1
|
Dias AG, Duarte EM, Zambrana JV, Cardona-Ospina JA, Bos S, Roy V, Huffaker J, Kuan G, Balmaseda A, Alter G, Harris E. Anti-dengue virus antibodies that elicit complement-mediated lysis of Zika virion correlate with protection from severe dengue disease. Cell Rep 2025; 44:115613. [PMID: 40333188 DOI: 10.1016/j.celrep.2025.115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/07/2025] [Accepted: 04/03/2025] [Indexed: 05/09/2025] Open
Abstract
Antibodies from primary dengue (DENV1-4) or Zika (ZIKV) virus infections can influence subsequent heterotypic infections, but their protective characteristics are not well defined. We analyzed pre-infection plasma samples from children in our Nicaraguan cohort study who later developed either dengue fever (DF; n = 31) or dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS; n = 33) upon secondary heterotypic DENV infection. Various antibody properties, notably antibody-dependent complement deposition, correlated with protection against DHF/DSS. Interestingly, this association was strongest when using recombinant ZIKV antigens despite participants being ZIKV naive. Additionally, complement-mediated virion lysis (virolysis) with ZIKV virions was strongly associated with protection, a finding replicated in an independent sample set. ZIKV virolysis emerged as the only antibody property linked to reduced risk of DHF/DSS and severe symptoms such as thrombocytopenia and plasma leakage. These results suggest that ZIKV-cross-reactive anti-DENV antibodies that mediate complement-dependent virolysis may lower the risk of severe disease, informing the development of effective dengue vaccines and therapeutics.
Collapse
Affiliation(s)
- Antonio G Dias
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Elias M Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Victor Zambrana
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Sustainable Sciences Institute, Managua, Nicaragua
| | - Jaime A Cardona-Ospina
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Julia Huffaker
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua; Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua; Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Bick MV, Puig E, Beauparlant D, Nedellec R, Burton I, Ardaghi K, Zalunardo TR, Bastidas R, Li X, Guenaga J, Lee WH, Wyatt R, Zhu W, Crispin M, Ozorowski G, Ward AB, Burton DR, Hangartner L. Molecular parameters governing antibody FcγR signaling and effector functions in the context of HIV envelope. Cell Rep 2025; 44:115331. [PMID: 40158219 DOI: 10.1016/j.celrep.2025.115331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025] Open
Abstract
Antibody effector functions contribute to the immune response to pathogens and can influence the efficacy of antibodies as therapeutics. To date, however, there is limited information on the molecular parameters that govern fragment crystallizable (Fc) effector functions. In this study, using AI-assisted protein design, the influences of binding kinetics, epitope location, and stoichiometry of binding on cellular Fc effector functions were investigated using engineered HIV-1 envelope as a model antigen. For this antigen, stoichiometry of binding was found to be the primary molecular determinant of FcγRIIIa signaling, antibody-dependent cellular cytotoxicity, and antibody-dependent cellular phagocytosis, while epitope location and antibodybinding kinetics, at least in the ranges investigated, were of no substantial impact. These findings are of importance for informing the development of vaccination strategies against HIV-1 and, possibly, other viral pathogens.
Collapse
Affiliation(s)
- Michael V Bick
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Eduard Puig
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - David Beauparlant
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Iszac Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Keihvan Ardaghi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Thea R Zalunardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Raiza Bastidas
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Xuduo Li
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Javier Guenaga
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA
| | - Richard Wyatt
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenwen Zhu
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Andrew B Ward
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92109, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Mdluli T, Wollen-Roberts S, Merbah M, Beckman B, Li Y, Alrubayyi A, Curtis DJ, Shubin Z, Barrera MD, Boeckelman J, Duncan S, Thapa P, Kim D, Costanzo MC, Bai H, Dearlove BL, Hooper JW, Kwilas SA, Paquin-Proulx D, Eller MA, Eller LA, Kibuuka H, Mwesigwa B, Kosgei J, Sawe F, Oyieko J, Ntinginya N, Mwakisisile J, Jani I, Viegas E, Iroezindu M, Akintunde A, Paolino K, Robb ML, Ward L, McLean C, Luhn K, Robinson C, Ake JA, Rolland M. Ebola virus vaccination elicits Ebola virus-specific immune responses without substantial cross-reactivity to other filoviruses. Sci Transl Med 2025; 17:eadq2496. [PMID: 40173257 DOI: 10.1126/scitranslmed.adq2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/30/2024] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
The Janssen Ebola virus (EBOV) vaccine consists of the adenovirus type 26 vector encoding the EBOV glycoprotein (GP) (Ad26.ZEBOV) and the modified vaccinia Ankara (MVA) vector encoding GP from EBOV, Sudan virus, and Marburg virus and nucleoprotein from Tai Forest virus (MVA-BN-Filo) administered 8 weeks later. We conducted a systems immunology analysis of antibody-mediated and cellular immune responses induced after two immunizations with either vaccine used first. The response to vaccination was EBOV GP specific and defined by high antibody binding, Fc effector, and neutralizing responses with CD4 T cell responses also contributing. The vaccine-induced antibody profile did not distinguish people living with or without HIV-1. Samples from 48 survivors and 121 contacts from the 2007 Ugandan Bundibugyo virus epidemic also showed minimal cross-reactivity to other filovirus proteins after infection and exposure. The lack of cross-reactivity suggests that different multivalent vaccine candidates are required to provide broad protection across filoviruses.
Collapse
Affiliation(s)
- Thembi Mdluli
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Suzanne Wollen-Roberts
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Mélanie Merbah
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Bradley Beckman
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Yifan Li
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Aljawharah Alrubayyi
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Daniel J Curtis
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Zhanna Shubin
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Michael D Barrera
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jacob Boeckelman
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Shayla Duncan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Pallavi Thapa
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Dohoon Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Margaret C Costanzo
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Hongjun Bai
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Bethany L Dearlove
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Jay W Hooper
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Steven A Kwilas
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, MD 21702, USA
| | - Dominic Paquin-Proulx
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Michael A Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Leigh Anne Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Betty Mwesigwa
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Josphat Kosgei
- Henry M. Jackson Foundation Medical Research International, Nairobi, Kenya
- Kenya Medical Research Institute, US Army Medical Research Directorate-Africa, Kericho, Kenya
| | - Fredrick Sawe
- Henry M. Jackson Foundation Medical Research International, Nairobi, Kenya
- Kenya Medical Research Institute, US Army Medical Research Directorate-Africa, Kericho, Kenya
| | - Janet Oyieko
- Henry M. Jackson Foundation Medical Research International, Nairobi, Kenya
- Kenya Medical Research Institute, US Army Medical Research Directorate-Africa, Kericho, Kenya
| | - Nyanda Ntinginya
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Joel Mwakisisile
- National Institute for Medical Research-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Ilesh Jani
- Polana Caniço Health Research and Training Center, Maputo, Mozambique
| | - Edna Viegas
- Polana Caniço Health Research and Training Center, Maputo, Mozambique
| | - Michael Iroezindu
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation Medical Research International, Abuja, Nigeria
| | - Akindiran Akintunde
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
- Henry M. Jackson Foundation Medical Research International, Abuja, Nigeria
- US Army Medical Research Directorate-Africa, Abuja, Nigeria
| | - Kristopher Paolino
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Institute of Global Health and Translational Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Merlin L Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| | - Lucy Ward
- US Department of Defense (DOD) Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Joint Project Manager for Chemical, Biological, Radiological, and Nuclear Medical (JPM CBRN Medical), Fort Detrick, MD 21702, USA
| | | | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | - Julie A Ake
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Morgane Rolland
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817, USA
| |
Collapse
|
4
|
Martín Pérez C, Ruiz-Rius S, Ramírez-Morros A, Vidal M, Opi DH, Santamaria P, Blanco J, Vidal-Alaball J, Beeson JG, Molinos-Albert LM, Aguilar R, Ruiz-Comellas A, Moncunill G, Dobaño C. Post-vaccination IgG4 and IgG2 class switch associates with increased risk of SARS-CoV-2 infections. J Infect 2025; 90:106473. [PMID: 40113142 DOI: 10.1016/j.jinf.2025.106473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Repeated COVID-19 mRNA vaccinations increase SARS-CoV-2 IgG4 antibodies, indicating extensive IgG class switching following the first booster dose. This shift in IgG subclasses raises concerns due to the limited ability of IgG4 to mediate Fc-dependent effector functions. METHODS To assess the impact of IgG4 induction on protective immunity, we analyzed longitudinal SARS-CoV-2 IgG subclasses, C1q and FcγR responses, and neutralizing activity in a well-characterized cohort of healthcare workers in Spain. RESULTS Elevated IgG4 levels and higher ratios of non-cytophilic to cytophilic antibodies after booster vaccination were significantly associated with an increased risk of breakthrough infections (IgG4 HR[10-fold increase]=1.8, 95% CI=1.2-2.7; non-cytophilic to cytophilic ratio HR[10-fold increase]=1.5, 95% CI=1.1-1.9). Moreover, an increased non-cytophilic to cytophilic antibody ratio correlated with reduced functionality, including neutralization. CONCLUSIONS These findings suggest a potential association between IgG4 induction by mRNA vaccination and a higher risk of breakthrough infection, warranting further investigation into vaccination strategies to ensure sustained protection.
Collapse
Affiliation(s)
- Carla Martín Pérez
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sílvia Ruiz-Rius
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Ramírez-Morros
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Manresa, Spain
| | - Marta Vidal
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - D Herbert Opi
- Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, University of Melbourne, Australia; School of Translational Medicine, Monash University, Australia
| | - Pere Santamaria
- Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Spain; Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Julià Blanco
- IrsiCaixa, Badalona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain; Department of Medicine. Faculty of Medicine. Universitat de Vic-Central de Catalunya, UVic-UCC, Vic, Spain; Institut Germans Trias I Pujol, IGTP, Badalona, Spain
| | - Josep Vidal-Alaball
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Manresa, Spain; Department of Medicine. Faculty of Medicine. Universitat de Vic-Central de Catalunya, UVic-UCC, Vic, Spain; Health Promotion in Rural Areas Research Group, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Manresa, Spain
| | - James G Beeson
- Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, University of Melbourne, Australia; School of Translational Medicine, Monash University, Australia
| | - Luis M Molinos-Albert
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Ruth Aguilar
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain
| | - Anna Ruiz-Comellas
- Unitat de Suport a la Recerca de la Catalunya Central, Fundació Institut Universitari per a la Recerca a l'Atenció Primària de Salut Jordi Gol i Gurina, Manresa, Spain; Department of Medicine. Faculty of Medicine. Universitat de Vic-Central de Catalunya, UVic-UCC, Vic, Spain; Health Promotion in Rural Areas Research Group, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Manresa, Spain; Centre d'Atenció Primària (CAP) Sant Joan de Vilatorrada, Gerència d'Atenció Primària i a la Comunitat Catalunya Central, Institut Català de la Salut, Spain
| | - Gemma Moncunill
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain.
| | - Carlota Dobaño
- ISGlobal, Barcelona, Catalonia, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), Barcelona, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
5
|
Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2025; 213:413-447. [PMID: 40246351 DOI: 10.1016/bs.pmbts.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Traditional vaccinology has primarily focused on neutralizing antibody titers as the main correlate of vaccine efficacy, often overlooking the multifaceted roles of antibody Fc effector functions in orchestrating protective immune responses. Fc-mediated immune responses play a pivotal role in immune modulation and pathogen clearance. Emerging evidence from natural infections and vaccine studies highlights the critical contribution of Fc effector functions in determining the quality and durability of immunity. This work explores the limitations of current vaccine evaluation paradigms that prioritize neutralization over Fc effector mechanisms. It also describes findings from a study showing an unexpected role for SARS-CoV-2 anti-spike antibodies: both convalescent plasma and patient-derived monoclonal antibodies (mAbs) lead to maximum phagocytic capacity by monocytes at low concentrations, whereas at higher concentrations the phagocytic capacity was reduced. Given that the severity of COVID-19 disease and antibody titers are strongly positively correlated, this work challenges the paradigm that high antibodies offer better protection against severe disease. It is proposed that humoral and cellular responses elicited by vaccination should never be higher than those produced by natural infection. By integrating antibody Fc effector functions into vaccine development, a paradigm shift is proposed that emphasizes synergic antibody responses. Such an approach could transform vaccine efficacy assessment, enhance protection against dangerous pathogens, and drive innovation in vaccine design.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Jalisco Health Services, Autlan, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg El-Arab, Alexandria, Egypt
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Aurelia LC, Purcell RA, Theisen RM, Kelly A, Esterbauer R, Ramanathan P, Lee WS, Wines BD, Hogarth PM, Juno JA, Allen LF, Bond KA, Williamson DA, Trevillyan JM, Trubiano JA, Nguyen THO, Kedzierska K, Wheatley AK, Kent SJ, Arnold KB, Selva KJ, Chung AW. Increased SARS-CoV-2 IgG4 has variable consequences dependent upon Fc function, Fc receptor polymorphism, and viral variant. SCIENCE ADVANCES 2025; 11:eads1482. [PMID: 40009690 PMCID: PMC11864192 DOI: 10.1126/sciadv.ads1482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025]
Abstract
Repeated mRNA COVID-19 vaccination increases spike-specific immunoglobulin G4 (IgG4) titers. Here, we characterized the influence of increased IgG4 titers on a range of Fc-mediated responses. Elevated spike-specific IgG4 reduced binding to FcγRIIIa and decreased antibody-dependent cellular cytotoxicity. However, in individuals with lower total spike-specific IgG, IgG4 acted in synergy with other IgG subclasses to improve FcγRI and FcγRIIa binding and consequently antibody-dependent cellular phagocytosis. Furthermore, this trend was more pronounced with more recent SARS-CoV-2 variants where vaccination induced comparably lower total spike-specific titers. These observations were further confirmed by in silico modeling where antibody subclass concentrations and FcγR polymorphisms were modulated. Collectively, we illustrate that the impact of elevated IgG4 titers upon Fc functions is dependent on multiple interconnected antibody and antigen factors, which should be taken into consideration when dissecting the mechanisms driving an effective Fc-mediated response following vaccination.
Collapse
Affiliation(s)
- L. Carissa Aurelia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Andrew Kelly
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Pradhipa Ramanathan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Wen Shi Lee
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Bruce D. Wines
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - P. Mark Hogarth
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lilith F. Allen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine A. Bond
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Victorian Infectious Disease Reference Laboratory (VIDRL), at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Deborah A. Williamson
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- School of Medicine, University of St Andrews, Fife KY16 9TF, Scotland
| | - Janine M. Trevillyan
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, VIC, Australia
| | - Jason A. Trubiano
- Department of Infectious Diseases, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Infectious Diseases and Immunology, Austin Health, Heidelberg, VIC, Australia
- Centre for Antibiotic Allergy and Research, National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Thi HO Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kevin John Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Boomgarden AC, Upadhyay C. Progress and Challenges in HIV-1 Vaccine Research: A Comprehensive Overview. Vaccines (Basel) 2025; 13:148. [PMID: 40006695 PMCID: PMC11860913 DOI: 10.3390/vaccines13020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The development of an effective HIV-1 vaccine remains a formidable challenge in biomedical research. Despite significant advancements in our understanding of HIV biology and pathogenesis, progress has been impeded by factors such as the virus's genetic diversity, high mutation rates, and its ability to establish latent reservoirs. Recent innovative approaches, including mosaic vaccines and mRNA technology to induce broadly neutralizing antibodies, have shown promise. However, the efficacy of these vaccines has been modest, with the best results achieving approximately 30% effectiveness. Ongoing research emphasizes the necessity of a multifaceted strategy to overcome these obstacles and achieve a breakthrough in HIV-1 vaccine development. This review summarizes current approaches utilized to further understand HIV-1 biology and to create a global vaccine. We discuss the impact of these approaches on vaccine development for other diseases, including COVID-19, influenza, and Zika virus. Additionally, we highlight the specific limitations faced with each approach and present the methods researchers employ to overcome these challenges. These innovative techniques, which have demonstrated preclinical and clinical success, have advanced the field closer to the ultimate goal of developing a global HIV-1 vaccine. Leveraging these advancements will enable significant strides in combating HIV-1 and other infectious diseases, ultimately improving global health outcomes.
Collapse
Affiliation(s)
| | - Chitra Upadhyay
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
8
|
Motsoeneng BM, Dhar N, Nunes MC, Krammer F, Madhi SA, Moore PL, Richardson SI. Hemagglutinin Stalk-Specific Fc-Mediated Functions Are Associated With Protection Against Influenza Illness After Seasonal Influenza Vaccination. J Infect Dis 2024; 230:1329-1336. [PMID: 38743692 PMCID: PMC12102481 DOI: 10.1093/infdis/jiae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Future vaccine candidates aim to elicit antibodies against the conserved hemagglutinin stalk domain. Understanding the protective mechanism of these antibodies, which mediate broad neutralization and Fc-mediated functions, following seasonal vaccination is critical. METHODS Plasma samples were obtained from pregnant women with or without HIV-1 enrolled in a randomised trial (138 trivalent inactivated vaccine [TIV] and 145 placebo recipients). Twenty-three influenza cases were confirmed within 6 months postpartum. We measured H1 stalk-specific antibody-dependent cellular phagocytosis (ADCP), complement deposition (ADCD) and cellular cytotoxicity (ADCC) at enrolment and 1-month postvaccination. RESULTS Lower H1 stalk-specific ADCP and ADCD activity was detected for participants with confirmed influenza compared with individuals without illness 1-month postvaccination. Pre-existing ADCP scores ≥250 reduced the odds of A/H1N1 infection (odds ratio [OR], 0.11; P = .01) with an 83% likelihood of risk reduction. Following TIV, ADCD scores of ≥25 and ≥15 significantly reduced the odds against A/H1N1 (OR, 0.10; P = .01) and non-group 1 (OR, 0.06; P = .0004) influenza virus infections, respectively. These ADCD scores were associated with >84% likelihood of risk reduction. CONCLUSIONS Overall, H1 stalk-specific Fc effector function correlates with protection against influenza illness following influenza vaccination during pregnancy. These findings provide insight into the protective mechanisms of hemagglutinin stalk antibodies. CLINICAL TRIALS REGISTRATION NCT01306669 and NCT01306682 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center of Excellence in Respiratory Pathogens, Hospices Civils de Lyon and Centre International de Recherche en Infectiologie, Équipe Santé Publique, Épidémiologie et Écologie Évolutive des Maladies Infectieuses (PHE3ID), Inserm U1111, CNRS UMR5308, École Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu Natal, Durban, South Africa
| | - Simone I Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
9
|
Marchese AM, Fries L, Beyhaghi H, Vadivale M, Zhu M, Cloney-Clark S, Plested JS, Chung AW, Dunkle LM, Kalkeri R. Mechanisms and implications of IgG4 responses to SARS-CoV-2 and other repeatedly administered vaccines. J Infect 2024; 89:106317. [PMID: 39419185 DOI: 10.1016/j.jinf.2024.106317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Vaccine-induced immunoglobulin G (IgG) profiles can vary with respect to the predominant subclasses that characterize the response. Among IgG subclasses, IgG4 is reported to have anti-inflammatory properties, but can also exhibit reduced capacity for virus neutralization and activation of Fc-dependent effector functions. Here, we review evidence that IgG4 subclass responses can be disproportionately increased in response to some types of vaccines targeting an array of diseases, including pertussis, HIV, malaria, and COVID-19. The basis for enhanced IgG4 induction by vaccines is poorly understood but may be associated with platform- or dose regimen-specific differences in antigen exposure and/or cytokine stimulation. The clinical implications of vaccine-induced IgG4 responses remain uncertain, though collective evidence suggests that proportional increases in IgG4 might reduce vaccine antigen-specific immunity. Additional work is needed to determine underlying mechanisms and to elucidate what role IgG4 may play in modifications of vaccine-induced immunity to disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amy W Chung
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Victoria 3000, Australia
| | | | | |
Collapse
|
10
|
Grobben M, Bakker M, Schriek AI, Levels LJ, Umotoy JC, Tejjani K, van Breemen MJ, Lin RN, de Taeye SW, Ozorowski G, Kootstra NA, Ward AB, Kent SJ, Hogarth PM, Wines BD, Sanders RW, Chung AW, van Gils MJ. Polyfunctionality and breadth of HIV-1 antibodies are associated with delayed disease progression. PLoS Pathog 2024; 20:e1012739. [PMID: 39661636 PMCID: PMC11634010 DOI: 10.1371/journal.ppat.1012739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
HIV-1 infection leads to chronic disease requiring life-long treatment and therefore alternative therapeutics, a cure and/or a protective vaccine are needed. Antibody-mediated effector functions could have a role in the fight against HIV-1. However, the properties underlying the potential beneficial effects of antibodies during HIV-1 infection are poorly understood. To identify a specific profile of antibody features associated with delayed disease progression, we studied antibody polyfunctionality during untreated HIV-1 infection in the well-documented Amsterdam Cohort Studies. Serum samples were analyzed from untreated individuals with HIV-1 at approximately 6 months (n = 166) and 3 years (n = 382) post-seroconversion (post-SC). A Luminex antibody Fc array was used to profile 15 different Fc features for serum antibodies against 20 different HIV-1 envelope glycoprotein antigens and the resulting data was also compared with data on neutralization breadth. We found that high HIV-1 specific IgG1 levels and low IgG2 and IgG4 levels at 3 years post-SC were associated with delayed disease progression. Moreover, delayed disease progression was associated with a broad and polyfunctional antibody response. Specifically, the capacity to interact with all Fc γ receptors (FcγRs) and C1q, and in particular with FcγRIIa, correlated positively with delayed disease progression. There were strong correlations between antibody Fc features and neutralization breadth and several antibody features that were associated with delayed disease progression were also associated with the development of broad and potent antibody neutralization. In summary, we identified a strong association between broad, polyfunctional antibodies and delayed disease progression. These findings contribute new information for the fight against HIV-1, especially for new antibody-based therapy and cure strategies.
Collapse
Affiliation(s)
- Marloes Grobben
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Margreet Bakker
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Angela I. Schriek
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Liesbeth J.J. Levels
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Jeffrey C. Umotoy
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Khadija Tejjani
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Mariëlle J. van Breemen
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Ryan N. Lin
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Steven W. de Taeye
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Gabriel Ozorowski
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Neeltje A. Kootstra
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Amsterdam UMC, location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
| | - Andrew B. Ward
- The Scripps Research Institute, Department of Structural Biology and Computational Biology, La Jolla, California, United States of America
| | - Stephen J. Kent
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
- Alfred Hospital and Central Clinical School, Monash University, Melbourne Sexual Health Centre and Department of Infectious Diseases, Melbourne, Australia
| | - P. Mark Hogarth
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Bruce D. Wines
- Burnet Institute, Immune Therapies Group, Melbourne, Australia
- Central Clinical School, Monash University, Department of Immunology, Melbourne, Australia
| | - Rogier W. Sanders
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, New York, United States of America
| | - Amy W. Chung
- The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Department of Microbiology and Immunology, Melbourne, Australia
| | - Marit J. van Gils
- Amsterdam UMC, location University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Diemert DJ, Zumer M, Bova M, Gibbs-Tewary C, Malkin EM, Campbell D, Hoeweler L, Li G, Bottazzi ME, Hotez PJ, Bethony JM. Randomized, observer-blind, controlled Phase 1 study of the safety and immunogenicity of the Na-GST-1/Alhydrogel hookworm vaccine with or without a CpG ODN adjuvant in hookworm-naïve adults. PLoS Negl Trop Dis 2024; 18:e0012788. [PMID: 39775205 PMCID: PMC11717351 DOI: 10.1371/journal.pntd.0012788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recombinant Necator americanus Glutathione-S-Transferase-1 (Na-GST-1) formulated on Alhydrogel (Na-GST-1/Alhydrogel) is being developed to prevent anemia and other complications of N. americanus infection. Antibodies induced by vaccination with recombinant Na-GST-1 are hypothesized to interfere with the blood digestion pathway of adult hookworms in the host. Phase 1 trials have demonstrated the safety of Na-GST-1 formulated on Alhydrogel, but further optimization of the vaccine adjuvant formulation may improve humoral immune responses, thereby increasing the likelihood of vaccine efficacy. METHODS A randomized, observer-blind, dose escalation Phase 1 trial was conducted in 24 healthy, hookworm-naïve adults. In each cohort of 12 participants, 4 were randomized to receive 100 µg of Na-GST-1/Alhydrogel and 8 to receive 30 µg or 100 µg of Na-GST-1/Alhydrogel plus the Cytosine-phospho-Guanine (CpG) oligodeoxynucleotide Toll-like receptor-9 agonist, CpG 10104, in the first and second cohorts, respectively. Progression to the second cohort was dependent upon evaluation of 7-day safety data after all participants in the first cohort had received the first dose of vaccine. Three intramuscular injections of study product were administered on days 0, 56, and 112, after which participants were followed for 6 months. IgG and IgG subclass antibody responses to Na-GST-1 were measured by qualified indirect ELISAs at pre- and post-vaccination time points. RESULTS Na-GST-1/Alhydrogel administered with or without CpG 10104 was well-tolerated. The most common solicited adverse events were mild injection site tenderness and pain, and mild headache. There were no vaccine-related serious adverse events or adverse events of special interest. Both dose concentrations of Na-GST-1/Alhydrogel plus CpG 10104 had significantly higher post-vaccination levels of antigen-specific IgG antibody compared to Na-GST-1/Alhydrogel without CpG, starting after the second injection. Peak anti-Na-GST-1 IgG levels were observed between 2 and 4 weeks following the third dose, regardless of Na-GST-1 formulation. IgG levels decreased but remained significantly above baseline in all groups by day 290, at which point all participants (20 of 20 evaluable participants) still had detectable IgG. Longitudinal antigen-specific IgG1 and IgG3 subclass responses mirrored those of total IgG, whereas IgG4 responses were lower in the groups that received the vaccine with the CpG adjuvant compared to the non-CpG group. CONCLUSIONS Vaccination of hookworm-naïve adults with Na-GST-1/Alhydrogel plus CpG 10104 was safe and minimally reactogenic. Addition of CpG 10104 to Na-GST-1/Alhydrogel resulted in significant improvement in IgG responses against the vaccine antigen. These promising results have led to inclusion of the CpG 10104 formulation of Na-GST-1/Alhydrogel in a Phase 2 proof-of-concept controlled human infection trial.
Collapse
Affiliation(s)
- David J. Diemert
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Maria Zumer
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Mark Bova
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, United States of America
| | - Christina Gibbs-Tewary
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Elissa M. Malkin
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Doreen Campbell
- Department of Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Lara Hoeweler
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Guangzhao Li
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| | - Maria Elena Bottazzi
- Division of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Peter J. Hotez
- Division of Pediatric Tropical Medicine, Department of Pediatrics, National School of Tropical Medicine, Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeffrey M. Bethony
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States of America
| |
Collapse
|
12
|
Snow BJ, Keles NK, Grunst MW, Janaka SK, Behrens RT, Evans DT. Potent broadly neutralizing antibodies mediate efficient antibody-dependent phagocytosis of HIV-infected cells. PLoS Pathog 2024; 20:e1012665. [PMID: 39466835 PMCID: PMC11542898 DOI: 10.1371/journal.ppat.1012665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/07/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024] Open
Abstract
Antibody-dependent cellular phagocytosis (ADCP) has been implicated in protection against HIV-1. However, methods for measuring ADCP currently rely on the phagocytosis of gp120- or gp41-coated beads that do not reflect physiologically relevant conformations of the viral envelope glycoprotein or the size of a virus-infected cell. We therefore developed a novel approach for measuring ADCP of HIV-infected cells expressing natural conformations of Env. A monocytic cell line (THP-1 cells) or primary human monocytes were incubated with a CD4+ T cell line that expresses eGFP upon HIV-1 infection in the presence of antibodies and ADCP was measured as the accumulation of eGFP+ material by flow cytometry. The internalization of HIV-infected cells by monocytes was confirmed visually by image-capture flow cytometry. Cytoskeletal remodeling, pseudopod formation and phagocytosis were also observed by confocal microscopy. We found that potent broadly neutralizing antibodies (bnAbs), but not non-neutralizing antibodies (nnAbs), mediate efficient phagocytosis of cells infected with either primary or lab-adapted HIV-1. A nnAb to a CD4-inducible epitope of gp120 (A32) failed to enable ADCP of HIV-infected cells but mediated efficient phagocytosis of gp120-coated beads. Conversely, a bnAb specific to intact Env trimers (PGT145) mediated potent ADCP of HIV-infected cells but did not facilitate the uptake of gp120-coated beads. These results underscore the importance of measuring ADCP of HIV-infected cells expressing physiologically relevant conformations of Env and show that most antibodies that are capable of binding to Env trimers on virions to neutralize virus infectivity are also capable of binding to Env on the surface of virus-infected cells to mediate ADCP.
Collapse
Affiliation(s)
- Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Michael W. Grunst
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan T. Behrens
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Kim J, Villar Z, Jobe O, Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, O'Connell RJ, Ake JA, Vasan S, Rao VB, Rao M. Broadly neutralizing antibodies and monoclonal V2 antibodies derived from RV305 inhibit capture and replication of HIV-1. Virology 2024; 597:110158. [PMID: 38941746 DOI: 10.1016/j.virol.2024.110158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
An important approach to stopping the AIDS epidemic is the development of a vaccine that elicits antibodies that block virus capture, the initial interactions of HIV-1 with the target cells, and replication. We utilized a previously developed qRT-PCR-based assay to examine the effects of broadly neutralizing antibodies (bNAbs), plasma from vaccine trials, and monoclonal antibodies (mAbs) on virus capture and replication. A panel of bNAbs inhibited primary HIV-1 replication in PBMCs but not virus capture. Plasma from RV144 and RV305 trial vaccinees demonstrated inhibition of virus capture with the HIV-1 subtype prevalent in Thailand. Several RV305 derived V2-specific mAbs inhibited virus replication. One of these RV305 derived V2-specific mAbs inhibited both virus capture and replication, demonstrating that it is possible to elicit antibodies by vaccination that inhibit virus capture and replication. Induction of a combination of such antibodies may be the key to protection from HIV-1 acquisition.
Collapse
Affiliation(s)
- Jiae Kim
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| | - Zuzana Villar
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Ousman Jobe
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA; Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | | | - Punnee Pitisuttithum
- Vaccine Trial Centre, Faculty of Tropical Medicine, Mahidol University, Thailand
| | | | - Robert J O'Connell
- United States Army Medical Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Julie A Ake
- US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Sandhya Vasan
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA
| | - Venigalla B Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, DC, 20064, USA
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA.
| |
Collapse
|
14
|
Hartley GE, Fryer HA, Gill PA, Boo I, Bornheimer SJ, Hogarth PM, Drummer HE, O'Hehir RE, Edwards ESJ, van Zelm MC. Homologous but not heterologous COVID-19 vaccine booster elicits IgG4+ B-cells and enhanced Omicron subvariant binding. NPJ Vaccines 2024; 9:129. [PMID: 39013889 PMCID: PMC11252355 DOI: 10.1038/s41541-024-00919-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Healthy adults who received primary BNT162b2 (mRNA) or ChAdOx1 (vector) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.
Collapse
Affiliation(s)
- Gemma E Hartley
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Holly A Fryer
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Paul A Gill
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Irene Boo
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
| | | | - P Mark Hogarth
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Immune Therapies Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - Heidi E Drummer
- Viral Entry and Vaccines Group, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Robyn E O'Hehir
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia
| | - Emily S J Edwards
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Menno C van Zelm
- Allergy and Clinical Immunology Laboratory, Department of Immunology, School of Translational Medicine, Monash University, Melbourne, VIC, Australia.
- Allergy, Asthma and Clinical Immunology Service, Alfred Hospital, Melbourne, VIC, Australia.
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Valk AM, Keijser JBD, van Dam KPJ, Stalman EW, Wieske L, Steenhuis M, Kummer LYL, Spuls PI, Bekkenk MW, Musters AH, Post NF, Bosma AL, Horváth B, Hijnen DJ, Schreurs CRG, van Kempen ZLE, Killestein J, Volkers AG, Tas SW, Boekel L, Wolbink GJ, Keijzer S, Derksen NIL, van Deelen M, van Mierlo G, Kuijpers TW, Eftimov F, van Ham SM, Ten Brinke A, Rispens T. Suppressed IgG4 class switching in dupilumab- and TNF inhibitor-treated patients after mRNA vaccination. Allergy 2024; 79:1952-1961. [PMID: 38439527 DOI: 10.1111/all.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND The noninflammatory immunoglobulin G4 (IgG4) is linked to tolerance and is unique to humans. Although poorly understood, prolonged antigenic stimulation and IL-4-signaling along the T helper 2-axis may be instrumental in IgG4 class switching. Recently, repeated SARS-CoV-2 mRNA vaccination has been linked to IgG4 skewing. Although widely used immunosuppressive drugs have been shown to only moderately affect humoral responses to SARS-CoV-2 mRNA vaccination, the effect on IgG4 switching has not been investigated. METHODS Here we study the impact of such immunosuppressive drugs, including the IL-4 receptor-blocking antibody dupilumab, on IgG4 skewing upon repeated SARS-CoV-2 mRNA vaccination. Receptor-binding domain (RBD) specific antibody responses were longitudinally measured in 600 individuals, including patients with immune-mediated inflammatory diseases treated with a TNF inhibitor (TNFi) and/or methotrexate (MTX), dupilumab, and healthy/untreated controls, after repeated mRNA vaccination. RESULTS We observed a substantial increase in the proportion of RBD-specific IgG4 antibodies (median 21%) in healthy/untreated controls after third vaccination. This IgG4 skewing was profoundly reduced in dupilumab-treated patients (<1%). Unexpectedly, an equally strong suppression of IgG4 skewing was observed in TNFi-treated patients (<1%), whereas MTX caused a modest reduction (7%). RBD-specific total IgG levels were hardly affected by these immunosuppressive drugs. Minimal skewing was observed, when primary vaccination was adenoviral vector-based. CONCLUSIONS Our results imply a critical role for IL-4/IL-13 as well as TNF in vivo IgG4 class switching. These novel findings advance our understanding of IgG4 class switch dynamics, and may benefit humoral tolerance induction strategies, treatment of IgG4 pathologies and mRNA vaccine optimization.
Collapse
Affiliation(s)
- Anika M Valk
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Jim B D Keijser
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Koos P J van Dam
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eileen W Stalman
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Luuk Wieske
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Neurophysiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Maurice Steenhuis
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laura Y L Kummer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Phyllis I Spuls
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marcel W Bekkenk
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Annelie H Musters
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicoline F Post
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Angela L Bosma
- Department of Dermatology, Amsterdam Public Health/Infection and Immunology, Amsterdam UMC, location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Horváth
- Department of Dermatology, UMCG Expertise Center for Blistering Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Hijnen
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Corine R G Schreurs
- Department of Dermatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Zoé L E van Kempen
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Adriaan G Volkers
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander W Tas
- Department of Rheumatology and Clinical Immunology, Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Laura Boekel
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Gerrit J Wolbink
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Reade, Amsterdam, The Netherlands
| | - Sofie Keijzer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Ninotska I L Derksen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Melanie van Deelen
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gerard van Mierlo
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Filip Eftimov
- Department of Neurology and Neurophysiology, Amsterdam Neuroscience, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Dias AG, Duarte E, Zambrana JV, Cardona-Ospina JA, Bos S, Roy V, Kuan G, Balmaseda A, Alter G, Harris E. Complement-dependent virion lysis mediated by dengue-Zika virus cross-reactive antibodies correlates with protection from severe dengue disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.03.24308395. [PMID: 38883768 PMCID: PMC11177908 DOI: 10.1101/2024.06.03.24308395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Primary infection with one of four dengue virus serotypes (DENV1-4) may generate antibodies that protect or enhance subsequent secondary heterotypic infections. However, the characteristics of heterotypic cross-reactive antibodies associated with protection from symptomatic infection and severe disease are not well-defined. We selected plasma samples collected before a secondary DENV heterotypic infection that was classified either as dengue fever (DF, n = 31) or dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS, n = 33) from our longstanding pediatric cohort in Nicaragua. We screened various antibody properties to determine the features correlated with protection from DHF/DSS. Protection was associated with high levels of binding of various antibody isotypes, IgG subclasses and effector functions, including antibody-dependent complement deposition, ADCD. Although the samples were derived from DENV-exposed, Zika virus (ZIKV)-naïve individuals, the protective ADCD association was stronger when assays were conducted with recombinant ZIKV antigens. Further, we showed that a complement-mediated virion lysis (virolysis) assay conducted with ZIKV virions was strongly associated with protection, a finding reproduced in an independent sample set collected prior to secondary heterotypic inapparent versus symptomatic DENV infection. Virolysis was the main antibody feature correlated with protection from DHF/DSS and severe symptoms, such as thrombocytopenia, hemorrhagic manifestations, and plasma leakage. Hence, anti-DENV antibodies that cross-react with ZIKV, target virion-associated epitopes, and mediate complement-dependent virolysis are correlated with protection from secondary symptomatic DENV infection and DHF/DSS. These findings may support the rational design and evaluation of dengue vaccines and development of therapeutics.
Collapse
Affiliation(s)
- Antonio G Dias
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Elias Duarte
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Victor Zambrana
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Harbor, MI, USA
| | - Jaime A Cardona-Ospina
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Sandra Bos
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Guillermina Kuan
- Sustainable Sciences Institute, Managua, Nicaragua
- Centro de Salud Sócrates Flores Vivas, Ministerio de Salud, Managua, Nicaragua
| | - Angel Balmaseda
- Sustainable Sciences Institute, Managua, Nicaragua
- Laboratorio Nacional de Virologia, Centro Nacional de Diagnóstico y Referencia, Ministerio de Salud, Managua, Nicaragua
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
17
|
Jia JZ, Cohen CA, Gu H, McLean MR, Varadarajan R, Bhandari N, Peiris M, Leung GM, Poon LLM, Tsang T, Chung AW, Cowling BJ, Leung NHL, Valkenburg SA. Influenza antibody breadth and effector functions are immune correlates from acquisition of pandemic infection of children. Nat Commun 2024; 15:3210. [PMID: 38615070 PMCID: PMC11016072 DOI: 10.1038/s41467-024-47590-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024] Open
Abstract
Cross-reactive antibodies with Fc receptor (FcR) effector functions may mitigate pandemic virus impact in the absence of neutralizing antibodies. In this exploratory study, we use serum from a randomized placebo-controlled trial of seasonal trivalent influenza vaccination in children (NCT00792051) conducted at the onset of the 2009 H1N1 pandemic (pH1N1) and monitored for infection. We found that seasonal vaccination increases pH1N1 specific antibodies and FcR effector functions. Furthermore, prospective baseline antibody profiles after seasonal vaccination, prior to pH1N1 infection, show that unvaccinated uninfected children have elevated ADCC effector function, FcγR3a and FcγR2a binding antibodies to multiple pH1N1 proteins, past seasonal and avian (H5, H7 and H9) strains. Whereas, children that became pH1N1 infected after seasonal vaccination have antibodies focussed to seasonal strains without FcR functions, and greater aggregated HA-specific profiles for IgM and IgG3. Modeling to predict infection susceptibility, ranked baseline hemagglutination antibody inhibition as the highest contributor to lack of pH1N1 infection, in combination with features that include pH1-IgG1, H1-stem responses and FcR binding to seasonal vaccine and pH1 proteins. Thus, seasonal vaccination can have benefits against pandemic influenza viruses, and some children already have broadly reactive antibodies with Fc potential without vaccination and may be considered 'elite influenza controllers'.
Collapse
Affiliation(s)
- Janice Z Jia
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Carolyn A Cohen
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | | | - Nisha Bhandari
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Malik Peiris
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Immunology and Infection (C2i), Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Gabriel M Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
- Centre for Immunology and Infection (C2i), Hong Kong Science and Technology Park, Hong Kong, SAR, China
| | - Tim Tsang
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Nancy H L Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Sophie A Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
18
|
Hybiske K, Paktinat S, Newman K, Patton D, Khosropour C, Roxby AC, Mugo NR, Oluoch L, Ngure K, Suchland R, Hladik F, Vojtech L. Antibodies from chlamydia-infected individuals facilitate phagocytosis via Fc receptors. Infect Immun 2024; 92:e0050323. [PMID: 38451079 PMCID: PMC11003224 DOI: 10.1128/iai.00503-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Non-neutralizing functions of antibodies, including phagocytosis, may play a role in Chlamydia trachomatis (CT) infection, but these functions have not been studied and assays are lacking. We utilized a flow-cytometry-based assay to determine whether serum samples from a well-characterized cohort of CT-infected and naïve control individuals enhanced phagocytosis via Fc-receptor-expressing THP-1 cells, and whether this activity correlated with antibody titers. Fc-receptor-mediated phagocytosis was detected only in CT+ donors. Phagocytosis generally did not correlate well with antibody titer. In addition, we found that complement from both CT+ and negative individuals enhanced phagocytosis of CT into primary neutrophils. These results suggest that anti-CT antibodies can have functions that are not reflected by titer. This method could be used to quantitively measure Fc-receptor-mediated function of anti-CT antibodies or complement activity and could reveal new immune correlates of protection.
Collapse
Affiliation(s)
- Kevin Hybiske
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Shahrokh Paktinat
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Katherine Newman
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dorothy Patton
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| | | | - Alison C. Roxby
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Nelly R. Mugo
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lynda Oluoch
- Centre for Clinical Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Kenneth Ngure
- Department of Global Health, University of Washington, Seattle, Washington, USA
- School of Public Health, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Robert Suchland
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Lasrado N, Collier ARY, Miller J, Hachmann NP, Liu J, Anand T, A. Bondzie E, Fisher JL, Mazurek CR, Patio RC, Rodrigues SL, Rowe M, Surve N, Ty DM, Wu C, Chicz TM, Tong X, Korber B, McNamara RP, Barouch DH. Waning immunity and IgG4 responses following bivalent mRNA boosting. SCIENCE ADVANCES 2024; 10:eadj9945. [PMID: 38394195 PMCID: PMC10889350 DOI: 10.1126/sciadv.adj9945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/22/2024] [Indexed: 02/25/2024]
Abstract
Messenger RNA (mRNA) vaccines were highly effective against the ancestral SARS-CoV-2 strain, but the efficacy of bivalent mRNA boosters against XBB variants was substantially lower. Here, we show limited durability of neutralizing antibody (NAb) responses against XBB variants and isotype switching to immunoglobulin G4 (IgG4) responses following bivalent mRNA boosting. Bivalent mRNA boosting elicited modest XBB.1-, XBB.1.5-, and XBB.1.16-specific NAbs that waned rapidly within 3 months. In contrast, bivalent mRNA boosting induced more robust and sustained NAbs against the ancestral WA1/2020 strain, suggesting immune imprinting. Following bivalent mRNA boosting, serum antibody responses were primarily IgG2 and IgG4 responses with poor Fc functional activity. In contrast, a third monovalent mRNA immunization boosted all isotypes including IgG1 and IgG3 with robust Fc functional activity. These data show substantial immune imprinting for the ancestral spike and isotype switching to IgG4 responses following bivalent mRNA boosting, with important implications for future booster designs and boosting strategies.
Collapse
Affiliation(s)
- Ninaad Lasrado
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ai-ris Y. Collier
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jessica Miller
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nicole P. Hachmann
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jinyan Liu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Trisha Anand
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Esther A. Bondzie
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jana L. Fisher
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Camille R. Mazurek
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert C. Patio
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Marjorie Rowe
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nehalee Surve
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Darren M. Ty
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Cindy Wu
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Taras M. Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Xin Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Bette Korber
- Los Alamos National Laboratory and New Mexico Consortium, Los Alamos, NM, USA
| | | | - Dan H. Barouch
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
20
|
Rubio-Casillas A, Rodriguez-Quintero CM, Redwan EM, Gupta MN, Uversky VN, Raszek M. Do vaccines increase or decrease susceptibility to diseases other than those they protect against? Vaccine 2024; 42:426-440. [PMID: 38158298 DOI: 10.1016/j.vaccine.2023.12.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/16/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Contrary to the long-held belief that the effects of vaccines are specific for the disease they were created; compelling evidence has demonstrated that vaccines can exert positive or deleterious non-specific effects (NSEs). In this review, we compiled research reports from the last 40 years, which were found based on the PubMed search for the epidemiological and immunological studies on the non-specific effects (NSEs) of the most common human vaccines. Analysis of information showed that live vaccines induce positive NSEs, whereas non-live vaccines induce several negative NSEs, including increased female mortality associated with enhanced susceptibility to other infectious diseases, especially in developing countries. These negative NSEs are determined by the vaccination sequence, the antigen concentration in vaccines, the type of vaccine used (live vs. non-live), and also by repeated vaccination. We do not recommend stopping using non-live vaccines, as they have demonstrated to protect against their target disease, so the suggestion is that their detrimental NSEs can be minimized simply by changing the current vaccination sequence. High IgG4 antibody levels generated in response to repeated inoculation with mRNA COVID-19 vaccines could be associated with a higher mortality rate from unrelated diseases and infections by suppressing the immune system. Since most COVID-19 vaccinated countries are reporting high percentages of excess mortality not directly attributable to deaths from such disease, the NSEs of mRNA vaccines on overall mortality should be studied in depth.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico; Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico.
| | | | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt.
| | - Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Mikolaj Raszek
- Merogenomics (Genomic Sequencing Consulting), Edmonton, AB T5J 3R8, Canada.
| |
Collapse
|
21
|
Adhikari A, Abayasingam A, Brasher NA, Kim HN, Lord M, Agapiou D, Maher L, Rodrigo C, Lloyd AR, Bull RA, Tedla N. Characterization of antibody-dependent cellular phagocytosis in patients infected with hepatitis C virus with different clinical outcomes. J Med Virol 2024; 96:e29381. [PMID: 38235622 PMCID: PMC10953302 DOI: 10.1002/jmv.29381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Early neutralizing antibodies against hepatitis C virus (HCV) and CD8 + T cell effector responses can lead to viral clearance. However, these functions alone are not sufficient to protect patients against HCV infection, thus undefined additional antiviral immune mechanisms are required. In recent years, Fc-receptor-dependent antibody effector functions, particularly, antibody-dependent cellular phagocytosis (ADCP) were shown to offer immune protection against several RNA viruses. However, its development and clinical role in patients with HCV infection remain unknown. In this study, we found that patients with chronic GT1a or GT3a HCV infection had significantly higher concentrations of anti-envelope 2 (E2) antibodies, predominantly IgG1 subclass, than patients that cleared the viruses while the latter had antibodies with higher affinities. 97% of the patients with HCV had measurable ADCP of whom patients with chronic disease showed significantly higher ADCP than those who naturally cleared the virus. Epitope mapping studies showed that patients with antibodies that target antigenic domains on the HCV E2 protein that are known to associate with neutralization function are also strongly associated with ADCP, suggesting antibodies with overlapping/dual functions. Correlation studies showed that ADCP significantly correlated with plasma anti-E2 antibody levels and neutralization function regardless of clinical outcome and genotype of infecting virus, while a significant correlation between ADCP and affinity was only evident in patients that cleared the virus. These results suggest ADCP was mostly driven by antibody titer in patients with chronic disease while maintained in clearers due to the quality (affinity) of their anti-E2 antibodies despite having lower antibody titers.
Collapse
Affiliation(s)
- Anurag Adhikari
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- Department of Infection and ImmunologyKathmandu Research Institute for Biological SciencesLalitpurNepal
| | - Arunasingam Abayasingam
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicholas A. Brasher
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Ha Na Kim
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
| | - Megan Lord
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical CentreUNSW SydneySydneyNew South WalesAustralia
- Graduate School of Biomedical Engineering, Faculty of EngineeringUNSW SydneySydneyNew South WalesAustralia
| | - David Agapiou
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Lisa Maher
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Chaturaka Rodrigo
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| | - Andrew R. Lloyd
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Rowena A. Bull
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
- The Kirby InstituteUNSW AustraliaSydneyNew South WalesAustralia
| | - Nicodemus Tedla
- School of Biomedical Sciences, Faculty of MedicineUNSW AustraliaSydneyNew South WalesAustralia
| |
Collapse
|
22
|
Grunst MW, Gil HM, Grandea AG, Snow BJ, Andrabi R, Nedellec R, Burton I, Clark NM, Janaka SK, Keles NK, Moriarty RV, Weiler AM, Capuano S, Fennessey CM, Friedrich TC, O’Connor SL, O’Connor DH, Broman AT, Keele BF, Lifson JD, Hangartner L, Burton DR, Evans DT. Potent antibody-dependent cellular cytotoxicity of a V2-specific antibody is not sufficient for protection of macaques against SIV challenge. PLoS Pathog 2024; 20:e1011819. [PMID: 38252675 PMCID: PMC10833561 DOI: 10.1371/journal.ppat.1011819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/01/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Fc-mediated antibody effector functions, such as antibody-dependent cellular cytotoxicity (ADCC), can contribute to the containment HIV-1 replication but whether such activities are sufficient for protection is unclear. We previously identified an antibody to the variable 2 (V2) apex of the HIV-1 Env trimer (PGT145) that potently directs the lysis of SIV-infected cells by NK cells but poorly neutralizes SIV infectivity. To determine if ADCC is sufficient for protection, separate groups of six rhesus macaques were treated with PGT145 or a control antibody (DEN3) by intravenous infusion followed five days later by intrarectal challenge with SIVmac239. Despite high concentrations of PGT145 and potent ADCC activity in plasma on the day of challenge, all animals became infected and viral loads did not differ between the PGT145- and DEN3-treated animals. To determine if PGT145 can protect against a neutralization-sensitive virus, two additional groups of six macaques were treated with PGT145 and DEN3 and challenged with an SIVmac239 variant with a single amino acid change in Env (K180S) that increases PGT145 binding and renders the virus susceptible to neutralization by this antibody. Although there was no difference in virus acquisition, peak and chronic phase viral loads were significantly lower and time to peak viremia was significantly delayed in the PGT145-treated animals compared to the DEN3-treated control animals. Env changes were also selected in the PGT145-treated animals that confer resistance to both neutralization and ADCC. These results show that ADCC is not sufficient for protection by this V2-specific antibody. However, protection may be achieved by increasing the affinity of antibody binding to Env above the threshold required for neutralization.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andres G. Grandea
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brian J. Snow
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Rebecca Nedellec
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Iszac Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sanath Kumar Janaka
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nida K. Keles
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Saverio Capuano
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aimee T. Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Lars Hangartner
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- International AIDS Vaccine Initiative Neutralizing Antibody Center, the Collaboration for AIDS Vaccine Discovery (CAVD) and Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
23
|
Kadkhoda K. Post-COVID mRNA-vaccine IgG4 shift: worrisome? mSphere 2023; 8:e0008523. [PMID: 37191589 PMCID: PMC10449502 DOI: 10.1128/msphere.00085-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
COVID-19 vaccines play a key role in ending the pandemic. Unraveling the immunological phenomena involved in offering protective immunity is the cornerstone of achieving such success. This perspective evaluates the possible mechanisms and implications of IgG4 production in response to mRNA-based COVID-19 vaccines.
Collapse
Affiliation(s)
- Kamran Kadkhoda
- Immunopathology Laboratory, Robert J. Tomsich Pathology & Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Hederman AP, Natarajan H, Heyndrickx L, Ariën KK, Wiener JA, Wright PF, Bloch EM, Tobian AAR, Redd AD, Blankson JN, Rottenstreich A, Zarbiv G, Wolf D, Goetghebuer T, Marchant A, Ackerman ME. SARS-CoV-2 vaccination elicits broad and potent antibody effector functions to variants of concern in vulnerable populations. Nat Commun 2023; 14:5171. [PMID: 37620337 PMCID: PMC10449910 DOI: 10.1038/s41467-023-40960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
SARS-CoV-2 variants have continuously emerged in the face of effective vaccines. Reduced neutralization against variants raises questions as to whether other antibody functions are similarly compromised, or if they might compensate for lost neutralization activity. Here, the breadth and potency of antibody recognition and effector function is surveyed following either infection or vaccination. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observe similar binding and functional breadth for healthy and immunologically vulnerable populations, but considerably greater functional antibody breadth and potency across variants associated with vaccination. In contrast, greater antibody functional activity targeting the endemic coronavirus OC43 is noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains associated with exposure history. This analysis of antibody functions suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as novel variants continue to evolve.
Collapse
Affiliation(s)
| | - Harini Natarajan
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Leo Heyndrickx
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kevin K Ariën
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joshua A Wiener
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Peter F Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Evan M Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aaron A R Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew D Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel N Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gila Zarbiv
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
- Pediatric Department, CHU St Pierre, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
25
|
Motsoeneng BM, Manamela NP, Kaldine H, Kgagudi P, Hermanus T, Ayres F, Makhado Z, Moyo-Gwete T, van der Mescht MA, Abdullah F, Boswell MT, Ueckermann V, Rossouw TM, Madhi SA, Moore PL, Richardson SI. Despite delayed kinetics, people living with HIV achieve equivalent antibody function after SARS-CoV-2 infection or vaccination. Front Immunol 2023; 14:1231276. [PMID: 37600825 PMCID: PMC10435738 DOI: 10.3389/fimmu.2023.1231276] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
The kinetics of Fc-mediated functions following SARS-CoV-2 infection or vaccination in people living with HIV (PLWH) are not known. We compared SARS-CoV-2 spike-specific Fc functions, binding, and neutralization in PLWH and people without HIV (PWOH) during acute infection (without prior vaccination) with either the D614G or Beta variants of SARS-CoV-2, or vaccination with ChAdOx1 nCoV-19. Antiretroviral treatment (ART)-naïve PLWH had significantly lower levels of IgG binding, neutralization, and antibody-dependent cellular phagocytosis (ADCP) compared with PLWH on ART. The magnitude of antibody-dependent cellular cytotoxicity (ADCC), complement deposition (ADCD), and cellular trogocytosis (ADCT) was differentially triggered by D614G and Beta. The kinetics of spike IgG-binding antibodies, ADCC, and ADCD were similar, irrespective of the infecting variant between PWOH and PLWH overall. However, compared with PWOH, PLWH infected with D614G had delayed neutralization and ADCP. Furthermore, Beta infection resulted in delayed ADCT, regardless of HIV status. Despite these delays, we observed improved coordination between binding and neutralizing responses and Fc functions in PLWH. In contrast to D614G infection, binding responses in PLWH following ChAdOx-1 nCoV-19 vaccination were delayed, while neutralization and ADCP had similar timing of onset, but lower magnitude, and ADCC was significantly higher than in PWOH. Overall, despite delayed and differential kinetics, PLWH on ART develop comparable responses to PWOH, supporting the prioritization of ART rollout and SARS-CoV-2 vaccination in PLWH.
Collapse
Affiliation(s)
- Boitumelo M. Motsoeneng
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Haajira Kaldine
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Prudence Kgagudi
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Tandile Hermanus
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Frances Ayres
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Zanele Makhado
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thandeka Moyo-Gwete
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
- South African Medical Research Council Office of AIDS and TB Research, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Science, University of Pretoria, Pretoria, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Infectious Diseases and Oncology Research Institute, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L. Moore
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa
| | - Simone I. Richardson
- South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| |
Collapse
|
26
|
Shubin Z, Stanfield-Oakley S, Puangkaew J, Pitisutthithum P, Nitayaphan S, Gurunathan S, Sinangil F, Chariyalertsak S, Phanuphak N, Ake JA, O’Connell RJ, Vasan S, Akapirat S, Eller MA, Ferrari G, Paquin-Proulx D. Additional boosting to the RV144 vaccine regimen increased Fc-mediated effector function magnitude but not durability. AIDS 2023; 37:1519-1524. [PMID: 37260254 PMCID: PMC10355803 DOI: 10.1097/qad.0000000000003611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
OBJECTIVES The RV144 vaccine trial resulted in a decreased risk of HIV acquisition that was associated with a nonneutralizing antibody response. The objective of this study was to determine the impact of an additional boost to the RV144 vaccine regimen on antibody effector function and durability. DESIGN RV306 was a randomized, double-blind late boosting of the RV144 prime-boost regimen in HIV-uninfected Thai adults (NCT01931358). This analysis included study participants who received the RV144 vaccine regimen and received no additional boost (group 1) or were boosted with ALVAC-HIV and AIDSVAX (group 2) or only AIDSVAX alone (group 3) 24 weeks after completing the RV144 series. METHODS Plasma samples from RV306 study participants were used to measure antibody-dependent cellular phagocytosis (ADCP), antibody-dependent neutrophil phagocytosis (ADNP), antibody-dependent complement deposition (ADCD), antibody-dependent cellular cytotoxicity (ADCC), trogocystosis, and gp120-specifc IgG subclasses. RESULTS Additional boosting increased the magnitude of all Fc-mediated effector functions 2 weeks following the additional boost compared with 2 weeks after completing the RV144 regimen. However, only trogocytosis remained higher 24-26 weeks after the last vaccination for the study participants receiving an additional boost compared with those that did not receive an additional boost. The additional boost increased IgG1 and IgG4 but decreased IgG3 gp-120 specific antibodies compared with 2 weeks after completing the RV144 regimen. CONCLUSION Additional boosting of RV144 improved the magnitude but not the durability of some Fc-mediated effector functions that were associated with vaccine efficacy, with trogocytosis being the most durable.
Collapse
Affiliation(s)
- Zhanna Shubin
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | | | | | | | | | | | | | - Suwat Chariyalertsak
- Research Institute for Health Sciences
- Faculty of Public Health, Chiang Mai University, Chiang Mai
| | - Nittaya Phanuphak
- SEARCH, Institution of HIV Research and Innovation, Bangkok, Thailand
| | - Julie A. Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
| | - Robert J. O’Connell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- Armed Forces Research Institute for Medical Sciences
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | | | - Michael A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD
| |
Collapse
|
27
|
Semmes EC, Miller IG, Rodgers N, Phan CT, Hurst JH, Walsh KM, Stanton RJ, Pollara J, Permar SR. ADCC-activating antibodies correlate with decreased risk of congenital human cytomegalovirus transmission. JCI Insight 2023; 8:e167768. [PMID: 37427588 PMCID: PMC10371338 DOI: 10.1172/jci.insight.167768] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/23/2023] [Indexed: 07/11/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence indicates that antibody Fc effector functions may be a previously underappreciated component of maternal immunity against HCMV. We recently reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with protection against cCMV transmission, leading us to hypothesize that additional Fc-mediated antibody functions may be important. In this same cohort of HCMV-transmitting (n = 41) and nontransmitting (n = 40) mother-infant dyads, we report that higher maternal sera antibody-dependent cellular cytotoxicity (ADCC) activation is also associated with lower risk of cCMV transmission. We investigated the relationship between ADCC and IgG responses against 9 viral antigens and found that ADCC activation correlated most strongly with sera IgG binding to the HCMV immunoevasin protein UL16. Moreover, we determined that higher UL16-specific IgG binding and FcγRIII/CD16 engagement were associated with the greatest risk reduction in cCMV transmission. Our findings indicate that ADCC-activating antibodies against targets such as UL16 may represent an important protective maternal immune response against cCMV infection that can guide future HCMV correlates studies and vaccine or antibody-based therapeutic development.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology, and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Itzayana G. Miller
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, USA
| | - Nicole Rodgers
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jillian H. Hurst
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Kyle M. Walsh
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Richard J. Stanton
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, USA
| |
Collapse
|
28
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel) 2023; 11:vaccines11050991. [PMID: 37243095 DOI: 10.3390/vaccines11050991] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Less than a year after the global emergence of the coronavirus SARS-CoV-2, a novel vaccine platform based on mRNA technology was introduced to the market. Globally, around 13.38 billion COVID-19 vaccine doses of diverse platforms have been administered. To date, 72.3% of the total population has been injected at least once with a COVID-19 vaccine. As the immunity provided by these vaccines rapidly wanes, their ability to prevent hospitalization and severe disease in individuals with comorbidities has recently been questioned, and increasing evidence has shown that, as with many other vaccines, they do not produce sterilizing immunity, allowing people to suffer frequent re-infections. Additionally, recent investigations have found abnormally high levels of IgG4 in people who were administered two or more injections of the mRNA vaccines. HIV, Malaria, and Pertussis vaccines have also been reported to induce higher-than-normal IgG4 synthesis. Overall, there are three critical factors determining the class switch to IgG4 antibodies: excessive antigen concentration, repeated vaccination, and the type of vaccine used. It has been suggested that an increase in IgG4 levels could have a protecting role by preventing immune over-activation, similar to that occurring during successful allergen-specific immunotherapy by inhibiting IgE-induced effects. However, emerging evidence suggests that the reported increase in IgG4 levels detected after repeated vaccination with the mRNA vaccines may not be a protective mechanism; rather, it constitutes an immune tolerance mechanism to the spike protein that could promote unopposed SARS-CoV2 infection and replication by suppressing natural antiviral responses. Increased IgG4 synthesis due to repeated mRNA vaccination with high antigen concentrations may also cause autoimmune diseases, and promote cancer growth and autoimmune myocarditis in susceptible individuals.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Elrashdy M Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - William Makis
- Cross Cancer Institute, Alberta Health Services, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan 48900, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan 48900, Jalisco, Mexico
| |
Collapse
|
30
|
Grunst MW, Ladd RA, Clark NM, Gil HM, Klenchin VA, Mason R, Franchini G, Roederer M, Evans DT. Antibody-dependent cellular cytotoxicity, infected cell binding and neutralization by antibodies to the SIV envelope glycoprotein. PLoS Pathog 2023; 19:e1011407. [PMID: 37253062 PMCID: PMC10256149 DOI: 10.1371/journal.ppat.1011407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/09/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Antibodies specific for diverse epitopes of the simian immunodeficiency virus envelope glycoprotein (SIV Env) have been isolated from rhesus macaques to provide physiologically relevant reagents for investigating antibody-mediated protection in this species as a nonhuman primate model for HIV/AIDS. With increasing interest in the contribution of Fc-mediated effector functions to protective immunity, we selected thirty antibodies representing different classes of SIV Env epitopes for a comparison of antibody-dependent cellular cytotoxicity (ADCC), binding to Env on the surface of infected cells and neutralization of viral infectivity. These activities were measured against cells infected with neutralization-sensitive (SIVmac316 and SIVsmE660-FL14) and neutralization-resistant (SIVmac239 and SIVsmE543-3) viruses representing genetically distinct isolates. Antibodies to the CD4-binding site and CD4-inducible epitopes were identified with especially potent ADCC against all four viruses. ADCC correlated well with antibody binding to virus-infected cells. ADCC also correlated with neutralization. However, several instances of ADCC without detectable neutralization or neutralization without detectable ADCC were observed. The incomplete correspondence between ADCC and neutralization shows that some antibody-Env interactions can uncouple these antiviral activities. Nevertheless, the overall correlation between neutralization and ADCC implies that most antibodies that are capable of binding to Env on the surface of virions to block infectivity are also capable of binding to Env on the surface of virus-infected cells to direct their elimination by ADCC.
Collapse
Affiliation(s)
- Michael W. Grunst
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ruby A. Ladd
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Natasha M. Clark
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hwi Min Gil
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Vadim A. Klenchin
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rosemarie Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - David T. Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
31
|
Williams LD, Shen X, Sawant SS, Akapirat S, Dahora LC, Tay MZ, Stanfield-Oakley S, Wills S, Goodman D, Tenney D, Spreng RL, Zhang L, Yates NL, Montefiori DC, Eller MA, Easterhoff D, Hope TJ, Rerks-Ngarm S, Pittisuttithum P, Nitayaphan S, Excler JL, Kim JH, Michael NL, Robb ML, O’Connell RJ, Karasavvas N, Vasan S, Ferrari G, Tomaras GD, RV305 study team. Viral vector delivered immunogen focuses HIV-1 antibody specificity and increases durability of the circulating antibody recall response. PLoS Pathog 2023; 19:e1011359. [PMID: 37256916 PMCID: PMC10284421 DOI: 10.1371/journal.ppat.1011359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/21/2023] [Accepted: 04/14/2023] [Indexed: 06/02/2023] Open
Abstract
The modestly efficacious HIV-1 vaccine regimen (RV144) conferred 31% vaccine efficacy at 3 years following the four-shot immunization series, coupled with rapid waning of putative immune correlates of decreased infection risk. New strategies to increase magnitude and durability of protective immunity are critically needed. The RV305 HIV-1 clinical trial evaluated the immunological impact of a follow-up boost of HIV-1-uninfected RV144 recipients after 6-8 years with RV144 immunogens (ALVAC-HIV alone, AIDSVAX B/E gp120 alone, or ALVAC-HIV + AIDSVAX B/E gp120). Previous reports demonstrated that this regimen elicited higher binding, antibody Fc function, and cellular responses than the primary RV144 regimen. However, the impact of the canarypox viral vector in driving antibody specificity, breadth, durability and function is unknown. We performed a follow-up analysis of humoral responses elicited in RV305 to determine the impact of the different booster immunogens on HIV-1 epitope specificity, antibody subclass, isotype, and Fc effector functions. Importantly, we observed that the ALVAC vaccine component directly contributed to improved breadth, function, and durability of vaccine-elicited antibody responses. Extended boosts in RV305 increased circulating antibody concentration and coverage of heterologous HIV-1 strains by V1V2-specific antibodies above estimated protective levels observed in RV144. Antibody Fc effector functions, specifically antibody-dependent cellular cytotoxicity and phagocytosis, were boosted to higher levels than was achieved in RV144. V1V2 Env IgG3, a correlate of lower HIV-1 risk, was not increased; plasma Env IgA (specifically IgA1), a correlate of increased HIV-1 risk, was elevated. The quality of the circulating polyclonal antibody response changed with each booster immunization. Remarkably, the ALVAC-HIV booster immunogen induced antibody responses post-second boost, indicating that the viral vector immunogen can be utilized to selectively enhance immune correlates of decreased HIV-1 risk. These results reveal a complex dynamic of HIV-1 immunity post-vaccination that may require careful balancing to achieve protective immunity in the vaccinated population. Trial registration: RV305 clinical trial (ClinicalTrials.gov number, NCT01435135). ClinicalTrials.gov Identifier: NCT00223080.
Collapse
Affiliation(s)
- LaTonya D. Williams
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sheetal S. Sawant
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Siriwat Akapirat
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Lindsay C. Dahora
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Matthew Zirui Tay
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sherry Stanfield-Oakley
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Saintedym Wills
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Derrick Goodman
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - DeAnna Tenney
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Rachel L. Spreng
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Lu Zhang
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicole L. Yates
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Michael A. Eller
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - David Easterhoff
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Thomas J. Hope
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | | | - Punnee Pittisuttithum
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sorachai Nitayaphan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jean-Louis Excler
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Nelson L. Michael
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Merlin L. Robb
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Robert J. O’Connell
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nicos Karasavvas
- Department of Retrovirology, US Army Medical Directorate, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
| | - Guido Ferrari
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Georgia D. Tomaras
- Center for Human Systems Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Molecular Genetics Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | | |
Collapse
|
32
|
Abstract
Repeated doses of mRNA vaccines for COVID-19 result in increased proportions of anti-spike antibodies of the IgG4 subclass, which are known to neutralize well and to form mixed immune complexes with IgG1 but, in a pure form, might be less effective than IgG1 or IgG3 antibodies in facilitating opsonization by phagocytes, complement fixation, and NK cell-dependent elimination of infected cells (see related Research Article by Irrgang et al.).
Collapse
Affiliation(s)
- Shiv Pillai
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
33
|
Boudreau CM, Burke JS, Roederer AL, Gorman MJ, Mundle S, Lingwood D, Delagrave S, Sridhar S, Ross TM, Kleanthous H, Alter G. Pre-existing Fc profiles shape the evolution of neutralizing antibody breadth following influenza vaccination. Cell Rep Med 2023; 4:100975. [PMID: 36921600 PMCID: PMC10040413 DOI: 10.1016/j.xcrm.2023.100975] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/08/2022] [Accepted: 02/19/2023] [Indexed: 03/16/2023]
Abstract
Under the ever-present threat of a pandemic influenza strain, the evolution of a broadly reactive, neutralizing, functional, humoral immune response may hold the key to protection against both circulating and emerging influenza strains. We apply a systems approach to profile hemagglutinin- and neuraminidase-specific humoral signatures that track with the evolution of broad immunity in a cohort of vaccinated individuals and validate these findings in a second longitudinal cohort. Multivariate analysis reveals the presence of a unique pre-existing Fcγ-receptor-binding antibody profile in individuals that evolved broadly reactive hemagglutination inhibition activity (HAI), marked by the presence of elevated levels of pre-existing FCGR2B-binding antibodies. Moreover, vaccination with FCGR2B-binding antibody-opsonized influenza results in enhanced antibody titers and HAI activity in a murine model. Together, these data suggest that pre-existing FCGR2B binding antibodies are a key correlate of the evolution of broadly protective influenza-specific antibodies, providing insight for the design of next-generation influenza vaccines.
Collapse
Affiliation(s)
- Carolyn M Boudreau
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - John S Burke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Alexander L Roederer
- PhD Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Matthew J Gorman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Sophia Mundle
- Discovery North America, Sanofi-Pasteur, Inc., Cambridge, MA 02139, USA
| | - Daniel Lingwood
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Saranya Sridhar
- Discovery North America, Sanofi-Pasteur, Inc., Cambridge, MA 02139, USA
| | - Ted M Ross
- University of Georgia, Athens, GA 30602, USA
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
34
|
Semmes EC, Miller IG, Rodgers N, Phan CT, Hurst JH, Walsh KM, Stanton RJ, Pollara J, Permar SR. ADCC-activating antibodies correlate with protection against congenital human cytomegalovirus infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.15.23287332. [PMID: 36993668 PMCID: PMC10055595 DOI: 10.1101/2023.03.15.23287332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Human cytomegalovirus (HCMV) is the most common vertically transmitted infection worldwide, yet there are no licensed vaccines or therapeutics to prevent congenital HCMV (cCMV) infection. Emerging evidence from studies of natural infection and HCMV vaccine trials indicates that antibody Fc effector functions may defend against HCMV infection. We previously reported that antibody-dependent cellular phagocytosis (ADCP) and IgG activation of FcγRI/FcγRII were associated with reduced risk of cCMV transmission, leading us to hypothesize that other Fc-mediated antibody functions may also contribute to protection. In this same cohort of HCMV transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads, we found that higher maternal sera antibody-dependent cellular cytotoxicity (ADCC) activation was also associated with decreased risk of cCMV infection. We determined that NK cell-mediated ADCC responses correlated strongly with anti-HCMV IgG FcγRIII/CD16 activation and IgG binding to the HCMV immunoevasin protein UL16. Notably, anti-UL16 IgG binding and engagement of FcγRIII/CD16 were higher in non-transmitting versus transmitting dyads and interacted significantly with ADCC responses. These findings indicate that ADCC-activating antibodies against novel targets such as UL16 may represent an important protective maternal immune response against cCMV infection, which can guide future HCMV correlates studies and vaccine development.
Collapse
|
35
|
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023; 14:1043109. [PMID: 36911719 PMCID: PMC9998920 DOI: 10.3389/fimmu.2023.1043109] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/26/2023] Open
Abstract
In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.
Collapse
Affiliation(s)
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| | - Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
36
|
Fornara C, Schultz E, Lilleri D, Baldanti F, Ryckman B, Gerna G. Fibroblast, Epithelial and Endothelial Cell-Derived Human Cytomegalovirus Strains Display Distinct Neutralizing Antibody Responses and Varying Levels of gH/gL Complexes. Int J Mol Sci 2023; 24:4417. [PMID: 36901847 PMCID: PMC10003051 DOI: 10.3390/ijms24054417] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
In sequential sera from pregnant women with HCMV primary infection (PI), the serum neutralizing activity is higher against virions produced in epithelial and endothelial cells than in fibroblasts. Immunoblotting shows that the pentamer complex/trimer complex (PC/TC) ratio varies according to the producer cell culture type used for the virus preparation to be employed in the neutralizing antibody (NAb) assay, and is lower in fibroblasts and higher in epithelial, and especially endothelial cells. The blocking activity of TC- and PC-specific inhibitors varies according to the PC/TC ratio of virus preparations. The rapid reversion of the virus phenotype following its back passage to the original cell culture (fibroblasts) potentially argues in favor of a producer cell effect on virus phenotype. However, the role of genetic factors cannot be overlooked. In addition to the producer cell type, the PC/TC ratio may differ in single HCMV strains. In conclusion, the NAb activity not only varies with different HCMV strains, but is a dynamic parameter changing according to virus strain, type of target and producer cells, and number of cell culture passages. These findings may have some important implications for the development of both therapeutic antibodies and subunit vaccines.
Collapse
Affiliation(s)
- Chiara Fornara
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Eric Schultz
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Daniele Lilleri
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Fausto Baldanti
- Microbiology and Virology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Brent Ryckman
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Giuseppe Gerna
- Laboratories of Genetics, Transplantology and Cardiovascular Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
37
|
Irrgang P, Gerling J, Kocher K, Lapuente D, Steininger P, Habenicht K, Wytopil M, Beileke S, Schäfer S, Zhong J, Ssebyatika G, Krey T, Falcone V, Schülein C, Peter AS, Nganou-Makamdop K, Hengel H, Held J, Bogdan C, Überla K, Schober K, Winkler TH, Tenbusch M. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol 2023; 8:eade2798. [PMID: 36548397 PMCID: PMC9847566 DOI: 10.1126/sciimmunol.ade2798] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RNA vaccines are efficient preventive measures to combat the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. High levels of neutralizing SARS-CoV-2 antibodies are an important component of vaccine-induced immunity. Shortly after the initial two mRNA vaccine doses, the immunoglobulin G (IgG) response mainly consists of the proinflammatory subclasses IgG1 and IgG3. Here, we report that several months after the second vaccination, SARS-CoV-2-specific antibodies were increasingly composed of noninflammatory IgG4, which were further boosted by a third mRNA vaccination and/or SARS-CoV-2 variant breakthrough infections. IgG4 antibodies among all spike-specific IgG antibodies rose, on average, from 0.04% shortly after the second vaccination to 19.27% late after the third vaccination. This induction of IgG4 antibodies was not observed after homologous or heterologous SARS-CoV-2 vaccination with adenoviral vectors. Single-cell sequencing and flow cytometry revealed substantial frequencies of IgG4-switched B cells within the spike-binding memory B cell population [median of 14.4%; interquartile range (IQR) of 6.7 to 18.1%] compared with the overall memory B cell repertoire (median of 1.3%; IQR of 0.9 to 2.2%) after three immunizations. This class switch was associated with a reduced capacity of the spike-specific antibodies to mediate antibody-dependent cellular phagocytosis and complement deposition. Because Fc-mediated effector functions are critical for antiviral immunity, these findings may have consequences for the choice and timing of vaccination regimens using mRNA vaccines, including future booster immunizations against SARS-CoV-2.
Collapse
Affiliation(s)
- Pascal Irrgang
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Juliane Gerling
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - Katharina Kocher
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Philipp Steininger
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Katharina Habenicht
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - Monika Wytopil
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Stephanie Beileke
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Simon Schäfer
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - Jahn Zhong
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany
| | - George Ssebyatika
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck; Luebeck, Germany
| | - Thomas Krey
- Center of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Luebeck; Luebeck, Germany
| | - Valeria Falcone
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg; Freiburg, Germany
| | - Christine Schülein
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Antonia Sophia Peter
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany
| | - Krystelle Nganou-Makamdop
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Hartmut Hengel
- Institute of Virology, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg; Freiburg, Germany
| | - Jürgen Held
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Klaus Überla
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Wasserturmstr. 3/5, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany.,Corresponding author. (K.S.); (T.H.W.); (M.T.)
| | - Thomas H. Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU); Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany.,Corresponding author. (K.S.); (T.H.W.); (M.T.)
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg; Schlossgarten 4, 91054 Erlangen, Germany.,Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany.,Corresponding author. (K.S.); (T.H.W.); (M.T.)
| |
Collapse
|
38
|
Buhre JS, Pongracz T, Künsting I, Lixenfeld AS, Wang W, Nouta J, Lehrian S, Schmelter F, Lunding HB, Dühring L, Kern C, Petry J, Martin EL, Föh B, Steinhaus M, von Kopylow V, Sina C, Graf T, Rahmöller J, Wuhrer M, Ehlers M. mRNA vaccines against SARS-CoV-2 induce comparably low long-term IgG Fc galactosylation and sialylation levels but increasing long-term IgG4 responses compared to an adenovirus-based vaccine. Front Immunol 2023; 13:1020844. [PMID: 36713457 PMCID: PMC9877300 DOI: 10.3389/fimmu.2022.1020844] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/09/2022] [Indexed: 01/15/2023] Open
Abstract
Background The new types of mRNA-containing lipid nanoparticle vaccines BNT162b2 and mRNA-1273 and the adenovirus-based vaccine AZD1222 were developed against SARS-CoV-2 and code for its spike (S) protein. Several studies have investigated short-term antibody (Ab) responses after vaccination. Objective However, the impact of these new vaccine formats with unclear effects on the long-term Ab response - including isotype, subclass, and their type of Fc glycosylation - is less explored. Methods Here, we analyzed anti-S Ab responses in blood serum and the saliva of SARS-CoV-2 naïve and non-hospitalized pre-infected subjects upon two vaccinations with different mRNA- and adenovirus-based vaccine combinations up to day 270. Results We show that the initially high mRNA vaccine-induced blood and salivary anti-S IgG levels, particularly IgG1, markedly decrease over time and approach the lower levels induced with the adenovirus-based vaccine. All three vaccines induced, contrary to the short-term anti-S IgG1 response with high sialylation and galactosylation levels, a long-term anti-S IgG1 response that was characterized by low sialylation and galactosylation with the latter being even below the corresponding total IgG1 galactosylation level. Instead, the mRNA, but not the adenovirus-based vaccines induced long-term IgG4 responses - the IgG subclass with inhibitory effector functions. Furthermore, salivary anti-S IgA levels were lower and decreased faster in naïve as compared to pre-infected vaccinees. Predictively, age correlated with lower long-term anti-S IgG titers for the mRNA vaccines. Furthermore, higher total IgG1 galactosylation, sialylation, and bisection levels correlated with higher long-term anti-S IgG1 sialylation, galactosylation, and bisection levels, respectively, for all vaccine combinations. Conclusion In summary, the study suggests a comparable "adjuvant" potential of the newly developed vaccines on the anti-S IgG Fc glycosylation, as reflected in relatively low long-term anti-S IgG1 galactosylation levels generated by the long-lived plasma cell pool, whose induction might be driven by a recently described TH1-driven B cell response for all three vaccines. Instead, repeated immunization of naïve individuals with the mRNA vaccines increased the proportion of the IgG4 subclass over time which might influence the long-term Ab effector functions. Taken together, these data shed light on these novel vaccine formats and might have potential implications for their long-term efficacy.
Collapse
Affiliation(s)
- Jana Sophia Buhre
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Tamas Pongracz
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Inga Künsting
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Anne S. Lixenfeld
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Wenjun Wang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Selina Lehrian
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Franziska Schmelter
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Hanna B. Lunding
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Lara Dühring
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Carsten Kern
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Emily L. Martin
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Bandik Föh
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Moritz Steinhaus
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Vera von Kopylow
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Christian Sina
- Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Tobias Graf
- Medical Department 2, University Heart Center of Schleswig-Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany,Department of Anesthesiology and Intensive Care, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Manfred Wuhrer, ; Marc Ehlers,
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute of Nutritional Medicine, University of Lübeck and University Medical Center Schleswig-Holstein, Lübeck, Germany,Airway Research Center North (ARCN), University of Lübeck, German Center for Lung Research (DZL), Lübeck, Germany,*Correspondence: Manfred Wuhrer, ; Marc Ehlers,
| |
Collapse
|
39
|
Sungur CM, Wang Q, Ozantürk AN, Gao H, Schmitz AJ, Cella M, Yokoyama WM, Shan L. Human NK cells confer protection against HIV-1 infection in humanized mice. J Clin Invest 2022; 132:e162694. [PMID: 36282589 PMCID: PMC9753998 DOI: 10.1172/jci162694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/04/2022] [Indexed: 12/24/2022] Open
Abstract
The role of NK cells against HIV-1 infections remains to be elucidated in vivo. While humanized mouse models potentially could be used to directly evaluate human NK cell responses during HIV-1 infection, improved functional development of human NK cells in these hosts is needed. Here, we report the humanized MISTRG-6-15 mouse model, in which NK cells were quick to expand and exhibit degranulation, cytotoxicity, and proinflammatory cytokine production in nonlymphoid organs upon HIV-1 infection but had reduced functionality in lymphoid organs. Although HIV-1 infection induced functional impairment of NK cells, antiretroviral therapy reinvigorated NK cells in response to HIV-1 rebound after analytic treatment interruption. Moreover, a broadly neutralizing antibody, PGT121, enhanced NK cell function in vivo, consistent with antibody-dependent cellular cytotoxicity. Monoclonal antibody depletion of NK cells resulted in higher viral loads in multiple nonlymphoid organs. Overall, our results in humanized MISTRG-6-15 mice demonstrated that NK cells provided direct anti-HIV-1 responses in vivo but were limited in their responses in lymphoid organs.
Collapse
Affiliation(s)
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine
| | | | - Hongbo Gao
- Division of Infectious Diseases, Department of Medicine
| | | | | | - Wayne M. Yokoyama
- Division of Rheumatology, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
40
|
Dănăilă VR, Avram S, Buiu C. The applications of machine learning in HIV neutralizing antibodies research-A systematic review. Artif Intell Med 2022; 134:102429. [PMID: 36462896 DOI: 10.1016/j.artmed.2022.102429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 09/03/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022]
Abstract
Machine learning algorithms play an essential role in bioinformatics and allow exploring the vast and noisy biological data in unrivaled ways. This paper is a systematic review of the applications of machine learning in the study of HIV neutralizing antibodies. This significant and vast research domain can pave the way to novel treatments and to a vaccine. We selected the relevant papers by investigating the available literature from the Web of Science and PubMed databases in the last decade. The computational methods are applied in neutralization potency prediction, neutralization span prediction against multiple viral strains, antibody-virus binding sites detection, enhanced antibodies design, and the study of the antibody-induced immune response. These methods are viewed from multiple angles spanning data processing, model description, feature selection, evaluation, and sometimes paper comparisons. The algorithms are diverse and include supervised, unsupervised, and generative types. Both classical machine learning and modern deep learning were taken into account. The review ends with our ideas regarding future research directions and challenges.
Collapse
Affiliation(s)
- Vlad-Rareş Dănăilă
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independenţei, Bucharest 060042, Romania.
| | - Speranţa Avram
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, Bucharest 050095, Romania.
| | - Cătălin Buiu
- Department of Automatic Control and Systems Engineering, Politehnica University of Bucharest, 313 Splaiul Independenţei, Bucharest 060042, Romania.
| |
Collapse
|
41
|
Grace PS, Gunn BM, Lu LL. Engineering the supernatural: monoclonal antibodies for challenging infectious diseases. Curr Opin Biotechnol 2022; 78:102818. [PMID: 36242952 PMCID: PMC9612313 DOI: 10.1016/j.copbio.2022.102818] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic demonstrated that monoclonal antibodies can be deployed faster than antimicrobials and vaccines. However, the majority of mAbs treat cancer and autoimmune diseases, whereas a minority treat infection. This is in part because targeting a single antigen by the antibody Fab domain is insufficient to stop the dynamic microbial life cycle. Thus, finding the 'right' antigens remains the focus of intense investigations. Equally important is the antibody-Fc domain that has the capacity to induce immune responses that enhance neutralization, and limit pathology and transmission. While Fc-effector functions have been less deeply studied, conceptual and technical advances reveal previously underappreciated antibody potential to combat diseases from microbes difficult to address with current diagnostics, therapeutics, and vaccines, including S. aureus, P. aeruginosa, P. falciparum, and M. tuberculosis. What is learned about engineering antibodies for these challenging organisms will enhance our approach to new and emerging infectious diseases.
Collapse
Affiliation(s)
- Patricia S Grace
- Harvard T.H. Chan School of Public Health, Boston, MA, United States; Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
| | - Bronwyn M Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA, United States
| | - Lenette L Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States; Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States; Parkland Health & Hospital System, United States.
| |
Collapse
|
42
|
Optimal sequence-based design for multi-antigen HIV-1 vaccines using minimally distant antigens. PLoS Comput Biol 2022; 18:e1010624. [PMID: 36315492 PMCID: PMC9621458 DOI: 10.1371/journal.pcbi.1010624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
The immense global diversity of HIV-1 is a significant obstacle to developing a safe and effective vaccine. We recently showed that infections established with multiple founder variants are associated with the development of neutralization breadth years later. We propose a novel vaccine design strategy that integrates the variability observed in acute HIV-1 infections with multiple founder variants. We developed a probabilistic model to simulate this variability, yielding a set of sequences that present the minimal diversity seen in an infection with multiple founders. We applied this model to a subtype C consensus sequence for the Envelope (Env) (used as input) and showed that the simulated Env sequences mimic the mutational landscape of an infection with multiple founder variants, including diversity at antibody epitopes. The derived set of multi-founder-variant-like, minimally distant antigens is designed to be used as a vaccine cocktail specific to a HIV-1 subtype or circulating recombinant form and is expected to promote the development of broadly neutralizing antibodies. Diverse HIV-1 populations are generally thought to promote neutralizing responses. Current leading HIV-1 vaccine design strategies maximize the distance between antigens to attempt to cover global HIV-1 diversity or serialize immunizations to recapitulate the temporal evolution of HIV-1 during infection. To date, no vaccine has elicited broadly neutralizing antibodies. As we recently demonstrated that infection with multiple HIV-1 founder variants is predictive of neutralization breadth, we propose a novel strategy that endeavors to promote the development of broadly neutralizing antibodies by replicating the diversity of multi-founder variant acute infections. By training an HIV-1 Env consensus sequence on the diversity from acute infections with multiple founders, we derived in silico a set of minimally distant antigens that is representative of the diversity seen in a multi-founder acute infection. As the model is particular to the input sequence, it can produce antigens specific to any HIV-1 subtype or circulating recombinant form (CRF). We applied this to HIV-1 subtype C and obtained a set of minimally distant antigens that can be used as a vaccine cocktail.
Collapse
|
43
|
Hederman AP, Natarajan H, Wiener JA, Wright PF, Bloch EM, Tobian AA, Redd AD, Blankson JN, Rottenstreich A, Zarbiv G, Wolf D, Goetghebuer T, Marchant A, Ackerman ME. SARS-CoV-2 mRNA vaccination elicits broad and potent Fc effector functions to VOCs in vulnerable populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.09.15.22280000. [PMID: 36172122 PMCID: PMC9516864 DOI: 10.1101/2022.09.15.22280000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 variants have continuously emerged even as highly effective vaccines have been widely deployed. Reduced neutralization observed against variants of concern (VOC) raises the question as to whether other antiviral antibody activities are similarly compromised, or if they might compensate for lost neutralization activity. In this study, the breadth and potency of antibody recognition and effector function was surveyed in both healthy individuals as well as immunologically vulnerable subjects following either natural infection or receipt of an mRNA vaccine. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observed similar binding and functional breadth for healthy and immunologically vulnerable populations. In contrast, considerably greater functional antibody breadth and potency across VOC was associated with vaccination than prior infection. However, greater antibody functional activity targeting the endemic coronavirus OC43 was noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains that was associated with exposure history. Probing the full-length spike and receptor binding domain (RBD) revealed that antibody-mediated Fc effector functions were better maintained against full-length spike as compared to RBD. This analysis of antibody functions in healthy and vulnerable populations across a panel of SARS-CoV-2 VOC and extending through endemic alphacoronavirus strains suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as the pandemic progresses and novel variants continue to evolve. One Sentence Summary As compared to natural infection with SARS-CoV-2, vaccination drives superior functional antibody breadth raising hopes for candidate universal CoV vaccines.
Collapse
Affiliation(s)
| | - Harini Natarajan
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| | - Joshua A. Wiener
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Peter F. Wright
- Department of Pediatrics, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Evan M. Bloch
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aaron A.R. Tobian
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrew D. Redd
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joel N. Blankson
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Amihai Rottenstreich
- Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center
| | - Gila Zarbiv
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Hadassah University Medical Center, Jerusalem, Israel
| | - Tessa Goetghebuer
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
- Pediatric Department, CHU St Pierre, Brussels, Belgium
| | - Arnaud Marchant
- Institute for Medical Immunology, Université libre de Bruxelles, Charleroi, Belgium
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
- Department of Immunology and Microbiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
44
|
Semmes EC, Miller IG, Wimberly CE, Phan CT, Jenks JA, Harnois MJ, Berendam SJ, Webster H, Hurst JH, Kurtzberg J, Fouda GG, Walsh KM, Permar SR. Maternal Fc-mediated non-neutralizing antibody responses correlate with protection against congenital human cytomegalovirus infection. J Clin Invest 2022; 132:e156827. [PMID: 35763348 PMCID: PMC9374380 DOI: 10.1172/jci156827] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) is the most common congenital infection and a leading cause of stillbirth, neurodevelopmental impairment, and pediatric hearing loss worldwide. Development of a maternal vaccine or therapeutic to prevent congenital HCMV has been hindered by limited knowledge of the immune responses that protect against HCMV transmission in utero. To identify protective antibody responses, we measured HCMV-specific IgG binding and antiviral functions in paired maternal and cord blood sera from HCMV-seropositive transmitting (n = 41) and non-transmitting (n = 40) mother-infant dyads identified via a large, US-based, public cord blood bank. We found that high-avidity IgG binding to HCMV and antibody-dependent cellular phagocytosis (ADCP) were associated with reduced risk of congenital HCMV infection. We also determined that HCMV-specific IgG activation of FcγRI and FcγRII was enhanced in non-transmitting dyads and that increased ADCP responses were mediated through both FcγRI and FcγRIIA expressed on human monocytes. These findings suggest that engagement of FcγRI/FcγRIIA and Fc effector functions including ADCP may protect against congenital HCMV infection. Taken together, these data can guide future prospective studies on immune correlates against congenital HCMV transmission and inform HCMV vaccine and immunotherapeutic development.
Collapse
Affiliation(s)
- Eleanor C. Semmes
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
| | - Itzayana G. Miller
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell School of Medicine, New York, New York, USA
| | - Courtney E. Wimberly
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery and
| | - Caroline T. Phan
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jennifer A. Jenks
- Medical Scientist Training Program, Department of Molecular Genetics and Microbiology and
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Melissa J. Harnois
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Stella J. Berendam
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Helen Webster
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
| | - Jillian H. Hurst
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Joanne Kurtzberg
- Department of Pediatrics, Duke University, Durham, North Carolina, USA
- Carolinas Cord Blood Bank, Duke University Medical Center, Durham, North Carolina, USA
| | - Genevieve G. Fouda
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
| | - Kyle M. Walsh
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Neurosurgery and
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University, Durham, North Carolina, USA
- Duke Children’s Health & Discovery Initiative, Duke University, Durham, North Carolina, USA
- Department of Pediatrics, Weill Cornell School of Medicine, New York, New York, USA
| |
Collapse
|
45
|
Xu S, Carpenter MC, Spreng RL, Neidich SD, Sarkar S, Tenney D, Goodman D, Sawant S, Jha S, Dunn B, Juliana McElrath M, Bekker V, Mudrak SV, Flinko R, Lewis GK, Ferrari G, Tomaras GD, Shen X, Ackerman ME. Impact of adjuvants on the biophysical and functional characteristics of HIV vaccine-elicited antibodies in humans. NPJ Vaccines 2022; 7:90. [PMID: 35927399 PMCID: PMC9352797 DOI: 10.1038/s41541-022-00514-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/01/2022] [Indexed: 01/14/2023] Open
Abstract
Adjuvants can alter the magnitude, characteristics, and persistence of the humoral response to protein vaccination. HIV vaccination might benefit from tailored adjuvant choice as raising a durable and protective response to vaccination has been exceptionally challenging. Analysis of trials of partially effective HIV vaccines have identified features of the immune response that correlate with decreased risk, including high titers of V1V2-binding IgG and IgG3 responses with low titers of V1V2-binding IgA responses and enhanced Fc effector functions, notably antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). However, there has been limited opportunity to compare the effect of different adjuvants on these activities in humans. Here, samples from the AVEG015 study, a phase 1 trial in which participants (n = 112) were immunized with gp120SF-2 and one of six different adjuvants or combinations thereof were assessed for antibody titer, biophysical features, and diverse effector functions. Three adjuvants, MF59 + MTP-PE, SAF/2, and SAF/2 + MDP, increased the peak magnitude and durability of antigen-specific IgG3, IgA, FcγR-binding responses and ADCP activity, as compared to alum. While multiple adjuvants increased the titer of IgG, IgG3, and IgA responses, none consistently altered the balance of IgG to IgA or IgG3 to IgA. Linear regression analysis identified biophysical features including gp120-specific IgG and FcγR-binding responses that could predict functional activity, and network analysis identified coordinated aspects of the humoral response. These analyses reveal the ability of adjuvants to drive the character and function of the humoral response despite limitations of small sample size and immune variability in this human clinical trial.
Collapse
Affiliation(s)
- Shiwei Xu
- Quantitative Biomedical Science Program, Dartmouth College, Hanover, NH, USA
| | | | - Rachel L Spreng
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Scott D Neidich
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sharanya Sarkar
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - DeAnna Tenney
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Derrick Goodman
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sheetal Sawant
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Shalini Jha
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Brooke Dunn
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Departments of Laboratory Medicine and Medicine, University of Washington, Seattle, WA, USA
| | - Valerie Bekker
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Sarah V Mudrak
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Robin Flinko
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - George K Lewis
- Division of Vaccine Research, The Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Georgia D Tomaras
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| | - Margaret E Ackerman
- Quantitative Biomedical Science Program, Dartmouth College, Hanover, NH, USA.
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
46
|
Board NL, Moskovljevic M, Wu F, Siliciano RF, Siliciano JD. Engaging innate immunity in HIV-1 cure strategies. Nat Rev Immunol 2022; 22:499-512. [PMID: 34824401 DOI: 10.1038/s41577-021-00649-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Combination antiretroviral therapy (ART) can block multiple stages of the HIV-1 life cycle to prevent progression to AIDS in people living with HIV-1. However, owing to the persistence of a reservoir of latently infected CD4+ T cells, life-long ART is necessary to prevent viral rebound. One strategy currently under consideration for curing HIV-1 infection is known as 'shock and kill'. This strategy uses latency-reversing agents to induce expression of HIV-1 genes, allowing for infected cells to be cleared by cytolytic immune cells. The role of innate immunity in HIV-1 pathogenesis is best understood in the context of acute infection. Here, we suggest that innate immunity can also be used to improve the efficacy of HIV-1 cure strategies, with a particular focus on dendritic cells (DCs) and natural killer cells. We discuss novel latency-reversing agents targeting DCs as well as DC-based strategies to enhance the clearance of infected cells by CD8+ T cells and strategies to improve the killing activity of natural killer cells.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fengting Wu
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Howard Hughes Medical Institute, Baltimore, MD, USA.
| | - Janet D Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Sahoo A, Jones AT, Cheedarla N, Gangadhara S, Roy V, Styles TM, Shiferaw A, Walter KL, Williams LD, Shen X, Ozorowski G, Lee WH, Burton S, Yi L, Song X, Qin ZS, Derdeyn CA, Ward AB, Clements JD, Varadarajan R, Tomaras GD, Kozlowski PA, Alter G, Amara RR. A clade C HIV-1 vaccine protects against heterologous SHIV infection by modulating IgG glycosylation and T helper response in macaques. Sci Immunol 2022; 7:eabl4102. [PMID: 35867800 PMCID: PMC9410801 DOI: 10.1126/sciimmunol.abl4102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The rising global HIV-1 burden urgently requires vaccines capable of providing heterologous protection. Here, we developed a clade C HIV-1 vaccine consisting of priming with modified vaccinia Ankara (MVA) and boosting with cyclically permuted trimeric gp120 (CycP-gp120) protein, delivered either orally using a needle-free injector or through parenteral injection. We tested protective efficacy of the vaccine against intrarectal challenges with a pathogenic heterologous clade C SHIV infection in rhesus macaques. Both routes of vaccination induced a strong envelope-specific IgG in serum and rectal secretions directed against V1V2 scaffolds from a global panel of viruses with polyfunctional activities. Envelope-specific IgG showed lower fucosylation compared with total IgG at baseline, and most of the vaccine-induced proliferating blood CD4+ T cells did not express CCR5 and α4β7, markers associated with HIV target cells. After SHIV challenge, both routes of vaccination conferred significant and equivalent protection, with 40% of animals remaining uninfected at the end of six weekly repeated challenges with an estimated efficacy of 68% per exposure. Induction of envelope-specific IgG correlated positively with G1FB glycosylation, and G2S2F glycosylation correlated negatively with protection. Vaccine-induced TNF-α+ IFN-γ+ CD8+ T cells and TNF-α+ CD4+ T cells expressing low levels of CCR5 in the rectum at prechallenge were associated with decreased risk of SHIV acquisition. These results demonstrate that the clade C MVA/CycP-gp120 vaccine provides heterologous protection against a tier2 SHIV rectal challenge by inducing a polyfunctional antibody response with distinct Fc glycosylation profile, as well as cytotoxic CD8 T cell response and CCR5-negative T helper response in the rectum.
Collapse
Affiliation(s)
- Anusmita Sahoo
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Andrew T Jones
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Narayanaiah Cheedarla
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Tiffany M Styles
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Ayalnesh Shiferaw
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Korey L Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - LaTonya D Williams
- Department of Surgery, Duke University Medical School, Duke University, Durham, NC 27710, USA
| | - Xiaoying Shen
- Department of Surgery, Duke University Medical School, Duke University, Durham, NC 27710, USA
| | - Gabriel Ozorowski
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, San Diego, CA 92121, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, San Diego, CA 92121, USA
| | - Samantha Burton
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Lasanajak Yi
- Department of Biochemistry, Emory Glycomics and Molecular Interactions Core (EGMIC), School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Glycomics and Molecular Interactions Core (EGMIC), School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Zhaohui S Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Cynthia A Derdeyn
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, San Diego, CA 92121, USA
| | - John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 8638, USA
| | - Raghavan Varadarajan
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bengaluru, Karnataka 560012, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560012, India
| | - Georgia D Tomaras
- Department of Surgery, Duke University Medical School, Duke University, Durham, NC 27710, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rama Rao Amara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA.,Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Weskamm LM, Fathi A, Raadsen MP, Mykytyn AZ, Koch T, Spohn M, Friedrich M, Haagmans BL, Becker S, Sutter G, Dahlke C, Addo MM. Persistence of MERS-CoV-spike-specific B cells and antibodies after late third immunization with the MVA-MERS-S vaccine. Cell Rep Med 2022; 3:100685. [PMID: 35858586 PMCID: PMC9295383 DOI: 10.1016/j.xcrm.2022.100685] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2022] [Accepted: 06/16/2022] [Indexed: 04/08/2023]
Abstract
The Middle East respiratory syndrome (MERS) is a respiratory disease caused by MERS coronavirus (MERS-CoV). In follow up to a phase 1 trial, we perform a longitudinal analysis of immune responses following immunization with the modified vaccinia virus Ankara (MVA)-based vaccine MVA-MERS-S encoding the MERS-CoV-spike protein. Three homologous immunizations were administered on days 0 and 28 with a late booster vaccination at 12 ± 4 months. Antibody isotypes, subclasses, and neutralization capacity as well as T and B cell responses were monitored over a period of 3 years using standard and bead-based enzyme-linked immunosorbent assay (ELISA), 50% plaque-reduction neutralization test (PRNT50), enzyme-linked immunospot (ELISpot), and flow cytometry. The late booster immunization significantly increases the frequency and persistence of spike-specific B cells, binding immunoglobulin G1 (IgG1) and neutralizing antibodies but not T cell responses. Our data highlight the potential of a late boost to enhance long-term antibody and B cell immunity against MERS-CoV. Our findings on the MVA-MERS-S vaccine may be of relevance for coronavirus 2019 (COVID-19) vaccination strategies.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany.
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Matthijs P Raadsen
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Anna Z Mykytyn
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children's Cancer Centre Hamburg, Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Bioinformatics Core Unit, Hamburg University Medical Centre, Hamburg, Germany
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany
| | - Bart L Haagmans
- Department of Virology, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Stephan Becker
- German Centre for Infection Research, Gießen-Marburg-Langen, Germany; Institute for Virology, Philipps University Marburg, Marburg, Germany
| | - Gerd Sutter
- German Centre for Infection Research, München, Germany; Division of Virology, Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany.
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany; German Centre for Infection Research, Hamburg-Lübeck-Borstel-Riems, Germany; First Department of Medicine, Division of Infectious Diseases, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
49
|
Motsoeneng BM, Dhar N, Nunes MC, Krammer F, Madhi SA, Moore PL, Richardson SI. Influenza Vaccination Results in Differential Hemagglutinin Stalk-Specific Fc-Mediated Functions in Individuals Living With or Without HIV. Front Immunol 2022; 13:873191. [PMID: 35514992 PMCID: PMC9062095 DOI: 10.3389/fimmu.2022.873191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/28/2022] [Indexed: 11/22/2022] Open
Abstract
Influenza virus hemagglutinin (HA) stalk-specific antibodies have been shown to potently induce Fc-mediated effector functions which are important in protection from disease. In placebo-controlled maternal influenza (MatFlu) vaccination trials of pregnant women living with or without HIV, reduced risk of influenza illness was associated with high HA stalk antibody titers following trivalent inactivated vaccination (TIV). However, the mechanisms of immunity conferred by the HA stalk antibodies were not well understood. Here, we investigated HA stalk-specific Fc effector functions including antibody-dependent cellular phagocytosis (ADCP), antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent complement deposition (ADCD), and FcγRIIa and FcγRIIIa binding in response to seasonal influenza vaccination. These were measured pre- and 1-month post-vaccination in 141 HIV-uninfected women (67 TIV and 74 placebo recipients) and 119 women living with HIV (WLWH; 66 TIV and 53 placebo recipients). In contrast to HIV-uninfected women, where HA stalk-specific ADCP and FcγRIIa binding were significantly boosted, WLWH showed no increase in response to vaccination. HA stalk-specific ADCC potential and FcγRIIIa binding were not boosted regardless of HIV status but were higher in WLWH compared with HIV-uninfected women prior to vaccination. HA stalk-specific ADCD was significantly increased by vaccination in all women, but was significantly lower in the WLWH both pre- and post- vaccination. Co-ordination between HA stalk-specific ADCP and ADCD in WLWH was improved by vaccination. Fc polyfunctionality was enhanced by vaccination in HIV-uninfected women and driven by the HA stalk antibody titers. However, in the WLWH, higher pre-vaccination Fc polyfunctionality was maintained post-vaccination but was decoupled from titer. Overall, we showed differential regulation of Fc effector HA stalk responses, suggesting that HIV infection results in unique humoral immunity in response to influenza vaccination, with relevance for future strategies that aim to target the HA stalk in this population.
Collapse
Affiliation(s)
- Boitumelo M Motsoeneng
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, South Africa.,South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nisha Dhar
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Marta C Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pathology, Molecular and Cell based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Shabir A Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Science and Innovation/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,African Leadership in Vaccinology Expertise (ALIVE), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Penny L Moore
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, South Africa.,South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,African Leadership in Vaccinology Expertise (ALIVE), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu Natal, Durban, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Simone I Richardson
- HIV Virology Section, Centre for HIV and STIs, National Institute for Communicable Diseases of The National Health Laboratory Services, Johannesburg, South Africa.,South African Medical Research Council Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
50
|
Fox A, Liu X, Zolla-Pazner S, Powell RL. Impact of IgG Isotype on the Induction of Antibody-Dependent Cellular Phagocytosis of HIV by Human Milk Leukocytes. Front Immunol 2022; 13:831767. [PMID: 35592337 PMCID: PMC9110811 DOI: 10.3389/fimmu.2022.831767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 100,000 mother-to-child transmission (MTCT) events of HIV via human milk feeding occur each year. However, only about 15% of infants milk-fed by untreated HIV+ mothers become infected, suggesting a protective effect of the milk itself. Infants ingest 105-108 maternal leukocytes daily via milk, which remain functional beyond ingestion. Such function may be elicited by maternal milk antibody (Ab). Though IgA is dominant in milk, most HIV-specific milk Abs are of the IgG subclass, highlighting the importance of investigating the function of each IgG isotype in the milk context. Though Ab effector function mediated by the constant (Fc) domain via interaction with Fc Receptors (FcRs), such as Ab-dependent cellular phagocytosis (ADCP), are critical in protecting against HIV infection, ADCP is largely unexplored as it relates to mitigation of MTCT. Presently we report the ADCP activity of milk leukocytes against HIV particles and immune complexes (ICs), using 57 unique samples from 34 women, elicited by IgG1/2/3/4 of monoclonal (m)Ab 246-D. Granulocyte ADCP of HIV was most potent compared to other phagocytes when elicited by IgG1/3/4. IgG1/3 activated granulocytes similarly, exhibiting 1.6x-4.4x greater activity compared to IgG2/4, and a preference for virus compared to ICs. Notably, CD16- monocyte ADCP of a given target were unaffected by isotype, and CD16+ monocytes were poorly stimulated by IgG1. IgG2/4 elicited potent IC ADCP, and in terms of total leukocyte IC ADCP, IgG4 and IgG3 exhibited similar function, with IgG4 eliciting 1.6x-2.1x greater activity compared to IgG1/IgG2, and CD16+ monocytes most stimulated by IgG2. These data contribute to a more comprehensive understanding of Fc-mediated functionality of milk leukocytes, which is critical in order to develop therapeutic approaches to eliminating this route of MTCT, including mucosal administration of mAbs and/or a maternal vaccination aimed to elicit a potent milk Ab response.
Collapse
Affiliation(s)
| | | | | | - Rebecca L. Powell
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|