1
|
Ma Q, He X, Wang X, Zhao G, Zhang Y, Su C, Wei M, Zhang K, Liu M, Zhu Y, He J. PTPN14 aggravates neointimal hyperplasia via boosting PDGFRβ signaling in smooth muscle cells. Nat Commun 2024; 15:7398. [PMID: 39191789 PMCID: PMC11350182 DOI: 10.1038/s41467-024-51881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRβ signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRβ and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRβ signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRβ and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRβY692 negatively regulates PDGFRβ signaling activation. The levels of both PTPN14 and phospho-PDGFRβY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRβY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRβ activation.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Coronary Vessels/pathology
- Coronary Vessels/metabolism
- Hyperplasia/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Phosphorylation
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Qiannan Ma
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Wang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Guobing Zhao
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanhong Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Li W, Huang M, Wu Z, Zhang Y, Cai Y, Su J, Xia J, Yang F, Xiao D, Yang W, Xu Y, Liu Z. mRNA-Lipid Nanoparticle-Mediated Restoration of PTPN14 Exhibits Antitumor Effects by Overcoming Anoikis Resistance in Triple-Negative Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309988. [PMID: 39189475 PMCID: PMC11348215 DOI: 10.1002/advs.202309988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/11/2024] [Indexed: 08/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses a challenging prognosis due to early metastasis driven by anoikis resistance. Identifying crucial regulators to overcome this resistance is vital for improving patient outcomes. In this study, a genome-wide CRISPR/Cas9 knockout screen in TNBC cells has identified tyrosine-protein phosphatase nonreceptor type 14 (PTPN14) as a key regulator of anoikis resistance. PTPN14 expression has shown a progressive decrease from normal breast tissue to metastatic tumors. Overexpressing PTPN14 has induced anoikis and inhibited cell proliferation in TNBC cells, while normal human breast cells are unaffected. Mechanistically, PTPN14 is identified as a key factor in dephosphorylating breast cancer antiestrogen resistance 3, a novel substrate, leading to the subsequent inhibition of PI3K/AKT and ERK signaling pathways. Local delivery of in vitro transcribed PTPN14 mRNA encapsulated by lipid nanoparticles in a TNBC mouse model has effectively inhibited tumor growth and metastasis, prolonging survival. The study underscores PTPN14 as a potential therapeutic target for metastatic TNBC, with the therapeutic strategy based on mRNA expression of PTPN14 demonstrating clinical application prospects in alleviating the burden of both primary tumors and metastatic disease.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| | - Masha Huang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoping Wu
- Department of NeurosurgeryXiangya HospitalCentral South UniversityChangsha410008P. R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Ying Cai
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Juncheng Su
- Department of Gastrointestinal SurgeryRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Jia Xia
- Department of NephrologyRenji HospitalShanghai Jiao Tong University School of MedicineShanghai200127P. R. China
| | - Fan Yang
- Department of PhysiologySchool of Basic Medical SciencesShandong UniversityJinan250011P. R. China
| | - Desheng Xiao
- Department of PathologySchool of Basic MedicineXiangya HospitalCentral South UniversityChangsha410013P. R. China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell BiologyShanghai Key Laboratory for Tumor Microenvironment and InflammationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of EducationShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Zhaoqian Liu
- Department of Clinical PharmacologyHunan Key Laboratory of Pharmacogeneticsand National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008P. R. China
- Institute of Clinical PharmacologyEngineering Research Center for applied Technology of Pharmacogenomics of Ministry of EducationCentral South UniversityChangsha410078P. R. China
| |
Collapse
|
3
|
Romero-Masters JC, Grace M, Lee D, Lei J, DePamphilis M, Buehler D, Hu R, Ward-Shaw E, Blaine-Sauer S, Lavoie N, White EA, Munger K, Lambert PF. MmuPV1 E7's interaction with PTPN14 delays Epithelial differentiation and contributes to virus-induced skin disease. PLoS Pathog 2023; 19:e1011215. [PMID: 37036883 PMCID: PMC10085053 DOI: 10.1371/journal.ppat.1011215] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/17/2023] [Indexed: 04/11/2023] Open
Abstract
Human papillomaviruses (HPVs) contribute to approximately 5% of all human cancers. Species-specific barriers limit the ability to study HPV pathogenesis in animal models. Murine papillomavirus (MmuPV1) provides a powerful tool to study the roles of papillomavirus genes in pathogenesis arising from a natural infection. We previously identified Protein Tyrosine Phosphatase Non-Receptor Type 14 (PTPN14), a tumor suppressor targeted by HPV E7 proteins, as a putative cellular target of MmuPV1 E7. Here, we confirmed the MmuPV1 E7-PTPN14 interaction. Based on the published structure of the HPV18 E7/PTPN14 complex, we generated a MmuPV1 E7 mutant, E7K81S, that was defective for binding PTPN14. Wild-type (WT) and E7K81S mutant viral genomes replicated as extrachromosomal circular DNAs to comparable levels in mouse keratinocytes. E7K81S mutant virus (E7K81S MmuPV1) was generated and used to infect FoxN/Nude mice. E7K81S MmuPV1 caused neoplastic lesions at a frequency similar to that of WT MmuPV1, but the lesions arose later and were smaller than WT-induced lesions. The E7K81S MmuPV1-induced lesions also had a trend towards a less severe grade of neoplastic disease. In the lesions, E7K81S MmuPV1 supported the late (productive) stage of the viral life cycle and promoted E2F activity and cellular DNA synthesis in suprabasal epithelial cells to similar degrees as WT MmuPV1. There was a similar frequency of lateral spread of infections among mice infected with E7K81S or WT MmuPV1. Compared to WT MmuPV1-induced lesions, E7K81S MmuPV1-induced lesions had a significant expansion of cells expressing differentiation markers, Keratin 10 and Involucrin. We conclude that an intact PTPN14 binding site is necessary for MmuPV1 E7's ability to contribute to papillomavirus-induced pathogenesis and this correlates with MmuPV1 E7 causing a delay in epithelial differentiation, which is a hallmark of papillomavirus-induced neoplasia.
Collapse
Affiliation(s)
- James C. Romero-Masters
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Miranda Grace
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Denis Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Joshua Lei
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Melanie DePamphilis
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Darya Buehler
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ella Ward-Shaw
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Simon Blaine-Sauer
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Nathalie Lavoie
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Elizabeth A. White
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
| |
Collapse
|
4
|
Huang Z, Rui X, Yi C, Chen Y, Chen R, Liang Y, Wang Y, Yao W, Xu X, Huang Z. Silencing LCN2 suppresses oral squamous cell carcinoma progression by reducing EGFR signal activation and recycling. J Exp Clin Cancer Res 2023; 42:60. [PMID: 36899380 PMCID: PMC10007849 DOI: 10.1186/s13046-023-02618-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/05/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND EGFR is an important signal involved in tumor growth that can induce tumor metastasis and drug resistance. Exploring targets for effective EGFR regulation is an important topic in current research and drug development. Inhibiting EGFR can effectively inhibit the progression and lymph node metastasis of oral squamous cell carcinoma (OSCC) because OSCC is a type of cancer with high EGFR expression. However, the problem of EGFR drug resistance is particularly prominent, and identifying a new target for EGFR regulation could reveal an effective strategy. METHODS We sequenced wild type or EGFR-resistant OSCC cells and samples from OSCC patients with or without lymph node metastasis to find new targets for EGFR regulation to effectively replace the strategy of directly inhibiting EGFR and exert an antitumor effect. We then investigated the effect of LCN2 on OSCC biological abilities in vitro and in vivo through protein expression regulation. Subsequently, we elucidated the regulatory mechanism of LCN2 through mass spectrometry, protein interaction, immunoblotting, and immunofluorescence analyses. As a proof of concept, a reduction-responsive nanoparticle (NP) platform was engineered for effective LCN2 siRNA (siLCN2) delivery, and a tongue orthotopic xenograft model as well as an EGFR-positive patient-derived xenograft (PDX) model were applied to investigate the curative effect of siLCN2. RESULTS We identified lipocalin-2 (LCN2), which is upregulated in OSCC metastasis and EGFR resistance. Inhibition of LCN2 expression can effectively inhibit the proliferation and metastasis of OSCC in vitro and in vivo by inhibiting EGFR phosphorylation and downstream signal activation. Mechanistically, LCN2 binds EGFR and enhances the recycling of EGFR, thereby activating the EGFR-MEK-ERK cascade. Inhibition of LCN2 effectively inhibited the activation of EGFR. We translated this finding by systemic delivery of siLCN2 by NPs, which effectively downregulated LCN2 in the tumor tissues, thereby leading to a significant inhibition of the growth and metastasis of xenografts. CONCLUSIONS This research indicated that targeting LCN2 could be a promising strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Zixian Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xi Rui
- Hospital of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Chen Yi
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yongju Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Rui Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yancan Liang
- Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yan Wang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weicheng Yao
- Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China. .,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Zhiquan Huang
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Li H, Guan B, Liu S, Liu H, Song L, Zhang G, Zhao R, Zhou C, Gao P. PTPN14 promotes gastric cancer progression by PI3KA/AKT/mTOR pathway. Cell Death Dis 2023; 14:188. [PMID: 36898991 PMCID: PMC10006225 DOI: 10.1038/s41419-023-05712-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023]
Abstract
Gastric cancer is a high molecular heterogeneous disease with a poor prognosis. Although gastric cancer is a hot area of medical research, the mechanism of gastric cancer occurrence and development is still unclear. New strategies for treating gastric cancer need to be further explored. Protein tyrosine phosphatases play vital roles in cancer. A growing stream of studies shows that strategies or inhibitors targeting protein tyrosine phosphatases have been developed. PTPN14 belongs to the protein tyrosine phosphatase subfamily. As an inert phosphatase, PTPN14 has very poor activity and mainly functions as a binding protein through its FERM (four-point-one, ezrin, radixin, and moesin) domain or PPxY motif. The online database indicated that PTPN14 may be a poor prognostic factor for gastric cancer. However, the function and underlying mechanism of PTPN14 in gastric cancer remain unclear. We collected gastric cancer tissues and detected the expression of PTPN14. We found that PTPN14 was elevated in gastric cancer. Further correlation analysis indicated that PTPN14 was relevant with the T stage and cTNM (clinical tumor node metastasis classification) stage. The survival curve analysis showed that gastric cancer patients with higher PTPN14 expression had a shorter survival time. In addition, we illustrated that CEBP/β (CCAAT enhanced binding protein beta) could transcriptionally activate PTPN14 expression in gastric cancer. The highly expressed PTPN14 combined with NFkB (nuclear factor Kappa B) through its FERM domain and accelerated NFkB nucleus translocation. Then, NFkB promoted the transcription of PI3KA and initiated the PI3KA/AKT/mTOR pathway to promote gastric cancer cell proliferation, migration, and invasion. Finally, we established mice models to validate the function and the molecular mechanism of PTPN14 in gastric cancer. In summary, our results illustrated the function of PTPN14 in gastric cancer and demonstrated the potential mechanisms. Our findings provide a theoretical basis to better understand the occurrence and development of gastric cancer.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
- Department of Pathology, The Second Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Bingxin Guan
- Department of Pathology, The Second Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Sen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Haiting Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Lin Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250012, Jinan, Shandong, China
| | - Guohao Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Ruinan Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China
- Department of Pathology, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China
| | - Chengjun Zhou
- Department of Pathology, The Second Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Peng Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, China.
- Department of Pathology, Qilu Hospital, Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
6
|
Hendriks WJAJ, van Cruchten RTP, Pulido R. Hereditable variants of classical protein tyrosine phosphatase genes: Will they prove innocent or guilty? Front Cell Dev Biol 2023; 10:1051311. [PMID: 36755664 PMCID: PMC9900141 DOI: 10.3389/fcell.2022.1051311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/28/2022] [Indexed: 01/24/2023] Open
Abstract
Protein tyrosine phosphatases, together with protein tyrosine kinases, control many molecular signaling steps that control life at cellular and organismal levels. Impairing alterations in the genes encoding the involved proteins is expected to profoundly affect the quality of life-if compatible with life at all. Here, we review the current knowledge on the effects of germline variants that have been reported for genes encoding a subset of the protein tyrosine phosphatase superfamily; that of the thirty seven classical members. The conclusion must be that the newest genome research tools produced an avalanche of data that suggest 'guilt by association' for individual genes to specific disorders. Future research should face the challenge to investigate these accusations thoroughly and convincingly, to reach a mature genotype-phenotype map for this intriguing protein family.
Collapse
Affiliation(s)
- Wiljan J. A. J. Hendriks
- Department of Cell Biology, Radboud University Medical Centre, Nijmegen, The Netherlands,*Correspondence: Wiljan J. A. J. Hendriks,
| | | | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Wu CT, Lidsky PV, Xiao Y, Cheng R, Lee IT, Nakayama T, Jiang S, He W, Demeter J, Knight MG, Turn RE, Rojas-Hernandez LS, Ye C, Chiem K, Shon J, Martinez-Sobrido L, Bertozzi CR, Nolan GP, Nayak JV, Milla C, Andino R, Jackson PK. SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming. Cell 2023; 186:112-130.e20. [PMID: 36580912 PMCID: PMC9715480 DOI: 10.1016/j.cell.2022.11.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 09/15/2022] [Accepted: 11/23/2022] [Indexed: 12/04/2022]
Abstract
How SARS-CoV-2 penetrates the airway barrier of mucus and periciliary mucins to infect nasal epithelium remains unclear. Using primary nasal epithelial organoid cultures, we found that the virus attaches to motile cilia via the ACE2 receptor. SARS-CoV-2 traverses the mucus layer, using motile cilia as tracks to access the cell body. Depleting cilia blocks infection for SARS-CoV-2 and other respiratory viruses. SARS-CoV-2 progeny attach to airway microvilli 24 h post-infection and trigger formation of apically extended and highly branched microvilli that organize viral egress from the microvilli back into the mucus layer, supporting a model of virus dispersion throughout airway tissue via mucociliary transport. Phosphoproteomics and kinase inhibition reveal that microvillar remodeling is regulated by p21-activated kinases (PAK). Importantly, Omicron variants bind with higher affinity to motile cilia and show accelerated viral entry. Our work suggests that motile cilia, microvilli, and mucociliary-dependent mucus flow are critical for efficient virus replication in nasal epithelia.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wei He
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Miguel G Knight
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA
| | - Rachel E Turn
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Judy Shon
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Carlos Milla
- Department of Pediatric Pulmonary Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, 600 16th Street, Room S572E, Box 2280, San Francisco, CA, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Center for Clinical Sciences Research, 269 Campus Drive, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Li Y, He X, Lu X, Gong Z, Li Q, Zhang L, Yang R, Wu C, Huang J, Ding J, He Y, Liu W, Chen C, Cao B, Zhou D, Shi Y, Chen J, Wang C, Zhang S, Zhang J, Ye J, You H. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun 2022; 13:6350. [PMID: 36289222 PMCID: PMC9605963 DOI: 10.1038/s41467-022-34209-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
The methyltransferase like 3 (METTL3) has been generally recognized as a nuclear protein bearing oncogenic properties. We find predominantly cytoplasmic METTL3 expression inversely correlates with node metastasis in human cancers. It remains unclear if nuclear METTL3 is functionally distinct from cytosolic METTL3 in driving tumorigenesis and, if any, how tumor cells sense oncogenic insults to coordinate METTL3 functions within these intracellular compartments. Here, we report an acetylation-dependent regulation of METTL3 localization that impacts on metastatic dissemination. We identify an IL-6-dependent positive feedback axis to facilitate nuclear METTL3 functions, eliciting breast cancer metastasis. IL-6, whose mRNA transcript is subjected to METTL3-mediated m6A modification, promotes METTL3 deacetylation and nuclear translocation, thereby inducing global m6A abundance. This deacetylation-mediated nuclear shift of METTL3 can be counterbalanced by SIRT1 inhibition, a process that is further enforced by aspirin treatment, leading to ablated lung metastasis via impaired m6A methylation. Intriguingly, acetylation-mimetic METTL3 mutant reconstitution results in enhanced translation and compromised metastatic potential. Our study identifies an acetylation-dependent regulatory mechanism determining the subcellular localization of METTL3, which may provide mechanistic clues for developing therapeutic strategies to combat breast cancer metastasis.
Collapse
Affiliation(s)
- Yuanpei Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiaoniu He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Xiao Lu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Zhicheng Gong
- grid.459328.10000 0004 1758 9149Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, 214062 Wuxi, China
| | - Qing Li
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Lei Zhang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Ronghui Yang
- grid.24696.3f0000 0004 0369 153XDepartment of Biochemistry and Molecular Biology, Capital Medical University, 100069 Beijing, China
| | - Chengyi Wu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jialiang Huang
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Jiancheng Ding
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Yaohui He
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Wen Liu
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, 361102 Xiamen, China
| | - Ceshi Chen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
| | - Bin Cao
- grid.12955.3a0000 0001 2264 7233Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, 361102 Xiamen, China
| | - Dawang Zhou
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| | - Yufeng Shi
- grid.24516.340000000123704535Tongji University Cancer Center, Shanghai Tenth People’s Hospital of Tongji University, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Juxiang Chen
- grid.73113.370000 0004 0369 1660Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, 200433 Shanghai, China
| | - Chuangui Wang
- grid.412509.b0000 0004 1808 3414The Biomedical Translational Research Institute, School of Life Sciences, Shandong University of Technology, 255049 Zibo, China
| | - Shengping Zhang
- grid.16821.3c0000 0004 0368 8293Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620 Shanghai, China
| | - Jian Zhang
- grid.233520.50000 0004 1761 4404The State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, 710032 Xi’an, China
| | - Jing Ye
- grid.233520.50000 0004 1761 4404Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, 710032 Xi’an, China
| | - Han You
- grid.12955.3a0000 0001 2264 7233State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Xiamen, China
| |
Collapse
|
9
|
Liu D, Zhang Y, Fang H, Yuan J, Ji L. The progress of research into pseudophosphatases. Front Public Health 2022; 10:965631. [PMID: 36106167 PMCID: PMC9464862 DOI: 10.3389/fpubh.2022.965631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 01/24/2023] Open
Abstract
Pseudophosphatases are a class of phosphatases that mutate at the catalytically active site. They play important parts in many life processes and disorders, e.g., cell apoptosis, stress reaction, tumorigenesis, axon differentiation, Charcot-Marie-Tooth, and metabolic dysfunction. The present review considers the structures and action types of pseudophosphatases in four families, protein tyrosine phosphatases (PTPs), myotube protein phosphatases (MTMs), phosphatases and tensin homologues (PTENs) and dual specificity phosphatases (DUSPs), as well as their mechanisms in signaling and disease. We aimed to provide reference material for the research and treatment of related diseases.
Collapse
Affiliation(s)
- Deqiang Liu
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Yiming Zhang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hui Fang
- College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jinxiang Yuan
- College of Life Sciences, Shandong Normal University, Jinan, China,The Collaborative Innovation Center, Jining Medical University, Jining, China,*Correspondence: Jinxiang Yuan
| | - Lizhen Ji
- College of Life Sciences, Shandong Normal University, Jinan, China,Lizhen Ji
| |
Collapse
|
10
|
Tang X, Qi C, Zhou H, Liu Y. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy. Front Oncol 2022; 12:972906. [PMID: 35957898 PMCID: PMC9360549 DOI: 10.3389/fonc.2022.972906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/04/2022] [Indexed: 12/22/2022] Open
Abstract
Since tyrosine phosphorylation is reversible and dynamic in vivo, the phosphorylation state of proteins is controlled by the opposing roles of protein tyrosine kinases (PTKs) and protein tyrosine phosphatase (PTPs), both of which perform critical roles in signal transduction. Of these, intracellular non-receptor PTPs (PTPNs), which belong to the largest class I cysteine PTP family, are essential for the regulation of a variety of biological processes, including but not limited to hematopoiesis, inflammatory response, immune system, and glucose homeostasis. Additionally, a substantial amount of PTPNs have been identified to hold crucial roles in tumorigenesis, progression, metastasis, and drug resistance, and inhibitors of PTPNs have promising applications due to striking efficacy in antitumor therapy. Hence, the aim of this review is to summarize the role played by PTPNs, including PTPN1/PTP1B, PTPN2/TC-PTP, PTPN3/PTP-H1, PTPN4/PTPMEG, PTPN6/SHP-1, PTPN9/PTPMEG2, PTPN11/SHP-2, PTPN12/PTP-PEST, PTPN13/PTPL1, PTPN14/PEZ, PTPN18/PTP-HSCF, PTPN22/LYP, and PTPN23/HD-PTP, in human cancer and immunotherapy and to comprehensively describe the molecular pathways in which they are implicated. Given the specific roles of PTPNs, identifying potential regulators of PTPNs is significant for understanding the mechanisms of antitumor therapy. Consequently, this work also provides a review on the role of non-coding RNAs (ncRNAs) in regulating PTPNs in tumorigenesis and progression, which may help us to find effective therapeutic agents for tumor therapy.
Collapse
Affiliation(s)
- Xiaolong Tang
- Department of Clinical Laboratory Diagnostics, Binzhou Medical University, Binzhou, China
| | - Chumei Qi
- Department of Clinical Laboratory, Dazhou Women and Children’s Hospital, Dazhou, China
| | - Honghong Zhou
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| | - Yongshuo Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- *Correspondence: Honghong Zhou, ; Yongshuo Liu,
| |
Collapse
|
11
|
Zhang D, Wu F, Song J, Meng M, Fan X, Lu C, Weng Q, Fang S, Zheng L, Tang B, Yang Y, Tu J, Xu M, Zhao Z, Ji J. A role for the NPM1/PTPN14/YAP axis in mediating hypoxia-induced chemoresistance to sorafenib in hepatocellular carcinoma. Cancer Cell Int 2022; 22:65. [PMID: 35135548 PMCID: PMC8822852 DOI: 10.1186/s12935-022-02479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
Background Tumor microenvironments are characterized by resistance to chemotherapeutic agents and radiotherapy. Hypoxia plays an important role in the development of tumor resistance, as well as the generation of metastatic potential. YAP also participates in the regulation of hypoxia-mediated chemoresistance, and is negatively regulated by protein tyrosine phosphatase non-receptor type 14 (PTPN14). Methods The PTPN14 expression in hepatocellular carcinoma (HCC) tissues were evaluated by qRT-PCR, western blot and tissue microarrays. The effect of PTPN14 on HCC progression was investigated in vitro and in vivo. Results Here, we report that PTPN14 expression was downregulated in HCC tissues and cell lines. Silencing PTPN14 significantly enhanced proliferation, migration, invasion of HepG2 cells in vitro and tumor growth and metastasis in vivo, whereas overexpression of PTPN14 significantly inhibited these abilities in SK-Hep1 cells. We also found that hypoxia-induced nuclear translocation and accumulation of PTPN14 led to resistance to sorafenib in HCC cells. Further mechanistic studies suggested that NPM1 regulates PTPN14 localization, and that NPM1 regulates YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Conclusions These data suggest that a therapeutic strategy against chemoresistant HCC may involve disruption of NPM1-mediated regulation of YAP by retaining PTPN14 in the nucleus under hypoxic conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02479-0.
Collapse
Affiliation(s)
- Dengke Zhang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Fazong Wu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jingjing Song
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Miaomiao Meng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Xiaoxi Fan
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Chenying Lu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Qiaoyou Weng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Liyun Zheng
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Bufu Tang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Yang
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jianfei Tu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Min Xu
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Jiansong Ji
- Zhejiang Provincial Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
12
|
Kazan JM, Desrochers G, Martin CE, Jeong H, Kharitidi D, Apaja PM, Roldan A, St. Denis N, Gingras AC, Lukacs GL, Pause A. Endofin is required for HD-PTP and ESCRT-0 interdependent endosomal sorting of ubiquitinated transmembrane cargoes. iScience 2021; 24:103274. [PMID: 34761192 PMCID: PMC8567383 DOI: 10.1016/j.isci.2021.103274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 11/20/2022] Open
Abstract
Internalized and ubiquitinated signaling receptors are silenced by their intraluminal budding into multivesicular bodies aided by the endosomal sorting complexes required for transport (ESCRT) machinery. HD-PTP, an ESCRT protein, forms complexes with ESCRT-0, -I and -III proteins, and binds to Endofin, a FYVE-domain protein confined to endosomes with poorly understood roles. Using proximity biotinylation, we showed that Endofin forms a complex with ESCRT constituents and Endofin depletion increased integrin α5-and EGF-receptor plasma membrane density and stability by hampering their lysosomal delivery. This coincided with sustained receptor signaling and increased cell migration. Complementation of Endofin- or HD-PTP-depleted cells with wild-type Endofin or HD-PTP, but not with mutants harboring impaired Endofin/HD-PTP association or cytosolic Endofin, restored EGFR lysosomal delivery. Endofin also promoted Hrs indirect interaction with HD-PTP. Jointly, our results indicate that Endofin is required for HD-PTP and ESCRT-0 interdependent sorting of ubiquitinated transmembrane cargoes to ensure efficient receptor desensitization and lysosomal delivery.
Collapse
Affiliation(s)
- Jalal M. Kazan
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Guillaume Desrochers
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Hyeonju Jeong
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Dmitri Kharitidi
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Pirjo M. Apaja
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ariel Roldan
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Nicole St. Denis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gergely L. Lukacs
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
- Physiology Department, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montreal, QC H3A 1A3, Canada
- Biochemistry Department, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
13
|
FAT1 and PTPN14 Regulate the Malignant Progression and Chemotherapy Resistance of Esophageal Cancer through the Hippo Signaling Pathway. Anal Cell Pathol (Amst) 2021; 2021:9290372. [PMID: 34712552 PMCID: PMC8548181 DOI: 10.1155/2021/9290372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Background Esophageal cancer (EC) is a common malignant tumor, which brings heavy economic burden to patients and society. Therefore, it is important to understand the molecular mechanism of recurrence, metastasis, and drug resistance of esophageal cancer. Methods Human esophageal cancer cell line TE13 (poorly differentiated squamous cell carcinoma) and normal human esophageal epithelial cell line het-1a were selected for aseptic culture. At the same time, 6 bottles of TE13 cell line were inoculated in logarithmic phase. Cell apoptosis was analyzed by flow cytometry (FCM). Cell clone formation assay was used to analyze the proliferation. Fibronectin-coated dishes were used to detect the characteristics of cell adhesion to extracellular matrix. The Transwell method was used to detect the cell invasion ability. Western blot was used to analyze the expression of Yap1, PTPN14, FAT1, and Myc. Results Results showed that FAT1 and PTPN14 were downregulated, while Yap1 was upregulated in esophageal cancer tissues. FAT1 inhibited the proliferation, adhesion, and invasion of human esophageal cancer cell lines, which might be associated with the upregulation of PTPN14 and the inhibition of Yap1 and Myc. Conclusion The results suggested that PTPN14 and FAT1 could regulate malignant progression and chemotherapy resistance of esophageal cancer based on the Hippo signaling pathway.
Collapse
|
14
|
Rosell R, Cardona AF, Arrieta O, Aguilar A, Ito M, Pedraz C, Codony-Servat J, Santarpia M. Coregulation of pathways in lung cancer patients with EGFR mutation: therapeutic opportunities. Br J Cancer 2021; 125:1602-1611. [PMID: 34373568 PMCID: PMC8351231 DOI: 10.1038/s41416-021-01519-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations in lung adenocarcinoma are a frequent class of driver mutations. Single EGFR tyrosine kinase inhibitor (TKI) provides substantial clinical benefit, but almost nil radiographic complete responses. Patients invariably progress, although survival can reach several years with post-treatment therapies, including EGFR TKIs, chemotherapy or other procedures. Endeavours have been clinically oriented to manage the acquisition of EGFR TKI-resistant mutations; however, basic principles on cancer evolution have not been considered in clinical trials. For years, evidence has displayed rapidly adaptive mechanisms of resistance to selective monotherapy, posing several dilemmas for the practitioner. Strict adherence to non-small cell lung cancer (NSCLC) guidelines is not always practical for addressing the clinical progression that EGFR-mutant lung adenocarcinoma patients suffer. The purpose of this review is to highlight regulatory mechanisms and signalling pathways that cause therapy-induced resistance to EGFR TKIs. It suggests combinatorial therapies that target EGFR, as well as potential mechanisms underlying EGFR-mutant NSCLC, alerting the reader to clinical opportunities that may lead to a deeper and more durable response. Molecular reprogramming contributes to EGFR TKI resistance, and the compiled information is relevant in understanding the development of new combined targeted strategies in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Rafael Rosell
- Catalan Institute of Oncology, Badalona, Spain. .,Oncology Institute Dr Rosell, IOR, Barcelona, Spain.
| | - Andrés Felipe Cardona
- Clinical and Translational Oncology Group, Thoracic Oncology Unit, Institute of Oncologyt, Clínica del Country, Bogotá, Colombia
| | - Oscar Arrieta
- Personalized Medicine Laboratory, Instituto Nacional de Cancerología, México City, México.,Thoracic Oncology Unit, Instituto Nacional de Cancerología, México City, México
| | | | - Masaoki Ito
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Carlos Pedraz
- Germans Trias i Pujol Research Institute, Badalona, Spain.,Biochemistry, Molecular Biology and Biomedicine Department, Universitat Autónoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
15
|
Lin Y, Shao Z, Zhao M, Li J, Xu X. PTPN14 deficiency alleviates podocyte injury through suppressing inflammation and fibrosis by targeting TRIP6 in diabetic nephropathy. Biochem Biophys Res Commun 2021; 550:62-69. [PMID: 33684622 DOI: 10.1016/j.bbrc.2020.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 12/11/2020] [Indexed: 01/30/2023]
Abstract
Diabetic nephropathy (DN) is a common complication of diabetes, and a leading cause of end-stage renal disease. However, the pathogenesis that contributes to DKD is still not fully understood. Protein tyrosine phosphatase non-receptor type 14 (PTPN14), a non receptor tyrosine phosphatase, has numerous cellular events, such as inflammation and cell death. But its potential on DKD has not been investigated yet. In this study, we found that PTPN14 expression was markedly up-regulated in kidney samples of DKD patients, which were confirmed in diabetic mice and were clearly localized in glomeruli. The diabetic mouse model was established using streptozotocin (STZ) in wild type (WT) or PTPN knockout (KO) mice. After, STZ challenge, STZ mice displayed improved kidney functions. The results also showed that STZ-induced histological changes and podocyte injury in renal tissues, which were effectively alleviated by PTPN14 deletion. Moreover, PTPN14 deficiency significantly mitigated inflammatory response and fibrosis in glomeruli of STZ-challenged mice through restraining the activation of nuclear factor-κB (NF-κB) and transforming growth factor (TGF)-β1 signaling pathways, respectively. The inhibitory effects of PTPN14 suppression on inflammation and fibrosis were confirmed in high glucose (HG)-incubated podocytes. We further found that thyroid receptor interactor protein 6 (TRIP6) expression was dramatically up-regulated in glomeruli of STZ-challenged mice, and was abolished by PTPN14 deletion, which was confirmed in HG-treated podocytes with PTPN14 knockdown. Intriguingly, our in vitro studies showed that PTPN14 directly interacted with TRIP6. Of note, over-expressing TRIP6 markedly abrogated the effects of PTPN14 silence to restrict inflammatory response and fibrosis in HG-incubated podocytes. Taken together, our findings demonstrated that targeting PTPN14 may provide feasible therapies for DKD treatment.
Collapse
Affiliation(s)
- Yiyang Lin
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Zhulin Shao
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Meng Zhao
- Central Laboratory, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Jinghui Li
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China
| | - Xiangjin Xu
- Department of Endocrinology, Fuzong Clinical Medical College of Fujian Medical University, No.156 Xierhuan Road, FuZhou, Fujian, 350000, China.
| |
Collapse
|
16
|
Yang Y, Ma Q, Li Z, Wang H, Zhang C, Liu Y, Li B, Wang Y, Cui Q, Xue F, Ai D, Zhu Y, He J. Harmine alleviates atherogenesis by inhibiting disturbed flow-mediated endothelial activation via protein tyrosine phosphatase PTPN14 and YAP. Br J Pharmacol 2021; 178:1524-1540. [PMID: 33474722 DOI: 10.1111/bph.15378] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Disturbed flow induces endothelial dysfunction and contributes to uneven distribution of atherosclerotic plaque. Emerging evidence suggests that harmine, a natural constituent of extracts of Peganum harmala, has potent beneficial activities. Here, we investigated if harmine has an atheroprotective role under disturbed flow and the underlying mechanism. EXPERIMENTAL APPROACH Mice of ApoE-/- , LDLR-/- , and endothelial cell (EC)-specific overexpression of yes-associated protein (YAP) in ApoE-/- background were fed with a Western diet and given harmine for 4 weeks. Atherosclerotic lesion size, cellular composition, and expression of inflammatory genes in the aortic roots were assessed. HUVECs were treated with oscillatory shear stress (OSS) and harmine and also used for proteomic analysis. KEY RESULTS Harmine retarded atherogenesis in both ApoE-/- and LDLR-/- mice by inhibiting the endothelial inflammatory response. Mechanistically, harmine blocked OSS-induced YAP nuclear translocation and EC activation by reducing phosphorylation of YAP at Y357. Overexpression of endothelial YAP blunted the beneficial effects of harmine in mice. Proteomic study revealed that protein tyrosine phosphatase non-receptor type 14 (PTPN14) could bind to YAP. Moreover, harmine increased PTPN14 expression by stabilizing its protein level and inhibiting its degradation in proteasomes. PTPN14 knockdown blocked the effects of harmine on YAPY357 and EC activation. Finally, overexpression of PTPN14 mimicked the effects of harmine and ameliorated atherosclerosis, and knockdown of PTPN14 blunted the atheroprotective effects of harmine and accelerated atherosclerosis, in a partial ligation mouse model. CONCLUSION AND IMPLICATIONS Harmine alleviated OSS-induced EC activation via a PTPN14/YAPY357 pathway and had a potent atheroprotective role.
Collapse
Affiliation(s)
- Yujie Yang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qiannan Ma
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Zhiyu Li
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hui Wang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chenghu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yajin Liu
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Bochuan Li
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Qinghua Cui
- Department of Physiology and Pathophysiology, Department of Biomedical Informatics, MOE Key Lab of Molecular Cardiovascular Sciences, Centre for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Ding Ai
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Collaborative Innovation Center of Tianjin for Medical Epigenetics and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Kim J, Zhu H, Wang X, Do K. Scalable network estimation with
L
0
penalty. Stat Anal Data Min 2021; 14:18-30. [DOI: 10.1002/sam.11483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Junghi Kim
- Center for Drug Evaluation and Research U.S. Food and Drug Administration Silver Spring Maryland USA
| | - Hongtu Zhu
- Department of Biostatistics University of North Carolina Chapel Hill North Carolina USA
| | - Xiao Wang
- Department of Statistics Purdue University West Lafayette Indiana USA
| | - Kim‐Anh Do
- Department of Biostatistics University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
18
|
Lonic A, Gehling F, Belle L, Li X, Schieber NL, Nguyen EV, Goodall GJ, Parton RG, Daly RJ, Khew-Goodall Y. Phosphorylation of PKCδ by FER tips the balance from EGFR degradation to recycling. J Cell Biol 2021; 220:211661. [PMID: 33411917 PMCID: PMC7797899 DOI: 10.1083/jcb.201902073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/30/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022] Open
Abstract
Receptor degradation terminates signaling by activated receptor tyrosine kinases. Degradation of EGFR occurs in lysosomes and requires the switching of RAB5 for RAB7 on late endosomes to enable their fusion with the lysosome, but what controls this critical switching is poorly understood. We show that the tyrosine kinase FER alters PKCδ function by phosphorylating it on Y374, and that phospho-Y374-PKCδ prevents RAB5 release from nascent late endosomes, thereby inhibiting EGFR degradation and promoting the recycling of endosomal EGFR to the cell surface. The rapid association of phospho-Y374-PKCδ with EGFR-containing endosomes is diminished by PTPN14, which dephosphorylates phospho-Y374-PKCδ. In triple-negative breast cancer cells, the FER-dependent phosphorylation of PKCδ enhances EGFR signaling and promotes anchorage-independent cell growth. Importantly, increased Y374-PKCδ phosphorylation correlating with arrested late endosome maturation was identified in ∼25% of triple-negative breast cancer patients, suggesting that dysregulation of this pathway may contribute to their pathology.
Collapse
Affiliation(s)
- Ana Lonic
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Freya Gehling
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Leila Belle
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Nicole L. Schieber
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Elizabeth V. Nguyen
- Cancer Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Gregory J. Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia,Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Queensland, Australia
| | - Roger J. Daly
- Cancer Program, Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, An Alliance of SA Pathology and the University of South Australia, Adelaide, South Australia, Australia,The Discipline of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia,Department of Molecular and Cellular Biology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia,Correspondence to Yeesim Khew-Goodall:
| |
Collapse
|
19
|
The paradoxical roles of miR-4295 in human cancer: Implications in pathogenesis and personalized medicine. Genes Dis 2020; 9:638-647. [PMID: 35782974 PMCID: PMC9243315 DOI: 10.1016/j.gendis.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
|
20
|
Wang R, Du Y, Shang J, Dang X, Niu G. PTPN14 acts as a candidate tumor suppressor in prostate cancer and inhibits cell proliferation and invasion through modulating LATS1/YAP signaling. Mol Cell Probes 2020; 53:101642. [PMID: 32645410 DOI: 10.1016/j.mcp.2020.101642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 07/05/2020] [Indexed: 12/22/2022]
Abstract
Protein tyrosine phosphatase, non-receptor type 14 (PTPN14) exerts a profound effect in the progression of multiple malignant tumors. However, whether PTPN14 plays a role in prostate cancer has not been well investigated. Herein, we evaluated the function and potential underlying mechanism of PTPN14 in prostate cancer. Decreased PTPN14 expression was detected in prostate cancer, and restoration of PTPN14 expression in prostate cancer cells inhibited the proliferative and invasive potential. Mechanistically, PTPN14 increased the phosphorylation of Yes-associated protein (YAP) by activation of large tumor suppressor 1 (LATS1), an action that resulted in a significant reduction in YAP-mediated transcriptional activity. Inactivation of YAP by its inhibitor markedly abrogated the PTPN14-knockdown-induced promotion effect on prostate cancer cell proliferation and invasion. Notably, PTPN14 up-regulation also exerted a remarkable suppressive impact on tumorigenesis of prostate cancer in vivo. Taken together, the study reveals a tumor-inhibition role of PTPN14 that represses the proliferation and invasion of prostate cancer by down-regulating YAP activation.
Collapse
Affiliation(s)
- Rong Wang
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Yonghao Du
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jin Shang
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xiaomin Dang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, China
| | - Gang Niu
- The Department of Radiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
21
|
Liang G, Duan C, He J, Ma W, Dai X. PTPN14, a target gene of miR-4295, restricts the growth and invasion of osteosarcoma cells through inactivation of YAP1 signalling. Clin Exp Pharmacol Physiol 2020; 47:1301-1310. [PMID: 32141101 DOI: 10.1111/1440-1681.13296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 11/26/2022]
Abstract
Non-receptor tyrosine phosphatase 14 (PTPN14) has emerged as a novel tumour-suppressor in a wide range of human cancer types. However, the role of PTPN14 in osteosarcoma remains undetermined. In the present study, we aimed to explore the expression pattern, biological function, and regulation of PTPN14 in osteosarcoma. Low PTPN14 expression levels were detected in osteosarcoma cells, and PTPN14 overexpression markedly decreased the proliferation, colony formation, and invasive potential of osteosarcoma cells. Bioinformatics analysis predicted PTPN14 as a potential target gene of microRNA-4295 (miR-4295), and this prediction was validated by a dual-luciferase reporter assay. PTPN14 expression was negatively modulated by miR-4295 in osteosarcoma cells. Moreover, PTPN14 expression was inversely correlated with miR-4295 expression in osteosarcoma tissues. Notably, miR-4295 inhibition significantly restricted the proliferation and invasion of osteosarcoma cells. PTPN14 overexpression or miR-4295 inhibition increased the phosphorylation of Yes-associated protein 1 (YAP1) and impeded YAP1 nuclear translocation, leading to inhibition of YAP1-mediated transcriptional activity. However, the miR-4925-inhibition-mediated antitumour effect was partially reversed by PTPN14 knockdown. Overall, these results demonstrate that PTPN14 is a miR-4295 target gene and it exerts a tumour-suppressive function in osteosarcoma cells via inactivation of YAP1. Our study uncovers a miR-4295-PTPN14-YAP1 signalling pathway that may play a crucial role in the progression of osteosarcoma.
Collapse
Affiliation(s)
- Gaofeng Liang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, 521 Hospital of Norinco Group, Xi'an, China
| | - Chaopeng Duan
- Department of Orthopaedics, 521 Hospital of Norinco Group, Xi'an, China
| | - June He
- 521 Hospital of Norinco Group, Xi'an, China
| | - Wei Ma
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xing Dai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Reiterer V, Pawłowski K, Desrochers G, Pause A, Sharpe HJ, Farhan H. The dead phosphatases society: a review of the emerging roles of pseudophosphatases. FEBS J 2020; 287:4198-4220. [PMID: 32484316 DOI: 10.1111/febs.15431] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
Phosphatases are a diverse family of enzymes, comprising at least 10 distinct protein folds. Like most other enzyme families, many have sequence variations that predict an impairment or loss of catalytic activity classifying them as pseudophosphatases. Research on pseudoenzymes is an emerging area of interest, with new biological functions repurposed from catalytically active relatives. Here, we provide an overview of the pseudophosphatases identified to date in all major phosphatase families. We will highlight the degeneration of the various catalytic sequence motifs and discuss the challenges associated with the experimental determination of catalytic inactivity. We will also summarize the role of pseudophosphatases in various diseases and discuss the major challenges and future directions in this field.
Collapse
Affiliation(s)
| | | | - Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC, Canada.,Goodman Cancer Research Centre, McGill University, Montréal, QC, Canada
| | | | - Hesso Farhan
- Institute of Basic Medical Sciences, University of Oslo, Norway
| |
Collapse
|
23
|
Chen J, Zhao X, Yuan Y, Jing JJ. The expression patterns and the diagnostic/prognostic roles of PTPN family members in digestive tract cancers. Cancer Cell Int 2020; 20:238. [PMID: 32536826 PMCID: PMC7291430 DOI: 10.1186/s12935-020-01315-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members, and diagnosis as well as the prognosis of digestive tract cancers. Methods Oncomine and Ualcan were used to analyze PTPN expressions. Data from The Cancer Genome Atlas (TCGA) were downloaded through UCSC Xena for validation and to explore the relationship of the PTPN expression with diagnosis, clinicopathological parameters and survival of digestive tract cancers. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal coupled with Cytoscape. The expression of differentially expressed PTPNs in cancer cell lines were explored using CCLE. Moreover, by histological verification, the expression of four PTPNs in digestive tract cancers were further analyzed. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. Several PTPN members were differentially expressed in digestive tract cancers. For esophageal carcinoma (ESCA), PTPN1 and PTPN12 levels were correlated with incidence; PTPN20 was associated with poor prognosis. For stomach adenocarcinoma (STAD), PTPN2 and PTPN12 levels were correlated with incidence; PTPN3, PTPN5, PTPN7, PTPN11, PTPN13, PTPN14, PTPN18 and PTPN23 were correlated with pathological grade; PTPN20 expression was related with both TNM stage and N stage; PTPN22 was associated with T stage and pathological grade; decreased expression of PTPN5 and PTPN13 implied worse overall survival of STAD, while elevated PTPN6 expression indicated better prognosis. For colorectal cancer (CRC), PTPN2, PTPN21 and PTPN22 levels were correlated with incidence; expression of PTPN5, PTPN12, and PTPN14 was correlated with TNM stage and N stage; high PTPN5 or PTPN7 expression was associated with increased hazards of death. CCLE analyses showed that in esophagus cancer cell lines, PTPN1, PTPN4 and PTPN12 were highly expressed; in gastric cancer cell lines, PTPN2 and PTPN12 were highly expressed; in colorectal cancer cell lines, PTPN12 was highly expressed while PTPN22 was downregulated. Results of histological verification experiment showed differential expressions of PTPN22 in CRC, and PTPN12 in GC and CRC. Conclusions Members of PTPN family were differentially expressed in digestive tract cancers. Correlations were found between PTPN genes and clinicopathological parameters of patients. Expression of PTPN12 was upregulated in both STAD and CRC, and thus could be used as a diagnostic biomarker. Differential expression of PTPN12 in GC and CRC, and PTPN22 in CRC were presented in our histological verification experiment.
Collapse
Affiliation(s)
- Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, 110101 China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Jing-Jing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
24
|
Díaz-Valdivia NI, Díaz J, Contreras P, Campos A, Rojas-Celis V, Burgos-Ravanal RA, Lobos-González L, Torres VA, Perez VI, Frei B, Leyton L, Quest AFG. The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis. Oncogene 2020; 39:3693-3709. [PMID: 32152405 PMCID: PMC7190567 DOI: 10.1038/s41388-020-1242-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
Caveolin-1 (CAV1) enhanced migration, invasion, and metastasis of cancer cells is inhibited by co-expression of the glycoprotein E-cadherin. Although the two proteins form a multiprotein complex that includes β-catenin, it remained unclear how this would contribute to blocking the metastasis promoting function of CAV1. Here, we characterized by mass spectrometry the protein composition of CAV1 immunoprecipitates from B16F10 murine melanoma cells expressing or not E-cadherin. The novel protein tyrosine phosphatase PTPN14 was identified by mass spectrometry analysis exclusively in co-immunoprecipitates of CAV1 with E-cadherin. Interestingly, PTPN14 is implicated in controlling metastasis, but only few known PTPN14 substrates exist. We corroborated by western blotting experiments that PTPN14 and CAV1 co-inmunoprecipitated in the presence of E-cadherin in B16F10 melanoma and other cancer cells. Moreover, the CAV1(Y14F) mutant protein was shown to co-immunoprecipitate with PTPN14 even in the absence of E-cadherin, and overexpression of PTPN14 reduced CAV1 phosphorylation on tyrosine-14, as well as suppressed CAV1-enhanced cell migration, invasion and Rac-1 activation in B16F10, metastatic colon [HT29(US)] and breast cancer (MDA-MB-231) cell lines. Finally, PTPN14 overexpression in B16F10 cells reduced the ability of CAV1 to induce metastasis in vivo. In summary, we identify here CAV1 as a novel substrate for PTPN14 and show that overexpression of this phosphatase suffices to reduce CAV1-induced metastasis.
Collapse
Affiliation(s)
- Natalia I Díaz-Valdivia
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - América Campos
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Victoria Rojas-Celis
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Renato A Burgos-Ravanal
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana I Perez
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Balz Frei
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Andrew F G Quest
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
25
|
Dong Y, Xiao Y, Shi Q, Jiang C. Dysregulated lncRNA-miRNA-mRNA Network Reveals Patient Survival-Associated Modules and RNA Binding Proteins in Invasive Breast Carcinoma. Front Genet 2020; 10:1284. [PMID: 32010179 PMCID: PMC6975227 DOI: 10.3389/fgene.2019.01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most common cancer in women, but few biomarkers are effective in clinic. Previous studies have shown the important roles of non-coding RNAs in diagnosis, prognosis, and therapy selection for breast cancer and have suggested the significance of integrating molecules at different levels to interpret the mechanism of breast cancer. Here, we collected transcriptome data including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA for ~1,200 samples, including 1079 invasive breast carcinoma samples and 104 normal samples, from The Cancer Genome Atlas (TCGA) project. We identified differentially expressed lncRNAs, miRNAs, and mRNAs that distinguished invasive carcinoma samples from normal samples. We further constructed an integrated dysregulated network consisting of differentially expressed lncRNAs, miRNAs, and mRNAs and found housekeeping and cancer-related functions. Moreover, 58 RNA binding proteins (RBPs) involved in biological processes that are essential to maintain cell survival were found in the dysregulated network, and 10 were correlated with overall survival. In addition, we identified two modules that stratify patients into high- and low-risk subgroups. The expression patterns of these two modules were significantly different in invasive carcinoma versus normal samples, and some molecules were high-confidence biomarkers of breast cancer. Together, these data demonstrated an important clinical application for improving outcome prediction for invasive breast cancers.
Collapse
Affiliation(s)
- Yu Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Qihui Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunjie Jiang
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
26
|
Po'uha ST, Le Grand M, Brandl MB, Gifford AJ, Goodall GJ, Khew-Goodall Y, Kavallaris M. Stathmin levels alter PTPN14 expression and impact neuroblastoma cell migration. Br J Cancer 2019; 122:434-444. [PMID: 31806880 PMCID: PMC7000740 DOI: 10.1038/s41416-019-0669-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Stathmin mediates cell migration and invasion in vitro, and metastasis in vivo. To investigate stathmin's role on the metastatic process, we performed integrated mRNA-miRNA expression analysis to identify pathways regulated by stathmin. METHODS MiRNA and gene arrays followed by miRNA-target-gene integration were performed on stathmin-depleted neuroblastoma cells (CtrlshRNA vs. Stmn Seq2shRNA). The expression of the predicted target PTPN14 was evaluated by RT-qPCR, western blot and immunohistochemistry. Gene-silencing technology was used to assess the role of PTPN14 on proliferation, migration, invasion and signalling pathway. RESULTS Stathmin levels modulated the expression of genes and miRNA in neuroblastoma cells, leading to a deregulation of migration and invasion pathways. Consistent with gene array data, PTPN14 mRNA and protein expression were downregulated in stathmin- depleted neuroblastoma cells and xenografts. In two independent neuroblastoma cells, suppression of PTPN14 expression led to an increase in cell migration and invasion. PTPN14 and stathmin expression did not act in a feedback regulatory loop in PTPN14- depleted cells, suggesting a complex interplay of signalling pathways. The effect of PTPN14 on YAP pathway activation was cell-type dependent. CONCLUSIONS Our findings demonstrate that stathmin levels can regulate PTPN14 expression, which can modulate neuroblastoma cell migration and invasion.
Collapse
Affiliation(s)
- Sela T Po'uha
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Miriam B Brandl
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia.,Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Discipline of Medicine and Dept of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.,Discipline of Medicine and Dept of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensignton, NSW, 2052, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW, 2052, Australia. .,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia.
| |
Collapse
|
27
|
Rau A, Flister M, Rui H, Auer PL. Exploring drivers of gene expression in the Cancer Genome Atlas. Bioinformatics 2019; 35:62-68. [PMID: 30561551 DOI: 10.1093/bioinformatics/bty551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/29/2018] [Indexed: 12/14/2022] Open
Abstract
Motivation The Cancer Genome Atlas (TCGA) has greatly advanced cancer research by generating, curating and publicly releasing deeply measured molecular data from thousands of tumor samples. In particular, gene expression measures, both within and across cancer types, have been used to determine the genes and proteins that are active in tumor cells. Results To more thoroughly investigate the behavior of gene expression in TCGA tumor samples, we introduce a statistical framework for partitioning the variation in gene expression due to a variety of molecular variables including somatic mutations, transcription factors (TFs), microRNAs, copy number alternations, methylation and germ-line genetic variation. As proof-of-principle, we identify and validate specific TFs that influence the expression of PTPN14 in breast cancer cells. Availability and implementation We provide a freely available, user-friendly, browseable interactive web-based application for exploring the results of our transcriptome-wide analyses across 17 different cancers in TCGA at http://ls-shiny-prod.uwm.edu/edge_in_tcga. All TCGA Open Access tier data are available at the Broad Institute GDAC Firehose and were downloaded using the TCGA2STAT R package. TCGA Controlled Access tier data are available via controlled access through the Genomic Data Commons (GDC). R scripts used to download, format and analyze the data and produce the interactive R/Shiny web app have been made available on GitHub at https://github.com/andreamrau/EDGE-in-TCGA.
Collapse
Affiliation(s)
- Andrea Rau
- GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Michael Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul L Auer
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
28
|
Knight JF, Sung VYC, Kuzmin E, Couzens AL, de Verteuil DA, Ratcliffe CDH, Coelho PP, Johnson RM, Samavarchi-Tehrani P, Gruosso T, Smith HW, Lee W, Saleh SM, Zuo D, Zhao H, Guiot MC, Davis RR, Gregg JP, Moraes C, Gingras AC, Park M. KIBRA (WWC1) Is a Metastasis Suppressor Gene Affected by Chromosome 5q Loss in Triple-Negative Breast Cancer. Cell Rep 2019; 22:3191-3205. [PMID: 29562176 PMCID: PMC5873529 DOI: 10.1016/j.celrep.2018.02.095] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/20/2017] [Accepted: 02/23/2018] [Indexed: 01/15/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) display a complex spectrum of mutations and chromosomal aberrations. Chromosome 5q (5q) loss is detected in up to 70% of TNBCs, but little is known regarding the genetic drivers associated with this event. Here, we show somatic deletion of a region syntenic with human 5q33.2–35.3 in a mouse model of TNBC. Mechanistically, we identify KIBRA as a major factor contributing to the effects of 5q loss on tumor growth and metastatic progression. Re-expression of KIBRA impairs metastasis in vivo and inhibits tumorsphere formation by TNBC cells in vitro. KIBRA functions co-operatively with the protein tyrosine phosphatase PTPN14 to trigger mechanotransduction-regulated signals that inhibit the nuclear localization of oncogenic transcriptional co-activators YAP/TAZ. Our results argue that the selective advantage produced by 5q loss involves reduced dosage of KIBRA, promoting oncogenic functioning of YAP/TAZ in TNBC. Reduced KIBRA expression is associated with chr 5q loss in breast cancer Restoring Kibra expression inhibits metastatic dissemination in mice KIBRA impairs the self-renewal capacity of triple-negative breast cancer cells KIBRA blocks mechanotransduction signals required for YAP/TAZ activation
Collapse
Affiliation(s)
- Jennifer F Knight
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada
| | - Vanessa Y C Sung
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H2W 1S6, Canada
| | - Elena Kuzmin
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H2W 1S6, Canada
| | - Amber L Couzens
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | | - Colin D H Ratcliffe
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H2W 1S6, Canada
| | - Paula P Coelho
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H2W 1S6, Canada
| | - Radia M Johnson
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada
| | | | - Tina Gruosso
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada; Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada
| | - Harvey W Smith
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada
| | - Wontae Lee
- Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sadiq M Saleh
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada
| | - Dongmei Zuo
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada
| | - Hong Zhao
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada
| | - Marie-Christine Guiot
- Montreal Neurological Institute, Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Jeffrey P Gregg
- Department of Pathology and Laboratory Medicine, University of California at Davis School of Medicine, Sacramento, CA 95817, USA
| | - Christopher Moraes
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biomedical Engineering, McGill University, Montreal, QC H3A 2B4, Canada; Department of Chemical Engineering, McGill University, Montreal, QC H3A 0C5, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Morag Park
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 0B1, Canada; Department of Biochemistry, McGill University, Montreal, QC H2W 1S6, Canada; Department of Oncology, McGill University, Montreal, QC H2W 1S6, Canada.
| |
Collapse
|
29
|
Yun HY, Kim MW, Lee HS, Kim W, Shin JH, Kim H, Shin HC, Park H, Oh BH, Kim WK, Bae KH, Lee SC, Lee EW, Ku B, Kim SJ. Structural basis for recognition of the tumor suppressor protein PTPN14 by the oncoprotein E7 of human papillomavirus. PLoS Biol 2019; 17:e3000367. [PMID: 31323018 PMCID: PMC6668832 DOI: 10.1371/journal.pbio.3000367] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/31/2019] [Accepted: 07/08/2019] [Indexed: 12/28/2022] Open
Abstract
Human papillomaviruses (HPVs) are causative agents of various diseases associated with cellular hyperproliferation, including cervical cancer, one of the most prevalent tumors in women. E7 is one of the two HPV-encoded oncoproteins and directs recruitment and subsequent degradation of tumor-suppressive proteins such as retinoblastoma protein (pRb) via its LxCxE motif. E7 also triggers tumorigenesis in a pRb-independent pathway through its C-terminal domain, which has yet been largely undetermined, with a lack of structural information in a complex form with a host protein. Herein, we present the crystal structure of the E7 C-terminal domain of HPV18 belonging to the high-risk HPV genotypes bound to the catalytic domain of human nonreceptor-type protein tyrosine phosphatase 14 (PTPN14). They interact directly and potently with each other, with a dissociation constant of 18.2 nM. Ensuing structural analysis revealed the molecular basis of the PTPN14-binding specificity of E7 over other protein tyrosine phosphatases and also led to the identification of PTPN21 as a direct interacting partner of E7. Disruption of HPV18 E7 binding to PTPN14 by structure-based mutagenesis impaired E7’s ability to promote keratinocyte proliferation and migration. Likewise, E7 binding-defective PTPN14 was resistant for degradation via proteasome, and it was much more effective than wild-type PTPN14 in attenuating the activity of downstream effectors of Hippo signaling and negatively regulating cell proliferation, migration, and invasion when examined in HPV18-positive HeLa cells. These results therefore demonstrated the significance and therapeutic potential of the intermolecular interaction between HPV E7 and host PTPN14 in HPV-mediated cell transformation and tumorigenesis. Human papillomaviruses cause various diseases associated with cellular hyperproliferation, including cervical cancer. Structural, biochemical, and cellular analyses reveal the molecular basis and significance of the intermolecular interaction between the E7 protein of human papillomavirus 18 and the human tumor suppressor protein PTPN14.
Collapse
MESH Headings
- Amino Acid Sequence
- Cell Line
- Cell Line, Tumor
- Cell Transformation, Neoplastic
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- HEK293 Cells
- HeLa Cells
- Humans
- Models, Molecular
- Oncogene Proteins, Viral/chemistry
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Protein Binding
- Protein Domains
- Protein Tyrosine Phosphatases, Non-Receptor/chemistry
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Retinoblastoma Protein/chemistry
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Sequence Homology, Amino Acid
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
| | - Min Wook Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hye Seon Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Wantae Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Shin
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyunmin Kim
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Ho-Chul Shin
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, Seoul, Republic of Korea
| | - Byung-Ha Oh
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Won Kon Kim
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Kwang-Hee Bae
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Sang Chul Lee
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Bioscience, University of Science and Technology KRIBB School, Daejeon, Republic of Korea
- * E-mail: (E-WL); (BK); (SJK)
| |
Collapse
|
30
|
Han X, Sun T, Hong J, Wei R, Dong Y, Huang D, Chen J, Ren X, Zhou H, Tian W, Jia Y. Nonreceptor tyrosine phosphatase 14 promotes proliferation and migration through regulating phosphorylation of YAP of Hippo signaling pathway in gastric cancer cells. J Cell Biochem 2019; 120:17723-17730. [DOI: 10.1002/jcb.29038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xu Han
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Tong Sun
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Jia Hong
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Rongrong Wei
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Yingzi Dong
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Di Huang
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Jie Chen
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Xiyun Ren
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Haibo Zhou
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Wenjing Tian
- Department of Epidemiology, College of Public Health Harbin Medical University Harbin Heilongjiang P.R. China
| | - Yunhe Jia
- Department of Colorectal Cancer Surgery, The Third Affiliated Hospital Harbin Medical University Harbin Heilongjiang P.R. China
| |
Collapse
|
31
|
Bottini A, Wu DJ, Ai R, Le Roux M, Bartok B, Bombardieri M, Doody KM, Zhang V, Sacchetti C, Zoccheddu M, Lonic A, Li X, Boyle DL, Hammaker D, Meng TC, Liu L, Corr M, Stanford SM, Lewis M, Wang W, Firestein GS, Khew-Goodall Y, Pitzalis C, Bottini N. PTPN14 phosphatase and YAP promote TGFβ signalling in rheumatoid synoviocytes. Ann Rheum Dis 2019; 78:600-609. [PMID: 30808624 PMCID: PMC7039277 DOI: 10.1136/annrheumdis-2018-213799] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 11/04/2022]
Abstract
OBJECTIVE We aimed to understand the role of the tyrosine phosphatase PTPN14-which in cancer cells modulates the Hippo pathway by retaining YAP in the cytosol-in fibroblast-like synoviocytes (FLS) from patients with rheumatoid arthritis (RA). METHODS Gene/protein expression levels were measured by quantitative PCR and/or Western blotting. Gene knockdown in RA FLS was achieved using antisense oligonucleotides. The interaction between PTPN14 and YAP was assessed by immunoprecipitation. The cellular localisation of YAP and SMAD3 was examined via immunofluorescence. SMAD reporter studies were carried out in HEK293T cells. The RA FLS/cartilage coimplantation and passive K/BxN models were used to examine the role of YAP in arthritis. RESULTS RA FLS displayed overexpression of PTPN14 when compared with FLS from patients with osteoarthritis (OA). PTPN14 knockdown in RA FLS impaired TGFβ-dependent expression of MMP13 and potentiation of TNF signalling. In RA FLS, PTPN14 formed a complex with YAP. Expression of PTPN14 or nuclear YAP-but not of a non-YAP-interacting PTPN14 mutant-enhanced SMAD reporter activity. YAP promoted TGFβ-dependent SMAD3 nuclear localisation in RA FLS. Differences in epigenetic marks within Hippo pathway genes, including YAP, were found between RA FLS and OA FLS. Inhibition of YAP reduced RA FLS pathogenic behaviour and ameliorated arthritis severity. CONCLUSION In RA FLS, PTPN14 and YAP promote nuclear localisation of SMAD3. YAP enhances a range of RA FLS pathogenic behaviours which, together with epigenetic evidence, points to the Hippo pathway as an important regulator of RA FLS behaviour.
Collapse
Affiliation(s)
- Angel Bottini
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Dennis J Wu
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rizi Ai
- Dept. of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Michelle Le Roux
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Beatrix Bartok
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michele Bombardieri
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Karen M Doody
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Vida Zhang
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Cristiano Sacchetti
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Martina Zoccheddu
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
| | - Ana Lonic
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - David L Boyle
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
| | - Deepa Hammaker
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tzu-Ching Meng
- Institute for Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Lin Liu
- Dept. of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
| | - Maripat Corr
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
| | - Stephanie M Stanford
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Myles Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Wei Wang
- Dept. of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Dept. of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gary S Firestein
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Nunzio Bottini
- Dept. of Medicine, University of California San Diego, La Jolla, California, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA, USA
| |
Collapse
|
32
|
PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci U S A 2019; 116:7033-7042. [PMID: 30894485 DOI: 10.1073/pnas.1819534116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomavirus (HPV) E7 proteins enable oncogenic transformation of HPV-infected cells by inactivating host cellular proteins. High-risk but not low-risk HPV E7 target PTPN14 for proteolytic degradation, suggesting that PTPN14 degradation may be related to their oncogenic activity. HPV infects human keratinocytes but the role of PTPN14 in keratinocytes and the consequences of PTPN14 degradation are unknown. Using an HPV16 E7 variant that can inactivate retinoblastoma tumor suppressor (RB1) but cannot degrade PTPN14, we found that high-risk HPV E7-mediated PTPN14 degradation impairs keratinocyte differentiation. Deletion of PTPN14 from primary human keratinocytes decreased keratinocyte differentiation gene expression. Related to oncogenic transformation, both HPV16 E7-mediated PTPN14 degradation and PTPN14 deletion promoted keratinocyte survival following detachment from a substrate. PTPN14 degradation contributed to high-risk HPV E6/E7-mediated immortalization of primary keratinocytes and HPV+ but not HPV- cancers exhibit a gene-expression signature consistent with PTPN14 inactivation. We find that PTPN14 degradation impairs keratinocyte differentiation and propose that this contributes to high-risk HPV E7-mediated oncogenic activity independent of RB1 inactivation.
Collapse
|
33
|
Role of protein phosphatases in the cancer microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:144-152. [DOI: 10.1016/j.bbamcr.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022]
|
34
|
miR-4516 predicts poor prognosis and functions as a novel oncogene via targeting PTPN14 in human glioblastoma. Oncogene 2018; 38:2923-2936. [PMID: 30559405 DOI: 10.1038/s41388-018-0601-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/10/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
Abstract
Glioblastomas (GBMs) are the most aggressive primary brain tumors, with an average survival of less than 15 months. Therefore, there is a critical need to develop novel therapeutic strategies for GBM. This study aimed to assess the prognostic value of miR-4516 and investigate its oncogenic functions and the underlying cellular and molecular mechanisms in GBM. To determine the correlation between miR-4516 expression and overall survival of patients with GBM, total RNAs were isolated from 268 FFPE tumor samples, miR expression was assayed (simultaneously) using the nCounter human miRNA v3a assay followed by univariable and multivariable survival analyses. Further, in vitro and in vivo studies were conducted to define the role of miR-4516 in GBM tumorigenesis and the underlying molecular mechanisms. Upon multivariable analysis, miR-4516 was correlated with poor prognosis in GBM patients (HR = 1.49, 95%CI: 1.12-1.99, P = 0.01). Interestingly, the significance of miR-4516 was retained including MGMT methylation status. Overexpression of miR-4516 significantly enhanced cell proliferation and invasion of GBM cells both in vitro and in vivo. While conducting downstream targeting studies, we found that the tumor-promoting function of miR-4516, in part, was mediated by direct targeting of PTPN14 (protein tyrosine phosphatase, non-receptor type 14) which, in turn, regulated the Hippo pathway in GBM. Taken together, our data suggest that miR-4516 represents an independent negative prognostic factor in GBM patients and acts as a novel oncogene in GBM, which regulates the PTPN14/Hippo pathway. Thus, this newly identified miR-4516 may serve as a new potential therapeutic target for GBM treatment.
Collapse
|
35
|
Stanoev A, Mhamane A, Schuermann KC, Grecco HE, Stallaert W, Baumdick M, Brüggemann Y, Joshi MS, Roda-Navarro P, Fengler S, Stockert R, Roßmannek L, Luig J, Koseska A, Bastiaens PIH. Interdependence between EGFR and Phosphatases Spatially Established by Vesicular Dynamics Generates a Growth Factor Sensing and Responding Network. Cell Syst 2018; 7:295-309.e11. [PMID: 30145116 PMCID: PMC6167251 DOI: 10.1016/j.cels.2018.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/22/2017] [Accepted: 06/07/2018] [Indexed: 12/20/2022]
Abstract
The proto-oncogenic epidermal growth factor receptor (EGFR) is a tyrosine kinase whose sensitivity to growth factors and signal duration determines cellular behavior. We resolve how EGFR's response to epidermal growth factor (EGF) originates from dynamically established recursive interactions with spatially organized protein tyrosine phosphatases (PTPs). Reciprocal genetic PTP perturbations enabled identification of receptor-like PTPRG/J at the plasma membrane and ER-associated PTPN2 as the major EGFR dephosphorylating activities. Imaging spatial-temporal PTP reactivity revealed that vesicular trafficking establishes a spatially distributed negative feedback with PTPN2 that determines signal duration. On the other hand, single-cell dose-response analysis uncovered a reactive oxygen species-mediated toggle switch between autocatalytically activated monomeric EGFR and the tumor suppressor PTPRG that governs EGFR's sensitivity to EGF. Vesicular recycling of monomeric EGFR unifies the interactions with these PTPs on distinct membrane systems, dynamically generating a network architecture that can sense and respond to time-varying growth factor signals.
Collapse
Affiliation(s)
- Angel Stanoev
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Amit Mhamane
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Klaus C Schuermann
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Hernán E Grecco
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Wayne Stallaert
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Martin Baumdick
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Yannick Brüggemann
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany
| | - Maitreyi S Joshi
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Pedro Roda-Navarro
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Sven Fengler
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Rabea Stockert
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Lisaweta Roßmannek
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Jutta Luig
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany
| | - Aneta Koseska
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany.
| | - Philippe I H Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, 44227 Dortmund, Germany; Faculty of Chemistry and Chemical Biology, TU Dortmund, 44227 Dortmund, Germany.
| |
Collapse
|
36
|
Choi J, Saraf A, Florens L, Washburn MP, Busino L. PTPN14 regulates Roquin2 stability by tyrosine dephosphorylation. Cell Cycle 2018; 17:2243-2255. [PMID: 30209976 DOI: 10.1080/15384101.2018.1522912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein phosphorylation regulates a variety of cellular signaling pathways and fundamental mechanisms in cells. In this paper, we demonstrate that the mRNA decay factor Roquin2 is phosphorylated at tyrosine residue in position 691 in vivo. This phosphorylation disrupts the interaction with KLHL6, the E3 ligase for Roquin2. Furthermore, we establish that the tyrosine phosphatase PTPN14 specifically interacts with Roquin2 through its phosphatase domain and dephosphorylates Roquin2 tyrosine 691. Overexpression of PTPN14 promotes Roquin2 degradation in a KLHL6-dependant manner by promoting interaction with KLHL6. Collectively, our findings reveal that PTPN14 negatively regulates the protein stability of Roquin2, thereby adding a new layer of regulation to the KLHL6-Roquin2 axis.
Collapse
Affiliation(s)
- Jaewoo Choi
- a Department of Cancer Biology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Anita Saraf
- b The Stowers Institute of Medical Research , Kansas , MO , USA
| | | | - Michael P Washburn
- b The Stowers Institute of Medical Research , Kansas , MO , USA.,c Department of Pathology and Laboratory Medicine , The University of Kansas Medical Center , Kansas , KS , USA
| | - Luca Busino
- a Department of Cancer Biology, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
37
|
Li G, Wang D, Ma W, An K, Liu Z, Wang X, Yang C, Du F, Han X, Chang S, Yu H, Zhang Z, Zhao Z, Zhang Y, Wang J, Sun Y. Transcriptomic and epigenetic analysis of breast cancer stem cells. Epigenomics 2018; 10:765-783. [PMID: 29480027 DOI: 10.2217/epi-2018-0008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM Cancer stem cells (CSCs) drive triple-negative breast cancer recurrence via their properties of self-renewal, invasiveness and radio/chemotherapy resistance. This study examined how CSCs might sustain these properties. MATERIALS & METHODS Transcriptomes, DNA methylomes and histone modifications were compared between CSCs and non CSCs. RESULTS Transcriptome analysis revealed several pathways that were activated in CSCs, whereas cell cycle regulation pathways were inhibited. Cell development and signaling genes were differentially methylated, with histone methylation analysis suggesting distinct H3K4me2 and H3K27me3 enrichment profiles. An integrated analysis revealed several tumor suppressor genes downregulated in CSCs. CONCLUSION Differential activation of various signaling pathways and genes contributes to the tumor-promoting properties of CSCs. Therapeutic targets identified in the analysis may contribute to improving treatment options for patients.
Collapse
Affiliation(s)
- Guochao Li
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dong Wang
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wencui Ma
- Heze Third People's Hospital, Shandong 274031, PR China
| | - Ke An
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zongzhi Liu
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinyu Wang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin 150081, PR China
| | - Caiyun Yang
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fengxia Du
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Han
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Chang
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hui Yu
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zilong Zhang
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zitong Zhao
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yan Zhang
- College of Bioinformatics Science & Technology, Harbin Medical University, Harbin 150081, PR China
| | - Junyun Wang
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yingli Sun
- Key Laboratory of Genomic & Precision Medicine, China Gastrointestinal Cancer Research Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China.,University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
38
|
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12:3-20. [PMID: 29124875 PMCID: PMC5748484 DOI: 10.1002/1878-0261.12155] [Citation(s) in RCA: 980] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/31/2022] Open
Abstract
The physiological function of the epidermal growth factor receptor (EGFR) is to regulate epithelial tissue development and homeostasis. In pathological settings, mostly in lung and breast cancer and in glioblastoma, the EGFR is a driver of tumorigenesis. Inappropriate activation of the EGFR in cancer mainly results from amplification and point mutations at the genomic locus, but transcriptional upregulation or ligand overproduction due to autocrine/paracrine mechanisms has also been described. Moreover, the EGFR is increasingly recognized as a biomarker of resistance in tumors, as its amplification or secondary mutations have been found to arise under drug pressure. This evidence, in addition to the prominent function that this receptor plays in normal epithelia, has prompted intense investigations into the role of the EGFR both at physiological and at pathological level. Despite the large body of knowledge obtained over the last two decades, previously unrecognized (herein defined as 'noncanonical') functions of the EGFR are currently emerging. Here, we will initially review the canonical ligand-induced EGFR signaling pathway, with particular emphasis to its regulation by endocytosis and subversion in human tumors. We will then focus on the most recent advances in uncovering noncanonical EGFR functions in stress-induced trafficking, autophagy, and energy metabolism, with a perspective on future therapeutic applications.
Collapse
Affiliation(s)
- Sara Sigismund
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)MilanItaly
| | - Daniele Avanzato
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| | - Letizia Lanzetti
- Department of OncologyUniversity of Torino Medical SchoolItaly,Candiolo Cancer InstituteFPO ‐ IRCCSCandiolo, TorinoItaly
| |
Collapse
|
39
|
Conway JRW, Vennin C, Cazet AS, Herrmann D, Murphy KJ, Warren SC, Wullkopf L, Boulghourjian A, Zaratzian A, Da Silva AM, Pajic M, Morton JP, Cox TR, Timpson P. Three-dimensional organotypic matrices from alternative collagen sources as pre-clinical models for cell biology. Sci Rep 2017; 7:16887. [PMID: 29203823 PMCID: PMC5715059 DOI: 10.1038/s41598-017-17177-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/22/2017] [Indexed: 12/18/2022] Open
Abstract
Organotypic co-cultures bridge the gap between standard two-dimensional culture and mouse models. Such assays increase the fidelity of pre-clinical studies, to better inform lead compound development and address the increasing attrition rates of lead compounds within the pharmaceutical industry, which are often a result of screening in less faithful two-dimensional models. Using large-scale acid-extraction techniques, we demonstrate a step-by-step process to isolate collagen I from commercially available animal byproducts. Using the well-established rat tail tendon collagen as a benchmark, we apply our novel kangaroo tail tendon collagen as an alternative collagen source for our screening-ready three-dimensional organotypic co-culture platform. Both collagen sources showed equal applicability for invasive, proliferative or survival assessment of well-established cancer models and clinically relevant patient-derived cancer cell lines. Additional readouts were also demonstrated when comparing these alternative collagen sources for stromal contributions to stiffness, organization and ultrastructure via atomic force microscopy, second harmonic generation imaging and scanning electron microscopy, among other vital biological readouts, where only minor differences were found between the preparations. Organotypic co-cultures represent an easy, affordable and scalable model to investigate drug responses within a physiologically relevant 3D platform.
Collapse
Affiliation(s)
- James R W Conway
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Claire Vennin
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Aurélie S Cazet
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - David Herrmann
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Kendelle J Murphy
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Sean C Warren
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Lena Wullkopf
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Alice Boulghourjian
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Anaiis Zaratzian
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Andrew M Da Silva
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Marina Pajic
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia
| | - Jennifer P Morton
- Beatson Institute of Cancer Research, Switchback Road, Bearsden, Glasgow, G61 1BD, UK.,Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Thomas R Cox
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research & The Kinghorn Cancer Centre, Cancer Division, Sydney, NSW 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, NSW 2010, Australia.
| |
Collapse
|
40
|
Meeusen B, Janssens V. Tumor suppressive protein phosphatases in human cancer: Emerging targets for therapeutic intervention and tumor stratification. Int J Biochem Cell Biol 2017; 96:98-134. [PMID: 29031806 DOI: 10.1016/j.biocel.2017.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Aberrant protein phosphorylation is one of the hallmarks of cancer cells, and in many cases a prerequisite to sustain tumor development and progression. Like protein kinases, protein phosphatases are key regulators of cell signaling. However, their contribution to aberrant signaling in cancer cells is overall less well appreciated, and therefore, their clinical potential remains largely unexploited. In this review, we provide an overview of tumor suppressive protein phosphatases in human cancer. Along their mechanisms of inactivation in defined cancer contexts, we give an overview of their functional roles in diverse signaling pathways that contribute to their tumor suppressive abilities. Finally, we discuss their emerging roles as predictive or prognostic markers, their potential as synthetic lethality targets, and the current feasibility of their reactivation with pharmacologic compounds as promising new cancer therapies. We conclude that their inclusion in clinical practice has obvious potential to significantly improve therapeutic outcome in various ways, and should now definitely be pushed forward.
Collapse
Affiliation(s)
- Bob Meeusen
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium
| | - Veerle Janssens
- Laboratory of Protein Phosphorylation & Proteomics, Dept. of Cellular & Molecular Medicine, Faculty of Medicine, KU Leuven & Leuven Cancer Institute (LKI), KU Leuven, Belgium.
| |
Collapse
|
41
|
Solanki HS, Advani J, Khan AA, Radhakrishnan A, Sahasrabuddhe NA, Pinto SM, Chang X, Prasad TSK, Mathur PP, Sidransky D, Gowda H, Chatterjee A. Chronic Cigarette Smoke Mediated Global Changes in Lung Mucoepidermoid Cells: A Phosphoproteomic Analysis. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:474-487. [PMID: 28816646 PMCID: PMC5583567 DOI: 10.1089/omi.2017.0090] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Proteomics analysis of chronic cigarette smoke exposure is a rapidly emerging postgenomics research field. While smoking is a major cause of lung cancer, functional studies using proteomics approaches could enrich our mechanistic understanding of the elusive lung cancer global molecular signaling and cigarette smoke relationship. We report in this study on a stable isotope labeling by amino acids in cell culture-based quantitative phosphoproteomic analysis of a human lung mucoepidermoid carcinoma cell line, H292 cells, chronically exposed to cigarette smoke. Using high resolution Orbitrap Velos mass spectrometer, we identified the hyperphosphorylation of 493 sites, which corresponds to 341 proteins and 195 hypophosphorylated sites, mapping to 142 proteins upon smoke exposure (2.0-fold change). We report differential phosphorylation of multiple kinases, including PAK6, EPHA4, LYN, mitogen-activated protein kinase, and phosphatases, including TMEM55B, PTPN14, TIGAR, among others, in response to chronic cigarette smoke exposure. Bioinformatics analysis revealed that the molecules differentially phosphorylated upon chronic exposure of cigarette smoke are associated with PI3K/AKT/mTOR and CDC42-PAK signaling pathways. These signaling networks are involved in multiple cellular processes, including cell polarity, cytoskeletal remodeling, cellular migration, protein synthesis, autophagy, and apoptosis. The present study contributes to emerging proteomics insights on cigarette smoke mediated global signaling in lung cells, which in turn may aid in development of precision medicine therapeutics and postgenomics biomarkers.
Collapse
Affiliation(s)
- Hitendra S. Solanki
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | - Jayshree Advani
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal University, Madhav Nagar, Manipal, India
| | - Aafaque Ahmad Khan
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, India
| | | | | | - Sneha M. Pinto
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thottethodi Subrahmanya Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- YU-IOB Center for Systems Biology and Molecular Medicine, Yenepoya University, Mangalore, India
- NIMHANS-IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, India
| |
Collapse
|
42
|
The PTPN14 Tumor Suppressor Is a Degradation Target of Human Papillomavirus E7. J Virol 2017; 91:JVI.00057-17. [PMID: 28100625 DOI: 10.1128/jvi.00057-17] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/13/2022] Open
Abstract
Activation of signaling pathways ensuring cell growth is essential for the proliferative competence of human papillomavirus (HPV)-infected cells. Tyrosine kinases and phosphatases are key regulators of cellular growth control pathways. A recently identified potential cellular target of HPV E7 is the cytoplasmic protein tyrosine phosphatase PTPN14, which is a potential tumor suppressor and is linked to the control of the Hippo and Wnt/beta-catenin signaling pathways. In this study, we show that the E7 proteins of both high-risk and low-risk mucosal HPV types can interact with PTPN14. This interaction is independent of retinoblastoma protein (pRb) and involves residues in the carboxy-terminal region of E7. We also show that high-risk E7 induces proteasome-mediated degradation of PTPN14 in cells derived from cervical tumors. This degradation appears to be independent of cullin-1 or cullin-2 but most likely involves the UBR4/p600 ubiquitin ligase. The degree to which E7 downregulates PTPN14 would suggest that this interaction is important for the viral life cycle and potentially also for the development of malignancy. In support of this we find that overexpression of PTPN14 decreases the ability of HPV-16 E7 to cooperate with activated EJ-ras in primary cell transformation assays.IMPORTANCE This study links HPV E7 to the deregulation of protein tyrosine phosphatase signaling pathways. PTPN14 is classified as a potential tumor suppressor protein, and here we show that it is very susceptible to HPV E7-induced proteasome-mediated degradation. Intriguingly, this appears to use a mechanism that is different from that employed by E7 to target pRb. Therefore, this study has important implications for our understanding of the molecular basis for E7 function and also sheds important light on the potential role of PTPN14 as a tumor suppressor.
Collapse
|
43
|
Laczmanska I, Skiba P, Karpinski P, Bebenek M, Sasiadek MM. Customized Array Comparative Genomic Hybridization Analysis of 25 Phosphatase-encoding Genes in Colorectal Cancer Tissues. Cancer Genomics Proteomics 2017; 14:69-74. [PMID: 28031238 DOI: 10.21873/cgp.20019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND/AIM Molecular mechanisms of alterations in protein tyrosine phosphatases (PTPs) genes in cancer have been previously described and include chromosomal aberrations, gene mutations, and epigenetic silencing. However, little is known about small intragenic gains and losses that may lead to either changes in expression or enzyme activity and even loss of protein function. MATERIALS AND METHODS The aim of this study was to investigate 25 phosphatase genes using customized array comparative genomic hybridization in 16 sporadic colorectal cancer tissues. RESULTS The analysis revealed two unique small alterations: of 2 kb in PTPN14 intron 1 and of 1 kb in PTPRJ intron 1. We also found gains and losses of whole PTPs gene sequences covered by large chromosome aberrations. CONCLUSION In our preliminary studies using high-resolution custom microarray we confirmed that PTPs are frequently subjected to whole-gene rearrangements in colorectal cancer, and we revealed that non-polymorphic intragenic changes are rare.
Collapse
Affiliation(s)
| | - Pawel Skiba
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| | - Pawel Karpinski
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| | - Marek Bebenek
- 1st Department of Surgical Oncology, Lower Silesian Oncology Center, Wroclaw, Poland
| | - Maria M Sasiadek
- Genetics Department, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
44
|
Deregulated MicroRNAs in Biliary Tract Cancer: Functional Targets and Potential Biomarkers. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4805270. [PMID: 27957497 PMCID: PMC5120202 DOI: 10.1155/2016/4805270] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/10/2016] [Indexed: 02/07/2023]
Abstract
Biliary tract cancer (BTC) is still a fatal disease with very poor prognosis. The lack of reliable biomarkers for early diagnosis and of effective therapeutic targets is a major demanding problem in diagnosis and management of BTC. Due to the clinically silent and asymptomatic characteristics of the tumor, most patients are diagnosed at an already advanced stage allowing only for a palliative therapeutic approach. MicroRNAs are small noncoding RNAs well known to regulate various cellular functions and pathologic events including the formation and progression of cancer. Over the last years, several studies have shed light on the role of microRNAs in BTC, making them potentially attractive therapeutic targets and candidates as biomarkers. In this review, we will focus on the role of oncogenic and tumor suppressor microRNAs and their direct targets in BTC. Furthermore, we summarize and discuss data that evaluate the diagnostic power of deregulated microRNAs as possible future biomarkers for BTC.
Collapse
|
45
|
Zhang J, Yao S, Hu Q, Zhu Q, Liu S, Lunetta KL, Haddad SA, Yang N, Shen H, Hong CC, Sucheston-Campbell L, Ruiz-Narvaez EA, Bensen JT, Troester MA, Bandera EV, Rosenberg L, Haiman CA, Olshan AF, Palmer JR, Ambrosone CB. Genetic variations in the Hippo signaling pathway and breast cancer risk in African American women in the AMBER Consortium. Carcinogenesis 2016; 37:951-956. [PMID: 27485598 DOI: 10.1093/carcin/bgw077] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/28/2016] [Indexed: 12/13/2022] Open
Abstract
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Dysfunction of the Hippo pathway components has been linked with breast cancer stem cell regulation, as well as breast tumor progression and metastasis. TAZ, a key component of the Hippo pathway, is highly expressed in triple negative breast cancer; however, the associations of genetic variations in this important pathway with breast cancer risk remain largely unexplored. Here, we analyzed 8309 germline variants in 15 genes from the Hippo pathway with a total of 3663 cases and 4687 controls from the African American Breast Cancer Epidemiology and Risk Consortium. Odds ratios (ORs) were estimated using logistic regression for overall breast cancer, by estrogen receptor (ER) status (1983 ER positive and 1098 ER negative), and for case-only analyses by ER status. The Hippo signaling pathway was significantly associated with ER-negative breast cancer (pathway level P = 0.02). Gene-based analyses revealed that CDH1 was responsible for the pathway association (P < 0.01), with rs4783673 in CDH1 statistically significant after gene-level adjustment for multiple comparisons (P = 9.2×10(-5), corrected P = 0.02). rs142697907 in PTPN14 was associated with ER-positive breast cancer and rs2456773 in CDK1 with ER-negativity in case-only analysis after gene-level correction for multiple comparisons (corrected P < 0.05). In conclusion, common genetic variations in the Hippo signaling pathway may contribute to both ER-negative and ER+ breast cancer risk in AA women.
Collapse
Affiliation(s)
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Qianqian Zhu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Stephen A Haddad
- Slone Epidemiology Center at Boston University, Boston, MA 02215, USA
| | | | | | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Lara Sucheston-Campbell
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | - Jeannette T Bensen
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elisa V Bandera
- Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, The State University of New Jersey, New Brunswick, NJ 08901, USA, and
| | - Lynn Rosenberg
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Julie R Palmer
- Slone Epidemiology Center at Boston University, Boston, MA 02215, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
46
|
Wilson KE, Yang N, Mussell AL, Zhang J. The Regulatory Role of KIBRA and PTPN14 in Hippo Signaling and Beyond. Genes (Basel) 2016; 7:genes7060023. [PMID: 27240404 PMCID: PMC4929422 DOI: 10.3390/genes7060023] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/17/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Hippo signaling pathway regulates cellular proliferation and survival, thus exerting profound effects on normal cell fate and tumorigenesis. Pivotal effectors of this pathway are YAP/TAZ, transcriptional co-activators whose dysfunction contributes to the development of cancer. Complex networks of intracellular and extracellular signaling pathways that modulate YAP and TAZ activities have recently been identified. Among them, KIBRA and PTPN14 are two evolutionarily-conserved and important YAP/TAZ upstream regulators. They can negatively regulate YAP/TAZ functions separately or in concert. In this review, we summarize the current and emerging regulatory roles of KIBRA and PTPN14 in the Hippo pathway and their functions in cancer.
Collapse
Affiliation(s)
- Kayla E Wilson
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Nuo Yang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Ashley L Mussell
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Jianmin Zhang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
47
|
Abstract
In this issue of Structure, Chen et al. present structures of the FERM-containing protein tyrosine phosphatase PTPN3 in complex with a phosphopeptide fragment of substrate epidermal growth factor receptor pathway substrate, providing detailed information on substrate specificity.
Collapse
Affiliation(s)
- Emily J Parker
- Maurice Wilkins Centre, Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, PO Box 4800, Christchurch 8140, New Zealand.
| |
Collapse
|
48
|
Schramm A, Köster J, Assenov Y, Althoff K, Peifer M, Mahlow E, Odersky A, Beisser D, Ernst C, Henssen AG, Stephan H, Schröder C, Heukamp L, Engesser A, Kahlert Y, Theissen J, Hero B, Roels F, Altmüller J, Nürnberg P, Astrahantseff K, Gloeckner C, De Preter K, Plass C, Lee S, Lode HN, Henrich KO, Gartlgruber M, Speleman F, Schmezer P, Westermann F, Rahmann S, Fischer M, Eggert A, Schulte JH. Mutational dynamics between primary and relapse neuroblastomas. Nat Genet 2015; 47:872-7. [PMID: 26121086 DOI: 10.1038/ng.3349] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/08/2015] [Indexed: 12/11/2022]
Abstract
Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.
Collapse
Affiliation(s)
- Alexander Schramm
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Johannes Köster
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kristina Althoff
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Martin Peifer
- 1] Department of Translational Genomics, University of Cologne, Cologne, Germany. [2] Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Ellen Mahlow
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andrea Odersky
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Beisser
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Corinna Ernst
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anton G Henssen
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Harald Stephan
- Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christopher Schröder
- Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Anne Engesser
- Pediatric Oncology and Hematology, University Children's Hospital, Cologne, Germany
| | - Yvonne Kahlert
- Pediatric Oncology and Hematology, University Children's Hospital, Cologne, Germany
| | - Jessica Theissen
- Pediatric Oncology and Hematology, University Children's Hospital, Cologne, Germany
| | - Barbara Hero
- Pediatric Oncology and Hematology, University Children's Hospital, Cologne, Germany
| | - Frederik Roels
- Pediatric Oncology and Hematology, University Children's Hospital, Cologne, Germany
| | - Janine Altmüller
- 1] Cologne Center for Genomics, University of Cologne, Cologne, Germany. [2] Human Genetics, University Hospital Cologne, Cologne, Germany
| | - Peter Nürnberg
- 1] Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. [2] Cologne Center for Genomics, University of Cologne, Cologne, Germany. [3] Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Kathy Astrahantseff
- Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | | | - Katleen De Preter
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Christoph Plass
- 1] Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany. [2] German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Sangkyun Lee
- Computer Science, TU Dortmund, Dortmund, Germany
| | - Holger N Lode
- Pediatric Oncology and Hematology, University Medicine Greifswald, Greifswald, Germany
| | - Kai-Oliver Henrich
- Neuroblastoma Genomics, B087, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Moritz Gartlgruber
- Neuroblastoma Genomics, B087, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Speleman
- Centre for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Peter Schmezer
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Westermann
- Neuroblastoma Genomics, B087, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sven Rahmann
- 1] Genome Informatics, Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. [2] Computer Science, TU Dortmund, Dortmund, Germany
| | - Matthias Fischer
- 1] Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. [2] Pediatric Oncology and Hematology, University Children's Hospital, Cologne, Germany
| | - Angelika Eggert
- 1] Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany. [2] German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Johannes H Schulte
- 1] Pediatric Oncology and Hematology, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany. [2] Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany. [3] German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|