1
|
Xu L, He R, Ye X, Wang Y, Hui S, Li H, Chen H, Huang P. Leveraging transcriptome-wide association studies identifies the relationship between upper respiratory flora and cell type-specific gene expression in severe respiratory disease. PLoS One 2025; 20:e0322864. [PMID: 40343915 PMCID: PMC12063895 DOI: 10.1371/journal.pone.0322864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/30/2025] [Indexed: 05/11/2025] Open
Abstract
ObjectivesThe upper respiratory tract flora may influence host immunity and modulate susceptibility to viral respiratory infections. This study aimed to investigate the associations between upper respiratory tract flora and immune cells in severe ILI, identify specific microbial taxa and immune response pathways contributing to disease severity, and elucidate how flora influences ILI progression by modulating immune cell functions.MethodsHeritability of GWAS summary data was estimated using LDSC (v1.0.1). Gene-level genetic associations were analyzed with MAGMA. scRNA-seq data were integrated with genetic association data using scDRS. FUSION was used to construct cell type-specific expression quantitative trait locus models based on genotypes and scRNA-seq data from the onek1k project, which were combined with flora abundance-related GWAS data for a transcriptome-wide association study.ResultsFrom the LDSC analysis, data from 1195 severe ILI-associated GWASs with upper respiratory flora(h2 > 0.1) were included in subsequent analysis. TWAS identified 19 significant association pairs (Padj < 0.05), and 1226 differentially expressed genes between mild and severe ILI patients (Padj < 0.05 and | log2FC|>0.25). Functional enrichment analyses using GO, KEGG, and Reactome databases revealed that immune cells,such as CD4 + T effector memory cells, cDCs, NK cells, were enriched in multiple biological processes or pathways.ConclusionsThis study identified associations between severe ILI-related upper respiratory tract flora and cell type-specific gene expression, potentially explaining how differential flora influences ILI progression. CD16 + monocytes exhibited the most differentially expressed genes, followed by proliferating cells and cDCs, highlighting the significant role of immune cell-enriched pathways in ILI progression.
Collapse
Affiliation(s)
- Lei Xu
- Depatment of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platiorm, Nanjing Medical University, Nanjing, China
| | - Ran He
- Depatment of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platiorm, Nanjing Medical University, Nanjing, China
| | - Xiangyu Ye
- Depatment of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platiorm, Nanjing Medical University, Nanjing, China
| | - Yifan Wang
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, Jiangsu, China
| | - Shirong Hui
- Depatment of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platiorm, Nanjing Medical University, Nanjing, China
| | - Haochang Li
- Depatment of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platiorm, Nanjing Medical University, Nanjing, China
| | - Hongbo Chen
- Department of Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, Jiangsu, China
| | - Peng Huang
- Depatment of Epidemiology, Center for Global Health, School of Public Health, National Vaccine Innovation Platiorm, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
de Córdoba‐Ansón PF, Linares‐Ambohades I, Baquero F, Coque TM, Pérez‐Cobas AE. The Respiratory Tract Microbiome and Human Health. Microb Biotechnol 2025; 18:e70147. [PMID: 40293161 PMCID: PMC12035874 DOI: 10.1111/1751-7915.70147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
The respiratory tract microbiome (RTM) is a multi-kingdom microbial ecosystem that inhabits various niches of the respiratory system. While previously overlooked, there is now sufficient evidence that the RTM plays a crucial role in human health related to immune system training and protection against pathogens. Accordingly, dysbiosis or disequilibrium of the RTM has been linked to several communicable and non-communicable respiratory diseases, highlighting the need to unveil its role in health and disease. Here, we define the RTM and its place in microbiome medicine. Moreover, we outline the challenges of RTM research, emphasising the need for combining methodologies, including multi-omics and computational tools. We also discuss the RTM's potential for diagnosing, preventing and treating respiratory diseases and developing novel microbiome-based therapies to improve pulmonary health.
Collapse
Affiliation(s)
| | - Iván Linares‐Ambohades
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
| | - Fernando Baquero
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
- CIBER in Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Teresa M. Coque
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| | - Ana Elena Pérez‐Cobas
- Department of MicrobiologyRamón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University HospitalMadridSpain
- CIBER in Infectious Diseases (CIBERINFEC)MadridSpain
| |
Collapse
|
3
|
Han X, Ma P, Liu C, Yao C, Yi Y, Du Z, Liu P, Zhang M, Xu J, Meng X, Liu Z, Wang W, Ren R, Xie L, Han X, Xiao K. Pathogenic profiles and lower respiratory tract microbiota in severe pneumonia patients using metagenomic next-generation sequencing. ADVANCED BIOTECHNOLOGY 2025; 3:13. [PMID: 40279015 PMCID: PMC12031718 DOI: 10.1007/s44307-025-00064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/15/2025] [Accepted: 03/29/2025] [Indexed: 04/26/2025]
Abstract
INTRODUCTION The homeostatic balance of the lung microbiota is important for the maintenance of normal physiological function of the lung, but its role in pathological processes such as severe pneumonia is poorly understood. METHODS We screened 34 patients with community-acquired pneumonia (CAP) and 12 patients with hospital-acquired pneumonia (HAP), all of whom were admitted to the respiratory intensive care unit. Clinical samples, including bronchoalveolar lavage fluid (BALF), sputum, peripheral blood, and tissue specimens, were collected along with traditional microbiological test results, routine clinical test data, and clinical treatment information. The pathogenic spectrum of lower respiratory tract pathogens in critically ill respiratory patients was characterized through metagenomic next-generation sequencing (mNGS). Additionally, we analyzed the composition of the commensal microbiota and its correlation with clinical characteristics. RESULTS The sensitivity of the mNGS test for pathogens was 92.2% and the specificity 71.4% compared with the clinical diagnosis of the patients. Using mNGS, we detected more fungi and viruses in the lower respiratory tract of CAP-onset severe pneumonia patients, whereas bacterial species were predominant in HAP-onset patients. On the other hand, using mNGS data, commensal microorganisms such as Fusobacterium yohimbe were observed in the lower respiratory tract of patients with HAP rather than those with CAP, and most of these commensal microorganisms were associated with hospitalization or the staying time in ICU, and were significantly and positively correlated with the total length of stay. CONCLUSION mNGS can be used to effectively identify pathogenic pathogens or lower respiratory microbiome associated with pulmonary infectious diseases, playing a crucial role in the early and accurate diagnosis of these conditions. Based on the findings of this study, it is possible that a novel set of biomarkers and predictive models could be developed in the future to efficiently identify the cause and prognosis of patients with severe pneumonia.
Collapse
Affiliation(s)
- Xinjie Han
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
- Chinese PLA Medical School, Beijing, China
| | - Peng Ma
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Chang Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Chen Yao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yaxing Yi
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Zhenshan Du
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Pengfei Liu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Minlong Zhang
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaoyun Meng
- Department of Urology, 8th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Zidan Liu
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Weijia Wang
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
| | - Ruotong Ren
- MatriDx Biotechnology Co., Ltd, Hangzhou, China
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | - Xu Han
- MatriDx Biotechnology Co., Ltd, Hangzhou, China.
| | - Kun Xiao
- College of Pulmonary & Critical Care Medicine, 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Mao W, Liu X, Fan S, Zhang R, Liu M, Xiao S. Modulating oxidative stress: a reliable strategy for coping with community-acquired pneumonia in older adults. Front Med (Lausanne) 2025; 12:1549658. [PMID: 40206465 PMCID: PMC11979195 DOI: 10.3389/fmed.2025.1549658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Community-acquired pneumonia (CAP) remains one of the leading respiratory diseases worldwide. With the aging of the global population, the morbidity, criticality and mortality rates of CAP in older adults remain high every year. Modulating the signaling pathways that cause the inflammatory response and improve the immune function of patients has become the focus of reducing inflammatory damage in the lungs, especially CAP in older adults. As an important factor that causes the inflammatory response of CAP and affects the immune status of the body, oxidative stress plays an important role in the occurrence, development and treatment of CAP. Furthermore, in older adults with CAP, oxidative stress is closely associated with immune senescence, sarcopenia, frailty, aging, multimorbidity, and polypharmacy. Therefore, multiple perspectives combined with the disease characteristics of older adults with CAP were reviewed to clarify the research progress and application value of modulating oxidative stress in older adults with CAP. Clearly, there is no doubt that targeted modulation of oxidative stress benefits CAP in older adults. However, many challenges and unknowns concerning how to modulate oxidative stress for further practical clinical applications exist, and more targeted research is needed. Moreover, the limitations and challenges of modulating oxidative stress are analyzed with the aim of providing references and ideas for future clinical treatment or further research in older adults with CAP.
Collapse
Affiliation(s)
- Weixu Mao
- Department of Respiratory Medicine, The Affiliated Yongchuan Traditional Chinese Medicine Hospital of Chongqing Medical University, Chongqing, China
| | - Xuanjun Liu
- Department of General Surgery, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Senji Fan
- Department of Respiratory Medicine, The Affiliated Yongchuan Traditional Chinese Medicine Hospital of Chongqing Medical University, Chongqing, China
| | - Ruibin Zhang
- Department of Respiratory Medicine, The Affiliated Yongchuan Traditional Chinese Medicine Hospital of Chongqing Medical University, Chongqing, China
| | - Miao Liu
- Department of Respiratory Medicine, The Affiliated Yongchuan Traditional Chinese Medicine Hospital of Chongqing Medical University, Chongqing, China
| | - Shunqiong Xiao
- Department of Respiratory Medicine, The Affiliated Yongchuan Traditional Chinese Medicine Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhou H, Huang W, Li J, Chen P, Shen L, Huang W, Mai K, Zou H, Shi X, Weng Y, Liu Y, Yang Z, Ou C. Oral probiotic extracellular vesicle therapy mitigates Influenza A Virus infection via blunting IL-17 signaling. Bioact Mater 2025; 45:401-416. [PMID: 39697241 PMCID: PMC11652895 DOI: 10.1016/j.bioactmat.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
The influenza A virus (IAV) damages intestinal mucosal tissues beyond the respiratory tract. Probiotics play a crucial role in maintaining the balance and stability of the intestinal microecosystem. Extracellular vesicles (EVs) derived from probiotics have emerged as potential mediators of host immune response and anti-inflammatory effect. However, the specific anti-inflammatory effects and underlying mechanisms of probiotics-derived EVs on IAV remain unclear. In the present study, we investigated the therapeutic efficacy of Lactobacillus reuteri EHA2-derived EVs (LrEVs) in a mouse model of IAV infection. Oral LrEVs were distributed in the liver, lungs, and gastrointestinal tract. In mice infected with IAV, oral LrEVs administration alleviated IAV-induced damages in the lungs and intestines, modified the microbiota compositions, and increased the levels of short-chain fatty acids in those organs. Mechanistically, LrEVs exerted their protective effects against IAV infection by blunting the pro-inflammatory IL-17 signaling. Furthermore, FISH analysis detected miR-4239, one of the most abundant miRNAs in LrEVs, in both lung and intestinal tissues. We confirmed that miR-4239 directly targets IL-17a. Our findings paved the ground for future application of LrEVs in influenza treatment and offered new mechanistic insights regarding the anti-inflammatory role of miR-4239.
Collapse
Affiliation(s)
- Hongxia Zhou
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Wenbo Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jieting Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Peier Chen
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Lihan Shen
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Wenjing Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kailin Mai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Heyan Zou
- Dongguan Institute of Respiratory and Critical Care Medicine, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Xueqin Shi
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Yunceng Weng
- Becton Dickinson Medical Devices (Shanghai) Co., Ltd., Guangzhou, 510180, China
| | - Yuhua Liu
- Department of General Practice, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
- Guangzhou National Laboratory, Guangzhou, 510000, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, 519020, China
| | - Caiwen Ou
- The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| |
Collapse
|
6
|
Zhou L, Song C, Zhao L, Guo Z, Lei Y, Han Y, Gao K, Xu Y, Xiang Z, Li B, Guo J. Impact of variations in airborne microbiota on pneumonia infection: An exploratory study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117795. [PMID: 39875253 DOI: 10.1016/j.ecoenv.2025.117795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Previous studies showed airborne bacteria affect pneumonia incidence, but specific impacts of bacterial communities on Klebsiella pneumoniae infection were unknown. METHODS Five different ratios of bacterial community structures were randomly generated. Mice were divided into control, artificial bacterial community exposure, and corresponding Klebsiella pneumoniae challenge groups. Changes in body weight, blood parameters, pulmonary pathology, inflammatory factors, metabolomics, and fecal microbiota were analyzed. RESULTS Different bacterial community exposures had varying degrees of influence on body weight, complete blood count, inflammatory factors, alveolar lavage fluid and plasma metabolome, as well as intestinal microbiota at baseline and after infection. Metabolomic analysis showed that microbial exposure affected both bronchoalveolar lavage fluid and plasma metabolomes, suggesting systemic effects of microbial exposure on the organism. Differences in the structure of artificial microbiota had inconsistent effects on both the baseline state and the post-infection state, hinting at crosstalk between microbial exposure and Klebsiella pneumoniae infection. KEGG pathway analysis unveiled possible molecular mechanisms underlying the overall impact of microbial exposure on the lungs and the body as a whole. In the intestinal microbiota, differences were found in composition at the phylum and genus levels. Spearman correlation analysis established potential correlations between intestinal microbiota and differential metabolites, suggesting a potential link within the lung-gut axis. CONCLUSION This study demonstrated the significant and systemic impact of air microbiota structure differences on health. Future research should explore the underlying mechanisms to enhance our understanding of the air-environment-health relationship and identify interventions for improving public health strategies.
Collapse
Affiliation(s)
- Li Zhou
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Chenchen Song
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Lianlian Zhao
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Zhi Guo
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Yuhan Lei
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Yunlin Han
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Kai Gao
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Yanfeng Xu
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China
| | - Zhiguang Xiang
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China.
| | - Baicun Li
- National Clinical Research Center for Respiratory Diseases, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, ,China.
| | - Jianguo Guo
- National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for animal model, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, China.
| |
Collapse
|
7
|
Men Z, Chen Z, Gu X, Wang Y, Zhang X, Fang F, Shen M, Huang S, Wu S, Zhou L, Bai Z. Clinical relevance of lung microbiota composition in critically ill children with acute lower respiratory tract infections: insights from a retrospective analysis of metagenomic sequencing. Eur J Clin Microbiol Infect Dis 2025; 44:83-98. [PMID: 39520618 PMCID: PMC11739189 DOI: 10.1007/s10096-024-04980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Acute lower respiratory tract infections (ALRIs) is a leading cause of child mortality worldwide. Metagenomic next-generation sequencing (mNGS) identifies ALRIs pathogens and explores the lung microbiota's role in disease severity and clinical outcomes. This study examines the association between lung microbiota and ALRIs outcomes in children, exploring its potential as a prognostic biomarker. METHODS We retrospectively analyzed mNGS data from the bronchoalveolar lavage fluid (BALF) of 83 pediatric ALRIs patients from 2019 to 2023. Microbial diversity and relative abundances of specific taxa were compared between survivor and non-survivor groups, as well as between varying severity levels. LEfSe was employed to identify key biomarkers related to survival and disease severity. RESULTS Among the 83 patients, 68 survived and 15 died. Patients were also divided into a low severity group (n = 38) and a moderate-to-very-high severity group (n = 45) according to mPIRO score at admission. Significant differences in beta diversity were observed between the survival groups and across different severity levels. Prevotella, Haemophilus and Veillonella exhibited higher abundances in both the survivor and low severity groups, suggesting their potential as predictors of better outcomes. Conversely, Enterococcus and Acinetobacter baumannii were more prevalent in the non-survivor and moderate-to-very-high severity groups. Additionally, Streptococcus pneumoniae and Streptococcus mitis showed increased abundances in survivors. LEfSe further revealed that these microorganisms may predict outcomes and severity in ALRIs. CONCLUSION Our findings underscore the complex relationship between lung microbiota and ALRIs, with specific microbial profiles associated with disease severity and clinical outcomes. This underscores the need for further research to explore and validate its prognostic predictive capacity. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Zhiyu Men
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Zhiheng Chen
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Xinmeng Gu
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Yichen Wang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Xingheng Zhang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Meili Shen
- Medical Department, Nanjing Dinfectome Technology Inc., Nanjing, Jiangsu, China
| | - Saihu Huang
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Shuiyan Wu
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China
| | - Libing Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China.
| | - Zhenjiang Bai
- Pediatric Intensive Care Unit, Children's Hospital of Soochow University, No. 92, Zhongnan Street, Suzhou Industrial park, Suzhou, Jiangsu, 215025, China.
| |
Collapse
|
8
|
Lu S, Sun L, Cao L, Zhao M, Guo Y, Li M, Duan S, Zhai Y, Zhang X, Wang Y, Gai W, Cui X. Analysis of lung microbiota in pediatric pneumonia patients using BALF metagenomic next-generation sequencing: A retrospective observational study. Medicine (Baltimore) 2024; 103:e40860. [PMID: 39705480 PMCID: PMC11666182 DOI: 10.1097/md.0000000000040860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/22/2024] Open
Abstract
The contribution of the lung microbiota to pneumonia in children of varying severity remains poorly understood. This study utilized metagenomic next-generation sequencing (mNGS) technology to elucidate the characteristics of lung microbiota and their association with disease severity. This retrospective study analyzed bronchoalveolar lavage fluid (BALF) mNGS data of 92 children diagnosed with pneumonia between January 2021 and July 2022. A comparative analysis of the lung microbiota was conducted between the severe pneumonia (SP) (n = 44) and non-severe pneumonia (NSP) (n = 48) groups. Compared to conventional microbiological tests (CMT), mNGS had a higher positivity rate in etiology detection (68% vs 100%). In the NSP group, the predominant type of infection was Mycoplasma pneumoniae single infection, whereas in the SP group, the main type involved a combination of M pneumoniae and bacterial infection. The top 3 identified microbial taxa in both the groups were M pneumoniae, Rothia mucilaginosa, and Schaalia odontolyticus. Although there were no significant differences in the α and β diversity of the lung microbiota between the SP and NSP groups, the abundance of M pneumoniae was higher in the SP group (P = .053). Spearman analysis indicated a highly significant positive correlation between the abundance of Prevotella melaninogenica and M pneumoniae (P < .001). Our analysis identified an association between M pneumoniae infections and disease severity. This study provides a foundation for a better understanding of the pathogenesis of pediatric pneumonia and the relationship between microorganisms.
Collapse
Affiliation(s)
- Sukun Lu
- Department of Respiratory, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Ling Sun
- Department of Medical, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Lijie Cao
- Department of Respiratory, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Mengchuan Zhao
- Department of Laboratory Medicine, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Yuxin Guo
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Mei Li
- Department of Laboratory Medicine, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Suxia Duan
- Department of Laboratory Medicine, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Yu Zhai
- Department of Laboratory Medicine, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Xiaoqing Zhang
- Department of Medical, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Yakun Wang
- Department of Respiratory, Children’s Hospital of Hebei Province, Shijiazhuang, China
| | - Wei Gai
- WillingMed Technology (Beijing) Co., Ltd, Beijing, China
| | - Xiaowei Cui
- Children’s Hospital of Hebei Province, Shijiazhuang, China
| |
Collapse
|
9
|
Zhang J, Hou L, Ma L, Cai Z, Ye S, Liu Y, Ji P, Zuo Z, Zhao F. Real-time and programmable transcriptome sequencing with PROFIT-seq. Nat Cell Biol 2024; 26:2183-2194. [PMID: 39443694 PMCID: PMC11628399 DOI: 10.1038/s41556-024-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
The high diversity and complexity of the eukaryotic transcriptome make it difficult to effectively detect specific transcripts of interest. Current targeted RNA sequencing methods often require complex pre-sequencing enrichment steps, which can compromise the comprehensive characterization of the entire transcriptome. Here we describe programmable full-length isoform transcriptome sequencing (PROFIT-seq), a method that enriches target transcripts while maintaining unbiased quantification of the whole transcriptome. PROFIT-seq employs combinatorial reverse transcription to capture polyadenylated, non-polyadenylated and circular RNAs, coupled with a programmable control system that selectively enriches target transcripts during sequencing. This approach achieves over 3-fold increase in effective data yield and reduces the time required for detecting specific pathogens or key mutations by 75%. We applied PROFIT-seq to study colorectal polyp development, revealing the intricate relationship between host immune responses and bacterial infection. PROFIT-seq offers a powerful tool for accurate and efficient sequencing of target transcripts while preserving overall transcriptome quantification, with broad applications in clinical diagnostics and targeted enrichment scenarios.
Collapse
Affiliation(s)
- Jinyang Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lingling Hou
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lianjun Ma
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhengyi Cai
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shujun Ye
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Peifeng Ji
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhenqiang Zuo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
10
|
Qian X, Liu Y, Wei X, Chen X, Rong G, Hu X. Unique Gut Microbiome and Metabolic Profiles in Chinese Workers Exposed to Dust: Insights From a Case-Control Study. J Occup Environ Med 2024; 66:1072-1082. [PMID: 39393924 DOI: 10.1097/jom.0000000000003243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
OBJECTIVES This study aimed to identify distinct gut microbiome and serum metabolic features in workers exposed to dust compared to healthy controls. METHODS A case-control study was conducted with dust-exposed workers without silicosis and age-matched healthy controls. Gut microbiome composition was analyzed using 16S rRNA sequencing, and serum and fecal metabolomic profiles were assessed by LC-MS. RESULTS Dust-exposed workers showed higher levels of Blautia and Trichoderma and lower levels of Anaplasma , Aspergillus , Plasmodiophoromycetes, and Escherichia coli-Shigella . Metabolites such as indole-3-acetate and gentamicin C1a were downregulated, while adenine, 2-phenylacetamide, and 4-pyridoxic acid were upregulated. CONCLUSIONS Blautia spp. were linked to altered metabolites in dust-exposed workers, suggesting microbiome-metabolite interactions that may affect silicosis progression. However, the small sample size and cross-sectional design limit generalizability, and further longitudinal studies are needed.
Collapse
Affiliation(s)
- Xiaojun Qian
- From the Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Hefei, Hefei, Anhui, China (X.Q., X.W., X.C., G.R.); Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China (X.Q., Y.L.); Department of Respiratory and Critical Care Medicine, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China (X.Q.); and Department of Science and Education, The Third People's Hospital of Hefei, Hefei Third Clinical College of Anhui Medical University, Hefei, Anhui, China (X.H.)
| | | | | | | | | | | |
Collapse
|
11
|
Li Y, Pan G, Wang S, Li Z, Yang R, Jiang Y, Chen Y, Li SC, Shen B. Comprehensive human respiratory genome catalogue underlies the high resolution and precision of the respiratory microbiome. Brief Bioinform 2024; 26:bbae620. [PMID: 39581874 PMCID: PMC11586125 DOI: 10.1093/bib/bbae620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
The human respiratory microbiome plays a crucial role in respiratory health, but there is no comprehensive respiratory genome catalogue (RGC) for studying the microbiome. In this study, we collected whole-metagenome shotgun sequencing data from 4067 samples and sequenced long reads of 124 samples, yielding 9.08 and 0.42 Tbp of short- and long-read data, respectively. By submitting these data with a novel assembly algorithm, we obtained a comprehensive human RGC. This high-quality RGC contains 190,443 contigs over 1 kbps and an N50 length exceeding 13 kbps; it comprises 159 high-quality and 393 medium-quality genomes, including 117 previously uncharacterized respiratory bacteria. Moreover, the RGC contains 209 respiratory-specific species not captured by the unified human gastrointestinal genome. Using the RGC, we revisited a study on a pediatric pneumonia dataset and identified 17 pneumonia-specific respiratory pathogens, reversing an inaccurate etiological conclusion due to the previous incomplete reference. Furthermore, we applied the RGC to the data of 62 participants with a clinical diagnosis of infection. Compared to the Nucleotide database, the RGC yielded greater specificity (0 versus 0.444, respectively) and sensitivity (0.852 versus 0.881, respectively), suggesting that the RGC provides superior sensitivity and specificity for the clinical diagnosis of respiratory diseases.
Collapse
Affiliation(s)
- Yinhu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Guangze Pan
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Shuai Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Zhengtu Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, No. 1 Kangda Road, Haizhu District, Guangzhou 510120, China
| | - Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, West China School of Nursing, Sichuan University, No. 1416 Chenglong Avenue, Jinjiang District, Chengdu 610041, China
| | - Yiqi Jiang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Yu Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen–Hong Kong Institute of Brain Science–Shenzhen Fundamental Research Institutions, No. 1068 Xueyuan Avenue, Nanshan District, Shenzhen 518055, China
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 2222 Xinchuan Road, Gaoxin District, Chengdu 610212, China
| |
Collapse
|
12
|
Garaci E, Pariano M, Nunzi E, Costantini C, Bellet MM, Antognelli C, Russo MA, Romani L. Bacteria and fungi of the lung: allies or enemies? Front Pharmacol 2024; 15:1497173. [PMID: 39584143 PMCID: PMC11584946 DOI: 10.3389/fphar.2024.1497173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024] Open
Abstract
Moving from the earlier periods in which the lungs were believed to represent sterile environments, our knowledge on the lung microbiota has dramatically increased, from the first descriptions of the microbial communities inhabiting the healthy lungs and the definition of the ecological rules that regulate its composition, to the identification of the changes that occur in pathological conditions. Despite the limitations of lung as a microbiome reservoir due to the low microbial biomass and abundance, defining its microbial composition and function in the upper and lower airways may help understanding the impact on local homeostasis and its disruption in lung diseases. In particular, the understanding of the metabolic and immune significance of microbes, their presence or lack thereof, in health and disease states could be valuable in development of novel druggable targets in disease treatments. Next-generation sequencing has identified intricate inter-microbe association networks that comprise true mutualistic or antagonistic direct or indirect relationships in the respiratory tract. In this review, the tripartite interaction of bacteria, fungi and the mammalian host is addressed to provide an integrated view of the microbial-host cross-talk in lung health and diseases from an immune and metabolic perspective.
Collapse
Affiliation(s)
- Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Cinzia Antognelli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Luigina Romani
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
13
|
Essex M, Millet Pascual-Leone B, Löber U, Kuhring M, Zhang B, Brüning U, Fritsche-Guenther R, Krzanowski M, Fiocca Vernengo F, Brumhard S, Röwekamp I, Anna Bielecka A, Lesker TR, Wyler E, Landthaler M, Mantei A, Meisel C, Caesar S, Thibeault C, Corman VM, Marko L, Suttorp N, Strowig T, Kurth F, Sander LE, Li Y, Kirwan JA, Forslund SK, Opitz B. Gut microbiota dysbiosis is associated with altered tryptophan metabolism and dysregulated inflammatory response in COVID-19. NPJ Biofilms Microbiomes 2024; 10:66. [PMID: 39085233 PMCID: PMC11291933 DOI: 10.1038/s41522-024-00538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
The clinical course of COVID-19 is variable and often unpredictable. To test the hypothesis that disease progression and inflammatory responses associate with alterations in the microbiome and metabolome, we analyzed metagenome, metabolome, cytokine, and transcriptome profiles of repeated samples from hospitalized COVID-19 patients and uninfected controls, and leveraged clinical information and post-hoc confounder analysis. Severe COVID-19 was associated with a depletion of beneficial intestinal microbes, whereas oropharyngeal microbiota disturbance was mainly linked to antibiotic use. COVID-19 severity was also associated with enhanced plasma concentrations of kynurenine and reduced levels of several other tryptophan metabolites, lysophosphatidylcholines, and secondary bile acids. Moreover, reduced concentrations of various tryptophan metabolites were associated with depletion of Faecalibacterium, and tryptophan decrease and kynurenine increase were linked to enhanced production of inflammatory cytokines. Collectively, our study identifies correlated microbiome and metabolome alterations as a potential contributor to inflammatory dysregulation in severe COVID-19.
Collapse
Affiliation(s)
- Morgan Essex
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mathias Kuhring
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Core Unit Bioinformatics, Berlin, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, joint ventures between the Helmholtz Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ulrike Brüning
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
| | | | - Marta Krzanowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sophia Brumhard
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Agata Anna Bielecka
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Christian Meisel
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Charlotte Thibeault
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Victor M Corman
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Lajos Marko
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
| | - Norbert Suttorp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Till Strowig
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research (HZI), Braunschweig, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leif E Sander
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Yang Li
- Department of Computational Biology for Individualized Infection Medicine, Center for Individualized Infection Medicine (CiiM), a joint venture between the Helmholtz-Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
- TWINCORE, joint ventures between the Helmholtz Center for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover, Germany
| | - Jennifer A Kirwan
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, BIH Metabolomics Platform, Berlin, Germany
- University of Nottingham School of Veterinary Medicine and Science, Loughborough, UK
| | - Sofia K Forslund
- Experimental and Clinical Research Center (ECRC), a cooperation of the Max Delbrück Center and Charité-Universitätsmedizin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), partner site Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité-Universitätsmedizin Berlin, a corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- Labor Berlin-Charité Vivantes GmbH, Berlin, Germany.
- German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
14
|
Cui S, Guo R, Chen C, Zhang Y, Meng J, Liu L, Li Y, Kang Z, Li S, Yan Q, Ma Y. Next-Generation Sequencing for Characterizing Respiratory Tract Virome and Improving Detection of Viral Pathogens in Children With Pneumonia. Influenza Other Respir Viruses 2024; 18:e13362. [PMID: 39118486 PMCID: PMC11310556 DOI: 10.1111/irv.13362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Pneumonia is typically caused by a variety of pathogenic microorganisms. Traditional research often focuses on the infection of a few microorganisms, whereas metagenomic studies focus on the impact of the bacteriome and mycobiome on respiratory diseases. Reports on the virome characteristics of pediatric pneumonia remain relatively scarce. METHODS We employed de novo assembly and combined homology- and feature-based methods to characterize the respiratory virome in whole-genome DNA sequencing samples from oropharynx (OP) swabs, nasopharynx (NP) swabs, and bronchoalveolar lavage fluids (BALF) of children with pneumonia. RESULTS Significant differences were observed in the alpha and beta diversity indexes, as well as in the composition of the oropharyngeal virome, between pneumonia cases and controls. We identified 1137 viral operational taxonomic units (vOTUs) with significant differences, indicating a preference of pneumonia-reduced vOTUs for infecting Prevotella, Neisseria, and Veillonella, whereas pneumonia-enriched vOTUs included polyomavirus, human adenovirus, and phages targeting Staphylococcus, Streptococcus, Granulicatella, and Actinomyces. Comparative analysis revealed higher relative abundances and prevalence rates of pneumonia-enriched OP vOTUs in NP and BALF samples compared to pneumonia-reduced vOTUs. Additionally, virome analysis identified six pediatric patients with severe human adenovirus or polyomavirus infections, five of whom might have been undetected by targeted polymerase chain reaction (PCR)-based testing. CONCLUSIONS This study offers insights into pediatric pneumonia respiratory viromes, highlighting frequent transmission of potentially pathogenic viruses and demonstrating virome analysis as a valuable adjunct for pathogen detection.
Collapse
Affiliation(s)
- Song Cui
- Department of Biochemistry and Molecular Biology, College of Basic SciencesDalian Medical UniversityDalianChina
- Department of Critical Care MedicineDalian Municipal Central HospitalDalianChina
| | | | - Changming Chen
- Department of Rheumatology and ImmunologyThe Second Affiliated Hospital of Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yue Zhang
- Puensum Genetech InstituteWuhanChina
| | | | - Lanxin Liu
- Department of Critical Care MedicineDalian Municipal Central HospitalDalianChina
| | - Yanxia Li
- Department of Critical Care MedicineDalian Municipal Central HospitalDalianChina
| | - Zhijie Kang
- Department of HematologyThe Second Hospital of Dalian Medical UniversityDalianChina
| | | | - Qiulong Yan
- Department of Microbiology, College of Basic SciencesDalian Medical UniversityDalianChina
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
15
|
Sun M, Lu F, Yu D, Wang Y, Chen P, Liu S. Respiratory diseases and gut microbiota: relevance, pathogenesis, and treatment. Front Microbiol 2024; 15:1358597. [PMID: 39081882 PMCID: PMC11286581 DOI: 10.3389/fmicb.2024.1358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Preclinical evidence has firmly established a bidirectional interaction among the lung, gut, and gut microbiome. There are many complex communication pathways between the lung and intestine, which affect each other's balance. Some metabolites produced by intestinal microorganisms, intestinal immune cells, and immune factors enter lung tissue through blood circulation and participate in lung immune function. Altered gut-lung-microbiome interactions have been identified in rodent models and humans of several lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, asthma, etc. Emerging evidence suggests that microbial therapies can prevent and treat respiratory diseases, but it is unclear whether this association is a simple correlation with the pathological mechanisms of the disease or the result of causation. In this review, we summarize the complex and critical link between the gut microbiota and the lung, as well as the influence and mechanism of the gut microbiota on respiratory diseases, and discuss the role of interventions such as prebiotics and fecal bacteria transplantation on respiratory diseases. To provide a reference for the rational design of large-scale clinical studies, the direct application of microbial therapy to respiratory-related diseases can reduce the incidence and severity of diseases and accompanying complications.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Yang J, Li J, Zhang L, Shen Z, Xiao Y, Zhang G, Chen M, Chen F, Liu L, Wang Y, Chen L, Wang X, Zhang L, Wang L, Wang Z, Wang J, Li M, Ren L. Highly diverse sputum microbiota correlates with the disease severity in patients with community-acquired pneumonia: a longitudinal cohort study. Respir Res 2024; 25:223. [PMID: 38811936 PMCID: PMC11137881 DOI: 10.1186/s12931-024-02821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/24/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.
Collapse
Affiliation(s)
- Jing Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Changping Laboratory, Beijing, 102206, China
| | - Jinman Li
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Linfeng Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zijie Shen
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Guoliang Zhang
- Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Mingwei Chen
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fuhui Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ling Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Ying Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lan Chen
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Li Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Lu Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China
| | - Zhang Wang
- Institute of Ecological Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
17
|
Röwekamp I, Maschirow L, Rabes A, Fiocca Vernengo F, Hamann L, Heinz GA, Mashreghi MF, Caesar S, Milek M, Fagundes Fonseca AC, Wienhold SM, Nouailles G, Yao L, Mousavi S, Bruder D, Boehme JD, Puzianowska-Kuznicka M, Beule D, Witzenrath M, Löhning M, Klose CSN, Heimesaat MM, Diefenbach A, Opitz B. IL-33 controls IL-22-dependent antibacterial defense by modulating the microbiota. Proc Natl Acad Sci U S A 2024; 121:e2310864121. [PMID: 38781213 PMCID: PMC11145264 DOI: 10.1073/pnas.2310864121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.
Collapse
Affiliation(s)
- Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Laura Maschirow
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Anne Rabes
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Lutz Hamann
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Gitta Anne Heinz
- German Rheumatism Research Center, a Leibniz Institute, Berlin10117, Germany
| | | | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin10117, Germany
| | - Anna Carolina Fagundes Fonseca
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Geraldine Nouailles
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Ling Yao
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Dunja Bruder
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg39120, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Julia D. Boehme
- Research Group Infection Immunology, Institute of Medical Microbiology and Hospital Hygiene, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke-University, Magdeburg39120, Germany
- Research Group Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig38124, Germany
| | - Monika Puzianowska-Kuznicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw02-106, Poland
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, Warsaw01-813, Poland
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin10117, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
- German center for lung research (DZL), Berlin13353, Germany
| | | | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité–Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center, a Leibniz Institute, Berlin10117, Germany
| | - Christoph S. N. Klose
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Andreas Diefenbach
- Institute of Microbiology, Infectious Diseases and Immunology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin12203, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin13353, Germany
- German center for lung research (DZL), Berlin13353, Germany
| |
Collapse
|
18
|
Chai Y, Liu X, Bai G, Zhou N, Liu D, Zhang X, Li M, Li K, Lei H. Gut microbiome, T cell subsets, and cytokine analysis identify differential biomarkers in tuberculosis. Front Immunol 2024; 15:1323723. [PMID: 38650928 PMCID: PMC11033455 DOI: 10.3389/fimmu.2024.1323723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction The gut microbiota, T cell subsets, and cytokines participate in tuberculosis (TB) pathogenesis. To date, the mechanisms by which these factors interactively promote TB development at different time points remain largely unclear. In the context of this study, We looked into the microorganisms in the digestive tract, T cell types, and cytokines related to tuberculosis. Methods According to QIIME2, we analyzed 16SrDNA sequencing of the gut microbiome on the Illumina MiSeq. Enzyme-linked immunosorbent assay was used to measure the concentrations of cytokines. Results We showed the presence of 26 identifiable differential microbiomes in the gut and 44 metabolic pathways between healthy controls and the different time points in the development of TB in patients. Five bacterial genera (Bacteroides, Bifidobacterium, Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4/CD8, whereas three bacterial taxa (Faecalibacterium, Collinsella, and Clostridium) were most closely associated with CD4. Three bacterial taxa (Faecalibacterium, Ruminococcus, and Dorea) were most closely associated with IL-4. Ruminococcus was most closely associated with IL-2 and IL-10. Conclusion Diverse microorganisms, subsets of T cells, and cytokines, exhibiting varying relative abundances and structural compositions, were observed in both healthy controls and patients throughout distinct phases of tuberculosis. Gaining insight into the function of the gut microbiome, T cell subsets, and cytokines may help modulate therapeutic strategies for TB.
Collapse
Affiliation(s)
- Yinghui Chai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xin Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Guangliang Bai
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Nannan Zhou
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Danfeng Liu
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xiaomeng Zhang
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Min Li
- First Clinical Medical College, Hebei North University, Zhangjiakou, China
| | - Kang Li
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Hong Lei
- Department of Clinical Laboratory, the 8th Medical Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
19
|
Luo L, Tang J, Du X, Li N. Chronic obstructive pulmonary disease and the airway microbiome: A review for clinicians. Respir Med 2024; 225:107586. [PMID: 38460708 DOI: 10.1016/j.rmed.2024.107586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/30/2023] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex heterogeneous disease characterized by progressive airflow limitation and chronic inflammation. The progressive development and long-term repeated acute exacerbation of COPD make many patients still unable to control the deterioration of the disease after active treatment, and even eventually lead to death. An increasing number of studies have shown that the occurrence and development of COPD are closely related to the composition and changes of airway microbiome. This article reviews the interaction between COPD and airway microbiome, the potential mechanisms of interaction, and the treatment methods related to microbiome. We elaborated the internal correlation between airway microbiome and different stages of COPD, inflammatory endotypes, glucocorticoid and antibiotic treatment, analyze the pathophysiological mechanisms such as the "vicious cycle" hypothesis, abnormal inflammation-immune response of the host and the "natural selection" of COPD to airway microbiome, introduce the treatment of COPD related to microbiome and emphasize the predictive value of airway microbiome for the progression, exacerbation and prognosis of COPD, as well as the guiding role for clinical management of patients, in order to provide a new perspective for exploring the pathogenesis of COPD, and also provide clues and guidance for finding new treatment targets.
Collapse
Affiliation(s)
- Lingxin Luo
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Junli Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xianzhi Du
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Na Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China.
| |
Collapse
|
20
|
Dörner PJ, Anandakumar H, Röwekamp I, Fiocca Vernengo F, Millet Pascual-Leone B, Krzanowski M, Sellmaier J, Brüning U, Fritsche-Guenther R, Pfannkuch L, Kurth F, Milek M, Igbokwe V, Löber U, Gutbier B, Holstein M, Heinz GA, Mashreghi MF, Schulte LN, Klatt AB, Caesar S, Wienhold SM, Offermanns S, Mack M, Witzenrath M, Jordan S, Beule D, Kirwan JA, Forslund SK, Wilck N, Bartolomaeus H, Heimesaat MM, Opitz B. Clinically used broad-spectrum antibiotics compromise inflammatory monocyte-dependent antibacterial defense in the lung. Nat Commun 2024; 15:2788. [PMID: 38555356 PMCID: PMC10981692 DOI: 10.1038/s41467-024-47149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.
Collapse
Affiliation(s)
- Patrick J Dörner
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harithaa Anandakumar
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ivo Röwekamp
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Facundo Fiocca Vernengo
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Belén Millet Pascual-Leone
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marta Krzanowski
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josua Sellmaier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Brüning
- Metabolomics Platform, Berlin Institute of Health at Charité, Berlin, Germany
| | | | - Lennart Pfannkuch
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Vanessa Igbokwe
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Löber
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Birgitt Gutbier
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus Holstein
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gitta Anne Heinz
- German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | | | - Leon N Schulte
- Department of Medicine, Institute for Lung Research, Philipps University Marburg, Marburg, Germany
- German center for lung research (DZL), Marburg, Germany
| | - Ann-Brit Klatt
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra Caesar
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sandra-Maria Wienhold
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Offermanns
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German center for lung research (DZL), Berlin, Germany
| | - Stefan Jordan
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité, Berlin, Germany
| | - Sofia K Forslund
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bastian Opitz
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
- German center for lung research (DZL), Berlin, Germany.
| |
Collapse
|
21
|
Cao Z, Pang Y, Pu J, Liu J. Bacteria-based drug delivery for treating non-oncological diseases. J Control Release 2024; 366:668-683. [PMID: 38219912 DOI: 10.1016/j.jconrel.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
Bacteria inhabit all over the human body, especially the skin, gastrointestinal tract, respiratory tract, urogenital tract, as well as specific lesion sites, such as wound and tumor. By leveraging their distinctive attributes including rapid proliferation, inherent abilities to colonize various biointerfaces in vivo and produce diverse biomolecules, and the flexibility to be functionalized via genetic engineering or surface modification, bacteria have been widely developed as living therapeutic agents, showing promising potential to make a great impact on the exploration of advanced drug delivery systems. In this review, we present an overview of bacteria-based drug delivery and its applications in treating non-oncological diseases. We systematically summarize the physiological positions where living bacterial therapeutic agents can be delivered to, including the skin, gastrointestinal tract, respiratory tract, and female genital tract. We discuss the success of using bacteria-based drug delivery systems in the treatment of diseases that occur in specific locations, such as skin wound healing/infection, inflammatory bowel disease, respiratory diseases, and vaginitis. We also discuss the advantages as well as the limitations of these living therapeutics and bacteria-based drug delivery, highlighting the key points that need to be considered for further translation. This review article may provide unique insights for designing next-generation bacteria-based therapeutics and developing advanced drug delivery systems.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
22
|
Lu Y, Wu Y, Huang M, Chen J, Zhang Z, Li J, Yang R, Liu Y, Cai S. Fuzhengjiedu formula exerts protective effect against LPS-induced acute lung injury via gut-lung axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155190. [PMID: 37972468 DOI: 10.1016/j.phymed.2023.155190] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/01/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Acute lung injury (ALI) is distinguished by rapid and severe respiratory distress and prolonged hypoxemia. A traditional Chinese medicine (TCM), known as the Fuzhengjiedu formula (FZJDF), has been shown to have anti-inflammatory benefits in both clinical and experimental studies. The precise underlying processes, nevertheless, are yet unclear. PURPOSE This study sought to enlighten the protective mechanism of FZJDF in ALI through the standpoint of the gut-lung crosstalk. METHODS The impact of FZJDF on lipopolysaccharide (LPS)-induced ALI murine model were investigated, and the lung injury score, serum interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) expression were measured to confirm its anti-inflammatory effects. Additionally, gut microbiota analysis and serum and fecal samples metabolomics were performed using metagenomic sequencing and high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry, respectively. RESULTS FZJDF significantly induced histopathological changes caused by LPS-induced ALI as well as downregulated the serum concentration of IL-1β and TNF-α. Furthermore, FZJDF had an effect in gut microbiota disturbances, and linear discriminant effect size analysis identified signal transduction, cell motility, and amino acid metabolism as the potential mechanisms of action in the FZJDF-treated group. Several metabolites in the LPS and FZJDF groups were distinguished by untargeted metabolomic analysis. Correlations were observed between the relative abundance of microbiota and metabolic products. Comprehensive network analysis revealed connections among lung damage, gut microbes, and metabolites. The expression of glycine, serine, glutamate, cysteine, and methionine in the lung and colon tissues was dysregulated in LPS-induced ALI, and FZJDF reversed these trends. CONCLUSION This study revealed that FZJDF considerably protected against LPS-induced ALI in mice by regulating amino acid metabolism via the gut-microbiota-lung axis and offered thorough and in-depth knowledge of the multi-system linkages of systemic illnesses.
Collapse
Affiliation(s)
- Yue Lu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yuan Wu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Mengfen Huang
- The Ninth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiankun Chen
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China
| | - Zhongde Zhang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiqiang Li
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China.
| | - Rongyuan Yang
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Yuntao Liu
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China; Guangzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Emerging Infectious Diseases, Guangzhou, Guangdong, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Shubin Cai
- The Second Affiliated Hospital (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Zhu Y, Ma G, Ren W, Hu Z, Zhou L, Zhang X, Zhao N, Zhang M, Yan L, Yu Q, Liu X, Chen J. Effect of oral probiotics on clinical efficacy and intestinal flora in elderly severe pneumonia patients. Medicine (Baltimore) 2023; 102:e36320. [PMID: 38050216 PMCID: PMC10695597 DOI: 10.1097/md.0000000000036320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/06/2023] Open
Abstract
Complex microbial ecosystems in both gastrointestinal and respiratory systems have been found to have a significant impact on human health. Growing evidence has demonstrated that intestinal dysbiosis can increase vulnerability to pulmonary infections. However, changes in the composition and activity of the intestinal flora after probiotic supplementation may alter the disease state of the host. The effects of probiotics on the improvement of diseases, such as severe pneumonia (SP), in intensive care units (ICUs) remain controversial. We retrospectively included 88 patients diagnosed with severe pneumonia between April 2021 and June 2022. The patients were divided into 2 groups: a probiotic group (n = 40) and a control group (n = 48). In addition, changes in CRP, PCT, WBC, IL-6, Clostridium difficile toxin, and PSI pneumonia scores were assessed. Changes in the gut microbiome of the patients were assessed using amplicon sequencing. Compared to the control group, a significant reduction in the incidence of length of hospital stay was observed in the probiotic group, but there were no significant differences in the mortality rate, duration of fever, diarrhea, and constipation. After probiotic treatment, CRP, PCT, WBC, and PSI score were significantly lower than before, and better clinical efficacy was achieved in the probiotic group for the duration of antibiotic therapy. Gut microbiota analysis revealed that the abundance of opportunistic pathogens (e.g., Massilia) increased remarkably at the genus level in the control group, and a significant increase in Erysipelotrichaceae_ge was observed after probiotic intervention. The control group showed an increase in opportunistic pathogens (Citrobacter, Massilia) during the antibiotic treatment. Probiotics interventions inhibit the growth of opportunistic pathogens. In addition, we found that the population of butyrate-producing bacteria (e.g., Ruminococcaceae UCG-005) increased following probiotic treatment.
Collapse
Affiliation(s)
| | - Guannan Ma
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Beijing D.A. Medical Laboratory, Beijing, China
| | - Wei Ren
- Aerospace Center Hospital, Beijing, China
| | - Zhenyu Hu
- Aerospace Center Hospital, Beijing, China
| | - Ling Zhou
- Aerospace Center Hospital, Beijing, China
| | - Xin Zhang
- Aerospace Center Hospital, Beijing, China
| | - Na Zhao
- Aerospace Center Hospital, Beijing, China
| | | | - Lei Yan
- Aerospace Center Hospital, Beijing, China
| | - Qian Yu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Beijing D.A. Medical Laboratory, Beijing, China
| | - Xuetong Liu
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
- Beijing D.A. Medical Laboratory, Beijing, China
| | | |
Collapse
|
24
|
Yang J, He Y, Liao X, Hu J, Li K. Does postoperative pulmonary infection correlate with intestinal flora following gastric cancer surgery? - a nested case-control study. Front Microbiol 2023; 14:1267750. [PMID: 38029086 PMCID: PMC10658784 DOI: 10.3389/fmicb.2023.1267750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The primary objective of this study was to investigate the potential correlation between gut microbes and postoperative pulmonary infection in gastric cancer patients. Additionally, we aimed to deduce the mechanism of differential functional genes in disease progression to gain a better understanding of the underlying pathophysiology. Methods A nested case-control study design was utilized to enroll patients with gastric cancer scheduled for surgery at West China Hospital of Sichuan University. Patients were categorized into two groups, namely, the pulmonary infection group and the control group, based on the development of postoperative pulmonary infection. Both groups were subjected to identical perioperative management protocols. Fecal samples were collected 24 h postoperatively and upon pulmonary infection diagnosis, along with matched controls. The collected samples were subjected to 16S rDNA and metagenomic analyses, and clinical data and blood samples were obtained for further analysis. Results A total of 180 fecal specimens were collected from 30 patients in both the pulmonary infection and control groups for 16S rDNA analysis, and 3 fecal samples from each group were selected for metagenomic analysis. The study revealed significant alterations in the functional genes of the intestinal microbiome in patients with postoperative pulmonary infection in gastric cancer, primarily involving Klebsiella, Enterobacter, Ruminococcus, and Collinsella. During postoperative pulmonary infection, gut flora and inflammatory factors were found to be associated with the lipopolysaccharide synthesis pathway and short-chain fatty acid (SCFA) synthesis pathway. Discussion The study identified enriched populations of Klebsiella, Escherella, and intestinal bacteria during pulmonary infection following gastric cancer surgery. These bacteria were found to regulate the lipopolysaccharide synthesis pathway, contributing to the initiation and progression of pulmonary infections. Inflammation modulation in patients with postoperative pulmonary infection may be mediated by short-chain fatty acids. The study also revealed that SCFA synthesis pathways were disrupted, affecting inflammation-related immunosuppression pathways. By controlling and maintaining intestinal barrier function, SCFAs may potentially reduce the occurrence of pulmonary infections after gastric cancer surgery. These findings suggest that targeting the gut microbiome and SCFA synthesis pathways may be a promising approach for preventing postoperative pulmonary infections in gastric cancer patients.
Collapse
Affiliation(s)
- Jie Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuhua He
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xi Liao
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Zhang X, Tang F, Shu W, Li D, Liu Y, Xiao H, Zhou J, Li P. Small-molecule fluorescent probes for bioactive species in inflammatory disease: arthritis, pneumonia and hepatitis. Analyst 2023; 148:5303-5321. [PMID: 37796086 DOI: 10.1039/d3an01289a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Inflammation as an adaptive response underlies a wide variety of physiological and pathological processes. The progression of inflammation is closely intertwined with various bioactive molecules. To dissect the biological mechanisms and physiopathological functions of these molecules, exploitation of versatile detection mean is of great importance. Fluorescence imaging technique has been widely employed to track bioactive species in living systems. As a result, many small-molecule fluorescent probes for bioactive species in inflammatory disease have been developed. However, this interesting and frontier topic hasn't been systematically categorized. Therefore, in this review, we have generalized the construction strategies and biological imaging applications of small-molecule fluorescent probes for various bioactive species, including reactive oxygen/nitrogen/sulfur species, enzyme, mainly in arthritis, pneumonia and hepatitis. Moreover, the future challenges in constructing novel fluorescent probes for inflammatory disease are also present. This review will facilitate the comprehension of superior fluorescent probes for active molecules associated with inflammation.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Fuyan Tang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, P. R. China
| | - Dongpeng Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Yuying Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Haibin Xiao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| | - Jin Zhou
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
26
|
Pérez-Cobas AE, Ginevra C, Rusniok C, Jarraud S, Buchrieser C. The respiratory tract microbiome, the pathogen load, and clinical interventions define severity of bacterial pneumonia. Cell Rep Med 2023; 4:101167. [PMID: 37633274 PMCID: PMC10518590 DOI: 10.1016/j.xcrm.2023.101167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/18/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Bacterial pneumonia is a considerable problem worldwide. Here, we follow the inter-kingdom respiratory tract microbiome (RTM) of a unique cohort of 38 hospitalized patients (n = 97 samples) with pneumonia caused by Legionella pneumophila. The RTM composition is characterized by diversity drops early in hospitalization and ecological species replacement. RTMs with the highest bacterial and fungal loads show low diversity and pathogen enrichment, suggesting high biomass as a biomarker for secondary and/or co-infections. The RTM structure is defined by a "commensal" cluster associated with a healthy RTM and a "pathogen" enriched one, suggesting that the cluster equilibrium drives the microbiome to recovery or dysbiosis. Legionella biomass correlates with disease severity and co-morbidities, while clinical interventions influence the RTM dynamics. Fungi, archaea, and protozoa seem to contribute to progress of pneumonia. Thus, the interplay of the RTM equilibrium, the pathogen load dynamics, and clinical interventions play a critical role in patient recovery.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, Paris, France; CNRS UMR 6047, 75724 Paris, France.
| | - Christophe Ginevra
- Hospices Civils de Lyon, Centre National de Référence des Légionelles, Bron, France; Centre International de Recherche en Infectiologie, Université Lyon 1, UMR CNRS 5308, U1111 Inserm, École Normale Supérieure de Lyon, Lyon, France
| | - Christophe Rusniok
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, Paris, France; CNRS UMR 6047, 75724 Paris, France
| | - Sophie Jarraud
- Hospices Civils de Lyon, Centre National de Référence des Légionelles, Bron, France; Centre International de Recherche en Infectiologie, Université Lyon 1, UMR CNRS 5308, U1111 Inserm, École Normale Supérieure de Lyon, Lyon, France
| | - Carmen Buchrieser
- Institut Pasteur, Université Paris Cité, Biologie des Bactéries Intracellulaires, Paris, France; CNRS UMR 6047, 75724 Paris, France.
| |
Collapse
|
27
|
Orieux A, Enaud R, Imbert S, Boyer P, Begot E, Camino A, Boyer A, Berger P, Gruson D, Delhaes L, Prevel R. The gut microbiota composition is linked to subsequent occurrence of ventilator-associated pneumonia in critically ill patients. Microbiol Spectr 2023; 11:e0064123. [PMID: 37713505 PMCID: PMC10581192 DOI: 10.1128/spectrum.00641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/26/2023] [Indexed: 09/17/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is the most frequent nosocomial infection in critically ill-ventilated patients. Oropharyngeal and lung microbiota have been demonstrated to be associated with VAP occurrence, but the involvement of gut microbiota has not been investigated so far. Therefore, the aim of this study is to compare the composition of the gut microbiota between patients who subsequently develop VAP and those who do not. A rectal swab was performed at admission of every consecutive patient into the intensive care unit (ICU) from October 2019 to March 2020. After DNA extraction, V3-V4 and internal transcribed spacer 2 regions deep-sequencing was performed on MiSeq sequencer (Illumina) and data were analyzed using Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline. Among 255 patients screened, 42 (16%) patients with invasive mechanical ventilation for more than 48 h were included, 18 (43%) with definite VAP and 24 without (57%). Patients who later developed VAP had similar gut bacteriobiota and mycobiota α-diversities compared to those who did not develop VAP. However, gut mycobiota was dissimilar (β-diversity) between these two groups. The presence of Megasphaera massiliensis was associated with the absence of VAP occurrence, whereas the presence of the fungal genus Alternaria sp. was associated with the occurrence of VAP. The composition of the gut microbiota, but not α-diversity, differs between critically ill patients who subsequently develop VAP and those who do not. This study encourages large multicenter cohort studies investigating the role of gut-lung axis and oropharyngeal colonization in the development of VAP in ICU patients. Trial registration number: NCT04131569, date of registration: 18 October 2019. IMPORTANCE The composition of the gut microbiota, but not α-diversity, differs between critically ill patients who subsequently develop ventilator-associated pneumonia (VAP) and those who do not. Investigating gut microbiota composition could help to tailor probiotics to provide protection against VAP.
Collapse
Affiliation(s)
- Arthur Orieux
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
| | - Raphaël Enaud
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
- CHU Bordeaux, CRCM Pédiatrique, Bordeaux, France
| | - Sébastien Imbert
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
- Mycology-Parasitology Department, CHU Bordeaux, Bordeaux, France
| | - Philippe Boyer
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
| | - Erwan Begot
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
| | - Adrian Camino
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Alexandre Boyer
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Patrick Berger
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Didier Gruson
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Laurence Delhaes
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
- Mycology-Parasitology Department, CHU Bordeaux, Bordeaux, France
| | - Renaud Prevel
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| |
Collapse
|
28
|
Qin J, Wang J. Research progress on the effects of gut microbiome on lung damage induced by particulate matter exposure. ENVIRONMENTAL RESEARCH 2023; 233:116162. [PMID: 37348637 DOI: 10.1016/j.envres.2023.116162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/28/2023] [Accepted: 05/14/2023] [Indexed: 06/24/2023]
Abstract
Air pollution is one of the top five causes of death in the world and has become a research hotspot. In the past, the health effects of particulate matter (PM), the main component of air pollutants, were mainly focused on the respiratory and cardiovascular systems. However, in recent years, the intestinal damage caused by PM and its relationship with gut microbiome (GM) homeostasis, thereby affecting the composition and function of GM and bringing disease burden to the host lung through different mechanisms, have attracted more and more attention. Therefore, this paper reviews the latest research progress in the effect of PM on GM-induced lung damage and its possible interaction pathways and explores the potential immune inflammatory mechanism with the gut-lung axis as the hub in order to understand the current research situation and existing problems, and to provide new ideas for further research on the relationship between PM pollution, GM, and lung damage.
Collapse
Affiliation(s)
- Jiali Qin
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Junling Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
29
|
Zhou Y, Xu B, Wang L, Zhang C, Li S. Fine Particulate Matter Perturbs the Pulmonary Microbiota in Broiler Chickens. Animals (Basel) 2023; 13:2862. [PMID: 37760262 PMCID: PMC10525718 DOI: 10.3390/ani13182862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Fine particulate matter (PM2.5) seriously affects the respiratory tract health of both animals and humans. Growing evidence indicates that the pulmonary microbiota is involved in the development of respiratory tract health; however, there is still much that is unknown about the specific changes of pulmonary microbiota caused by PM2.5 in broilers. (2) In this experiment, a total of 48 broilers were randomly divided into a control group and PM-exposure group. The experiment lasted for 21 days. Microbiota, inflammation biomarkers, and histological markers in the lungs were determined. (3) On the last day of the experiment, PM significantly disrupted the structure of lung tissue and induced chronic pulmonary inflammation by increasing IL-6, TNFα, and IFNγ expression and decreasing IL-10 expression. PM exposure significantly altered the α and β diversity of pulmonary microbiota. At the phylum level, PM exposure significantly decreased the Firmicutes abundance and increased the abundance of Actinobacteria and Proteobacteria. At the genus level, PM exposure significantly increased the abundance of Rhodococcus, Achromobacter, Pseudomonas, and Ochrobactrum. We also observed positive associations of the above altered genera with lung TNFα and IFNγ expression. (4) The results suggest that PM perturbs the pulmonary microbiota and induces chronic inflammation, and the pulmonary microbiota possibly contributes to the development of lung inflammation.
Collapse
Affiliation(s)
| | | | | | | | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Y.Z.); (B.X.); (L.W.); (C.Z.)
| |
Collapse
|
30
|
Pérez-Cobas AE, Rodríguez-Beltrán J, Baquero F, Coque TM. Ecology of the respiratory tract microbiome. Trends Microbiol 2023; 31:972-984. [PMID: 37173205 DOI: 10.1016/j.tim.2023.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023]
Abstract
A thriving multi-kingdom microbial ecosystem inhabits the respiratory tract: the respiratory tract microbiome (RTM). In recent years, the contribution of the RTM to human health has become a crucial research aspect. However, research into the key ecological processes, such as robustness, resilience, and microbial interaction networks, has only recently started. This review leans on an ecological framework to interpret the human RTM and determine how the ecosystem functions and assembles. Specifically, the review illustrates the ecological RTM models and discusses microbiome establishment, community structure, diversity stability, and critical microbial interactions. Lastly, the review outlines the RTM responses to ecological disturbances, as well as the promising approaches for restoring ecological balance.
Collapse
Affiliation(s)
- Ana Elena Pérez-Cobas
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain.
| | - Jerónimo Rodríguez-Beltrán
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain; CIBER in Infectious Diseases (CIBERINFEC), Madrid, Spain
| |
Collapse
|
31
|
Du B, Fu Y, Han Y, Sun Q, Xu J, Yang Y, Rong R. The lung-gut crosstalk in respiratory and inflammatory bowel disease. Front Cell Infect Microbiol 2023; 13:1218565. [PMID: 37680747 PMCID: PMC10482113 DOI: 10.3389/fcimb.2023.1218565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
Both lung and gut belong to the common mucosal immune system (CMIS), with huge surface areas exposed to the external environment. They are the main defense organs against the invasion of pathogens and play a key role in innate and adaptive immunity. Recently, more and more evidence showed that stimulation of one organ can affect the other, as exemplified by intestinal complications during respiratory disease and vice versa, which is called lung-gut crosstalk. Intestinal microbiota plays an important role in respiratory and intestinal diseases. It is known that intestinal microbial imbalance is related to inflammatory bowel disease (IBD), this imbalance could impact the integrity of the intestinal epithelial barrier and leads to the persistence of inflammation, however, gut microbial disturbances have also been observed in respiratory diseases such as asthma, allergy, chronic obstructive pulmonary disease (COPD), and respiratory infection. It is not fully clarified how these disorders happened. In this review, we summarized the latest examples and possible mechanisms of lung-gut crosstalk in respiratory disease and IBD and discussed the strategy of shaping intestinal flora to treat respiratory diseases.
Collapse
Affiliation(s)
- Baoxiang Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Fu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yuxiu Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qihui Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinke Xu
- Shandong Center for Disease Control and Prevention, Jinan, China
| | - Yong Yang
- Shandong Antiviral Engineering Research Center of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Rong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic Research, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
32
|
Huang S, Li J, Zhu Z, Liu X, Shen T, Wang Y, Ma Q, Wang X, Yang G, Guo G, Zhu F. Gut Microbiota and Respiratory Infections: Insights from Mendelian Randomization. Microorganisms 2023; 11:2108. [PMID: 37630668 PMCID: PMC10458510 DOI: 10.3390/microorganisms11082108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The role of the gut microbiota in modulating the risk of respiratory infections has garnered increasing attention. However, conventional clinical trials have faced challenges in establishing the precise relationship between the two. In this study, we conducted a Mendelian randomization analysis with single nucleotide polymorphisms employed as instrumental variables to assess the causal links between the gut microbiota and respiratory infections. Two categories of bacteria, family Lactobacillaceae and genus Family XIII AD3011, were causally associated with the occurrence of upper respiratory tract infections (URTIs). Four categories of gut microbiota existed that were causally associated with lower respiratory tract infections (LRTIs), with order Bacillales and genus Paraprevotella showing a positive association and genus Alistipes and genus Ruminococcaceae UCG009 showing a negative association. The metabolites and metabolic pathways only played a role in the development of LRTIs, with the metabolite deoxycholine acting negatively and menaquinol 8 biosynthesis acting positively. The identification of specific bacterial populations, metabolites, and pathways may provide new clues for mechanism research concerning therapeutic interventions for respiratory infections. Future research should focus on elucidating the potential mechanisms regulating the gut microbiota and developing effective strategies to reduce the incidence of respiratory infections. These findings have the potential to significantly improve global respiratory health.
Collapse
Affiliation(s)
- Shengyu Huang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Jiaqi Li
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Zhihao Zhu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Xiaobin Liu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
| | - Tuo Shen
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
| | - Yusong Wang
- ICU of Burn and Trauma, Changhai Hospital, Shanghai 200433, China;
| | - Qimin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
| | - Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Guangping Yang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; (S.H.); (J.L.); (Z.Z.); (X.W.); (G.Y.)
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; (X.L.); (T.S.); (Q.M.)
- ICU of Burn and Trauma, Changhai Hospital, Shanghai 200433, China;
| |
Collapse
|
33
|
Zhang D, Jian YP, Zhang YN, Li Y, Gu LT, Sun HH, Liu MD, Zhou HL, Wang YS, Xu ZX. Short-chain fatty acids in diseases. Cell Commun Signal 2023; 21:212. [PMID: 37596634 PMCID: PMC10436623 DOI: 10.1186/s12964-023-01219-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/09/2023] [Indexed: 08/20/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract. The absorption of SCFAs is mediated by substrate transporters, such as monocarboxylate transporter 1 and sodium-coupled monocarboxylate transporter 1, which promote cellular metabolism. An increasing number of studies have implicated metabolites produced by microorganisms as crucial executors of diet-based microbial influence on the host. SCFAs are important fuels for intestinal epithelial cells (IECs) and represent a major carbon flux from the diet, that is decomposed by the gut microbiota. SCFAs play a vital role in multiple molecular biological processes, such as promoting the secretion of glucagon-like peptide-1 by IECs to inhibit the elevation of blood glucose, increasing the expression of G protein-coupled receptors such as GPR41 and GPR43, and inhibiting histone deacetylases, which participate in the regulation of the proliferation, differentiation, and function of IECs. SCFAs affect intestinal motility, barrier function, and host metabolism. Furthermore, SCFAs play important regulatory roles in local, intermediate, and peripheral metabolisms. Acetate, propionate, and butyrate are the major SCFAs, they are involved in the regulation of immunity, apoptosis, inflammation, and lipid metabolism. Herein, we review the diverse functional roles of this major class of bacterial metabolites and reflect on their ability to affect intestine, metabolic, and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yong-Ping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
- School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Yu-Ning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Yao Li
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Li-Ting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hui-Hui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Ming-Di Liu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China
| | - Hong-Lan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Yi-Shu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, China.
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
34
|
Woodall CA, Hammond A, Cleary D, Preston A, Muir P, Pascoe B, Sheppard SK, Hay AD. Oral and gut microbial biomarkers of susceptibility to respiratory tract infection in adults: A feasibility study. Heliyon 2023; 9:e18610. [PMID: 37593638 PMCID: PMC10432180 DOI: 10.1016/j.heliyon.2023.e18610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
We conducted a feasibility cohort study which aimed to recruit and retain adults from the community to collect saliva (oral) and stool (gut) samples at three time points, at the start of the study (baseline), during a respiratory tract infection (RTI) and post-RTI. Community RTIs place a huge burden on health care services, and a non-invasive microbial diagnostic tool to predict the most vulnerable to respiratory infection would be ideal. To this aim, we analysed oral-gut baseline samples comparing those who reported RTI symptoms to those who remained healthy throughout the study for microbial biomarkers of respiratory susceptibility. Amplicon sequence variants (ASV) were identified by 16S sequence profiling to reveal oral-gut microbes. Reverse transcriptase-polymerase chain reaction (RT-PCR) was applied to target common respiratory microbes. Two general practices were recruited, and the participant recruitment rate was 1.3%. A total of 40 adult participants were retained, of which 19 acquired an RTI whereas 21 remained healthy. In healthy baseline oral and gut samples, ASVs from participants with RTI symptoms compared to those who remained healthy were similar with a high relative abundance of Streptococcus sp., and Blautia sp., respectively. Linear discriminant analysis effect size (LEfSe) revealed baseline oral microbes differed, indicating participants who suffered RTI symptoms had enhanced Streptococcus sobrinus and Megamonas sp., and depletion of Lactobacillus salivarius, Synergistetes, Verrucomicrobia and Dethiosulfovibrio. Furthermore, a random forest model ranked Streptococcus (4.13) as the highest mean decrease in accuracy (MDA) and RT-PCR showed a higher level of carriage of coagulase-negative Staphylococcus. Baseline core gut microbes were similar in both participant groups whereas LEfSe analysis revealed enhanced Veillonella, Rikenellaceae, Enhydobacteria, Eggerthella and Xanthomonsdales and depleted Desulfobulbus and Coprobacillus. Sutterella (4.73) had a high MDA value. Overall, we demonstrated the feasibility of recruiting and retaining adult participants from the community to provide multiple biological samples for microbial profiling. Our analyses identified potential oral-gut microbial biomarkers of respiratory infection susceptibility in otherwise healthy participants.
Collapse
Affiliation(s)
- Claire A. Woodall
- School of Cellular and Molecular Medicine, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashley Hammond
- Centre for Academic Primary Care, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - David Cleary
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Andrew Preston
- The Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Peter Muir
- Public Health England, Southwest Regional Laboratory, National Infection Service, Southmead Hospital, Bristol, UK
| | - Ben Pascoe
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Alastair D. Hay
- Centre for Academic Primary Care, Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
35
|
Li Y, Liu X, Zheng Y, Zhang Y, Li Z, Cui Z, Jiang H, Zhu S, Wu S. Ultrasmall Cortex Moutan Nanoclusters for the Therapy of Pneumonia and Colitis. Adv Healthc Mater 2023; 12:e2300402. [PMID: 36898770 DOI: 10.1002/adhm.202300402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 03/12/2023]
Abstract
Infectious pneumonia and colitis are hard to be treated due to tissue infection, mucosal immune disorders, and dysbacteriosis. Although conventional nanomaterials can eliminate infection, they also damage normal tissues and intestinal flora. Herein, this work reports bactericidal nanoclusters formed through self-assembly for efficient treatment of infectious pneumonia and enteritis. The ultrasmall (about 2.3 nm) cortex moutan nanoclusters (CMNCs) has excellent antibacterial, antiviral, and immune regulation activity. The formation of nanoclusters is analyzed from the molecular dynamics mainly through the binding between polyphenol structures through hydrogen bonding and ππ stacking interaction. CMNCs have enhanced tissue and mucus permeability ability compared with natural CM. CMNCs precisely targeted bacteria due to polyphenol-rich surface structure and inhibited broad spectrum of bacteria. Besides, they killed H1N1 virus mainly through the inhibition of the neuraminidase. These CMNCs are effective in treating infectious pneumonia and enteritis relative to natural CM. In addition, they can be used for adjuvant colitis treatment by protecting colonic epithelium and altering the composition of gut microbiota. Therefore, CMNCs showed excellent application and clinical translation prospects in the treatment of immune and infectious diseases.
Collapse
Affiliation(s)
- Yuan Li
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiangmei Liu
- School of Life Science and Health Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin, 300401, China
| | - Yufeng Zheng
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing, 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
36
|
Wei L, Zhang L, Zhang Y, Yan L, Liu B, Cao Z, Zhao N, He X, Li L, Lu C. Intestinal Escherichia coli and related dysfunction as potential targets of Traditional Chinese Medicine for respiratory infectious diseases. JOURNAL OF ETHNOPHARMACOLOGY 2023; 313:116381. [PMID: 36940735 DOI: 10.1016/j.jep.2023.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/24/2023] [Accepted: 03/08/2023] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine (TCM) has saved countless lives and maintained human health over its long history, especially in respiratory infectious diseases. The relationship between the intestinal flora and the respiratory system has been a popular research topic in recent years. According to the theory of the "gut-lung axis" in modern medicine and the idea that "the lung stands in an interior-exterior relationship with the large intestine" in TCM, gut microbiota dysbiosis is a contributing factor to respiratory infectious diseases, and there is potential means for manipulation of the gut microbiota in the treatment of lung diseases. Emerging studies have indicated intestinal Escherichia coli (E. coli) overgrowth in multiple respiratory infectious diseases, which could exacerbate respiratory infectious diseases by disrupting immune homeostasis, the gut barrier and metabolic balance. TCM is an effective microecological regulator, that can regulate the intestinal flora including E. coli, and restore the balance of the immune system, gut barrier, and metabolism. AIM OF THE REVIEW This review discusses the changes and effects of intestinal E. coli in respiratory infection, as well as the role of TCM in the intestinal flora, E. coli and related immunity, the gut barrier and the metabolism, thereby suggesting the possibility of TCM therapy regulating intestinal E. coli and related immunity, the gut barrier and the metabolism to alleviate respiratory infectious diseases. We aimed to make a modest contribution to the research and development of new therapies for intestinal flora in respiratory infectious diseases and the full utilization of TCM resources. Relevant information about the therapeutic potential of TCM to regulate intestinal E. coli against diseases was collected from PubMed, China National Knowledge Infrastructure (CNKI), and so on. The Plants of the World Online (https://wcsp.science.kew.org) and the Plant List (www.theplantlist.org) databases were used to provide the scientific names and species of plants. RESULTS Intestinal E. coli is a very important bacterium in respiratory infectious diseases that affects the respiratory system through immunity, the gut barrier and the metabolism. Many TCMs can inhibit the abundance of E. coli and regulate related immunity, the gut barrier and the metabolism to promote lung health. CONCLUSION TCM targeting intestinal E. coli and related immune, gut barrier, and metabolic dysfunction could be a potential therapy to promote the treatment and prognosis of respiratory infectious diseases.
Collapse
Affiliation(s)
- Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lulu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yan Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
37
|
Chi M, Jiang T, He X, Peng H, Li Y, Zhang J, Wang L, Nian Q, Ma K, Liu C. Role of Gut Microbiota and Oxidative Stress in the Progression of Transplant-Related Complications following Hematopoietic Stem Cell Transplantation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3532756. [PMID: 37113743 PMCID: PMC10129428 DOI: 10.1155/2023/3532756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/12/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT), also known as bone marrow transplantation, has curative potential for various hematologic malignancies but is associated with risks such as graft-versus-host disease (GvHD), severe bloodstream infection, viral pneumonia, idiopathic pneumonia syndrome (IPS), lung fibrosis, and sinusoidal obstruction syndrome (SOS), which severely deteriorate clinical outcomes and limit the wide application of HSCT. Recent research has provided important insights into the effects of gut microbiota and oxidative stress (OS) on HSCT complications. Therefore, based on recent studies, we describe intestinal dysbiosis and OS in patients with HSCT and review recent molecular findings underlying the causal relationships of gut microbiota, OS, and transplant-related complications, focusing particularly on the involvement of gut microbiota-mediated OS in postengraftment complications. Also, we discuss the use of antioxidative and anti-inflammatory probiotics to manipulate gut microbiota and OS, which have been associated with promising effects in improving HSCT outcomes.
Collapse
Affiliation(s)
- Mingxuan Chi
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Tao Jiang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan Province 610072, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, China
| | - Haoyu Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunlong Li
- Department of Urology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiong Zhang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Qing Nian
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Chi Liu
- Department of Nephrology, Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| |
Collapse
|
38
|
Zhu X, Li H, Zhou L, Jiang H, Ji M, Chen J. Evaluation of the gut microbiome alterations in healthy rats after dietary exposure to different synthetic ZnO nanoparticles. Life Sci 2022; 312:121250. [PMID: 36455650 DOI: 10.1016/j.lfs.2022.121250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
AIMS Although synthetic ZnO nanoparticles (Nano-ZnO) as an alternative of ZnO compounds have been extensively used such as in livestock production, the increased consuming of Nano-ZnO has raised considerable concerns in environmental pollution and public health. Because of the low digestion of Nano-ZnO, the systematic studies on their interactions with gut microbiota remain to be clarified. MATERIALS AND METHODS Nano-ZnOs were prepared by co-precipitation (ZnO-cp) and high temperature thermal decomposition (ZnO-td) as well as the commercial type (ZnO-s). Transmission electron microscopy (TEM) was used to monitor the morphology of Nano-ZnO. CCK-8 assay was used for cytotoxicity evaluation. Total antioxidant capacity assay, total superoxide dismutase assay, and lipid peroxidation assay were used to evaluate oxidative states of rats. 16S rRNA was used to study the impact of Nano-ZnO on the rat gut microbiome. KEY FINDINGS Both ZnO-cp and ZnO-td exhibited low cytotoxicity while ZnO-s and ZnO-td exhibited prominent antibacterial activities. After a 28-day oral feeding with 1000 mg/kg Zn at dietary dosage, ZnO-s showed slight effect on causing oxidative stress in comparison with that of ZnO-cp and ZnO-td. Results of 16S rRNA sequencing analysis indicated that ZnO-td as a promising short-term nano-supplement can increase probiotics abundances like strains belonged to the genus Lactobacillus and provide the antipathogenic effect. SIGNIFICANCE The results of the gut microbiome alteration by synthetic Nano-ZnO not only provide solution to exposure monitoring of environmental hazard, but rationalize their large-scale manufacture as alternative additive in the food chain.
Collapse
Affiliation(s)
- Xinyi Zhu
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Henghui Li
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuzhu Zhou
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Jiang
- School of Pharmacy, Nanjing Medical University, 211166 Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing 211166, China
| | - Jin Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Jiangsu Province Engineering Research Center of Antibody Drug, Key Laboratory of Antibody Technique of National Health Commission, Nanjing Medical University, Nanjing 211166, China; The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, 211166 Nanjing, China.
| |
Collapse
|
39
|
Lin J, Zhang J, Zhou R, Guo L, Liu D, Rong M, Kong MG, Ostrikov KK. Plasma-enhanced microbial electrolytic disinfection: Decoupling electro- and plasma-chemistry in plasma-electrolyzed oxidizing water using ion-exchange membranes. WATER RESEARCH 2022; 225:119174. [PMID: 36206683 DOI: 10.1016/j.watres.2022.119174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Pathogenic microorganisms pose a global threat to public health and environment. Common antibacterial chemicals produce toxic residues, inevitably harming the environment. Electrolyzed oxidizing water (EOW), a promising environment-friendly alternative disinfectant, still lacks effective production processes, sufficient bactericidal efficacy and stability, while the enabling physico-chemical mechanisms remain unclear. Here, we report, for the first time, an effective hybrid plasma electrochemical EOW production process and reveal the mechanisms by combining nonthermal plasmas and a two-chamber electrochemical cell separated by a cation exchange membrane (CEM) for decoupling the chemical reactions during the plasma treatment of water. Experimental results demonstrate that combined chlorine (chloramine) was the main chlorine product in the plasma-enhanced EOW (P-EOW) without a membrane, owing to the consumption of free chlorine (Cl2, HOCl, ClO-) by plasma-generated reactive nitrogen species. With a CEM in the plasma electrolysis system and through controlling the plasma discharge polarity, the production of free chlorine and other reactive species can be selectively controlled, with the highest concentration of free chlorine obtained in the negative plasma-enhanced EOW (NP-EOW). According to the transportation of cations by the CEM, the high concentrations of free chlorine may be attributed to the higher consuptions of H+ in cathode cell of negative plasma. The study of antibacterial ability of EOW produced under different conditions revealed that Staphylococcus aureus cells were best inactivated by the NP-EOW with CEM, which is mainly attributed to the higher concentration of free chlorine. This study demonstrates the feasibility of plasma-enhanced microbial electrolytic disinfection and offers new insights into the fundamental aspects of P-EOW chemistries for the future development of sustainable, efficient, and cost-effective multipurpose sustainable chemical technologies for water research and treatment.
Collapse
Affiliation(s)
- Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China
| | - Michael G Kong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an 710049, China; Frank Reidy Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, United States; Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, United States
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Clean Energy Technologies and Practices, and Centre for a Waste-Free World, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
40
|
Kobayashi H, Shindo Y, Kobayashi D, Sakakibara T, Murakami Y, Yagi M, Matsuura A, Sato K, Matsui K, Emoto R, Yagi T, Saka H, Matsui S, Hasegawa Y. Extended-Spectrum Antibiotics for Community-Acquired Pneumonia with a Low Risk of Drug-Resistant Pathogens. Int J Infect Dis 2022; 124:124-132. [PMID: 36116670 DOI: 10.1016/j.ijid.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The potential hazards of extended-spectrum antibiotic therapy for patients with community-acquired pneumonia (CAP) with low risk of drug-resistant pathogens (DRPs) remains unclear, although risk assessment for DRPs is essential to determine the initial antibiotics to be administered. The study objective is to assess the effect of unnecessary extended-spectrum therapy on mortality of such patients. METHODS A post-hoc analysis was conducted after a prospective multicenter observational study for CAP. Multivariable logistic regression analysis was performed to assess the effect of extended-spectrum therapy on 30-day mortality. Three sensitivity analyses, including propensity score analysis to confirm the robustness of findings, were also performed. RESULTS Among 750 patients with CAP, 416 with CAP with a low risk of DRPs were analyzed; of these, 257 underwent standard therapy and 159 underwent extended-spectrum therapy. The 30-day mortality was 3.9% and 13.8% in the standard and extended-spectrum therapy groups, respectively. Primary analysis revealed that extended-spectrum therapy was associated with increased 30-day mortality compared with standard therapy (adjusted odds ratio, 2.82; 95% confidence interval, 1.20-6.66). The results of the sensitivity analyses were consistent with those of the primary analysis. CONCLUSIONS Physicians should assess the risk of DRPs when determining the empirical antibiotic therapy and should refrain from administering unnecessary extended-spectrum antibiotics for patients with CAP with a low risk of DRPs.
Collapse
Affiliation(s)
- Hironori Kobayashi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yuichiro Shindo
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Daisuke Kobayashi
- Kyoto University Health Service, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Toshihiro Sakakibara
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yasushi Murakami
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Mitsuaki Yagi
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Akinobu Matsuura
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Kenta Sato
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Kota Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Ryo Emoto
- Department of Biostatistics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Tetsuya Yagi
- Department of Infectious Diseases, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Hideo Saka
- Department of Respiratory Medicine, Matsunami General Hospital, 185-1 Dendai, Kasamatsu, Hashima District, Gifu 501-6062, Japan; National Hospital Organization, Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya 460-0001, Japan.
| | - Shigeyuki Matsui
- Department of Biostatistics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; National Hospital Organization, Nagoya Medical Center, 4-1-1 Sannomaru, Naka-ku, Nagoya 460-0001, Japan.
| |
Collapse
|
41
|
Intestinal Klebsiella pneumoniae Contributes to Pneumonia by Synthesizing Glutamine in Multiple Myeloma. Cancers (Basel) 2022; 14:cancers14174188. [PMID: 36077725 PMCID: PMC9454521 DOI: 10.3390/cancers14174188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Pneumonia accounts for a significant cause of morbidity and mortality in multiple myeloma (MM) patients. It has been previously shown that intestinal Klebsiella pneumonia (K. pneumonia) enriches in MM and promotes MM progression. However, what role the altered gut microbiota plays in MM with pneumonia remains unknown. Here, we show that intestinal K. pneumonia is significantly enriched in MM with pneumonia. This enriched intestinal K. pneumonia links to the incidence of pneumonia in MM, and intestinal colonization of K. pneumonia contributes to pneumonia in a 5TGM1 MM mice model. Further targeted metabolomic assays reveal the elevated level of glutamine, which is consistently increased with the enrichment of K. pneumonia in MM mice and patients, is synthesized by K. pneumonia, and leads to the elevated secretion of TNF-α in the lung normal fibroblast cells for the higher incidence of pneumonia. Inhibiting glutamine synthesis by establishing glnA-mutated K. pneumonia alleviates the incidence of pneumonia in the 5TGM1 MM mice model. Overall, our work proposes that intestinal K. pneumonia indirectly contributes to pneumonia in MM by synthesizing glutamine. Altogether, we unveil a gut–lung axis in MM with pneumonia and establish a novel mechanism and a possible intervention strategy for MM with pneumonia.
Collapse
|
42
|
Hashimoto Y, Eguchi A, Wei Y, Shinno-Hashimoto H, Fujita Y, Ishima T, Chang L, Mori C, Suzuki T, Hashimoto K. Antibiotic-induced microbiome depletion improves LPS-induced acute lung injury via gut-lung axis. Life Sci 2022; 307:120885. [PMID: 35981631 DOI: 10.1016/j.lfs.2022.120885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
AIMS Acute lung injury (ALI) is an acute inflammatory disorder. However, the precise mechanisms underlying the pathology of ALI remain elusive. An increasing evidence suggests the role of the gut-microbiota axis in the pathology of lung injury. This study aimed to investigate whether antibiotic-induced microbiome depletion could affect ALI in mice after lipopolysaccharide (LPS) administration. MAIN METHODS The effects of antibiotic cocktail (ABX) on ALI in the mice after intratracheally administration of LPS (5 mg/kg) were examined. Furthermore, 16s rRNA analysis and measurement of short-chain fatty acids in feces samples and metabolomics analysis of blood samples were performed. KEY FINDINGS LPS significantly increased the interleukin-6 (IL-6) levels in the bronchoalveolar lavage fluid (BALF) of water-treated mice. Interestingly, an ABX significantly attenuated the LPS-induced increase in IL-6 in BALF and lung injury scores. Furthermore, ABX and/or LPS treatment markedly altered the α- and β-diversity of the gut microbiota. There were significant differences in the α- and β-diversity of the water + LPS group and ABX + LPS group. LEfSe analysis identified Enterococusfaecalis, Clostriumtertium, and Bacteroidescaecimyris as potential microbial markers for ABX + LPS group. Untargeted metabolomics analysis identified several plasma metabolites responsible for discriminating water + LPS group from ABX + LPS group. There were correlations between the relative abundance of the microbiome and plasma metabolites. Integrative network analysis showed correlations between IL-6 levels in BALF and several gut microbes (or plasma metabolites). SIGNIFICANCE These data suggest that ABX-induced microbiome depletion could protect against LPS-induced ALI via the gut-microbiota-lung axis.
Collapse
Affiliation(s)
- Yaeko Hashimoto
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| | - Akifumi Eguchi
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan
| | - Yan Wei
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Hiroyo Shinno-Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan; Department of Dermatology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Tamaki Ishima
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Lijia Chang
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Chiba University Center for Preventive Medical Sciences, Chiba 263-8522, Japan; Department of Bioenvironmental Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Takuji Suzuki
- Department of Respirology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba 260-8670, Japan.
| |
Collapse
|
43
|
Characterization of Bacterial Differences Induced by Cleft-Palate-Related Spatial Heterogeneity. Pathogens 2022; 11:pathogens11070771. [PMID: 35890015 PMCID: PMC9323727 DOI: 10.3390/pathogens11070771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Cleft palate (CP) patients have a higher prevalence of oral and respiratory tract bacterial infections than the general population. Nevertheless, characteristics of bacterial differences induced by CP-related anatomical heterogeneity are unknown. Methods: In this study, we systematically described the characteristics of bacteria in the oral and nasal niches in healthy children, CP children, healthy adolescents, CP adolescents, and postoperative adolescents by 454-pyrosequencing technology (V3−V6) to determine bacterial differences induced by CP. Results: Due to the CP-induced variations in spatial structure, the early establishment of microecology in CP children was different from that in healthy children. Nasal bacterial composition showed greater changes than in the saliva. Moreover, such discrepancy also appeared in CP and postoperative adolescents who had even undergone surgery > 10 years previously. Interestingly, we found by Lefse analysis that part of bacterial biomarkers in the nasal cavity of CP subjects was common oral flora, suggesting bacterial translocation between the oral and nasal niches. Therefore, we defined the oral−nasal translocation bacteria as O-N bac. By comparing multiple groups, we took the intersection sets of O-N bacs selected from CP children, CP adolescents, and postoperative adolescents as TS O-N bacs with time−character, including Streptococcus, Gemella, Alloprevotella, Neisseria, Rothia, Actinomyces, and Veillonella. These bacteria were at the core of the nasal bacterial network in CP subjects, and some were related to infectious diseases. Conclusions: CP would lead to significant and long-term differences in oral and nasal flora. TS O-N bacs migrating from the oral to the nasal might be the key stone causing nasal flora dysbiosis in the CP patients.
Collapse
|
44
|
Lephart ED, Naftolin F. Estrogen Action and Gut Microbiome Metabolism in Dermal Health. Dermatol Ther (Heidelb) 2022; 12:1535-1550. [PMID: 35752663 PMCID: PMC9276867 DOI: 10.1007/s13555-022-00759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023] Open
Abstract
Emerging scientific advances in microbial research linking estrogens and the gut-skin microbiome in reference to dermal health are featured in this narrative review of journal reports and reviews from January 2018 through February 2022. Background information on advances in microbial research along with defining the microbiota and microbiome is presented in brief. The development of and factors that influence the gut microbiome in health and disease as well as the intrinsic and extrinsic factors influencing the skin microbiome and skin aging are summarized. New information on the development and changes of organ microbiomes have exposed similarities between skin and gut structure/function, microbial components/diversity/taxonomy and how they impact the immune response for combating disease and enhancing wellness. Estrogens promote health and support homeostasis in general and directly impact dermal health. Moreover, the gut, based upon the level of the microbial enzyme β-glucuronidase, which regulates estrogen's enterohepatic recirculation, constitutes a gut-skin microbial axis. This axis revolves around the systemically available estrogen to support immune function, counteract inflammation and oxidative stress, and decrease the risk of hormone-dependent skin cancers. These data support the direct effect of estrogens on skin health and the interaction of diet on dermal health via effects on the gut microflora. Finally, the potential for bioactive botanicals containing phytoestrogens or selective estrogen receptor modulators (SERMs) to evade the effects of gut β-glucuronidase expressing flora is proposed that may have a positive impact on skin.
Collapse
Affiliation(s)
- Edwin D. Lephart
- Department of Cell Biology, Physiology and The Neuroscience Center LS 4005, College of Life Sciences, Brigham Young University, Provo, UT 84602 USA
| | | |
Collapse
|
45
|
Wang L, Li F, Gu B, Qu P, Liu Q, Wang J, Tang J, Cai S, Zhao Q, Ming Z. Metaomics in Clinical Laboratory: Potential Driving Force for Innovative Disease Diagnosis. Front Microbiol 2022; 13:883734. [PMID: 35783436 PMCID: PMC9247514 DOI: 10.3389/fmicb.2022.883734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Currently, more and more studies suggested that reductionism was lack of holistic and integrative view of biological processes, leading to limited understanding of complex systems like microbiota and the associated diseases. In fact, microbes are rarely present in individuals but normally live in complex multispecies communities. With the recent development of a variety of metaomics techniques, microbes could be dissected dynamically in both temporal and spatial scales. Therefore, in-depth understanding of human microbiome from different aspects such as genomes, transcriptomes, proteomes, and metabolomes could provide novel insights into their functional roles, which also holds the potential in making them diagnostic biomarkers in many human diseases, though there is still a huge gap to fill for the purpose. In this mini-review, we went through the frontlines of the metaomics techniques and explored their potential applications in clinical diagnoses of human diseases, e.g., infectious diseases, through which we concluded that novel diagnostic methods based on human microbiomes shall be achieved in the near future, while the limitations of these techniques such as standard procedures and computational challenges for rapid and accurate analysis of metaomics data in clinical settings were also examined.
Collapse
Affiliation(s)
- Liang Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Fen Li
- Department of Laboratory Medicine, Huaiyin Hospital, Huai’an, China
| | - Bin Gu
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Qu
- The First School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Qinghua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Junjiao Wang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Jiawei Tang
- Department of Bioinformatics, School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Shubin Cai
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, China
- *Correspondence: Qi Zhao,
| | - Zhong Ming
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
- Zhong Ming,
| |
Collapse
|
46
|
Wen L, Shi L, Kong XL, Li KY, Li H, Jiang DX, Zhang F, Zhou ZG. Gut Microbiota Protected Against pseudomonas aeruginosa Pneumonia via Restoring Treg/Th17 Balance and Metabolism. Front Cell Infect Microbiol 2022; 12:856633. [PMID: 35782123 PMCID: PMC9243233 DOI: 10.3389/fcimb.2022.856633] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
Backgrounds and Purpose The theory of “entero-pulmonary axis” proves that pneumonia leads to gut microbiota disturbance and Treg/Th17 immune imbalance. This study is aimed to explore the potential mechanism of fecal microbiota transplantation (FMT) in the treatment of Pseudomonas aeruginosa pneumonia, in order to provide new insights into the treatment of pneumonia. Methods Pseudomonas aeruginosa and C57/BL6 mice were used to construct the acute pneumonia mouse model, and FMT was treated. Histopathological changes in lung and spleen were observed by HE staining. The expression of CD25, Foxp3 and IL-17 was observed by immunofluorescence. The proportion of Treg and Th17 cells was analyzed by flow cytometry. Serum IL-6, LPS, and IFN-γ levels were detected by ELISA. The expression of TNF-α, IFN-γ, IL-6, IL-2, Foxp3, IL-17, IL-10, and TGFβ1 in lung tissue homogenate was detected by qRT-PCR. 16S rRNA sequencing and non-targeted metabolomics were used to analyze gut microbiota and metabolism. Results Pseudomonas aeruginosa caused the decrease of body weight, food and water intake, lung tissue, and spleen injury in mice with pneumonia. Meanwhile, it caused lung tissue and serum inflammation, and Treg/Th17 cell imbalance in mice with pneumonia. Pseudomonas aeruginosa reduced the diversity and number of gut microbiota in pneumonia mice, resulting in metabolic disorders, superpathway of quinolone and alkylquinolone biosynthesis. It also led to the decrease of 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis, and the enrichment of Amino sugar and nucleotide sugar metabolism. FMT with or without antibiotic intervention restored gut microbiota abundance and diversity, suppressed inflammation and tissue damage, and promoted an immunological balance of Treg/Th17 cells in mice with pneumonia. In addition, FMT inhibited the aerobactin biosynthesis, 4-hydroxyphenylacetate degradation, superpathway of lipopolysaccharide biosynthesis and L-arabinose degradation IV function of microbiota, and improved amino sugar and nucleotide sugar metabolism. Conclusions FMT restored the Treg/Th17 cells’ balance and improved inflammation and lung injury in mice with Pseudomonas aeruginosa pneumonia by regulating gut microbiota disturbance and metabolic disorder.
Collapse
Affiliation(s)
- Long Wen
- Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, China
| | - Lei Shi
- The Fourth Hospital of Changsha, Changsha, China
| | - Xiang-Long Kong
- Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, China
| | - Ke-Yu Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, China
| | - Hui Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, China
| | - Di-Xuan Jiang
- Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhi-Guo Zhou
- Department of Respiratory and Critical Care Medicine, The First Hospital of Changsha, Changsha, China
- *Correspondence: Zhi-Guo Zhou,
| |
Collapse
|
47
|
Koenen MH, de Steenhuijsen Piters WAA, Bogaert D, Verhagen LM. The microbiota in respiratory tract infections: from association to intervention. Curr Opin Infect Dis 2022; 35:215-222. [PMID: 35665715 DOI: 10.1097/qco.0000000000000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The respiratory microbiota has a role in respiratory tract infection (RTI) pathogenesis. On the mucosa, the respiratory microbiota interacts with potential pathogenic viruses, bacteria and the host immune system, including secretory IgA (sIgA). This review discusses the role of the respiratory microbiota and its interaction with the (mucosal) immune system in RTI susceptibility, as well as the potential to exploit the microbiota to promote health and prevent RTIs. RECENT FINDINGS Recent studies confirm that specific microbiota profiles are associated with RTI susceptibility and during susceptibility and found accompanying RTIs, although clear associations have not yet been found for SARS-CoV-2 infection. sIgA plays a central role in RTI pathogenesis: it stands under control of the local microbiota, while at the same time influencing bacterial gene expression, metabolism and defense mechanisms. Respiratory microbiota interventions are still newly emerging but promising candidates for probiotics to prevent RTIs, such as Corynebacterium and Dolosigranulum species, have been identified. SUMMARY Improved understanding of the respiratory microbiota in RTIs and its interplay with the immune system is of importance for early identification and follow-up of individuals at risk of infection. It also opens doors for future microbiota interventions by altering the microbiota towards a healthier state to prevent and/or adjunctively treat RTIs.
Collapse
Affiliation(s)
- Mischa H Koenen
- Center of Translational Immunology, UMC Utrecht.,Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht
| | - Wouter A A de Steenhuijsen Piters
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Pediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, Utrecht.,Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.,Center for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, United Kingdom
| | - Lilly M Verhagen
- Department of Pediatric Infectious Diseases and Immunology.,Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
48
|
Goncalves P, Doisne JM, Eri T, Charbit B, Bondet V, Posseme C, Llibre A, Casrouge A, Lenoir C, Neven B, Duffy D, Fischer A, Di Santo JP. Defects in mucosal immunity and nasopharyngeal dysbiosis in HSC-transplanted SCID patients with IL2RG/JAK3 deficiency. Blood 2022; 139:2585-2600. [PMID: 35157765 PMCID: PMC11022929 DOI: 10.1182/blood.2021014654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Both innate and adaptive lymphocytes have critical roles in mucosal defense that contain commensal microbial communities and protect against pathogen invasion. Here we characterize mucosal immunity in patients with severe combined immunodeficiency (SCID) receiving hematopoietic stem cell transplantation (HSCT) with or without myeloablation. We confirmed that pretransplant conditioning had an impact on innate (natural killer and innate lymphoid cells) and adaptive (B and T cells) lymphocyte reconstitution in these patients with SCID and now show that this further extends to generation of T helper 2 and type 2 cytotoxic T cells. Using an integrated approach to assess nasopharyngeal immunity, we identified a local mucosal defect in type 2 cytokines, mucus production, and a selective local immunoglobulin A (IgA) deficiency in HSCT-treated SCID patients with genetic defects in IL2RG/GC or JAK3. These patients have a reduction in IgA-coated nasopharyngeal bacteria and exhibit microbial dysbiosis with increased pathobiont carriage. Interestingly, intravenous immunoglobulin replacement therapy can partially normalize nasopharyngeal immunoglobulin profiles and restore microbial communities in GC/JAK3 patients. Together, our results suggest a potential nonredundant role for type 2 immunity and/or of local IgA antibody production in the maintenance of nasopharyngeal microbial homeostasis and mucosal barrier function.
Collapse
Affiliation(s)
- Pedro Goncalves
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Jean-Marc Doisne
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Toshiki Eri
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Bruno Charbit
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
| | - Vincent Bondet
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Celine Posseme
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alba Llibre
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Armanda Casrouge
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - Christelle Lenoir
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Bénédicte Neven
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Darragh Duffy
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
| | - Alain Fischer
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Collège de France, Paris, France
| | - James P. Di Santo
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
| | - The Milieu Intérieur Consortium
- Institut Pasteur, Université de Paris Cité, Inserm U1223, Innate Immunity Unit, Paris, France
- Institut Pasteur, Université de Paris Cité, Center for Translational Science, Paris, France
- Institut Pasteur, Université de Paris Cité, Translational Immunology Unit, Paris, France
- Inserm Unité Mixte de Recherche 1163, Paris, France
- Imagine Institut, Université de Paris Descartes Sorbonne Paris Cité, Paris, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Collège de France, Paris, France
| |
Collapse
|
49
|
Li Y, van Houten CB, Boers SA, Jansen R, Cohen A, Engelhard D, Kraaij R, Hiltemann SD, Ju J, Fernández D, Mankoc C, González E, de Waal WJ, de Winter-de Groot KM, Wolfs TFW, Meijers P, Luijk B, Oosterheert JJ, Sankatsing SUC, Bossink AWJ, Stein M, Klein A, Ashkar J, Bamberger E, Srugo I, Odeh M, Dotan Y, Boico O, Etshtein L, Paz M, Navon R, Friedman T, Simon E, Gottlieb TM, Pri-Or E, Kronenfeld G, Oved K, Eden E, Stubbs AP, Bont LJ, Hays JP. The diagnostic value of nasal microbiota and clinical parameters in a multi-parametric prediction model to differentiate bacterial versus viral infections in lower respiratory tract infections. PLoS One 2022; 17:e0267140. [PMID: 35436301 PMCID: PMC9015155 DOI: 10.1371/journal.pone.0267140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background The ability to accurately distinguish bacterial from viral infection would help clinicians better target antimicrobial therapy during suspected lower respiratory tract infections (LRTI). Although technological developments make it feasible to rapidly generate patient-specific microbiota profiles, evidence is required to show the clinical value of using microbiota data for infection diagnosis. In this study, we investigated whether adding nasal cavity microbiota profiles to readily available clinical information could improve machine learning classifiers to distinguish bacterial from viral infection in patients with LRTI. Results Various multi-parametric Random Forests classifiers were evaluated on the clinical and microbiota data of 293 LRTI patients for their prediction accuracies to differentiate bacterial from viral infection. The most predictive variable was C-reactive protein (CRP). We observed a marginal prediction improvement when 7 most prevalent nasal microbiota genera were added to the CRP model. In contrast, adding three clinical variables, absolute neutrophil count, consolidation on X-ray, and age group to the CRP model significantly improved the prediction. The best model correctly predicted 85% of the ‘bacterial’ patients and 82% of the ‘viral’ patients using 13 clinical and 3 nasal cavity microbiota genera (Staphylococcus, Moraxella, and Streptococcus). Conclusions We developed high-accuracy multi-parametric machine learning classifiers to differentiate bacterial from viral infections in LRTI patients of various ages. We demonstrated the predictive value of four easy-to-collect clinical variables which facilitate personalized and accurate clinical decision-making. We observed that nasal cavity microbiota correlate with the clinical variables and thus may not add significant value to diagnostic algorithms that aim to differentiate bacterial from viral infections.
Collapse
Affiliation(s)
- Yunlei Li
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Chantal B. van Houten
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan A. Boers
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Dan Engelhard
- Division of Paediatric Infectious Disease Unit, Hadassah-Hebrew University Medical Centre, Jerusalem, Israel
| | - Robert Kraaij
- Department of Internal Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Saskia D. Hiltemann
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jie Ju
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | | | - Wouter J. de Waal
- Department of Paediatrics, Diakonessenhuis, Utrecht, The Netherlands
| | - Karin M. de Winter-de Groot
- Department of Paediatric Respiratory Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tom F. W. Wolfs
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Pieter Meijers
- Department of Paediatrics, Gelderse Vallei Hospital, Ede, The Netherlands
| | - Bart Luijk
- Department of Respiratory Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Jelrik Oosterheert
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Aik W. J. Bossink
- Department of Respiratory Medicine, Diakonessenhuis Utrecht, Utrecht, The Netherlands
| | - Michal Stein
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Adi Klein
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Jalal Ashkar
- Department of Paediatrics, Hillel Yaffe Medical Centre, Hadera, Israel
| | - Ellen Bamberger
- MeMed, Tirat Carmel, Israel
- Department of Paediatrics, Bnai Zion Medical Centre, Haifa, Israel
| | - Isaac Srugo
- Department of Paediatrics, Bnai Zion Medical Centre, Haifa, Israel
| | - Majed Odeh
- Department of Internal Medicine A, Bnai Zion Medical Centre, Haifa, Israel
| | - Yaniv Dotan
- Pulmonary Division, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | - Andrew P. Stubbs
- Department of Pathology & Clinical Bioinformatics, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Louis J. Bont
- Division of Paediatric Immunology and Infectious Diseases, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - John P. Hays
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
50
|
Li X, Wang Q, Hu X, Liu W. Current Status of Probiotics as Supplements in the Prevention and Treatment of Infectious Diseases. Front Cell Infect Microbiol 2022; 12:789063. [PMID: 35360101 PMCID: PMC8964067 DOI: 10.3389/fcimb.2022.789063] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Probiotics play an important role against infectious pathogens via their effects on the epithelium, the production of antimicrobial compounds, and competitive exclusion. Administration of probiotic supplements may reduce the risk of infectious diseases and the use of antibiotics, hence contributing to a reduction or a delay of the development of multi-resistant bacteria. Infection is a constant concern for people who experience recurrent infections, and antibiotic treatment usually fails due to antibiotic resistance. Therefore, an infection can lead to severe illness and hospitalization if left untreated. A growing number of studies have demonstrated promising results for a variety of probiotic strains used to prevent or treat acute and recurrent infectious diseases, but additional standardized clinical research is needed.
Collapse
Affiliation(s)
| | - Qiang Wang
- Institute of Infection, Immunology and Tumor Microenvironment, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|