuals, we profiled the kinetics and polyfunctionality of T cell immunity elicited by mRNA vaccination. Modeling of anti-spike T cell responses against ancestral and variant strains of SARS-CoV-2 suggested that epitope immunodominance and cross-reactivity are major predictive determinants of T cell immunity. To identify immunodominant epitopes across the viral proteome, we generated a comprehensive map of CD4+ and CD8+ T cell epitopes within non-spike proteins that induced polyfunctional T cell responses in convalescent patients. We found that immunodominant epitopes mainly resided within regions that were minimally disrupted by mutations in emerging variants. Conservation analysis across historical human coronaviruses combined with in silico alanine scanning mutagenesis of non-spike proteins underscored the functional importance of mutationally-constrained immunodominant regions. Collectively, these findings identify immunodominant T cell epitopes across the mutationally-constrained SARS-CoV-2 proteome, potentially providing immune surveillance against emerging variants, and inform the design of next-generation vaccines targeting antigens throughout SARS-CoV-2 proteome for broader and more durable protection.
Collapse
Affiliation(s)
- Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Matthew Brown
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leandra Velazquez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcus Thomas
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A. Wilson
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy O’Donnell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denis Ruchnewitz
- Institute for Biological Physics, University of Cologne, 50937 Cologne, Germany
| | - Douglas Geertz
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonina Bykov
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julia Kodysh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasopefoluwa Y. Oguntuyo
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vladimir Roudko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Hoyos
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Komal D. Srivastava
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hala Alshammary
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha Karekar
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher McClain
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Gopal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diane Del Valle
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Denise Rodriguez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Setal
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Emily Carroll
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margrit Wiesendanger
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Percio S. Gulko
- The Department of Medicine, The Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ania Wajnberg
- The Department of Medicine, The Division of General Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin D Greenbaum
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Physiology, Biophysics & Systems Biology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Diego Chowell
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolas Vabret
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta Luksza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Department of Medicine, The Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| |
Collapse
|
12
|
Files MA, Gentles L, Kehoe L, Adler A, Lacombe K, Dickerson JA, Greninger A, Waghmare A, Fairlie T, Pringle K, Midgley CM, Hagen MB, Englund JA, Seshadri C. Kinetics and Durability of Antibody and T-Cell Responses to SARS-CoV-2 in Children. J Infect Dis 2024; 230:889-900. [PMID: 38838218 PMCID: PMC11481334 DOI: 10.1093/infdis/jiae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells and sera were archived at approximately 1, 6, and 12 months after symptom onset. METHODS We compared antibody responses (n = 85) and T-cell responses (n = 30) to nucleocapsid (N) and spike (S) glycoprotein over time across 4 age strata: 6 months to 5 years and 5-9, 10-14, and 15-20 years. RESULTS N-specific antibody responses declined over time, becoming undetectable in 26 (81%) of 32 children by approximately 1 year postinfection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson r = .31, P = .008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children and, with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS Our data reveal durable age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-antibody responses in comparison with declining antibody responses to N.
Collapse
Affiliation(s)
- Megan A Files
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Lauren Gentles
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Leanne Kehoe
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Amanda Adler
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Kirsten Lacombe
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Jane A Dickerson
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| | - Alexander Greninger
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington
| | - Alpana Waghmare
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Tarayn Fairlie
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kimberly Pringle
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Claire M Midgley
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Melissa Briggs Hagen
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet A Englund
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
13
|
Hao T, Li Y, Liu P, Wang X, Xu K, Lei W, Li Y, Zhang R, Li X, Zhao X, Xu K, Lu X, Bi Y, Song H, Wu G, Zhu B, Gao GF. A chimeric mRNA vaccine of S-RBD with HA conferring broad protection against influenza and COVID-19 variants. PLoS Pathog 2024; 20:e1012508. [PMID: 39303003 PMCID: PMC11414905 DOI: 10.1371/journal.ppat.1012508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Influenza and coronavirus disease 2019 (COVID-19) represent two respiratory diseases that have significantly impacted global health, resulting in substantial disease burden and mortality. An optimal solution would be a combined vaccine capable of addressing both diseases, thereby obviating the need for multiple vaccinations. Previously, we conceived a chimeric protein subunit vaccine targeting both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), utilizing the receptor binding domain of spike protein (S-RBD) and the stalk region of hemagglutinin protein (HA-stalk) components. By integrating the S-RBD from the SARS-CoV-2 Delta variant with the headless hemagglutinin (HA) from H1N1 influenza virus, we constructed stable trimeric structures that remain accessible to neutralizing antibodies. This vaccine has demonstrated its potential by conferring protection against a spectrum of strains in mouse models. In this study, we designed an mRNA vaccine candidate encoding the chimeric antigen. The resultant humoral and cellular immune responses were meticulously evaluated in mouse models. Furthermore, the protective efficacy of the vaccine was rigorously examined through challenges with either homologous or heterologous influenza viruses or SARS-CoV-2 strains. Our findings reveal that the mRNA vaccine exhibited robust immunogenicity, engendering high and sustained levels of neutralizing antibodies accompanied by robust and persistent cellular immunity. Notably, this vaccine effectively afforded complete protection to mice against H1N1 or heterosubtypic H5N8 subtypes, as well as the SARS-CoV-2 Delta and Omicron BA.2 variants. Additionally, our mRNA vaccine design can be easily adapted from Delta RBD to Omicron RBD antigens, providing protection against emerging variants. The development of two-in-one vaccine targeting both influenza and COVID-19, incorporating the mRNA platform, may provide a versatile approach to combating future pandemics.
Collapse
MESH Headings
- Animals
- Mice
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- mRNA Vaccines/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- COVID-19 Vaccines/immunology
- Influenza Vaccines/immunology
- Antibodies, Viral/immunology
- Mice, Inbred BALB C
- Female
- Influenza A Virus, H1N1 Subtype/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Vaccines, Synthetic/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Tianjiao Hao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yulei Li
- Clinicopathological Diagnosis & Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, People’s Republic of China
| | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xi Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ying Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, People’s Republic of China
| | - Xiaoyan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hao Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, People’s Republic of China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Cui L, Wang J, Orlando F, Giacconi R, Malavolta M, Bartozzi B, Galeazzi R, Giorgini G, Pesce L, Cardarelli F, Quagliarini E, Renzi S, Xiao S, Pozzi D, Provinciali M, Caracciolo G, Marchini C, Amici A. Enhancing Immune Responses against SARS-CoV-2 Variants in Aged Mice with INDUK: A Chimeric DNA Vaccine Encoding the Spike S1-TM Subunits. ACS OMEGA 2024; 9:34624-34635. [PMID: 39157118 PMCID: PMC11325517 DOI: 10.1021/acsomega.4c03285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 08/20/2024]
Abstract
Currently available vaccines against COVID-19 showed high efficacy against the original strain of SARS-CoV-2 but progressively lower efficacy against new variants. In response to emerging SARS-CoV-2 strains, we propose chimeric DNA vaccines encoding the spike antigen, including a combination of selected key mutations from different variants of concern. We developed two DNA vaccines, pVAX-S1-TM-D614G and pVAX-S1-TM-INDUK (INDUK), encoding the SARS-CoV-2 S1 spike subunit in fusion with the transmembrane region that allows protein trimerization as predicted by in silico analysis. pVAX-S1-TM-D614G included the dominant D614G substitution, while the chimeric vaccine INDUK contained additional selected mutations from the Delta (E484Q and L452R) and Alpha (N501Y and A570D) variants. Considering that aging is a risk factor for severe disease and that suboptimal vaccine responses were observed in older individuals, the immunogenicity of pVAX-S1-TM-D614G and INDUK was tested in both young and aged C57BL/6 mice. Two vaccine doses were able to trigger significant anti-SARS-CoV-2 antibody production, showing neutralizing activity. ELISA tests confirmed that antibodies induced by pVAX-S1-TM-D614G and INDUK were able to recognize both Wuhan Spike and Delta variant Spike as trimers, while neutralizing antibodies were detected by an ACE2:SARS-CoV-2 Spike S1 inhibitor screening assay, designed to assess the capacity of antibodies to block the interaction between the viral spike S1 protein and the ACE2 receptor. Although antibody titer declined within six months, a third booster dose significantly increased the magnitude of humoral response, even in aged individuals, suggesting that immune recall can improve antibody response durability. The analysis of cellular responses demonstrated that vaccination with INDUK elicited an increase in the percentage of SARS-CoV-2-specific IFN-γ producing T lymphocytes in immunized young mice and TNF-α-producing T lymphocytes in both young and aged mice. These findings not only hold immediate promise for addressing evolving challenges in SARS-CoV-2 vaccination but also open avenues to refine strategies and elevate the effectiveness of next-generation vaccines.
Collapse
Affiliation(s)
- Lishan Cui
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Junbiao Wang
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Fiorenza Orlando
- Experimental
Animal Models for Aging Unit, Scientific Technological Area, IRRCS INRCA, 60100 Ancona, Italy
| | - Robertina Giacconi
- Advanced
Technology Center for Aging Research, IRCCS
INRCA, 60100Ancona, Italy
| | - Marco Malavolta
- Advanced
Technology Center for Aging Research, IRCCS
INRCA, 60100Ancona, Italy
| | - Beatrice Bartozzi
- Advanced
Technology Center for Aging Research, IRCCS
INRCA, 60100Ancona, Italy
| | - Roberta Galeazzi
- Department
of Life and Environmental Sciences, Marche
Polytechnic University, 60131 Ancona, Italy
| | - Giorgia Giorgini
- Department
of Life and Environmental Sciences, Marche
Polytechnic University, 60131 Ancona, Italy
| | - Luca Pesce
- NEST
Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Francesco Cardarelli
- NEST
Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Erica Quagliarini
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Serena Renzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Siyao Xiao
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Daniela Pozzi
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Mauro Provinciali
- Experimental
Animal Models for Aging Unit, Scientific Technological Area, IRRCS INRCA, 60100 Ancona, Italy
| | - Giulio Caracciolo
- NanoDelivery
Lab, Department of Molecular Medicine, Sapienza
University of Rome, viale
Regina Elena 291, 00161 Rome, Italy
| | - Cristina Marchini
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| | - Augusto Amici
- School
of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy
| |
Collapse
|
15
|
Jang S, Hong W, Moon Y. Obesity-compromised immunity in post-COVID-19 condition: a critical control point of chronicity. Front Immunol 2024; 15:1433531. [PMID: 39188722 PMCID: PMC11345197 DOI: 10.3389/fimmu.2024.1433531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Post-COVID-19 condition is recognized as a multifactorial disorder, with persistent presence of viral antigens, discordant immunity, delayed viral clearance, and chronic inflammation. Obesity has emerged as an independent risk factor for both SARS-CoV-2 infection and its subsequent sequelae. In this study, we aimed to predict the molecular mechanisms linking obesity and post-COVID-19 distress. Viral antigen-exposed adipose tissues display remarkable levels of viral receptors, facilitating viral entry, deposition, and chronic release of inflammatory mediators and cells in patients. Subsequently, obesity-associated inflammatory insults are predicted to disturb cellular and humoral immunity by triggering abnormal cell differentiation and lymphocyte exhaustion. In particular, the decline in SARS-CoV-2 antibody titers and T-cell exhaustion due to chronic inflammation may account for delayed virus clearance and persistent activation of inflammatory responses. Taken together, obesity-associated defective immunity is a critical control point of intervention against post-COVID-19 progression, particularly in subjects with chronic metabolic distress.
Collapse
Affiliation(s)
- Soonwoo Jang
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
| | - Wooyoung Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan, Republic of Korea
- Department of Medicine, Pusan National University, Yangsan, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Yangsan, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan, Republic of Korea
| |
Collapse
|
16
|
Zheng HY, Song TZ, Zheng YT. Immunobiology of COVID-19: Mechanistic and therapeutic insights from animal models. Zool Res 2024; 45:747-766. [PMID: 38894519 PMCID: PMC11298684 DOI: 10.24272/j.issn.2095-8137.2024.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024] Open
Abstract
The distribution of the immune system throughout the body complicates in vitro assessments of coronavirus disease 2019 (COVID-19) immunobiology, often resulting in a lack of reproducibility when extrapolated to the whole organism. Consequently, developing animal models is imperative for a comprehensive understanding of the pathology and immunology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. This review summarizes current progress related to COVID-19 animal models, including non-human primates (NHPs), mice, and hamsters, with a focus on their roles in exploring the mechanisms of immunopathology, immune protection, and long-term effects of SARS-CoV-2 infection, as well as their application in immunoprevention and immunotherapy of SARS-CoV-2 infection. Differences among these animal models and their specific applications are also highlighted, as no single model can fully encapsulate all aspects of COVID-19. To effectively address the challenges posed by COVID-19, it is essential to select appropriate animal models that can accurately replicate both fatal and non-fatal infections with varying courses and severities. Optimizing animal model libraries and associated research tools is key to resolving the global COVID-19 pandemic, serving as a robust resource for future emerging infectious diseases.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tian-Zhang Song
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Tang Zheng
- State Key Laboratory of Genetic Evolution & Animal Models, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China. E-mail:
| |
Collapse
|
17
|
Slamanig S, González-Domínguez I, Chang LA, Lemus N, Lai TY, Martínez JL, Singh G, Dolange V, Abdeljawad A, Kowdle S, Noureddine M, Warang P, Singh G, Lee B, García-Sastre A, Krammer F, Schotsaert M, Palese P, Sun W. Intranasal SARS-CoV-2 Omicron variant vaccines elicit humoral and cellular mucosal immunity in female mice. EBioMedicine 2024; 105:105185. [PMID: 38848648 PMCID: PMC11200293 DOI: 10.1016/j.ebiom.2024.105185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND In order to prevent the emergence and spread of future variants of concern of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), developing vaccines capable of stopping transmission is crucial. The SARS-CoV-2 vaccine NDV-HXP-S can be administered live intranasally (IN) and thus induce protective immunity in the upper respiratory tract. The vaccine is based on Newcastle disease virus (NDV) expressing a stabilised SARS-CoV-2 spike protein. NDV-HXP-S can be produced as influenza virus vaccine at low cost in embryonated chicken eggs. METHODS The NDV-HXP-S vaccine was genetically engineered to match the Omicron variants of concern (VOC) BA.1 and BA.5 and tested as an IN two or three dose vaccination regimen in female mice. Furthermore, female mice intramuscularly (IM) vaccinated with mRNA-lipid nanoparticles (LNPs) were IN boosted with NDV-HXP-S. Systemic humoral immunity, memory T cell responses in the lungs and spleens as well as immunoglobulin A (IgA) responses in distinct mucosal tissues were characterised. FINDINGS NDV-HXP-S Omicron variant vaccines elicited high mucosal IgA and serum IgG titers against respective SARS-CoV-2 VOC in female mice following IN administration and protected against challenge from matched variants. Additionally, antigen-specific memory B cells and local T cell responses in the lungs were induced. Host immunity against the NDV vector did not interfere with boosting. Intramuscular vaccination with mRNA-LNPs was enhanced by IN NDV-HXP-S boosting resulting in improvement of serum neutralization titers and induction of mucosal immunity. INTERPRETATION We demonstrate that NDV-HXP-S Omicron variant vaccines utilised for primary immunizations or boosting efficiently elicit humoral and cellular immunity. The described induction of systemic and mucosal immunity has the potential to reduce infection and transmission. FUNDING This work was partially funded by the NIAIDCenters of Excellence for Influenza Research and Response (CEIRR) and by the NIAID Collaborative Vaccine Innovation Centers and by institutional funding from the Icahn School of Medicine at Mount Sinai. See under Acknowledgements for details.
Collapse
Affiliation(s)
- Stefan Slamanig
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | | | - Lauren A Chang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Lemus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tsoi Ying Lai
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Luis Martínez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Victoria Dolange
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Abdeljawad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moataz Noureddine
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Palese
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Lim SY, Kim JW, Kim JY, Kang SW, Jang CY, Chang E, Yang JS, Kim KC, Jang HC, Kim DS, Shin Y, Lee JY, Kim SH. The Association Between Antibody Responses and Prolonged Viable Severe Acute Respiratory Syndrome Coronavirus 2 Shedding in Immunocompromised Patients: A Prospective Cohort Study. J Infect Dis 2024; 229:1722-1727. [PMID: 38114088 DOI: 10.1093/infdis/jiad579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023] Open
Abstract
Immunocompromised patients with coronavirus disease 2019 were prospectively enrolled from March to November 2022 to understand the association between antibody responses and severe acute respiratory syndrome coronavirus 2 shedding. A total of 62 patients were analyzed, and the results indicated a faster decline in genomic and subgenomic viral RNA in patients with higher neutralizing and S1-specific immunoglobulin G (IgG) antibodies (both P < .001). Notably, high neutralizing antibody levels were associated with a significantly faster decrease in viable virus cultures (P = .04). Our observations suggest the role of neutralizing antibodies in prolonged virus shedding in immunocompromised patients, highlighting the potential benefits of enhancing their humoral immune response through vaccination or monoclonal antibody treatments.
Collapse
Affiliation(s)
- So Yun Lim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
- Division of Infectious Diseases, Department of Internal Medicine, National Medical Center, Seoul
| | - Jun-Won Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Sung-Woon Kang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Choi-Young Jang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Euijin Chang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Jeong-Sun Yang
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Kyung-Chang Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Hee-Chang Jang
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Da Sol Kim
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Younmin Shin
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Joo-Yeon Lee
- National Institute of Infectious Diseases, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul
- Office for Infection Control, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
19
|
Montoya B, Melo-Silva CR, Tang L, Kafle S, Lidskiy P, Bajusz C, Vadovics M, Muramatsu H, Abraham E, Lipinszki Z, Chatterjee D, Scher G, Benitez J, Sung MMH, Tam YK, Catanzaro NJ, Schäfer A, Andino R, Baric RS, Martinez DR, Pardi N, Sigal LJ. mRNA-LNP vaccine-induced CD8 + T cells protect mice from lethal SARS-CoV-2 infection in the absence of specific antibodies. Mol Ther 2024; 32:1790-1804. [PMID: 38605519 PMCID: PMC11184341 DOI: 10.1016/j.ymthe.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/11/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
The role of CD8+ T cells in SARS-CoV-2 pathogenesis or mRNA-LNP vaccine-induced protection from lethal COVID-19 is unclear. Using mouse-adapted SARS-CoV-2 virus (MA30) in C57BL/6 mice, we show that CD8+ T cells are unnecessary for the intrinsic resistance of female or the susceptibility of male mice to lethal SARS-CoV-2 infection. Also, mice immunized with a di-proline prefusion-stabilized full-length SARS-CoV-2 Spike (S-2P) mRNA-LNP vaccine, which induces Spike-specific antibodies and CD8+ T cells specific for the Spike-derived VNFNFNGL peptide, are protected from SARS-CoV-2 infection-induced lethality and weight loss, while mice vaccinated with mRNA-LNPs encoding only VNFNFNGL are protected from lethality but not weight loss. CD8+ T cell depletion ablates protection in VNFNFNGL but not in S-2P mRNA-LNP-vaccinated mice. Therefore, mRNA-LNP vaccine-induced CD8+ T cells are dispensable when protective antibodies are present but essential for survival in their absence. Hence, vaccine-induced CD8+ T cells may be critical to protect against SARS-CoV-2 variants that mutate epitopes targeted by protective antibodies.
Collapse
Affiliation(s)
- Brian Montoya
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Carolina R Melo-Silva
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Samita Kafle
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Peter Lidskiy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Csaba Bajusz
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edit Abraham
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary; MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltan Lipinszki
- National Laboratory for Biotechnology, Institute of Genetics, HUN-REN Biological Research Centre, Szeged, Hungary; MTA SZBK Lendület Laboratory of Cell Cycle Regulation, Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, Hungary
| | - Debotri Chatterjee
- Department of Neurosciences, Thomas Jefferson University Vickie and Jack Farber Institute for Neuroscience, Philadelphia, PA, USA
| | - Gabrielle Scher
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Juliana Benitez
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC V6T 1Z3, Canada
| | - Nicholas J Catanzaro
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexandra Schäfer
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David R Martinez
- Department of Immunobiology, Center for Infection and Immunity, Yale School of Medicine, New Haven, CT 06520, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Luis J Sigal
- Department of Microbiology and Immunology, Bluemle Life Science Building, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
20
|
Tong S, Scott JC, Eyoh E, Werthmann DW, Stone AE, Murrell AE, Sabino-Santos G, Trinh IV, Chandra S, Elliott DH, Smira AR, Velazquez JV, Schieffelin J, Ning B, Hu T, Kolls JK, Landry SJ, Zwezdaryk KJ, Robinson JE, Gunn BM, Rabito FA, Norton EB. Altered COVID-19 immunity in children with asthma by atopic status. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100236. [PMID: 38590754 PMCID: PMC11000189 DOI: 10.1016/j.jacig.2024.100236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 04/10/2024]
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes a spectrum of clinical outcomes that may be complicated by severe asthma. Antiviral immunity is often compromised in patients with asthma; however, whether this is true for SARS-CoV-2 immunity and children is unknown. Objective We aimed to evaluate SARS-CoV-2 immunity in children with asthma on the basis of infection or vaccination history and compared to respiratory syncytial viral or allergen (eg, cockroach, dust mite)-specific immunity. Methods Fifty-three children from an urban asthma study were evaluated for medical history, lung function, and virus- or allergen-specific immunity using antibody or T-cell assays. Results Polyclonal antibody responses to spike were observed in most children from infection and/or vaccination history. Children with atopic asthma or high allergen-specific IgE, particularly to dust mites, exhibited reduced seroconversion, antibody magnitude, and SARS-CoV-2 virus neutralization after SARS-CoV-2 infection or vaccination. TH1 responses to SARS-CoV-2 and respiratory syncytial virus correlated with antigen-respective IgG. Cockroach-specific T-cell activation as well as IL-17A and IL-21 cytokines negatively correlated with SARS-CoV-2 antibodies and effector functions, distinct from total and dust mite IgE. Allergen-specific IgE and lack of vaccination were associated with recent health care utilization. Reduced lung function (forced expiratory volume in 1 second ≤ 80%) was independently associated with (SARS-CoV-2) peptide-induced cytokines, including IL-31, whereas poor asthma control was associated with cockroach-specific cytokine responses. Conclusion Mechanisms underpinning atopic and nonatopic asthma may complicate the development of memory to SARS-CoV-2 infection or vaccination and lead to a higher risk of repeated infection in these children.
Collapse
Affiliation(s)
- Sherry Tong
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Jordan C. Scott
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Enwono Eyoh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Derek W. Werthmann
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Addison E. Stone
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Amelie E. Murrell
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Gilberto Sabino-Santos
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Ivy V. Trinh
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - Sruti Chandra
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Debra H. Elliott
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Ashley R. Smira
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Jalene V. Velazquez
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - John Schieffelin
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Bo Ning
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, La
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, La
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Jay K. Kolls
- Department of Medicine, Tulane University School of Medicine, New Orleans, La
| | - Samuel J. Landry
- Department of Biochemistry & Molecular Biology, Tulane University School of Medicine, New Orleans, La
| | - Kevin J. Zwezdaryk
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, La
| | - Bronwyn M. Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, Wash
| | - Felicia A. Rabito
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, La
| | - Elizabeth B. Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, La
| |
Collapse
|
21
|
Fumagalli V, Ravà M, Marotta D, Di Lucia P, Bono EB, Giustini L, De Leo F, Casalgrandi M, Monteleone E, Mouro V, Malpighi C, Perucchini C, Grillo M, De Palma S, Donnici L, Marchese S, Conti M, Muramatsu H, Perlman S, Pardi N, Kuka M, De Francesco R, Bianchi ME, Guidotti LG, Iannacone M. Antibody-independent protection against heterologous SARS-CoV-2 challenge conferred by prior infection or vaccination. Nat Immunol 2024; 25:633-643. [PMID: 38486021 PMCID: PMC11003867 DOI: 10.1038/s41590-024-01787-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 04/11/2024]
Abstract
Vaccines have reduced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) morbidity and mortality, yet emerging variants challenge their effectiveness. The prevailing approach to updating vaccines targets the antibody response, operating under the presumption that it is the primary defense mechanism following vaccination or infection. This perspective, however, can overlook the role of T cells, particularly when antibody levels are low or absent. Here we show, through studies in mouse models lacking antibodies but maintaining functional B cells and lymphoid organs, that immunity conferred by prior infection or mRNA vaccination can protect against SARS-CoV-2 challenge independently of antibodies. Our findings, using three distinct models inclusive of a novel human/mouse ACE2 hybrid, highlight that CD8+ T cells are essential for combating severe infections, whereas CD4+ T cells contribute to managing milder cases, with interferon-γ having an important function in this antibody-independent defense. These findings highlight the importance of T cell responses in vaccine development, urging a broader perspective on protective immunity beyond just antibodies.
Collapse
Affiliation(s)
- Valeria Fumagalli
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Micol Ravà
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Davide Marotta
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Pietro Di Lucia
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa B Bono
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Leonardo Giustini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica De Leo
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Violette Mouro
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Malpighi
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Perucchini
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Grillo
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Sara De Palma
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Charles River Laboratories, Calco, Italy
| | - Lorena Donnici
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Silvia Marchese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Matteo Conti
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mirela Kuka
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaele De Francesco
- Istituto Nazionale di Genetica Molecolare (INGM) 'Romeo ed Enrica Invernizzi', Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco E Bianchi
- Vita-Salute San Raffaele University, Milan, Italy.
- Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Luca G Guidotti
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| | - Matteo Iannacone
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
- Experimental Imaging Centre, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
22
|
Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, Eron JJ, Currier JS, Hughes MD, Choudhary MC, Deo R, Li JZ, Ribeiro RM, Ke R, Perelson AS. Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody. PLoS Pathog 2024; 20:e1011680. [PMID: 38635853 PMCID: PMC11060554 DOI: 10.1371/journal.ppat.1011680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Carolin Zitzmann
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Michael D. Hughes
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | | |
Collapse
|
23
|
Ali YM, Carnell GW, Fumagalli S, Mercurio D, Seminara S, Lynch NJ, Khatri P, Arachchilage CH, Mascheroni L, Kaminski C, George CL, Stewart H, Yabuki M, Demopulos G, Heeney JL, Schwaeble W. Inhibition of the Lectin Pathway of Complement Activation Reduces Acute Respiratory Distress Syndrome Severity in a Mouse Model of SARS-CoV-2 Infection. J Infect Dis 2024; 229:680-690. [PMID: 37878754 PMCID: PMC10938221 DOI: 10.1093/infdis/jiad462] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway. Treatment of infected mice with HG4 reduced the disease severity score and improved survival vs mice that received an isotype control antibody. Administration of HG4 significantly reduced the lung injury score, including alveolar inflammatory cell infiltration, alveolar edema, and alveolar hemorrhage. The ameliorating effect of MASP-2 inhibition on the severity of COVID-19 pathology is reflected by a significant reduction in the proinflammatory activation of brain microglia in HG4-treated mice.
Collapse
Affiliation(s)
- Youssif M Ali
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - George W Carnell
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
| | - Stefano Fumagalli
- Department of Acute Brain and Cardiovascular Injury, Laboratory of Stroke and Vascular Dysfunctions, Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Domenico Mercurio
- Department of Acute Brain and Cardiovascular Injury, Laboratory of Stroke and Vascular Dysfunctions, Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Serena Seminara
- Department of Acute Brain and Cardiovascular Injury, Laboratory of Stroke and Vascular Dysfunctions, Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Nicholas J Lynch
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
| | - Priyanka Khatri
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
| | - Chanuka H Arachchilage
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
| | - Luca Mascheroni
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Clemens Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Charlotte L George
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | | - Jonathan L Heeney
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
| | - Wilhelm Schwaeble
- Department of Veterinary Medicine, School of Biological Sciences, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
24
|
Ying B, Darling TL, Desai P, Liang CY, Dmitriev IP, Soudani N, Bricker T, Kashentseva EA, Harastani H, Raju S, Liu M, Schmidt AG, Curiel DT, Boon ACM, Diamond MS. Mucosal vaccine-induced cross-reactive CD8 + T cells protect against SARS-CoV-2 XBB.1.5 respiratory tract infection. Nat Immunol 2024; 25:537-551. [PMID: 38337035 PMCID: PMC10907304 DOI: 10.1038/s41590-024-01743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
A nasally delivered chimpanzee adenoviral-vectored severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine (ChAd-SARS-CoV-2-S) is currently used in India (iNCOVACC). Here, we update this vaccine by creating ChAd-SARS-CoV-2-BA.5-S, which encodes a prefusion-stabilized BA.5 spike protein. Whereas serum neutralizing antibody responses induced by monovalent or bivalent adenoviral vaccines were poor against the antigenically distant XBB.1.5 strain and insufficient to protect in passive transfer experiments, mucosal antibody and cross-reactive memory T cell responses were robust, and protection was evident against WA1/2020 D614G and Omicron variants BQ.1.1 and XBB.1.5 in mice and hamsters. However, depletion of memory CD8+ T cells before XBB.1.5 challenge resulted in loss of protection against upper and lower respiratory tract infection. Thus, nasally delivered vaccines stimulate mucosal immunity against emerging SARS-CoV-2 strains, and cross-reactive memory CD8+ T cells mediate protection against lung infection by antigenically distant strains in the setting of low serum levels of cross-reactive neutralizing antibodies.
Collapse
Affiliation(s)
- Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamarand L Darling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pritesh Desai
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nadia Soudani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Traci Bricker
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Houda Harastani
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saravanan Raju
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meizi Liu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron G Schmidt
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrianus C M Boon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Kruglov AA, Bondareva MA, Gogoleva VS, Semin IK, Astrakhantseva IV, Zvartsev R, Lunin AS, Apolokhov VD, Shustova EY, Volok VP, Ustyugov AA, Ishmukhametov AA, Nedospasov SA, Kozlovskaya LI, Drutskaya MS. Inactivated whole virion vaccine protects K18-hACE2 Tg mice against the Omicron SARS-CoV-2 variant via cross-reactive T cells and nonneutralizing antibody responses. Eur J Immunol 2024; 54:e2350664. [PMID: 38088236 DOI: 10.1002/eji.202350664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/02/2024]
Abstract
COVID-19 is a systemic inflammatory disease initiated by SARS-CoV-2 virus infection. Multiple vaccines against the Wuhan variant of SARS-CoV-2 have been developed including a whole virion beta-propiolactone-inactivated vaccine based on the B.1.1 strain (CoviVac). Since most of the population has been vaccinated by targeting the original or early variants of SARS-CoV-2, the emergence of novel mutant variants raises concern over possible evasion of vaccine-induced immune responses. Here, we report on the mechanism of protection by CoviVac, a whole virion-based vaccine, against the Omicron variant. CoviVac-immunized K18-hACE2 Tg mice were protected against both prototype B.1.1 and BA.1-like (Omicron) variants. Subsequently, vaccinated K18-hACE2 Tg mice rapidly cleared the infection via cross-reactive T-cell responses and cross-reactive, non-neutralizing antibodies recognizing the Omicron variant Spike protein. Thus, our data indicate that efficient protection from SARS-CoV-2 variants can be achieved by the orchestrated action of cross-reactive T cells and non-neutralizing antibodies.
Collapse
Affiliation(s)
- Andrey A Kruglov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Marina A Bondareva
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Violetta S Gogoleva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Iaroslav K Semin
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Systems Rheumatology, German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Irina V Astrakhantseva
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| | - Ruslan Zvartsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr S Lunin
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Vasiliy D Apolokhov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Elena Yu Shustova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Viktor P Volok
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
| | - Aleksey A Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medical Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Aydar A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moskva, Moscow, Russia
| | - Sergei A Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Liubov I Kozlovskaya
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University (Sechenov University), Moskva, Moscow, Russia
| | - Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Russia
| |
Collapse
|
26
|
Hsieh MS, Hsu CW, Liao HC, Lin CL, Chiang CY, Chen MY, Liu SJ, Liao CL, Chen HW. SARS-CoV-2 spike-FLIPr fusion protein plus lipidated FLIPr protects against various SARS-CoV-2 variants in hamsters. J Virol 2024; 98:e0154623. [PMID: 38299865 PMCID: PMC10878263 DOI: 10.1128/jvi.01546-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024] Open
Abstract
Vaccine-induced mucosal immunity and broad protective capacity against various severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remain inadequate. Formyl peptide receptor-like 1 inhibitory protein (FLIPr), produced by Staphylococcus aureus, can bind to various Fcγ receptor subclasses. Recombinant lipidated FLIPr (rLF) was previously found to be an effective adjuvant. In this study, we developed a vaccine candidate, the recombinant Delta SARS-CoV-2 spike (rDS)-FLIPr fusion protein (rDS-F), which employs the property of FLIPr binding to various Fcγ receptors. Our study shows that rDS-F plus rLF promotes rDS capture by dendritic cells. Intranasal vaccination of mice with rDS-F plus rLF increases persistent systemic and mucosal antibody responses and CD4/CD8 T-cell responses. Importantly, antibodies induced by rDS-F plus rLF vaccination neutralize Delta, Wuhan, Alpha, Beta, and Omicron strains. Additionally, rDS-F plus rLF provides protective effects against various SARS-CoV-2 variants in hamsters by reducing inflammation and viral loads in the lung. Therefore, rDS-F plus rLF is a potential vaccine candidate to induce broad protective responses against various SARS-CoV-2 variants.IMPORTANCEMucosal immunity is vital for combating pathogens, especially in the context of respiratory diseases like COVID-19. Despite this, most approved vaccines are administered via injection, providing systemic but limited mucosal protection. Developing vaccines that stimulate both mucosal and systemic immunity to address future coronavirus mutations is a growing trend. However, eliciting strong mucosal immune responses without adjuvants remains a challenge. In our study, we have demonstrated that using a recombinant severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-formyl peptide receptor-like 1 inhibitory protein (FLIPr) fusion protein as an antigen, in combination with recombinant lipidated FLIPr as an effective adjuvant, induced simultaneous systemic and mucosal immune responses through intranasal immunization in mice and hamster models. This approach offered protection against various SARS-CoV-2 strains, making it a promising vaccine candidate for broad protection. This finding is pivotal for future broad-spectrum vaccine development.
Collapse
Affiliation(s)
- Ming-Shu Hsieh
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chia-Wei Hsu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hung-Chun Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chang-Ling Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yi Chiang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Yu Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Jen Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Len Liao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Wellford SA, Moseman EA. Olfactory immune response to SARS-CoV-2. Cell Mol Immunol 2024; 21:134-143. [PMID: 38143247 PMCID: PMC10806031 DOI: 10.1038/s41423-023-01119-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Numerous pathogens can infect the olfactory tract, yet the pandemic caused by SARS-CoV-2 has strongly emphasized the importance of the olfactory mucosa as an immune barrier. Situated in the nasal passages, the olfactory mucosa is directly exposed to the environment to sense airborne odorants; however, this also means it can serve as a direct route of entry from the outside world into the brain. As a result, olfactotropic infections can have serious consequences, including dysfunction of the olfactory system, CNS invasion, dissemination to the lower respiratory tract, and transmission between individuals. Recent research has shown that a distinctive immune response is needed to protect this neuronal and mucosal tissue. A better understanding of innate, adaptive, and structural immune barriers in the olfactory mucosa is needed to develop effective therapeutics and vaccines against olfactotropic microbes such as SARS-CoV-2. Here, we summarize the ramifications of SARS-CoV-2 infection of the olfactory mucosa, review the subsequent immune response, and discuss important areas of future research for olfactory immunity to infectious disease.
Collapse
Affiliation(s)
- Sebastian A Wellford
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
28
|
Höft MA, Burgers WA, Riou C. The immune response to SARS-CoV-2 in people with HIV. Cell Mol Immunol 2024; 21:184-196. [PMID: 37821620 PMCID: PMC10806256 DOI: 10.1038/s41423-023-01087-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
This review examines the intersection of the HIV and SARS-CoV-2 pandemics. People with HIV (PWH) are a heterogeneous group that differ in their degree of immune suppression, immune reconstitution, and viral control. While COVID-19 in those with well-controlled HIV infection poses no greater risk than that for HIV-uninfected individuals, people with advanced HIV disease are more vulnerable to poor COVID-19 outcomes. COVID-19 vaccines are effective and well tolerated in the majority of PWH, though reduced vaccine efficacy, breakthrough infections and faster waning of vaccine effectiveness have been demonstrated in PWH. This is likely a result of suboptimal humoral and cellular immune responses after vaccination. People with advanced HIV may also experience prolonged infection that may give rise to new epidemiologically significant variants, but initiation or resumption of antiretroviral therapy (ART) can effectively clear persistent infection. COVID-19 vaccine guidelines reflect these increased risks and recommend prioritization for vaccination and additional booster doses for PWH who are moderately to severely immunocompromised. We recommend continued research and monitoring of PWH with SARS-CoV-2 infection, especially in areas with a high HIV burden.
Collapse
Affiliation(s)
- Maxine A Höft
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa.
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
29
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
30
|
Lenart K, Arcoverde Cerveira R, Hellgren F, Ols S, Sheward DJ, Kim C, Cagigi A, Gagne M, Davis B, Germosen D, Roy V, Alter G, Letscher H, Van Wassenhove J, Gros W, Gallouët AS, Le Grand R, Kleanthous H, Guebre-Xabier M, Murrell B, Patel N, Glenn G, Smith G, Loré K. Three immunizations with Novavax's protein vaccines increase antibody breadth and provide durable protection from SARS-CoV-2. NPJ Vaccines 2024; 9:17. [PMID: 38245545 PMCID: PMC10799869 DOI: 10.1038/s41541-024-00806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
The immune responses to Novavax's licensed NVX-CoV2373 nanoparticle Spike protein vaccine against SARS-CoV-2 remain incompletely understood. Here, we show in rhesus macaques that immunization with Matrix-MTM adjuvanted vaccines predominantly elicits immune events in local tissues with little spillover to the periphery. A third dose of an updated vaccine based on the Gamma (P.1) variant 7 months after two immunizations with licensed NVX-CoV2373 resulted in significant enhancement of anti-spike antibody titers and antibody breadth including neutralization of forward drift Omicron variants. The third immunization expanded the Spike-specific memory B cell pool, induced significant somatic hypermutation, and increased serum antibody avidity, indicating considerable affinity maturation. Seven months after immunization, vaccinated animals controlled infection by either WA-1 or P.1 strain, mediated by rapid anamnestic antibody and T cell responses in the lungs. In conclusion, a third immunization with an adjuvanted, low-dose recombinant protein vaccine significantly improved the quality of B cell responses, enhanced antibody breadth, and provided durable protection against SARS-CoV-2 challenge.
Collapse
Affiliation(s)
- Klara Lenart
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Rodrigo Arcoverde Cerveira
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrika Hellgren
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Ols
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel J Sheward
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Changil Kim
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Cagigi
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Davis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Jérôme Van Wassenhove
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Wesley Gros
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Harry Kleanthous
- Bill & Melinda Gates Foundation, Seattle, WA, USA
- SK Biosciences, Boston, MA, USA
| | | | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Karin Loré
- Department of Medicine Solna, Division of Immunology and Allergy, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Augello M, Bono V, Rovito R, Tincati C, Bianchi S, Taramasso L, Di Biagio A, Callegaro A, Maggiolo F, Borghi E, Monforte AD, Marchetti G. Association between SARS-CoV-2 RNAemia, skewed T cell responses, inflammation, and severity in hospitalized COVID-19 people living with HIV. iScience 2024; 27:108673. [PMID: 38188525 PMCID: PMC10770729 DOI: 10.1016/j.isci.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Severe COVID-19 outcomes have been reported in people living with HIV (PLWH), yet the underlying pathogenetic factors are largely unknown. We therefore aimed to assess SARS-CoV-2 RNAemia and plasma cytokines in PLWH hospitalized for COVID-19 pneumonia, exploring associations with magnitude and functionality of SARS-CoV-2-specific immune responses. Eighteen unvaccinated PLWH (16/18 on cART; median CD4 T cell count 361.5/μL; HIV-RNA<50 cp/mL in 15/18) and 18 age/sex-matched people without HIV were consecutively recruited at a median time of 10 days from symptoms onset. PLWH showed greater SARS-CoV-2 RNAemia, a distinct plasma cytokine profile, and worse respiratory function (lower PaO2/FiO2nadir), all correlating with skewed T cell responses (higher perforin production by cytotoxic T cells as well as fewer and less polyfunctional SARS-CoV-2-specific T cells), despite preserved humoral immunity. In conclusion, these data suggest a link between HIV-related T cell dysfunction and poor control over SARS-CoV-2 replication/dissemination that may in turn influence COVID-19 severity in PLWH.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Silvia Bianchi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Lucia Taramasso
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Annapaola Callegaro
- Biobank Unit and Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Franco Maggiolo
- Division of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Elisa Borghi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d’Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
32
|
Safont G, Villar-Hernández R, Smalchuk D, Stojanovic Z, Marín A, Lacoma A, Pérez-Cano C, López-Martínez A, Molina-Moya B, Solis AJ, Arméstar F, Matllo J, Díaz-Fernández S, Romero I, Casas I, Strecker K, Preyer R, Rosell A, Latorre I, Domínguez J. Measurement of IFN-γ and IL-2 for the assessment of the cellular immunity against SARS-CoV-2. Sci Rep 2024; 14:1137. [PMID: 38212416 PMCID: PMC10784529 DOI: 10.1038/s41598-024-51505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The study of specific T-cell responses against SARS-CoV-2 is important for understanding long-term immunity and infection management. The aim of this study was to assess the dual IFN-γ and IL-2 detection, using a SARS-CoV-2 specific fluorescence ELISPOT, in patients undergoing acute disease, during convalescence, and after vaccination. We also evaluated humoral response and compared with T-cells with the aim of correlating both types of responses, and increase the number of specific response detection. Blood samples were drawn from acute COVID-19 patients and convalescent individuals classified according to disease severity; and from unvaccinated and vaccinated uninfected individuals. IgGs against Spike and nucleocapsid, IgMs against nucleocapsid, and neutralizing antibodies were also analyzed. Our results show that IFN-γ in combination with IL-2 increases response detection in acute and convalescent individuals (p = 0.023). In addition, IFN-γ detection can be a useful biomarker for monitoring severe acute patients, as our results indicate that those individuals with a poor outcome have lower levels of this cytokine. In some cases, the lack of cellular immunity is compensated by antibodies, confirming the role of both types of immune responses in infection, and confirming that their dual detection can increase the number of specific response detections. In summary, IFN-γ/IL-2 dual detection is promising for characterizing and assessing the immunization status, and helping in the patient management.
Collapse
Affiliation(s)
- Guillem Safont
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Villar-Hernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Daria Smalchuk
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Zoran Stojanovic
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Marín
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Lacoma
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Pérez-Cano
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Anabel López-Martínez
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bárbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan Jhunior Solis
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Medicine Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Joan Matllo
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sergio Díaz-Fernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iris Romero
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irma Casas
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Preventive Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Kevin Strecker
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Rosemarie Preyer
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Antoni Rosell
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Irene Latorre
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
33
|
Imbiakha B, Sahler JM, Buchholz DW, Ezzatpour S, Jager M, Choi A, Monreal IA, Byun H, Adeleke RA, Leach J, Whittaker G, Dewhurst S, Rudd BD, Aguilar HC, August A. Adaptive immune cells are necessary for SARS-CoV-2-induced pathology. SCIENCE ADVANCES 2024; 10:eadg5461. [PMID: 38170764 PMCID: PMC10775995 DOI: 10.1126/sciadv.adg5461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing the ongoing global pandemic associated with morbidity and mortality in humans. Although disease severity correlates with immune dysregulation, the cellular mechanisms of inflammation and pathogenesis of COVID-19 remain relatively poorly understood. Here, we used mouse-adapted SARS-CoV-2 strain MA10 to investigate the role of adaptive immune cells in disease. We found that while infected wild-type mice lost ~10% weight by 3 to 4 days postinfection, rag-/- mice lacking B and T lymphocytes did not lose weight. Infected lungs at peak weight loss revealed lower pathology scores, fewer neutrophils, and lower interleukin-6 and tumor necrosis factor-α in rag-/- mice. Mice lacking αβ T cells also had less severe weight loss, but adoptive transfer of T and B cells into rag-/- mice did not significantly change the response. Collectively, these findings suggest that while adaptive immune cells are important for clearing SARS-CoV-2 infection, this comes at the expense of increased inflammation and pathology.
Collapse
Affiliation(s)
- Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Julie M. Sahler
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY 14853, USA
| | - Mason Jager
- Department of Biomedical Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Isaac A. Monreal
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Haewon Byun
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Richard Ayomide Adeleke
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Justin Leach
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Gary Whittaker
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - Stephen Dewhurst
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | - Brian D. Rudd
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY 14853, USA
- Cornell Institute of Host-Microbe Interactions and Defense; Cornell Center for Immunology, Cornell University, Ithaca, NY 14853, USA
- Cornell Center for Health Equity, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
34
|
Uraki R, Imai M, Ito M, Yamayoshi S, Kiso M, Jounai N, Miyaji K, Iwatsuki-Horimoto K, Takeshita F, Kawaoka Y. An mRNA vaccine encoding the SARS-CoV-2 receptor-binding domain protects mice from various Omicron variants. NPJ Vaccines 2024; 9:4. [PMID: 38167505 PMCID: PMC10761957 DOI: 10.1038/s41541-023-00800-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Here, we assessed the efficacy of a lipid nanoparticle-based mRNA vaccine candidate encoding the receptor-binding domain (LNP-mRNA-RBD) in mice. Mice immunized with LNP-mRNA-RBD based on the ancestral strain (ancestral-type LNP-mRNA-RBD) showed similar cellular responses against the ancestral strain and BA.5, but their neutralizing activity against BA.5 was lower than that against the ancestral strain. The ancestral-type LNP-mRNA-RBD protected mice from the ancestral strain or BA.5 challenge; however, its ability to reduce the viral burdens after BA.5 challenge was limited. In contrast, immunization with bivalent LNP-mRNA-RBD consisting of the ancestral-type and BA.4/5-type LNP-mRNA-RBD or monovalent BA.4/5-type LNP-mRNA-RBD elicited robust cellular responses, as well as high and moderate neutralizing titers against BA.5 and XBB.1.5, respectively. Furthermore, the vaccines containing BA.4/5-type LNP-mRNA-RBD remarkably reduced the viral burdens following BA.5 or XBB.1.5 challenge. Overall, our findings suggest that LNP-mRNA-RBD is effective against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ryuta Uraki
- Division of Virology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Masaki Imai
- Division of Virology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Mutsumi Ito
- Division of Virology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Seiya Yamayoshi
- Division of Virology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan
| | - Maki Kiso
- Division of Virology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Nao Jounai
- Biologics Division, Vaccine Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, 134-0081, Japan
| | - Kazuki Miyaji
- Biologics Division, Vaccine Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, 134-0081, Japan
| | - Kiyoko Iwatsuki-Horimoto
- Division of Virology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Fumihiko Takeshita
- Biologics Division, Vaccine Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, 134-0081, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, 162-8655, Japan.
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-, Madison, WI, 53711, USA.
- The University of Tokyo, Pandemic Preparedness, Infection and Advanced Research Center, Tokyo, 162-8655, Japan.
| |
Collapse
|
35
|
Lee A, Floyd K, Wu S, Fang Z, Tan TK, Froggatt HM, Powers JM, Leist SR, Gully KL, Hubbard ML, Li C, Hui H, Scoville D, Ruggiero AD, Liang Y, Pavenko A, Lujan V, Baric RS, Nolan GP, Arunachalam PS, Suthar MS, Pulendran B. BCG vaccination stimulates integrated organ immunity by feedback of the adaptive immune response to imprint prolonged innate antiviral resistance. Nat Immunol 2024; 25:41-53. [PMID: 38036767 PMCID: PMC10932731 DOI: 10.1038/s41590-023-01700-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Bacille Calmette-Guérin (BCG) vaccination can confer nonspecific protection against heterologous pathogens. However, the underlying mechanisms remain mysterious. We show that mice vaccinated intravenously with BCG exhibited reduced weight loss and/or improved viral clearance when challenged with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 B.1.351) or PR8 influenza. Protection was first evident between 14 and 21 d post-vaccination and lasted ∼3 months. Notably, BCG induced a biphasic innate response and robust antigen-specific type 1 helper T cell (TH1 cell) responses in the lungs. MyD88 signaling was essential for innate and TH1 cell responses, and protection against SARS-CoV-2. Depletion of CD4+ T cells or interferon (IFN)-γ activity before infection obliterated innate activation and protection. Single-cell and spatial transcriptomics revealed CD4-dependent expression of IFN-stimulated genes in lung myeloid and epithelial cells. Notably, BCG also induced protection against weight loss after mouse-adapted SARS-CoV-2 BA.5, SARS-CoV and SHC014 coronavirus infections. Thus, BCG elicits integrated organ immunity, where CD4+ T cells feed back on tissue myeloid and epithelial cells to imprint prolonged and broad innate antiviral resistance.
Collapse
Affiliation(s)
- Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Katharine Floyd
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Shengyang Wu
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Zhuoqing Fang
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Tze Kai Tan
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Heather M Froggatt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Harold Hui
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Yan Liang
- NanoString Technologies, Seattle, WA, USA
| | | | - Victor Lujan
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
36
|
Bar-On L, Dekel H, Aftalion M, Chitlaru T, Erez N. Essential role for Batf3-dependent dendritic cells in regulating CD8 T-cell response during SARS-CoV-2 infection. PLoS One 2023; 18:e0294176. [PMID: 38150441 PMCID: PMC10752548 DOI: 10.1371/journal.pone.0294176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/26/2023] [Indexed: 12/29/2023] Open
Abstract
SARS-CoV-2 infection elicits robust CD8 T-cell responses, yet the identity of the mechanisms playing dominant roles in initiating the virus-specific CD8 T-cell responses are largely unknown. In the present study, we interrogate the contribution of the cDC1 subset to SARS-CoV-2-specific CD8 T-cell immunity. For this purpose, we used a novel murine line which combines the SARS-CoV-2 susceptible K18-hACE2 transgenic and the Batf3 deficient mice which lack the cDC1 subset. We demonstrate that in the absence of cDC1, viral-specific CD8 T-cell responses were severely impaired both in the draining lymph node as well as in the lungs, during the effector phase of SARS-CoV-2 infection. Furthermore, SARS-CoV-2 specific memory CD8 T-cells in the lungs and spleens were also significantly impacted, whereas humoral responses, as well as CD4 T-cells were not affected. Additionally, we demonstrate that the absence of cDC1 subset, and the consequent impaired CD8 T-cell responses, resulted in significant increase in SARS-CoV-2 viral load in the lungs. The conclusions of the study were further independently corroborated in an additional COVID-19 murine model consisting infection with a mouse-adapted SARS-CoV-2 virus. These results underscore a specific role for Batf3-dependent DC in regulating SARS-CoV-2 specific CD8 T-cell responses and may contribute to future vaccine design and immunization strategies.
Collapse
Affiliation(s)
- Liat Bar-On
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Hani Dekel
- Veterinary Center for Preclinical Research, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Noam Erez
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
37
|
Pasquini Z, Toschi A, Casadei B, Pellegrini C, D'Abramo A, Vita S, Beccacece A, Bussini L, Chionsini MC, Dentale N, Cantiani A, Lazzarotto T, Bartoletti M, Nicastri E, Zinzani P, Giannella M, Viale P. Dual combined antiviral treatment with remdesivir and nirmatrelvir/ritonavir in patients with impaired humoral immunity and persistent SARS-CoV-2 infection. Hematol Oncol 2023; 41:904-911. [PMID: 37452579 DOI: 10.1002/hon.3206] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Despite global vaccination efforts, immunocompromized patients remain at high risk for COVID-19-associated morbidity. In particular, patients with impaired humoral immunity have shown a high risk of persistent infection. We report a case series of adult patients with B cell malignancies and/or undergoing B cell targeting therapies with persisting SARS-CoV-2 infection and treated with a combination antiviral therapy of remdesivir and nirmatrelvir/ritonavir, in three Italian tertiary academic hospitals. A total of 14 patients with impaired adaptive humoral immunity and prolonged SARS-CoV-2 infection were treated with the dual antiviral therapy. The median age was 60 (IQR 56-68) years, and 11 were male. Twelve patients had B cell lymphoma, one patient had chronic lymphocytic leukemia and one patient had multiple sclerosis. Thirteen out of 14 patients had received prior B cell-targeting therapies, consisting of anti-CD20 monoclonal antibodies in 11 patients, and chimeric antigen receptor T therapy in 2 patients. The median time between diagnosis and therapy start was 42.0 (IQR 35-46) days. Seven patients had mild, 6 moderate and one severe disease. Nine patients had signs of interstitial pneumonitis on chest computed tomography scans before treatment. The median duration of nirmatrelvir/ritonavir and remdesivir combination therapy was 10 days. All patients showed resolution of COVID-19-related symptoms after a median of 6 (IQR 4-11) days and viral clearance after 9 (IQR 5-11) days. Combination therapy with remdesivir and nirmatrelvir/ritonavir is a promising treatment option for persistent COVID-19 in immunocompromized patients with humoral immunity impairment, worthy of prospective comparative trials.
Collapse
Affiliation(s)
- Zeno Pasquini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alice Toschi
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Beatrice Casadei
- Institute of Hematology "L. e A. Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cinzia Pellegrini
- Institute of Hematology "L. e A. Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Alessandra D'Abramo
- National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Serena Vita
- National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Alessia Beccacece
- National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Linda Bussini
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Maria Clara Chionsini
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nicola Dentale
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessia Cantiani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Tiziana Lazzarotto
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Michele Bartoletti
- Infectious Disease Unit, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Emanuele Nicastri
- National Institute for Infectious Diseases "Lazzaro Spallanzani", IRCCS, Rome, Italy
| | - Pierluigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Pierluigi Viale
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
38
|
Fricke C, Pfaff F, Ulrich L, Halwe NJ, Schön J, Timm L, Hoffmann W, Rauch S, Petsch B, Hoffmann D, Beer M, Corleis B, Dorhoi A. SARS-CoV-2 variants of concern elicit divergent early immune responses in hACE2 transgenic mice. Eur J Immunol 2023; 53:e2250332. [PMID: 37609807 DOI: 10.1002/eji.202250332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/20/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
Knowledge about early immunity to SARS-CoV-2 variants of concern mainly comes from the analysis of human blood. Such data provide limited information about host responses at the site of infection and largely miss the initial events. To gain insights into compartmentalization and the early dynamics of host responses to different SARS-CoV-2 variants, we utilized human angiotensin converting enzyme 2 (hACE2) transgenic mice and tracked immune changes during the first days after infection by RNAseq, multiplex assays, and flow cytometry. Viral challenge infection led to divergent viral loads in the lungs, distinct inflammatory patterns, and innate immune cell accumulation in response to ancestral SARS-CoV-2, Beta (B.1.351) and Delta (B.1.617.2) variant of concern (VOC). Compared to other SARS-CoV-2 variants, infection with Beta (B.1.351) VOC spread promptly to the lungs, leading to increased inflammatory responses. SARS-CoV-2-specific antibodies and T cells developed within the first 7 days postinfection and were required to reduce viral spread and replication. Our studies show that VOCs differentially trigger transcriptional profiles and inflammation. This information contributes to the basic understanding of immune responses immediately postexposure to SARS-CoV-2 and is relevant for developing pan-VOC interventions including prophylactic vaccines.
Collapse
Affiliation(s)
- Charlie Fricke
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Laura Timm
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Weda Hoffmann
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | | | | | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
39
|
Russo M, Mendes-Corrêa MC, Lins BB, Kersten V, Pernambuco Filho PCA, Martins TR, Tozetto-Mendoza TR, Vilas Boas LS, Gomes BM, Dati LMM, Duarte-Neto AN, Reigado GR, Frederico ABT, de Brito e Cunha DRDA, de Paula AV, da Silva JIG, Vasconcelos CFM, Chambergo FS, Nunes VA, Ano Bom APD, Castilho LR, Martins RAP, Hirata MH, Mirotti L. Intranasal Liposomal Formulation of Spike Protein Adjuvanted with CpG Protects and Boosts Heterologous Immunity of hACE2 Transgenic Mice to SARS-CoV-2 Infection. Vaccines (Basel) 2023; 11:1732. [PMID: 38006064 PMCID: PMC10675295 DOI: 10.3390/vaccines11111732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Mucosal vaccination appears to be suitable to protect against SARS-CoV-2 infection. In this study, we tested an intranasal mucosal vaccine candidate for COVID-19 that consisted of a cationic liposome containing a trimeric SARS-CoV-2 spike protein and CpG-ODNs, a Toll-like receptor 9 agonist, as an adjuvant. In vitro and in vivo experiments indicated the absence of toxicity following the intranasal administration of this vaccine formulation. First, we found that subcutaneous or intranasal vaccination protected hACE-2 transgenic mice from infection with the wild-type (Wuhan) SARS-CoV-2 strain, as shown by weight loss and mortality indicators. However, when compared with subcutaneous administration, the intranasal route was more effective in the pulmonary clearance of the virus and induced higher neutralizing antibodies and anti-S IgA titers. In addition, the intranasal vaccination afforded protection against gamma, delta, and omicron virus variants of concern. Furthermore, the intranasal vaccine formulation was superior to intramuscular vaccination with a recombinant, replication-deficient chimpanzee adenovirus vector encoding the SARS-CoV-2 spike glycoprotein (Oxford/AstraZeneca) in terms of virus lung clearance and production of neutralizing antibodies in serum and bronchial alveolar lavage (BAL). Finally, the intranasal liposomal formulation boosted heterologous immunity induced by previous intramuscular vaccination with the Oxford/AstraZeneca vaccine, which was more robust than homologous immunity.
Collapse
Affiliation(s)
- Momtchilo Russo
- Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil
| | - Maria Cássia Mendes-Corrêa
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FM-USP), São Paulo 05403-000, Brazil; (M.C.M.-C.); (T.R.M.)
| | - Bruna B. Lins
- Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil
| | - Victor Kersten
- Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil
| | - Paulo C. A. Pernambuco Filho
- Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil
| | - Toni Ricardo Martins
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FM-USP), São Paulo 05403-000, Brazil; (M.C.M.-C.); (T.R.M.)
- Faculdade de Ciências Farmacêuticas, Universidade Federal do Amazonas (UFAM), Manaus 69080-900, Brazil
| | - Tânia Regina Tozetto-Mendoza
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FM-USP), São Paulo 05403-000, Brazil; (M.C.M.-C.); (T.R.M.)
| | - Lucy Santos Vilas Boas
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FM-USP), São Paulo 05403-000, Brazil; (M.C.M.-C.); (T.R.M.)
| | - Brisa Moreira Gomes
- Department of Immunology, Institute of Biomedical Science, University of São Paulo (ICB-USP), São Paulo 05508-000, Brazil
| | - Livia Mendonça Munhoz Dati
- Departamento de Analises Clinicas e Toxicologicas, Faculdade de Ciências Farmacêuticas da Universidade de Sao Paulo (FCF-USP), São Paulo 05508-000, Brazil (M.H.H.)
| | - Amaro Nunes Duarte-Neto
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo (FM-USP), São Paulo 05403-000, Brazil
| | - Gustavo Roncoli Reigado
- Laboratório de Biotecnologia, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo 03828-000, Brazil (F.S.C.); (V.A.N.)
| | - Ana Beatriz T. Frederico
- Immunological Technology Laboratory, Institute of Immunobiological Technology (Bio-Manguinhos), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil (A.P.D.A.B.)
| | - Danielle R. de A. de Brito e Cunha
- Immunological Technology Laboratory, Institute of Immunobiological Technology (Bio-Manguinhos), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil (A.P.D.A.B.)
| | - Anderson Vicente de Paula
- Laboratório de Virologia (LIM52), Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina da Universidade de São Paulo (FM-USP), São Paulo 05403-000, Brazil; (M.C.M.-C.); (T.R.M.)
| | - José Igor G. da Silva
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil (R.A.P.M.)
| | - Carlos F. Moreira Vasconcelos
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil (R.A.P.M.)
| | - Felipe S. Chambergo
- Laboratório de Biotecnologia, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo 03828-000, Brazil (F.S.C.); (V.A.N.)
| | - Viviane Abreu Nunes
- Laboratório de Biotecnologia, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (EACH-USP), São Paulo 03828-000, Brazil (F.S.C.); (V.A.N.)
| | - Ana Paula Dinis Ano Bom
- Immunological Technology Laboratory, Institute of Immunobiological Technology (Bio-Manguinhos), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil (A.P.D.A.B.)
| | - Leda R. Castilho
- Cell Culture Engineering Laboratory, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, Brazil;
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil (R.A.P.M.)
| | - Mario Hiroyuki Hirata
- Departamento de Analises Clinicas e Toxicologicas, Faculdade de Ciências Farmacêuticas da Universidade de Sao Paulo (FCF-USP), São Paulo 05508-000, Brazil (M.H.H.)
| | - Luciana Mirotti
- Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
40
|
Stoler S, van Hal SJ, Chadban S, Le T, Torzillo P, Scarlato RM, Wyburn K, Perkins GB, Marinelli T. Protracted COVID-19 pneumonitis early post-ABO incompatible kidney transplantation: Management considerations and the role of whole genome sequencing. Nephrology (Carlton) 2023; 28:639-643. [PMID: 37635271 DOI: 10.1111/nep.14235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
We present the case of a recent ABO incompatible kidney transplant recipient with persistent SARS-CoV-2 infection and pneumonitis. Serial whole genome sequencing confirmed intra-host viral evolution, which was used as a surrogate to confirm active viral replication and support re-treatment with antivirals, late in the course of infection. A prolonged course of remdesivir combined with immunosuppression modulation resulted in successful clearance of virus and clinical improvement. The diagnostic process undertaken in this case provides a useful guide for other clinicians when approaching similar patients.
Collapse
Affiliation(s)
- Sara Stoler
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Sebastiaan J van Hal
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Steve Chadban
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kidney Node, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Thomas Le
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred, Sydney, New South Wales, Australia
| | - Paul Torzillo
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Respiratory Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rose-Marie Scarlato
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Kate Wyburn
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Kidney Node, Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Griffith B Perkins
- Central and Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Immunology Directorate, SA Pathology, Adelaide, South Australia, Australia
| | - Tina Marinelli
- Department of Infectious Diseases and Microbiology, Royal Prince Alfred, Sydney, New South Wales, Australia
| |
Collapse
|
41
|
O'Meara TR, Nanishi E, McGrath ME, Barman S, Dong D, Dillen C, Menon M, Seo HS, Dhe-Paganon S, Ernst RK, Levy O, Frieman MB, Dowling DJ. Reduced SARS-CoV-2 mRNA vaccine immunogenicity and protection in mice with diet-induced obesity and insulin resistance. J Allergy Clin Immunol 2023; 152:1107-1120.e6. [PMID: 37595760 PMCID: PMC10841117 DOI: 10.1016/j.jaci.2023.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Obesity and type 2 diabetes mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including coronavirus disease 2019. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines. OBJECTIVE We sought to establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. METHODS A murine model of diet-induced obesity and insulin resistance was used to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. RESULTS Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet, HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T-cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in mice fed a normal diet but not in HFD mice. CONCLUSIONS The study demonstrated impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases.
Collapse
Affiliation(s)
- Timothy R O'Meara
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Etsuro Nanishi
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Marisa E McGrath
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - Soumik Barman
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Danica Dong
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Carly Dillen
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - Manisha Menon
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Mass; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Mass
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Md
| | - Ofer Levy
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass; Broad Institute of MIT and Harvard, Cambridge, Mass
| | - Matthew B Frieman
- Department of Microbiology and Immunology, Center for Pathogen Research, University of Maryland School of Medicine, Baltimore, Md
| | - David J Dowling
- Precision Vaccines Program, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass.
| |
Collapse
|
42
|
Imbiakha B, Ezzatpour S, Buchholz DW, Sahler J, Ye C, Olarte-Castillo XA, Zou A, Kwas C, O’Hare K, Choi A, Adeleke RA, Khomandiak S, Goodman L, Jager MC, Whittaker GR, Martinez-Sobrido L, August A, Aguilar HC. Age-dependent acquisition of pathogenicity by SARS-CoV-2 Omicron BA.5. SCIENCE ADVANCES 2023; 9:eadj1736. [PMID: 37738347 PMCID: PMC10516498 DOI: 10.1126/sciadv.adj1736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Pathology studies of SARS-CoV-2 Omicron variants of concern (VOC) are challenged by the lack of pathogenic animal models. While Omicron BA.1 and BA.2 replicate in K18-hACE2 transgenic mice, they cause minimal to negligible morbidity and mortality, and less is known about more recent Omicron VOC. Here, we show that in contrast to Omicron BA.1, BA.5-infected mice exhibited high levels of morbidity and mortality, correlating with higher early viral loads. Neither Omicron BA.1 nor BA.5 replicated in brains, unlike most prior VOC. Only Omicron BA.5-infected mice exhibited substantial weight loss, high pathology scores in lungs, and high levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid, and 5- to 8-month-old mice exhibited 100% fatality. These results identify a rodent model for pathogenesis or antiviral countermeasure studies for circulating SARS-CoV-2 Omicron BA.5. Further, differences in morbidity and mortality between Omicron BA.1 and BA.5 provide a model for understanding viral determinants of pathogenicity.
Collapse
Affiliation(s)
- Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ximena A. Olarte-Castillo
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Anna Zou
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Cole Kwas
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Katelyn O’Hare
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Richard Ayomide Adeleke
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura Goodman
- James A. Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public & Ecosystem Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public & Ecosystem Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | | | - Avery August
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| |
Collapse
|
43
|
Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, Eron JJ, Currier JS, Hughes MD, Choudhary MC, Deo R, Li JZ, Ribeiro RM, Ke R, Perelson AS. Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557679. [PMID: 37745410 PMCID: PMC10515893 DOI: 10.1101/2023.09.14.557679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has led to over 760 million cases and 6.9 million deaths worldwide. To mitigate the loss of lives, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with susceptible variants. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response anti-viral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carolin Zitzmann
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, CA, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruy M. Ribeiro
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S. Perelson
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | |
Collapse
|
44
|
Allers K, Moos V, Hofmann J, Witkowski M, Haibel H, Angermair S, Schneider T. Cytolytic CD8 + T cell response to SARS-CoV-2 and non-SARS-CoV-2-related viruses is associated with severe manifestation of COVID-19. Clin Immunol 2023; 254:109712. [PMID: 37506745 DOI: 10.1016/j.clim.2023.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Little is known about the CD8+ T cell functionality in the coronavirus disease 2019 (COVID-19). Therefore, we examined twenty-five hospitalized COVID-19 patients with moderate (MD) or severe disease (SD) as well as seventeen SARS-CoV-2-unexposed persons regarding the cytolytic and cytokine-producing reactivity of their CD8+ T cells. Reactive CD8+ T cells were detectable in 90% of the unexposed persons, confirming high cross-reactive immune memory in the general population. Compared to unexposed persons and MD patients, SD patients had higher numbers of SARS-CoV-2 reactive CD8+ T cells with cytolytic function that can simultaneously produce inflammatory cytokines. In addition, SD patients showed higher CD8+ T cell reactivity against non-SARS-CoV-2-related viruses, which was mainly mediated by cytolytic response. Sequence alignments showed that cross-reactivities with the Spike protein could contribute to the expansion of such cells. Since insufficiently regulated cytolytic CD8+ T cells can damage peripheral and vascular tissue structures, high levels of both SARS-CoV-2-reactive and heterologously activated cytolytic CD8+ T cells could favor severe disease progression.
Collapse
Affiliation(s)
- Kristina Allers
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany.
| | - Verena Moos
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jörg Hofmann
- Labor Berlin - Charité Vivantes GmbH, Sylter Straße 2, 13353 Berlin, Germany
| | - Mario Witkowski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Laboratory of Innate Immunity, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Hildrun Haibel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Stefan Angermair
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Klinik für Anästhesiologie mit Schwerpunkt operative Intensivmedizin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Thomas Schneider
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Division of Gastroenterology, Infectious Diseases and Rheumatology, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| |
Collapse
|
45
|
Oyesola OO, Hilligan KL, Namasivayam S, Howard N, Clancy CS, Zhao M, Oland SD, Kiwanuka KN, Garza NL, Lafont BAP, Johnson RF, Mayer-Barber KD, Sher A, Loke P. Exposure to lung-migrating helminth protects against murine SARS-CoV-2 infection through macrophage-dependent T cell activation. Sci Immunol 2023; 8:eadf8161. [PMID: 37566678 DOI: 10.1126/sciimmunol.adf8161] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.
Collapse
Affiliation(s)
- Oyebola O Oyesola
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kerry L Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Malaghan Institute of Medical Research, Wellington 6012, New Zealand
| | - Sivaranjani Namasivayam
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nina Howard
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chad S Clancy
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
| | - Mingming Zhao
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sandra D Oland
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kasalina N Kiwanuka
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole L Garza
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bernard A P Lafont
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - P'ng Loke
- Type 2 Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Suberi A, Grun MK, Mao T, Israelow B, Reschke M, Grundler J, Akhtar L, Lee T, Shin K, Piotrowski-Daspit AS, Homer RJ, Iwasaki A, Suh HW, Saltzman WM. Polymer nanoparticles deliver mRNA to the lung for mucosal vaccination. Sci Transl Med 2023; 15:eabq0603. [PMID: 37585505 PMCID: PMC11137749 DOI: 10.1126/scitranslmed.abq0603] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
An inhalable platform for messenger RNA (mRNA) therapeutics would enable minimally invasive and lung-targeted delivery for a host of pulmonary diseases. Development of lung-targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here, we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine-co-ester) (PACE) polyplexes for mRNA delivery using end-group modifications and polyethylene glycol. These polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for severe acute respiratory syndrome coronavirus 2 and found that intranasal vaccination with spike protein-encoding mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected susceptible mice from lethal viral challenge. Together, these results demonstrate the translational potential of PACE polyplexes for therapeutic delivery of mRNA to the lungs.
Collapse
Affiliation(s)
- Alexandra Suberi
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Molly K Grun
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Melanie Reschke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Julian Grundler
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Laiba Akhtar
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
| | - Teresa Lee
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Robert J Homer
- Department of Pathology, Yale University School of Medicine, CT 06510, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Hee-Won Suh
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06511, USA
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
47
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
48
|
Augello M, Bono V, Rovito R, Tincati C, d'Arminio Monforte A, Marchetti G. Six-month immune responses to mRNA-1273 vaccine in combination antiretroviral therapy treated late presenter people with HIV according to previous SARS-CoV-2 infection. AIDS 2023; 37:1503-1517. [PMID: 37199415 PMCID: PMC10355808 DOI: 10.1097/qad.0000000000003585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
OBJECTIVE Immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines in people with HIV (PWH) with a history of late presentation (LP) and their durability have not been fully characterized. DESIGN In this prospective, longitudinal study, we sought to assess T-cell and humoral responses to SARS-CoV-2 mRNA vaccination up to 6 months in LP-PWH on effective combination antiretroviral therapy (cART) as compared to HIV-negative healthcare workers (HCWs), and to evaluate whether previous SARS-CoV-2 infection modulates immune responses to vaccine. METHODS SARS-CoV-2 spike (S)-specific T-cell responses were determined by two complementary flow cytometry methodologies, namely activation-induced marker (AIM) assay and intracellular cytokine staining (ICS), whereas humoral responses were measured by ELISA [anti-receptor binding domain (RBD) antibodies) and receptor-binding inhibition assay (spike-ACE2 binding inhibition activity), before vaccination (T0), 1 month (T1) and 5 months (T2) after the second dose. RESULTS LP-PWH showed at T1 and T2 significant increase of: S-specific memory and circulating T follicular helper (cTfh) CD4 + T cells; polyfunctional Th1-cytokine (IFN-γ, TNF-α, IL-2)- and Th2-cytokine (IL-4)-producing S-specific CD4 + T cells; anti-RBD antibodies and spike-ACE2 binding inhibition activity. Immune responses to vaccine in LP-PWH were not inferior to HCWs overall, yet S-specific CD8 + T cells and spike-ACE2 binding inhibition activity correlated negatively with markers of immune recovery on cART. Interestingly, natural SARS-CoV-2 infection, while able to sustain S-specific antibody response, seems less efficacious in inducing a T-cell memory and in boosting immune responses to vaccine, possibly reflecting an enduring partial immunodeficiency. CONCLUSIONS Altogether, these findings support the need for additional vaccine doses in PWH with a history of advanced immune depression and poor immune recovery on effective cART.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Chia WN, Tan CW, Tan AWK, Young B, Starr TN, Lopez E, Fibriansah G, Barr J, Cheng S, Yeoh AYY, Yap WC, Lim BL, Ng TS, Sia WR, Zhu F, Chen S, Zhang J, Kwek MSS, Greaney AJ, Chen M, Au GG, Paradkar PN, Peiris M, Chung AW, Bloom JD, Lye D, Lok S, Wang LF. Potent pan huACE2-dependent sarbecovirus neutralizing monoclonal antibodies isolated from a BNT162b2-vaccinated SARS survivor. SCIENCE ADVANCES 2023; 9:eade3470. [PMID: 37494438 PMCID: PMC10371021 DOI: 10.1126/sciadv.ade3470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern such as Omicron hampered efforts in controlling the ongoing coronavirus disease 2019 pandemic due to their ability to escape neutralizing antibodies induced by vaccination or prior infection, highlighting the need to develop broad-spectrum vaccines and therapeutics. Most human monoclonal antibodies (mAbs) reported to date have not demonstrated true pan-sarbecovirus neutralizing breadth especially against animal sarbecoviruses. Here, we report the isolation and characterization of highly potent mAbs targeting the receptor binding domain (RBD) of huACE2-dependent sarbecovirus from a SARS-CoV survivor vaccinated with BNT162b2. Among the six mAbs identified, one (E7) showed better huACE2-dependent sarbecovirus neutralizing potency and breadth than any other mAbs reported to date. Mutagenesis and cryo-electron microscopy studies indicate that these mAbs have a unique RBD contact footprint and that E7 binds to a quaternary structure-dependent epitope.
Collapse
Affiliation(s)
- Wan Ni Chia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Wah Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Aaron Wai Kit Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Barnaby Young
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Tyler N. Starr
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Ester Lopez
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Guntur Fibriansah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jennifer Barr
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Samuel Cheng
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Aileen Ying-Yan Yeoh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wee Chee Yap
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Beng Lee Lim
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Thiam-Seng Ng
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Shiwei Chen
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Jinyan Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Madeline Sheng Si Kwek
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Allison J. Greaney
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - Mark Chen
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
| | - Gough G. Au
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Prasad N. Paradkar
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Malik Peiris
- School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong, China
- Centre for Immunology & Infection, New Territories, Hong Kong, China
- HKU-Pasteur Research Pole, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA, USA
| | - David Lye
- National Center of Infectious Diseases, Singapore, Singapore
- Tan Tock Seng Hospital, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sheemei Lok
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
50
|
Sadhu S, Dalal R, Dandotiya J, Binayke A, Singh V, Tripathy MR, Das V, Goswami S, Kumar S, Rizvi ZA, Awasthi A. IL-9 aggravates SARS-CoV-2 infection and exacerbates associated airway inflammation. Nat Commun 2023; 14:4060. [PMID: 37429848 DOI: 10.1038/s41467-023-39815-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023] Open
Abstract
SARS-CoV-2 infection is known for causing broncho-alveolar inflammation. Interleukin 9 (IL-9) induces airway inflammation and bronchial hyper responsiveness in respiratory viral illnesses and allergic inflammation, however, IL-9 has not been assigned a pathologic role in COVID-19. Here we show, in a K18-hACE2 transgenic (ACE2.Tg) mouse model, that IL-9 contributes to and exacerbates viral spread and airway inflammation caused by SARS-CoV-2 infection. ACE2.Tg mice with CD4+ T cell-specific deficiency of the transcription factor Forkhead Box Protein O1 (Foxo1) produce significantly less IL-9 upon SARS-CoV-2 infection than the wild type controls and they are resistant to the severe inflammatory disease that characterises the control mice. Exogenous IL-9 increases airway inflammation in Foxo1-deficient mice, while IL-9 blockade reduces and suppresses airway inflammation in SARS-CoV-2 infection, providing further evidence for a Foxo1-Il-9 mediated Th cell-specific pathway playing a role in COVID-19. Collectively, our study provides mechanistic insight into an important inflammatory pathway in SARS-CoV-2 infection, and thus represents proof of principle for the development of host-directed therapeutics to mitigate disease severity.
Collapse
Affiliation(s)
- Srikanth Sadhu
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Jyotsna Dandotiya
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Akshay Binayke
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Virendra Singh
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Manas Ranjan Tripathy
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Vinayaka Das
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Sandeep Goswami
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Shakti Kumar
- Centre for Human Microbiome and Anti-Microbial Resistance, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India.
- Immunology-Core Laboratory, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad, 121 001, Haryana, India.
| |
Collapse
|