1
|
Wang Y, Liu L, Zhao Y, Ren Y, Miao X, Dong Y, Liu L, Li X. Transcriptomic and proteomic analysis reveals the mechanism of chicken cecum response to Salmonella enterica serovar Enteritidis inoculation. iScience 2025; 28:111571. [PMID: 39845417 PMCID: PMC11750581 DOI: 10.1016/j.isci.2024.111571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/17/2024] [Accepted: 12/06/2024] [Indexed: 01/24/2025] Open
Abstract
Salmonella enterica serovar Enteritidis (SE) incurs foodborne illnesses and poses a severe threat to poultry industry and human health. However, the molecular mechanisms underlying chicken responding to SE inoculation remain elusive. Here, we characterized the transcriptome and proteome of chicken cecum 3 days post SE inoculation. Totally, there were 332 differentially expressed genes and 563 differentially expressed protein identified. The upregulated genes were enriched in immune-related processes. The downregulated proteins mainly correlated with metabolic process. The correlation coefficient between the transcriptome and proteome was 0.14. Collectively, we characterized the landscape of mRNAs and proteins in chicken cecum following SE inoculation and found SE inoculation induced chicken immune system at transcriptomic level but impaired the metabolism at protein level. The differences may be caused by complex post-transcriptional regulatory mechanisms or time-dependent delays. Our findings would extend the understanding of the molecular mechanisms underlying chicken responding to SE inoculation.
Collapse
Affiliation(s)
- Yuanmei Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Liying Liu
- College of Life Sciences, Shandong Agricultural University, Taián 271018, China
| | - Yanan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Yanru Ren
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Xiuxiu Miao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Yaning Dong
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Lewen Liu
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| | - Xianyao Li
- College of Animal Science and Technology, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Taián 271017, Shandong, China
| |
Collapse
|
2
|
Santamaria JM, Beck CN, Erf GF. Local Inflammatory and Systemic Antibody Responses Initiated by a First Intradermal Administration of Autogenous Salmonella-Killed Vaccines and Their Components in Pullets. Vaccines (Basel) 2024; 12:1159. [PMID: 39460325 PMCID: PMC11511161 DOI: 10.3390/vaccines12101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Vaccination strategies are used to manage Salmonella in chickens. Salmonella-killed vaccines are considered safer since they are inactivated. However, little is known regarding the cellular immune activities at the site of vaccine administration of Salmonella-killed vaccines. The growing feather (GF) cutaneous test has been shown to be an effective bioassay to monitor local tissue/cellular responses. We assessed local and systemic antibody responses initiated by intradermal injection of Salmonella-killed vaccines into GF-pulps of 14-15-week-old pullets. Treatments consisted of two autogenous Salmonella-killed vaccines (SV1 and SV2), S. Enteritidis (SE) lipopolysaccharide (SE-LPS), and the water-oil-water (WOW) emulsion vehicle. GF-pulps were collected before (0 h) and at 6, 24, 48, and 72 h post-GF-pulp injection for leukocyte population analysis, while heparinized blood samples were collected before (0 d) and at 3, 5, 7, 10, 14, 21, and 28 d after GF-pulp injections to assess plasma levels (a.u.) of SE-specific IgM, avian IgY (IgG), and IgA antibodies using an ELISA. Injection of GF-pulps with SV1, SV2, or SE-LPS, all in a WOW vehicle, initiated inflammatory responses characterized by the recruitment of heterophils, monocytes/macrophages, and a few lymphocytes. The WOW vehicle emulsion alone recruited more lymphocytes than vaccines or SE-LPS. The SV1 and SV2 vaccines stimulated Salmonella-specific IgM and IgA early, while IgG levels were greatly elevated later during the primary response. Overall, SV1 and SV2 stimulated a heterophil and macrophage-dominated local inflammatory- and SE-specific humoral response with an isotype switch from IgM to IgG, characteristic of a T-dependent primary antibody response. This study provides comprehensive information on innate and adaptive immune responses to autogenous Salmonella-killed vaccines and their components that will find application in the management of Salmonella in poultry.
Collapse
Affiliation(s)
- Jossie M. Santamaria
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA;
| | | | - Gisela F. Erf
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR 72701, USA;
| |
Collapse
|
3
|
Arafat N, Abd El Rahman S, Naguib D, El-Shafei RA, Abdo W, Eladl AH. Co-infection of Salmonella enteritidis with H9N2 avian influenza virus in chickens. Avian Pathol 2021; 49:496-506. [PMID: 32835500 DOI: 10.1080/03079457.2020.1778162] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Salmonella and avian influenza virus are important pathogens affecting the poultry industry and human health worldwide. In this experimental study, we evaluated the consequences of co-infection of Salmonella enteritidis (SE) with H9N2 avian influenza virus (H9N2-AIV) in chickens. Four groups were included: control group, H9N2-AIV group, H9N2-AIV + SE group, and SE group. Infected chickens were intranasally inoculated with H9N2-AIV at 21 days of age and then orally administered SE on the same day. The birds were monitored for clinical signs, mortality rates, and alterations in body weight. Sera, intestinal fluids, oropharyngeal, and cloacal swabs, and tissue samples were collected at 2, 6, 10, and 14 days post-infection (dpi). Significant increases in clinical signs and mortality rates were observed in the H9N2-AIV + SE group. Moreover, chickens with co-infection showed a significant change in body weight. SE faecal shedding and organ colonization were significantly higher in the H9N2-AIV + SE group than in the SE group. H9N2-AIV infection compromised the systemic and mucosal immunity against SE, as evidenced by a significant decrease in lymphoid organ indices as well as systemic antibody and intestinal immunoglobulin A (IgA) responses to SE and a significant increase in splenic and bursal lesion scores. Moreover, SE infection significantly increased shedding titres and duration of H9N2-AIV. In conclusion, this is the first report of co-infection of SE with H9N2-AIV in chickens, which leads to increased pathogenicity, SE faecal shedding and organ colonization, and H9N2-AIV shedding titre and duration, resulting in substantial economic losses and environmental contamination, ultimately leading to increased zoonoses.
Collapse
Affiliation(s)
- Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Sahar Abd El Rahman
- Department of Virology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Naguib
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reham A El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Walied Abdo
- Department of Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Gupta A, Bansal M, Wagle B, Sun X, Rath N, Donoghue A, Upadhyay A. Sodium Butyrate Reduces Salmonella Enteritidis Infection of Chicken Enterocytes and Expression of Inflammatory Host Genes in vitro. Front Microbiol 2020; 11:553670. [PMID: 33042060 PMCID: PMC7524895 DOI: 10.3389/fmicb.2020.553670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Salmonella Enteritidis (SE) is a facultative intracellular pathogen that colonizes the chicken gut leading to contamination of carcasses during processing. A reduction in intestinal colonization by SE could result in reduced carcass contamination thereby reducing the risk of illnesses in humans. Short chain fatty acids such as butyrate are microbial metabolites produced in the gut that exert various beneficial effects. However, its effect on SE colonization is not well known. The present study investigated the effect of sub-inhibitory concentrations (SICs) of sodium butyrate on the adhesion and invasion of SE in primary chicken enterocytes and chicken macrophages. In addition, the effect of sodium butyrate on the expression of SE virulence genes and selected inflammatory genes in chicken macrophages challenged with SE were investigated. Based on the growth curve analysis, the two SICs of sodium butyrate that did not reduce SE growth were 22 and 45 mM, respectively. The SICs of sodium butyrate did not affect the viability and proliferation of chicken enterocytes and macrophage cells. The SICs of sodium butyrate reduced SE adhesion by ∼1.7 and 1.8 Log CFU/mL, respectively. The SE invasion was reduced by ∼2 and 2.93 Log CFU/mL, respectively in chicken enterocytes (P < 0.05). Sodium butyrate did not significantly affect the adhesion of SE to chicken macrophages. However, 45 mM sodium butyrate reduced invasion by ∼1.7 Log CFU/mL as compared to control (P < 0.05). Exposure to sodium butyrate did not change the expression of SE genes associated with motility (flgG, prot6E), invasion (invH), type 3 secretion system (sipB, pipB), survival in macrophages (spvB, mgtC), cell wall and membrane integrity (tatA), efflux pump regulator (mrr1) and global virulence regulation (lrp) (P > 0.05). However, a few genes contributing to type-3 secretion system (ssaV, sipA), adherence (sopB), macrophage survival (sodC) and oxidative stress (rpoS) were upregulated by at least twofold. The expression of inflammatory genes (Il1β, Il8, and Mmp9) that are triggered by SE for host colonization was significantly downregulated (at least 25-fold) by sodium butyrate as compared to SE (P < 0.05). The results suggest that sodium butyrate has an anti-inflammatory potential to reduce SE colonization in chickens.
Collapse
Affiliation(s)
- Anamika Gupta
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Mohit Bansal
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Basanta Wagle
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Xiaolun Sun
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Narayan Rath
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Annie Donoghue
- Poultry Production and Product Safety Research Unit, United States Department of Agriculture-Agriculture Research Station, Fayetteville, AR, United States
| | - Abhinav Upadhyay
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
5
|
Mazkour S, Shekarforoush SS, Basiri S, Nazifi S, Yektaseresht A, Honarmand M. Effects of two probiotic spores of Bacillus species on hematological, biochemical, and inflammatory parameters in Salmonella Typhimurium infected rats. Sci Rep 2020; 10:8035. [PMID: 32415253 PMCID: PMC7229222 DOI: 10.1038/s41598-020-64559-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/15/2020] [Indexed: 01/27/2023] Open
Abstract
Salmonella infections have become a major health concern in recent decades. This pathogen has evolved to become resistant to antibiotics, which has caused problems in its treatment. As such, finding a novel preventive method is important in the treatment and management of this infection. In recent years, uses of probiotics, especially spore-former genera such as Bacillus spp. has become increasingly popular. In this study spores of two probiotic bacteria, Bacillus subtilis and Bacillus coagulans were fed to rats for three weeks through their daily water intake after which Salmonella Typhimurium was gavaged to the rats. On days 1, 3, 5 and 7 after gavaging, the number of Salmonella was counted in liver, spleen, mesenteric lymph nodes, feces and content of ileum and cecum. Hematological and biochemical parameters, inflammatory mediators, total antioxidant capacity and malondialdehyde were also measured. The results showed that B. subtilis and B. coagulans caused delation in infiltration of Salmonella into the lymph nodes, spleen and liver, reduction of the inflammatory mediators, and decreases in oxidative stress, hematological and biochemical changes. The overall count of Salmonella in the above mentioned parameters has also decreased and a faster return to normal base were also witnessed. The results showed that the use of B. subtilis and B. coagulans can potentially help boost the body’s immune system, to combat the effects of exposure to the Salmonella pathogen.
Collapse
Affiliation(s)
- Somaye Mazkour
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Seyed Shahram Shekarforoush
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Azadeh Yektaseresht
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Honarmand
- Department of Clinical Science, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Renu S, Markazi AD, Dhakal S, Lakshmanappa YS, Shanmugasundaram R, Selvaraj RK, Renukaradhya GJ. Oral Deliverable Mucoadhesive Chitosan- Salmonella Subunit Nanovaccine for Layer Chickens. Int J Nanomedicine 2020; 15:761-777. [PMID: 32099364 PMCID: PMC7006855 DOI: 10.2147/ijn.s238445] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Salmonellosis in poultry is a serious economic burden. A major concern is the public health hazard caused by consumption of Salmonella-contaminated poultry products. Currently used Salmonella vaccines are ineffective in combating poultry Salmonellosis warranting the need of a potent vaccine, especially an oral vaccine that can elicit robust local intestinal immunity. MATERIALS AND METHODS A Salmonella subunit chitosan nanoparticles (NPs)-based vaccine was prepared that contained immunogenic outer membrane proteins (OMPs) and -flagellin (F) protein (OMPs-F-CS NPs). OMPs-F-CS NPs were administered as an oral vaccine in layer chickens and the resultant humoral and cell-mediated immune responses and localization of NPs were examined using standard detection methods. RESULTS We demonstrated targeting of surface F-protein coated chitosan NPs to immune cells when delivered orally to layer chickens, the particles were localized in ileal Peyer's patches. The OMPs-F-CS NPs vaccinated layer chickens had significantly higher OMPs-specific mucosal IgA production and lymphocyte proliferation response. The candidate vaccine increased the expression of toll-like receptor (TLR)-2, TLR-4, IFN-γ, TGF-ß and IL-4 mRNA expression in chicken cecal tonsils. CONCLUSION Our study demonstrated that the chitosan-based oral Salmonella nanovaccine targets immune cells of chickens and induced antigen-specific B and T cell responses. This candidate oral Salmonella nanovaccine has the potential to mitigate Salmonellosis in poultry.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| | - Ashley D Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, OH, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| | - Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Columbus, OH, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA30602, USA
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA and Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH43210, USA
| |
Collapse
|
7
|
Markazi AD, Luoma A, Shanmugasundaram R, Murugesan R, Mohnl M, Selvaraj R. Effect of Acidifier Product Supplementation in Laying Hens Challenged With Salmonella. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
8
|
Hernandez-Patlan D, Solis-Cruz B, Pontin KP, Latorre JD, Hernandez-Velasco X, Merino-Guzman R, Mendez-Albores A, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of Ascorbic Acid or Curcumin Formulated in a Solid Dispersion on Salmonella Enteritidis Infection and Intestinal Integrity in Broiler Chickens. Pathogens 2019; 8:pathogens8040229. [PMID: 31717681 PMCID: PMC6963554 DOI: 10.3390/pathogens8040229] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Two experimental models were conducted to evaluate and compare the effect of ascorbic acid (AA) or curcumin formulated in a solid dispersion (SD-CUR) as prophylactic or therapeutic alternatives to prevent or control S. Enteritidis (SE) infection in broiler chickens. In the prophylactic model, dietary administration of AA showed a significant reduction in SE counts in crop compared to the positive control (PC) group (p < 0.05), whereas in cecal tonsils (CT), SD-CUR significantly reduced SE recovery. Superoxide dismutase (SOD) activity was significantly higher in chickens supplemented with AA or SD-CUR, and total intestinal IgA levels were significantly lower in both treatments when compared to the PC group. Serum fluorescein isothiocyanate-dextran (FITC-d) levels were reduced by SD-CUR compared to PC, while AA presented significantly lower total aerobic bacteria. In the therapeutic model, only the dietary administration of AA significantly decreased SE in crop and CT on days 3 and 10 post-challenge. FITC-d levels were significantly lower in both treated groups in comparison to PC, but IgA levels were significantly reduced only by AA. The results suggest that dietary AA and SD-CUR have different modes of action to reduce SE intestinal colonization in two different challenge models in broiler chickens.
Collapse
Affiliation(s)
- Daniel Hernandez-Patlan
- Laboratorio 5, LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (D.H.-P.); (R.L.-A.)
| | - Bruno Solis-Cruz
- Laboratorio 5, LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (D.H.-P.); (R.L.-A.)
| | - Karine P. Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul, Porto Alegre RS 97105-900, Brazil;
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; (J.D.L.); (B.M.H.)
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico 04510, Mexico; (X.H.-V.); (R.M.-G.)
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, UNAM, Ciudad de Mexico 04510, Mexico; (X.H.-V.); (R.M.-G.)
| | - Abraham Mendez-Albores
- Laboratorio 14, Alimentos, Micotoxinas y Micotoxicosis, Unidad de Investigacion Multidisciplinaria, FES Cuautitlan, UNAM, Cuautitlan Izcalli 54714, Mexico;
| | - Billy M. Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; (J.D.L.); (B.M.H.)
| | - Raquel Lopez-Arellano
- Laboratorio 5, LEDEFAR, Unidad de Investigacion Multidisciplinaria, Facultad de Estudios Superiores (FES) Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 54714, Mexico; (D.H.-P.); (R.L.-A.)
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704, USA; (J.D.L.); (B.M.H.)
- Correspondence:
| |
Collapse
|
9
|
Markazi A, Luoma A, Shanmugasundaram R, Mohnl M, Raj Murugesan G, Selvaraj R. Effects of drinking water synbiotic supplementation in laying hens challenged with Salmonella. Poult Sci 2018; 97:3510-3518. [PMID: 29982803 DOI: 10.3382/ps/pey234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 06/16/2018] [Indexed: 02/03/2023] Open
Abstract
This experiment was conducted to study the effects of drinking water supplementation of synbiotic product PoultryStar®sol (containing Lactobacillus reuteri, Bifidobacterium animalis, Pediococcus acidilactici, Enterococcus faecium, and fructo-oligosaccharide) in laying hens with and without a Salmonella challenge. A total of 384 one-day-old layer chicks were randomly distributed to the drinking water synbiotic supplementation or control groups. At 14 wk of age, the birds were vaccinated with a Salmonella vaccine, resulting in a 2 (control and synbiotic) X 2 (non-vaccinated and vaccinated) factorial arrangement. At 24 wk of age, half of the birds in the vaccinated groups and all the birds that were not vaccinated were challenged with Salmonella Enterica serotype Enteritidis, resulting in a 3 (vaccinated, challenged, vaccinated+challenged) X 2 (control and synbiotic) factorial arrangment. At 8 d post-Salmonella challenge, synbiotic supplementation decreased (P = 0.04) cecal S. Enteritidis in the challenge group compared to the un-supplemented challenge group. Birds that were supplemented with synbiotic in the vaccine + challenge group had significantly greater cecal B. animalis and P. acidilactici percentage at 10 d post-Salmonella challenge than the birds in the vaccine + challenge group without synbiotic supplementation. At 3 d post-Salmonella challenge, birds that were supplemented with synbiotic in the challenge group had significantly greater cecal L. reuteri percentage than the birds in the challenge group without synbiotic supplementation. At 17 d post-Salmonella challenge, synbiotic supplementation increased bile anti-Salmonella IgA in the challenge group compared to the birds in the challenge group without synbiotic supplementation by 76.0%. At 10 d (P < 0.01) and 30 d (P = 0.05) post-Salmonella challenge, synbiotic supplementation decreased LITAF mRNA expression compared to the un-supplemented groups. At 3 d post-Salmonella challenge, synbiotic supplementation in the vaccine group had longer jejunal villi compared to the vaccine group without synbiotic supplementation. This experiment demonstrated that drinking water supplementation of the synbiotic product evaluated can significantly manipulate immune response and intestinal microbiota of laying hens post-Salmonella challenge to handle the challenge effectively.
Collapse
Affiliation(s)
- Ashley Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Amanda Luoma
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | | | | | | |
Collapse
|
10
|
Liu G, Sun C, Liu H, Li F, Zhu Y, Li F. Effects of dietary supplement of vitamin B6 on growth performance and non-specific immune response of weaned rex rabbits. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1512498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gongyan Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, People’s Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an City, People’s Republic of China
| | - Chaoran Sun
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, People’s Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an City, People’s Republic of China
| | - Hongli Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, People’s Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an City, People’s Republic of China
| | - Fan Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, People’s Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an City, People’s Republic of China
| | - Yanli Zhu
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, People’s Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an City, People’s Republic of China
| | - Fuchang Li
- College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, People’s Republic of China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an City, People’s Republic of China
| |
Collapse
|
11
|
Luoma A, Markazi A, Shanmugasundaram R, Murugesan GR, Mohnl M, Selvaraj R. Effect of synbiotic supplementation on layer production and cecal Salmonella load during a Salmonella challenge. Poult Sci 2018; 96:4208-4216. [PMID: 29053828 DOI: 10.3382/ps/pex251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/16/2017] [Indexed: 11/20/2022] Open
Abstract
This study analyzed the inhibitory effects of a synbiotic product (PoultryStar® me) on production parameters, intestinal microflora profile, and immune parameters in laying hens with and without a Salmonella challenge. The synbiotic product contained 4 probiotic bacterial strains (Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, and Pediococcus acidilactici) and a prebiotic fructooligosaccharide. Layers were supplemented with the synbiotic from d of hatch to 28 wk of age. At 16 wk of age, birds were either vaccinated with Salmonella enterica Enteritidis (SE) vaccine or left unvaccinated. At 24 wk of age, a portion of the birds was challenged with 1 × 109 CFU of SE or left unchallenged, resulting in a 3 (vaccinated, challenged, or both vaccinated and challenged) X 2 (control and synbiotics) factorial arrangement of treatments. At 18 and 20 wk of age, birds fed synbiotics in both vaccinated and unvaccinated groups had increased (P < 0.05) BW more than those in the un-supplemented groups. Birds fed synbiotics had 0.7, 17.8, 21.7, 3, and 4.2% higher (P < 0.05) hen d egg production (HDEP) at 19, 20, 21, 22, and 23 wk of age, compared to the birds without supplementation, respectively. After administering the SE challenge, supplemented birds had 3, 6.7, 4.3, 12.5, and 14.4% higher (P < 0.05) HDEP at 24, 25, 26, 27, and 28 wk of age, compared to the birds not supplemented, respectively. Irrespective of the vaccination status, birds fed synbiotics and challenged with SE had a lower (P < 0.05) SE cecal load compared to the un-supplemented groups. At 22 d post Salmonella challenge, birds supplemented, vaccinated, and challenged had the highest bile IgA content. It can be concluded that supplementation of the synbiotic product could be beneficial to layer diets as a growth promoter, performance enhancer, and for protection against SE infection.
Collapse
Affiliation(s)
- A Luoma
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - A Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | - R Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| | | | - M Mohnl
- BIOMIN Holding GmbH, Getzersdorf, Austria
| | - R Selvaraj
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, Wooster, OH 44691
| |
Collapse
|
12
|
Pan S, Zhang K, Ding X, Wang J, Peng H, Zeng Q, Xuan Y, Su Z, Wu B, Bai S. Effect of High Dietary Manganese on the Immune Responses of Broilers Following Oral Salmonella typhimurium Inoculation. Biol Trace Elem Res 2018; 181:347-360. [PMID: 28555440 DOI: 10.1007/s12011-017-1060-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022]
Abstract
Manganese (Mn) is an essential nutrient for both host and pathogen. Recent studies have demonstrated the nutritional immunity of Mn against Salmonella infection in mammals. To investigate the effect of high dietary Mn on immune responses of broilers following Salmonella challenge, 144 1-day-old male broilers were fed a basal diet (containing 20.04 mg Mn/kg) plus an additional 40 (the control group) or 400 mg Mn/kg (the H-Mn group) for 7 days. The 72 broilers in each group were then orally inoculated with 5 × 107 CFUs of Salmonella typhimurium (ATCC#14028) or phosphate-buffered saline. Peripheral blood, spleens, cecal tonsils, and bursa of Fabricius were collected from Salmonella-inoculated and Salmonella-noninoculated broilers (n = 6) at 2 days post inoculation (2 DPI) and 7 days post inoculation (7 DPI). Peripheral blood lymphocyte subpopulations were determined by flow cytometry. The messenger RNA (mRNA) abundance of genes was determined by quantitative real-time polymerase chain reaction. Salmonella counts were higher (P < 0.05) in the H-Mn group than that in the control group at 2 DPI in the cecal contents of Salmonella-inoculated broilers. High dietary Mn increased CD3+CD4+ and CD3+CD8+ percentages in the peripheral blood of Salmonella-inoculated broilers at 2 DPI. Salmonella inoculation increased interleukin (IL)-6 mRNA expression in spleens and bursa of Fabricius at 2 DPI and increased IL-1β and IL-6 mRNA expression in cecal tonsils at 7 DPI in the H-Mn group. These changes were not observed in the control group. High dietary Mn increased interferon-γ (IFN-γ) in spleens and decreased IFN-γ and IL-12 mRNA expression in cecal tonsils of Salmonella-inoculated broilers at 2 DPI. High dietary Mn decreased IL-17 mRNA expression in the bursa of Fabricius at 7 DPI, but increased this expression in cecal tonsils at 2 and 7 DPI in Salmonella-inoculated broilers. These results suggested that dietary Mn level affected T helper (Th) 1-cytokine reaction in spleens and cecal tonsils, and Th17-mediated immunity in cecal tonsils and the bursa of Fabricius of broilers when challenged with Salmonella.
Collapse
Affiliation(s)
- Shuqin Pan
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Keying Zhang
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Zuowei Su
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China
| | - Bing Wu
- Chinese Chelota Group, Liangshui Industrial Estate, Jinyu District, Guanghan, Sihuan, 618300, China
| | - Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
13
|
Arafat N, Eladl AH, Mahgoub H, El-Shafei RA. Effect of infectious bursal disease (IBD) vaccine on Salmonella Enteritidis infected chickens. Vaccine 2017; 35:3682-3689. [PMID: 28495316 DOI: 10.1016/j.vaccine.2017.04.076] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 03/23/2017] [Accepted: 04/25/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Chickens infected with both infectious bursal disease virus (IBDV) and Salmonella had higher mortality. In this work, we investigated the effect of IBDV vaccine (modified live-virus bursal disease vaccine, Nobilis strain 228E®) on experimentally infected chickens with Salmonella Enteritidis (SE). METHODS Four experimental groups were included in this study, negative control group, 228E®group, 228E®+SE infected group, and SE infected group. Chickens were ocularly administrated 228E® at 12days of age and orally infected with S. Enteritidis at 13days of age. Sera, intestinal fluid, blood, cloacal swabs and tissue samples were collected at 1, 2 and 3weeks post vaccination (PV). RESULTS The recorded mortalities were higher in the 228E®+SE infected group, compared to the SE infected group. The anti-S. Enteritidis serum antibody titer and the intestinal mucosal IgA level were higher in the SE infected group at 2 and 3weeks PV, compared to 228E®+SE infected group. S. Enteritidis fecal shedding and organ colonization were significantly higher in the 228E®+SE infected group than the SE infected group at 2 and 3weeks PV. The 228E®+SE group had significantly lower bursa to body weight ratios at 2 and 3weeks PV, as well as had higher bursal lesion scores than the SE infected group. IBDV vaccine depressed the specific-SE systemic and mucosal antibody responses, but did not affect the specific-SE cellular immune responses. CONCLUSION Chickens administrated IBDV vaccine, followed by S. Enteritidis infection, could cause a significant effect on the bursa of Fabricius, resulting in failure of systemic and mucosal antibody responses to the S. Enteritidis and reduce the elimination and the clearance of S. Enteritidis.
Collapse
Affiliation(s)
- Nagah Arafat
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Abdelfattah H Eladl
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| | - Hebatallah Mahgoub
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Reham A El-Shafei
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
El-Sharkawy H, Tahoun A, El-Gohary AEGA, El-Abasy M, El-Khayat F, Gillespie T, Kitade Y, Hafez HM, Neubauer H, El-Adawy H. Epidemiological, molecular characterization and antibiotic resistance of Salmonella enterica serovars isolated from chicken farms in Egypt. Gut Pathog 2017; 9:8. [PMID: 28203289 PMCID: PMC5301364 DOI: 10.1186/s13099-017-0157-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Salmonella is one of major causes of foodborne outbreaks globally. This study was conducted to estimate the prevalence, typing and antibiotic susceptibilities of Salmonella enterica serovars isolated from 41 broiler chicken farms located in Kafr El-Sheikh Province in Northern Egypt during 2014-2015. The clinical signs and mortalities were observed. RESULTS In total 615 clinical samples were collected from broiler flocks from different organs (liver, intestinal content and gall bladder). Salmonella infection was identified in 17 (41%) broiler chicken flocks and 67 Salmonella isolates were collected. Recovered isolates were serotyped as 58 (86.6%) S. enterica serovar Typhimurium, 6 (9%) S. enterica serovar Enteritidis and 3 (4.5%) were non-typable. The significant high mortality rate was observed only in 1-week-old chicks. sopE gene was detected in 92.5% of the isolates which indicating their ability to infect humans. All S. enterica serovar Enteritidis isolates were susceptible to all tested antimicrobials. The phenotypically resistant S. enterica serovar Typhimurium isolates against ampicillin, tetracycline, sulphamethoxazole and chloramphenicol were harbouring BlaTEM, (tetA and tetC), (sul1 and sul3) and (cat1 and floR), respectively. The sensitivity rate of S. enterica serovar Typhimurium to gentamycin, trimethoprim/sulphamethoxazole and streptomycin were 100, 94.8, 89.7%, respectively. The silent streptomycin antimicrobial cassettes were detected in all Salmonella serovars. A class one integron (dfrA12, orfF and aadA2) was identified in three of S. enterica serovar Typhimurium strains. CONCLUSIONS To the best of our knowledge, this study considered first report discussing the prevalence, genotyping, antibiotic susceptibility and public health significance of S. enterica serovars in broilers farms of different ages in Delta Egypt. Further studies are mandatory to verify the location of some resistance genes that are within or associated with the class one integron.
Collapse
Affiliation(s)
- Hanem El-Sharkawy
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Amin Tahoun
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan.,Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | | | - Moshira El-Abasy
- Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Fares El-Khayat
- Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| | - Trudi Gillespie
- CALM_live Imaging Facility, Centre for Inflammation Research, University of Edinburgh, Edinburgh, 47 EH16 4TJ UK
| | - Yukio Kitade
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193 Japan
| | - Hafez M Hafez
- Institute of Poultry Diseases, Free University Berlin, Berlin, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany
| | - Hosny El-Adawy
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany.,Faculty of Veterinary Medicine, Kafr Elsheikh University, Kafr El-Sheikh, 33516 Egypt
| |
Collapse
|
15
|
Characterization and Evaluation of a Salmonella enterica Serotype Senftenberg Mutant Created by Deletion of Virulence-Related Genes for Use as a Live Attenuated Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:802-812. [PMID: 27489135 DOI: 10.1128/cvi.00233-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023]
Abstract
Natural infections of chickens with Salmonella enterica subsp. enterica serovar Senftenberg (S. Senftenberg) are characterized by low-level intestinal invasiveness and insignificant production of antibodies. In this study, we investigated the potential effects of lon and cpxR gene deletions on the invasiveness of S Senftenberg into the intestinal epithelium of chickens and its ability to induce an immune response, conferring protection against S Senftenberg infection. With the allelic exchange method, we developed JOL1596 (Δlon), JOL1571 (ΔcpxR), and JOL1587 (Δlon ΔcpxR) deletion mutants from wild-type S Senftenberg. Deletion of the lon gene from S Senftenberg produced increased frequency of elongated cells, with significantly greater amounts of exopolysaccharide (EPS) than in the cpxR-deleted strain and the wild-type strain. The in vivo intestinal loop invasion assay showed a significant increase in epithelial invasiveness for JOL1596 (Δlon) and JOL1587 (Δlon ΔcpxR), compared to JOL1571 (ΔcpxR) and the wild-type strain. Furthermore, the S Senftenberg wild-type and mutant strains were internalized at high levels inside activated abdominal macrophages from chicken. The in vivo inoculation of JOL1587 (Δlon ΔcpxR) into chickens led to colonization of the liver, spleen, and cecum for a short time. Chickens inoculated with JOL1587 (Δlon ΔcpxR) showed significant increases in humoral, mucosal, and cellular immune responses specific to S Senftenberg antigens. Postchallenge, compared to the control group, the JOL1587 (Δlon ΔcpxR)-inoculated chickens showed not only lower persistence but also faster clearance of wild-type S Senftenberg from the cecum. We conclude that the increased intestinal invasiveness and colonization of internal organs exhibited by JOL1587 (Δlon ΔcpxR) led to the establishment of immunogenicity and conferred protective efficacy against S Senftenberg infections in chickens.
Collapse
|
16
|
Lee SJ, Birhanu BT, Awji EG, Kim MH, Park JY, Suh JW, Park SC. BaeR protein acts as an activator of nuclear factor-kappa B and Janus kinase 2 to induce inflammation in murine cell lines. Can J Microbiol 2016; 62:753-61. [PMID: 27374640 DOI: 10.1139/cjm-2016-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BaeR, a response regulator protein, takes part in multidrug efflux, bacterial virulence activity, and other biological functions. Recently, BaeR was shown to induce inflammatory responses by activating the mitogen-activated protein kinases (MAPKs). In this study, we investigated additional pathways used by BaeR to induce an inflammatory response. BaeR protein was purified from Salmonella enterica Paratyphi A and subcloned into a pPosKJ expression vector. RAW 264.7 cells were treated with BaeR, and RNA was extracted by TRIzol reagent for RT-PCR. Cytokine gene expression was analyzed by using the comparative cycle threshold method, while western blotting and ELISA were used to assess protein expression. We confirmed that BaeR activates nuclear factor-kappa B (NF-κB), thereby inducing an inflammatory response and increases the production of interleukins (IL-)1β and IL-6. During this process, the Janus kinase 2 (JAK2)-STAT1 signaling pathway was activated, resulting in an increase in the release of interferons I and II. Additionally, COX-2 was activated and its expression increased with time. In conclusion, BaeR induced an inflammatory response through activation of NF-κB in addition to the MAPKs. Furthermore, activation of the JAK2-STAT1 pathway and COX-2 facilitated the cytokine binding activity, suggesting an additional role for BaeR in the modulation of the immune system of the host and the virulence activity of the pathogen.
Collapse
Affiliation(s)
- Seung-Jin Lee
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Biruk Tesfaye Birhanu
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Elias Gebru Awji
- b COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Myung Hee Kim
- c Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, KRIBB, Daejeon 305-806, Republic of Korea
| | - Ji-Yong Park
- d Cleanbio Research Institute, Daejeon 301-212, Korea
| | - Joo-Won Suh
- e Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science campus, Myongji University, 449-728 Yongin, Gyeonggi, Republic of Korea
| | - Seung-Chun Park
- a Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| |
Collapse
|
17
|
Kulshreshtha G, Borza T, Rathgeber B, Stratton GS, Thomas NA, Critchley A, Hafting J, Prithiviraj B. Red Seaweeds Sarcodiotheca gaudichaudii and Chondrus crispus down Regulate Virulence Factors of Salmonella Enteritidis and Induce Immune Responses in Caenorhabditis elegans. Front Microbiol 2016; 7:421. [PMID: 27065981 PMCID: PMC4814495 DOI: 10.3389/fmicb.2016.00421] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/16/2016] [Indexed: 11/23/2022] Open
Abstract
Red seaweeds are a rich source of unique bioactive compounds and secondary metabolites that are known to improve human and animal health. S. Enteritidis is a broad range host pathogen, which contaminates chicken and poultry products that end into the human food chain. Worldwide, Salmonella outbreaks have become an important economic and public health concern. Moreover, the development of resistance in Salmonella serovars toward multiple drugs highlights the need for alternative control strategies. This study evaluated the antimicrobial property of red seaweeds extracts against Salmonella Enteritidis using the Caenorhabditis elegans infection model. Six red seaweed species were tested for their antimicrobial activity against S. Enteritidis and two, Sarcodiotheca gaudichaudii (SG) and Chondrus crispus (CC), were found to exhibit such properties. Spread plate assay revealed that SG and CC (1%, w/v) significantly reduced the growth of S. Enteritidis. Seaweed water extracts (SWE) of SG and CC, at concentrations from 0.4 to 2 mg/ml, significantly reduced the growth of S. Enteritidis (log CFU 4.5–5.3 and log 5.7–6.0, respectively). However, methanolic extracts of CC and SG did not affect the growth of S. Enteritidis. Addition of SWE (0.2 mg/ml, CC and SG) significantly decreased biofilm formation and reduced the motility of S. Enteritidis. Quantitative real-time PCR analyses showed that SWE (CC and SG) suppressed the expression of quorum sensing gene sdiA and of Salmonella Pathogenesis Island-1 (SPI-1) associated genes sipA and invF, indicating that SWE might reduce the invasion of S. Enteritidis in the host by attenuating virulence factors. Furthermore, CC and SG water extracts significantly improved the survival of infected C. elegans by impairing the ability of S. Enteritidis to colonize the digestive tract of the nematode and by enhancing the expression of C. elegans immune responsive genes. As the innate immune response pathways of C. elegans and mammals show a high degree of conservation, these results suggest that these SWE may also impart beneficial effects on animal and human health.
Collapse
Affiliation(s)
- Garima Kulshreshtha
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie UniversityTruro, NS, Canada; Acadian Seaplants LimitedDartmouth, NS, Canada
| | - Tudor Borza
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Plant and Animal Sciences, Faculty of Agriculture, Dalhousie University Truro, NS, Canada
| | - Glenn S Stratton
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University Truro, NS, Canada
| | - Nikhil A Thomas
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University Halifax, NS, Canada
| | | | | | - Balakrishnan Prithiviraj
- Department of Environmental Sciences, Faculty of Agriculture, Dalhousie University Truro, NS, Canada
| |
Collapse
|
18
|
Karaffová V, Bobíková K, Husáková E, Levkut M, Herich R, Revajová V, Levkutová M, Levkut M. Interaction of TGF-β4 and IL-17 with IgA secretion in the intestine of chickens fed with E. faecium AL41 and challenged with S. Enteritidis. Res Vet Sci 2015; 100:75-9. [DOI: 10.1016/j.rvsc.2015.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 03/30/2015] [Accepted: 04/06/2015] [Indexed: 11/30/2022]
|
19
|
Zhai L, Wang Y, Yu J, Hu S. Enhanced immune responses of chickens to oral vaccination against infectious bursal disease by ginseng stem-leaf saponins. Poult Sci 2014; 93:2473-81. [PMID: 25125559 DOI: 10.3382/ps.2014-04056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease (IBD), caused by infectious bursal disease virus (IBDV), is an immunosuppressive infectious disease of global economic importance in poultry. This study was designed to evaluate the effect of oral administration of ginseng stem-leaf saponins (GSLS) on humoral and gut mucosal immunity in chickens vaccinated with live IBDV vaccine, and furthermore, to test its protective efficacy against virulent IBDV challenge following vaccination. In experiment 1, chickens were orally administered with GSLS at 5 mg/kg of BW for 7 d, and then immunized with live IBDV vaccine via the oral route. Serum was sampled on 0, 1, 2, 3, 4, and 5 wk postvaccination for detecting antibody titers by ELISA, and intestinal tissues were collected on 0, 1, 3, and 5 wk postvaccination for measurement of IgA-positive cells and intestinal intraepithelial lymphocytes by immunohistochemical and hematoxylin-eosin staining, respectively. Result showed that antibody titers, IgA-positive cells and intestinal intraepithelial lymphocytes were significantly higher in chickens drinking GSLS than the control, suggesting an enhanced effect of GSLS on humoral and gut mucosal immune responses. In experiment 2, chickens were delivered with GSLS and then vaccinated in the same way as in experiment 1. The birds were challenged with virulent IBDV at wk 3 postvaccination. Then the birds were weighed, bled, and necropsied at d 3 postchallenge and the bursae were sampled for gross and histopathological examination. Results demonstrated that GSLS provided a better protection against virulent IBDV challenge following vaccination than the control. In conclusion, oral administration of GSLS enhances both humoral and gut mucosal immune responses to IBDV and offers a better protection against virulent IBDV challenge. Considering its immunomodulatory properties to IBDV vaccine, GSLS might be a promising oral adjuvant for vaccination against infectious diseases in poultry.
Collapse
Affiliation(s)
- L Zhai
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - Y Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - J Yu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| | - S Hu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China
| |
Collapse
|
20
|
Effects of dietary fiber and starch levels on the non-specific immune response of growing rabbits. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Okamura M, Matsumoto W, Seike F, Tanaka Y, Teratani C, Tozuka M, Kashimoto T, Takehara K, Nakamura M, Yoshikawa Y. Efficacy of Soluble Recombinant FliC Protein from Salmonella enterica Serovar Enteritidis as a Potential Vaccine Candidate Against Homologous Challenge in Chickens. Avian Dis 2012; 56:354-8. [DOI: 10.1637/9986-111011-reg.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
22
|
Marcq C, Cox E, Szalo I, Théwis A, Beckers Y. Salmonella Typhimurium oral challenge model in mature broilers: Bacteriological, immunological, and growth performance aspects. Poult Sci 2011; 90:59-67. [DOI: 10.3382/ps.2010-01017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
He GZ, Tian WY, Qian N, Cheng AC, Deng SX. Quantitative studies of the distribution pattern for Salmonella Enteritidis in the internal organs of chicken after oral challenge by a real-time PCR. Vet Res Commun 2010; 34:669-76. [PMID: 20665111 DOI: 10.1007/s11259-010-9438-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2010] [Indexed: 01/06/2023]
Abstract
This research was undertaken to identify and understand the regular distribution pattern for Salmonella Enteritidis (S. enteritidis) in the internal organs of chicken after oral challenge over a 3 wk period. We used a real-time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) to detect genomic DNA of S. enteritidis in the blood and the internal organs, including heart, liver, spleen, kidney, pancreas, and gallbladder, from chicken after oral challenge at different time points. The results showed that the spleen was positive at 12 h post inoculation (PI), and the blood was at 14 h PI. The organism was detected in the liver and heart at 16 h PI, pancrea was positive at 20 h PI, and the final organ to show a positive results were the kidney and gallbladder at 22 h PI. The copy number of S. enteritidis DNA in each tissue reached a peak at 24 h-36 h PI, with the liver and spleen containing high concentrations of S. enteritidis, whereas the blood, heart, kidney, pancreas, and gallbladder had low concentrations. S. enteritidis populations began to decrease and were not detectable at 3 d PI, but were still present up to 12 d PI in the gallbladder, 2 wk for the liver, and 3 wk for the spleen without causing apparent symptoms. The results showed that the liver and spleen may be the primary sites for S. enteritidis setting itself up as a commensa over a long time after oral challenge. Interestingly, it may be the first time reported that the gallbladder is a site of carriage for S. enteritidis over a 12 d period. This study will help to understand the mechanisms of action of S. enteritidis infection in vivo.
Collapse
Affiliation(s)
- G Z He
- Guiyang College of Traditional Chinese Medicine, Guiyang, 550002, Guizhou Province, China.
| | | | | | | | | |
Collapse
|
24
|
Ramirez-Nieto G, Shivaprasad HL, Kim CH, Lillehoj HS, Song H, Osorio IG, Perez DR. Adaptation of a mallard H5N2 low pathogenicity influenza virus in chickens with prior history of infection with infectious bursal disease virus. Avian Dis 2010; 54:513-21. [PMID: 20521687 DOI: 10.1637/8902-042809-reg.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The influenza A/Mallard/Pennsylvania/10218/1984 (H5N2) virus is unable to replicate in 3-wk-old immunocompetent specific-pathogen-free chickens when a dose of 5 x 10(6) 50% egg infectious dose/ml is used. In contrast, this mallard virus shows limited replication in 3-wk-old chickens that had been previously infected at 2 days of age with, and recovered from, the immunosuppressive agent infectious bursal disease virus (IBDV; herein referred to as IBDV chickens). This limited replication in IBDV chickens allowed for the serial passage of the mallard influenza virus in chickens. After 22 passages (P22) in IBDV chickens, the resulting chicken-adapted influenza virus replicated in both immunocompetent and IBDV chickens more efficiently than the mallard influenza virus. Analysis of the outcomes of infection and the lesions caused by the two viruses at the microscopic level in a time-point study showed that the P22 virus is more virulent than the parental mallard virus in both immunocompetent and IBDV chickens. Our studies provide evidence that a previous history of IBDV infection in chickens may render them more susceptible to avian influenza virus (AIV) infections, allowing for the potential introduction of AIVs in an otherwise resistant population.
Collapse
Affiliation(s)
- Gloria Ramirez-Nieto
- Department of Veterinary Medicine, University of Maryland, College Park 20742-3711, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Mahdavi A, Rahmani H, Nili N, Samie A, Soleimanian-Zad S, Jahanian R. Effects of dietary egg yolk antibody powder on growth performance, intestinal Escherichia coli colonization, and immunocompetence of challenged broiler chicks. Poult Sci 2010; 89:484-94. [DOI: 10.3382/ps.2009-00541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
26
|
Haridy M, Goryo M, Sasaki J, Okada K. Intestinal volvulus with coagulative hepatic necrosis in a chicken. J Vet Med Sci 2009; 72:489-92. [PMID: 19959885 DOI: 10.1292/jvms.09-0344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A 7-week-old SPF chicken inoculated at 4 weeks of age with chicken anemia virus was puffed up depressed and had ruffled feathers and a good body condition. Intestinal volvulus involving the jejunum and part of the duodenum forming two loops with one knob was observed. Microscopically, venous infarction of the obstructed loops, periportal and sublobular multifocal coagulative hepatic necrosis and granulomatous inflammation of the cecal tonsils were observed. Gram staining revealed no bacteria in hepatic tissue; however, gram-positive bacilli were detected in the necrotic debris in the intestinal lumen. Immunosuppression might have predisposed the chicken to intestinal and cecal tonsil infection that then progressed to volvulus. Loss of the mucosal barrier in infarction might allow bacterial toxins and vasoactive factors to escape into the systemic circulation (toxemia) and be responsible for the hepatic necrosis.
Collapse
Affiliation(s)
- Mohie Haridy
- Department of Pathogenetic Veterinary Science, The United Graduate School of Veterinary Science, Gifu University
| | | | | | | |
Collapse
|
27
|
Jain S, Yadav H, Sinha P. Probiotic Dahi ContainingLactobacillus caseiProtects AgainstSalmonella enteritidisInfection and Modulates Immune Response in Mice. J Med Food 2009; 12:576-83. [DOI: 10.1089/jmf.2008.0246] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shalini Jain
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Hariom Yadav
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - P.R. Sinha
- Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
28
|
Li S, Zhang Z, Pace L, Lillehoj H, Zhang S. Functions exerted by the virulence-associated type-three secretion systems during Salmonella enterica serovar Enteritidis invasion into and survival within chicken oviduct epithelial cells and macrophages. Avian Pathol 2009; 38:97-106. [PMID: 19322708 DOI: 10.1080/03079450902737771] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Salmonella enterica serovar Enteritidis (SE) infection of chickens is a major contributing factor to non-typhoidal salmonellosis. The roles of the type-three secretion systems (T3SS-1 and T3SS-2) in the pathogenesis of SE infection of chickens are poorly understood. In this study, the functions of T3SS-1 and T3SS-2 during SE infection of primary chicken oviduct epithelial cells (COEC) and macrophages were characterized. The T3SS-1 and T3SS-2 mutants (sipB and ssaV), impaired in translocation and secretion, respectively, were significantly less invasive than their wild-type parent strain. The genes encoding effector proteins of T3SS-1 (SipA, SopB, and SopE2) and T3SS-2 (PipB) contributed equally to the entry of SE into COEC. The sipA mutant had reduced survival and the pipB mutant had enhanced replication in COEC. Mutations in the T3SS-2 genes ssaV and pipB reduced the survival of SE in chicken peripheral blood leukocyte-derived macrophages (PBLM), but not in the established chicken macrophage cell line HD11. A mutation in the ssaV gene also abolished SE-induced PBLM death between 1 h post-inoculation and 4 h post-inoculation. This study has shown that both T3SS-1 and T3SS-2 are required by SE to invade COEC; that SipA and PipB are necessary for the survival of SE in COEC and chicken PBLM, respectively; and that T3SS-2 triggers PBLM death during the early stages of SE infection, and this process does not depend on PipB.
Collapse
Affiliation(s)
- Shuhui Li
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Pearl, MS 39288, USA
| | | | | | | | | |
Collapse
|
29
|
Yang X, Qi X, Cheng A, Wang M, Zhu D, Jia R, Chen X. Intestinal mucosal immune response in ducklings following oral immunisation with an attenuated Duck enteritis virus vaccine. Vet J 2009; 185:199-203. [PMID: 19442544 DOI: 10.1016/j.tvjl.2009.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/06/2009] [Accepted: 04/14/2009] [Indexed: 10/20/2022]
Abstract
To investigate the intestinal mucosal immune responses in ducklings orally inoculated with attenuated Duck enteritis virus (DEV), the kinetics of the viral load, the specific humoral immune responses, and the distribution of immunoglobulin (Ig)A-secreting cells in the intestine were evaluated. Oral inoculation with attenuated DEV stimulated an IgA-dominant response in intestinal secretions and a IgY-dominant response in the serum. The dramatic increase in virus-specific mucosal IgA 15 days after inoculation was accompanied by reductions in the DEV intestinal load, suggesting that the IgA response has a role in controlling viral replication. The kinetics of virus-specific IgA production closely correlated with the presence of IgA+ plasma cells in the intestinal lamina propria.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Avian Disease Research Centre, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Babu U, Wiesenfeld P, Gaines D, Raybourne RB. Effect of long chain fatty acids on Salmonella killing, superoxide and nitric oxide production by chicken macrophages. Int J Food Microbiol 2009; 132:67-72. [PMID: 19375809 DOI: 10.1016/j.ijfoodmicro.2009.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 02/10/2009] [Accepted: 03/23/2009] [Indexed: 12/21/2022]
Abstract
The objective of this study was to investigate the effect of uptake of different commonly consumed long chain fatty acids on superoxide (O(2)(-)), nitric oxide (NO) production, and ability to kill Salmonella enterica serotype typhimurium (S. typhimurium) by chicken macrophages (HD11 cells). All the fatty acids were taken up by HD11 cells with stearic acid uptake higher than polyunsaturated fatty acids. Uptake of green fluorescent protein-labeled bacteria and the viability of HD11 cells (measured by flow cytometry) was not affected by any of the fatty acids tested. Bacterial clearance (measured by the plating of sorted viable infected cells) was significantly higher with n-3 fatty acids alpha-linolenic acid (ALA) and docosahexanoic acid (DHA). However, stearic acid (SA) and the n-6 fatty acid, arachidonic acid (ARA) did not influence S. typhimurium killing by HD11 cells. The improved S. typhimurium clearance by ALA and DHA was not associated with increased NO or O(2)(-) production by HD11 cells. These results suggest a role for n-3 polyunsaturated fatty acids in Salmonella clearance by chicken macrophages however in vivo studies are essential to confirm their efficacy in controlling Salmonella infection in chickens and contamination in shell eggs.
Collapse
Affiliation(s)
- Uma Babu
- Immunobiology Branch, Food and Drug Administration, 8301 Muirkirk Rd., Laurel, MD 20708, USA.
| | | | | | | |
Collapse
|
31
|
Qi X, Yang X, Cheng A, Wang M, Zhu D, Jia R, Luo Q, Chen X. Intestinal mucosal immune response against virulent duck enteritis virus infection in ducklings. Res Vet Sci 2009; 87:218-25. [PMID: 19303123 DOI: 10.1016/j.rvsc.2009.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/23/2008] [Accepted: 02/17/2009] [Indexed: 11/16/2022]
Abstract
Duck virus enteritis (DVE) is an acute and contagious herpes virus infection of duck, geese and swans with high morbidity and mortality. The development of specific mucosal immune system against duck enteritis virus (DEV) infection for ducks has been hindered by a lack of knowledge concerning the purification of immunoglobulin A (IgA) of duck. In the present work, the method for purification of duck immunoglobulin A was developed, and the induction of intestinal mucosal immune responses against DEV was studied by orally infected ducklings with virulent DEV. The results showed that a continuous increased DEV DNA levels were observed in blood and various organs examined of orally infected ducklings throughout the infection, which was accompanied by the development of infection in ducklings from mild progressed to severe pathological lesions. Furthermore, a marked increased level of DEV-specific IgA and IgG antibodies in bile, serum and the intestinal tract, as well as the density of IgA(+) cells in intestine were detected between 1 and 12days p.i., followed by a drastic reduction of the antibody levels and the density of IgA(+) cells at 15days p.i. The results indicate that the DVE infection can stimulate both IgA-dominated antibody immune responses in the intestinal tract, and IgG-dominated antibody systemic immunity in the serum of ducklings orally inoculated with virulent DEV. The severe lesions of the villus epithelial cells and the lymphoid organs can suppress the intestinal mucosal immune responses.
Collapse
Affiliation(s)
- Xuefeng Qi
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
van Ginkel FW, van Santen VL, Gulley SL, Toro H. Infectious bronchitis virus in the chicken Harderian gland and lachrymal fluid: viral load, infectivity, immune cell responses, and effects of viral immunodeficiency. Avian Dis 2009; 52:608-17. [PMID: 19166051 DOI: 10.1637/8349-050908-reg.1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We compared detection of infectious bronchitis virus (IBV) by quantitative RT-PCR (qRT-PCR) in tears and trachea of IBV-infected chickens and found that quantitative detection of IBV RNA in tears is more sensitive than in tracheal homogenates. Furthermore, we demonstrated that IBV contained in chicken lachrymal fluid is infectious and that tears of IBV-infected chickens can be used to infect naive chickens. We compared the immune responses to IBV in the Harderian gland and cecal tonsils of immunocompetent chickens and chickens infected with chicken anemia virus (CAV) and/or infectious bursal disease virus (IBDV). Flow cytometry analyses of lymphocytes in Harderian glands and cecal tonsils indicated that the relative abundance of IgM+ B cells in the Harderian glands and cecal tonsils following exposure to IBV in combination with immunosuppressive viruses was reduced compared to chickens infected with IBV alone. CAV, but not IBDV, reduced the CD4+/CD8+ T cell ratios compared to chickens infected with IBV alone. Enzyme-linked immuno-spot forming assays on cells in the Harderian glands and cecal tonsils of IBV-infected chickens indicated that maximum IBV-specific IgA-secreting cell responses were reduced in chickens infected with CAV. IBDV co-infected chickens displayed a delayed IgA response to IBV. Thus immunosuppressive viruses reduced B cells and T helper cells in the Harderian glands and cecal tonsils in response to IBV, and slowed the kinetics and/or reduced the magnitude of the mucosal immune response against IBV. We have shown for the first time that CAV affects pathogen-specific B cell responses in a mucosal effector site.
Collapse
Affiliation(s)
- F W van Ginkel
- Auburn University College of Veterinary Medicine, 166 Greene Hall, Auburn, AL 36849, USA
| | | | | | | |
Collapse
|
33
|
Toyota-Hanatani Y, Kyoumoto Y, Baba E, Ekawa T, Ohta H, Tani H, Sasai K. Importance of subunit vaccine antigen of major Fli C antigenic site of Salmonella enteritidis II: a challenge trial. Vaccine 2009; 27:1680-4. [PMID: 19186198 DOI: 10.1016/j.vaccine.2009.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 12/25/2008] [Accepted: 01/11/2009] [Indexed: 10/21/2022]
Abstract
Salmonella enterica subsp. enterica serovar Enteritidis (SE) infection in chickens shows a mild pathogenicity except for young ages, compared with other animals, and laying hens sometimes produce SE-contaminated eggs leading to public health concerns. To reduce the problem, SE bacterin in poultry farms has been applied. We previously demonstrated that a subunit antigen, g.m. part polypeptide in SE-Fli C (SEp 9), could be a candidate subunit antigen of SE vaccine which may show less side effects in chickens. In this study, we used SEp 9 along with an adjuvant to inoculate chickens, then the chickens were orally challenged with SE, and suppression of the SE count in the cecum was investigated. Chickens inoculated with a commercial SE vaccine were prepared as positive controls (vaccine group), and those with physiological saline (control group) for comparison of the bacterial count after challenge. Employing two types of antibody-detection ELISA coated with either de-flagellated SE or SEp 9, specific antibody levels in blood and the intestine were determined. The bacterial count was significantly lower 1 and 3 weeks after challenge in the SEp 9 than in the control group. Specific antibody only against SEp 9 in blood but not the intestine of these birds in the SEp 9 group was detected. This study confirmed that SEp 9 antigen is a major effective antigen in SE inactivated vaccine, and it is suggested that only the subunit vaccine antigen SEp 9 is needed to effectively suppress colonization in the chicken intestine, without the need for other SE component antigens.
Collapse
|
34
|
Deng SX, Cheng AC, Wang MS, Cao P. Serovar-Specific Real-Time Quantitative Detection of Salmonella Enteritidis in the Gastrointestinal Tract of Ducks After Oral Challenge. Avian Dis 2008; 52:88-93. [DOI: 10.1637/8102-090107-reg] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Deng SX, Cheng AC, Wang MS, Cao P, Yan B, Yin NC, Cao SY, Zhang ZH. Quantitative studies of the regular distribution pattern for Salmonella enteritidis in the internal organs of mice after oral challenge by a specific real-time polymerase chain reaction. World J Gastroenterol 2008; 14:782-9. [PMID: 18205272 PMCID: PMC2684009 DOI: 10.3748/wjg.14.782] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify and understand the regular distribution pattern for Salmonella enteritidis (S. enteritidis) in the internal organs of mice after an oral challenge over a 3 wk period.
METHODS: Assays based on the serovar-specific DNA sequence of S. enteritidis from GenBank, and a serovar-specific real-time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) were developed for the detection of S. enteritidis. We used this assay to detect genomic DNA of S. enteritidis in the blood and the internal organs, including heart, liver, spleen, kidney, pancreas, and gallbladder, from mice after oral challenge at different time points respectively.
RESULTS: The results showed that the spleen was positive at 12 h post inoculation (PI), and the blood was at 14 h PI. The organism was detected in the liver and heart at 16 h PI, the pancreas was positive at 20 h PI, and the final organs to show positive results were the kidney and gallbladder at 22 h PI. The copy number of S. enteritidis DNA in each tissue reached a peak at 24-36 h PI, with the liver and spleen containing high concentrations of S. enteritidis, whereas the blood, heart, kidney, pancreas, and gallbladder had low concentrations. S. enteritidis populations began to decrease and were not detectable at 3 d PI, but were still present up to 12 d PI in the gallbladder, 2 wk for the liver, and 3 wk for the spleen without causing apparent symptoms.
CONCLUSION: The results provided significant data for understanding the life cycle of S. enteritidis in the internal organs, and showed that the liver and spleen may be the primary sites for setting itself up as a commensal over a long time after oral challenge. Interestingly, it may be the first time reported that the gallbladder is a site of carriage for S. enteritidis over a 12 d period. This study will help to understand the mechanisms of action of S. enteritidis infection in vivo.
Collapse
|
36
|
Yan B, Cheng AC, Wang MS, Deng SX, Zhang ZH, Yin NC, Cao P, Cao SY. Application of an indirect immunofluorescent staining method for detection of Salmonella enteritidis in paraffin slices and antigen location in infected duck tissues. World J Gastroenterol 2008; 14:776-81. [PMID: 18205271 PMCID: PMC2684008 DOI: 10.3748/wjg.14.776] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect Salmonella enteritidis (S. enteritidis) in paraffin slices and antigen location in infected duck tissues.
METHODS: Rabbits were immunized with purified bacillus to obtain S. enteritidis-specific antibody, which were then extracted by the caprylic-ammonium sulphate method, purified through High-Q columns. An indirect immuno-fluorescent staining method (IFA) was established to detect the S. enteritidis antigen in paraffin slices. S. enteritidis was detected in each organ tissue of ducklings experimentally infected with S. enteritidis.
RESULTS: The gland of Garder, heart, kidney, spleen, liver, brain, ileum, jejunum, bursa of Fabricius from S. enteritidis experimentally infected ducklings were positive or strongly positive, and the S. enteritidis antigen was mainly distributed in the infected cell cytoplasm.
CONCLUSION: IFA is an intuitionist, sensitive and specific method in detecting S. enteritidis antigen in paraffin wax slices, and it is a good method in diagnosis and antigen location of S. enteritidis. We also conclude that the gland of Garder, heart, kidney, spleen, liver, ileum, jejunum are target organs in S. enteritidis infections of duck, and S. enteritidis is an intracellular parasitic bacterium.
Collapse
|
37
|
Deng SX, Cheng AC, Wang MS, Cao P. Gastrointestinal tract distribution of Salmonella enteritidis in orally infected mice with a species-specific fluorescent quantitative polymerase chain reaction. World J Gastroenterol 2007; 13:6568-74. [PMID: 18161929 PMCID: PMC4611298 DOI: 10.3748/wjg.v13.i48.6568] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To identify and understand the regular distribution pattern and primary penetration site for Salmonella enteritidis (S. enteritidis) in the gastrointestinal tract.
METHODS: Based on the species-specific DNA sequence of S. enteritidis from GenBank, a species-specific real-time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) was developed for the detection of S. enteritidis. We used this assay to detect genomic DNA of S. enteritidis in the gastrointestinal tract, including duodenum, jejunum, ileum, cecum, colon, rectum, esophagus and stomach, from mice after oral infection.
RESULTS: S. enteritidis was consistently detected in all segments of the gastrointestinal tract. The jejunum and ileum were positive at 8 h post inoculation, and the final organ to show a positive result was the stomach at 18 h post inoculation. The copy number of S. enteritidis DNA in each tissue reached a peak at 24-36 h post inoculation, with the jejunum, ileum and cecum containing high concentrations of S. enteritidis, whereas the duodenum, colon, rectum, stomach and esophagus had low concentrations. S. enteritidis began to decrease and vanished at 2 d post inoculation, but it was still present up to 5 d post inoculation in the jejunum, ileum and cecum, without causing apparent symptoms. By 5 d post inoculation, the cecum had significantly higher numbers of S. enteritidis than any of the other areas (P < 0.01), and this appeared to reflect its function as a repository for S. enteritidis.
CONCLUSION: The results provided significant data for clarifying the pathogenic mechanism of S. enteritidis in the gastrointestinal tract, and showed that the jejunum, ileum and cecum are the primary sites of invasion in normal mice after oral infection. This study will help to further understanding of the mechanisms of action of S. enteritidis.
Collapse
|
38
|
Agunos A, Ibuki M, Yokomizo F, Mine Y. Effect of dietaryβ1–4 mannobiose in the prevention ofSalmonellaenteritidisinfection in broilers. Br Poult Sci 2007; 48:331-41. [PMID: 17578696 DOI: 10.1080/00071660701370442] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
1. This study investigated the effects of beta1-4 Mannobiose (MNB)-supplemented feeds on the kinetics of Salmonella enterica serovar Enteritidis (SE) in broilers and the ensuing histopathological changes. D-Mannose (MAN) was used for comparison. The diets supplemented with MNB or MAN were fed during the first two weeks after hatching to investigate any protection against SE infection in growing birds and any immunomodulatory functions in the gut. 2. MNB-supplementation reduced SE organ colonisation, caecal carriage and faecal shedding in a time-dependent manner. The high concentrations and persistency of the SE-specific IgA response in those birds given rations supplemented with MNB or MAN were associated with a decline in SE shedding and caecal carriage in the later stages of infection. MNB was more effective against SE infection than MAN. 3. Histological examination of the caecal wall and caecal tonsils at 23 d post-infection indicated a lesser degree of intestinal pathology. An increased number of intra-epithelial mononuclear cells (mature lymphocytes and macrophages) in the lining epithelium of birds fed on the diet supplemented with MNB was accompanied by an increased number of lamina propria cells. 4. The present study indicates that feeding a diet supplemented with MNB during the first two weeks after hatching reduced susceptibility to SE infection. Supplementing the diet with MNB or MAN increased IgA production and improved SE clearance by acting as immunomodulatory agents that prevented intestinal pathology. Feeding a MNB-supplemented diet to broilers could be used as an alternative to antibiotics, because it has no adverse effects on mortality or weight gain.
Collapse
Affiliation(s)
- A Agunos
- Department of Food Science, University of Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
39
|
Alcaine SD, Soyer Y, Warnick LD, Su WL, Sukhnanand S, Richards J, Fortes ED, McDonough P, Root TP, Dumas NB, Gröhn Y, Wiedmann M. Multilocus sequence typing supports the hypothesis that cow- and human-associated Salmonella isolates represent distinct and overlapping populations. Appl Environ Microbiol 2006; 72:7575-85. [PMID: 17028236 PMCID: PMC1694263 DOI: 10.1128/aem.01174-06] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Accepted: 09/25/2006] [Indexed: 11/20/2022] Open
Abstract
A collection of 179 human and 156 bovine clinical Salmonella isolates obtained from across New York state over the course of 1 year was characterized using serotyping and a multilocus sequence typing (MLST) scheme based on the sequencing of three genes (fimA, manB, and mdh). The 335 isolates were differentiated into 52 serotypes and 72 sequence types (STs). Analyses of bovine isolates collected on different farms over time indicated that specific subtypes can persist over time on a given farm; in particular, a number of farms showed evidence for the persistence of a specific Salmonella enterica serotype Newport sequence type. Serotypes and STs were not randomly distributed among human and bovine isolates, and selected serotypes and STs were associated exclusively with either human or bovine sources. A number of common STs were geographically widespread. For example, ST6, which includes isolates representing serotype Typhimurium as well as the emerging serotype 4,5,12:i:-, was found among human and bovine isolates in a number of counties in New York state. Phylogenetic analyses supported the possibility that serotype 4,5,12:i:- is closely related to Salmonella serotype Typhimurium. Salmonella serotype Newport was found to represent two distinct evolutionary lineages that differ in their frequencies among human and bovine isolates. A number of Salmonella isolates carried two copies of manB (33 isolates) or showed small deletion events in fimA (nine isolates); these duplication and deletion events may provide mechanisms for the rapid diversification of Salmonella surface molecules. We conclude that the combined use of an economical three-gene MLST scheme and serotyping can provide considerable new insights into the evolution and transmission of Salmonella.
Collapse
Affiliation(s)
- S D Alcaine
- Department of Food Science, 412 Stocking Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
van Hemert S, Hoekman AJW, Smits MA, Rebel JMJ. Gene expression responses to a Salmonella infection in the chicken intestine differ between lines. Vet Immunol Immunopathol 2006; 114:247-58. [PMID: 16978708 DOI: 10.1016/j.vetimm.2006.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 06/27/2006] [Accepted: 08/11/2006] [Indexed: 01/08/2023]
Abstract
Poultry products are an important source of Salmonella enterica. An effective way to reduce food poisoning due to Salmonella would be to breed chickens more resistant to Salmonella. Unfortunately host responses to Salmonella are complex with many factors involved. To learn more about responses to Salmonella in young chickens, a cDNA microarray analysis was performed to compare gene expression profiles between two chicken lines under control and Salmonella infected conditions. Newly hatched chickens were orally infected with S. enterica serovar Enteritidis. Since the intestine is the first barrier the bacteria encounter after oral inoculation, intestinal gene expression was investigated at different timepoints. Differences in gene expression between the two chicken lines were found in control as well as Salmonella infected conditions. In response to the Salmonella infection a fast growing chicken broiler line induced genes that affect T-cell activation, whereas in a slow growing broiler line genes involved in macrophage activation seemed to be more affected at day 1 post-infection. At days 7 and 9 most gene expression differences between the two chicken lines were identified under control conditions, indicating a difference in the intestinal development between the two chicken lines which might be linked to the difference in Salmonella susceptibility. The findings in this study have lead to the identification of novel genes and possible cellular pathways, which are host dependent.
Collapse
Affiliation(s)
- Saskia van Hemert
- Animal Sciences Group of Wageningen UR, Animal Resources Development, P.O. Box 65, 8200 AB Lelystad, The Netherlands.
| | | | | | | |
Collapse
|
41
|
Agunos A, Silphaduang U, Mine Y. Effects of Nonimmunized Egg Yolk Powder–Supplemented Feed on Salmonella Enteritidis Prevention and Elimination in Broilers. Avian Dis 2006; 50:366-73. [PMID: 17039835 DOI: 10.1637/7443-092205r.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chicken consumption is a newly identified risk factor in Salmonella enterica serovar Enteritidis (SE) infection in humans. SE is widely distributed in commercial chicken flocks and high levels of cecal carriage and shedding may lead to broiler meat contamination. In the present study, the preventive and eliminative effect of nonimmunized freeze-dried egg yolk powder (EYP) on SE in broilers was investigated. In the prevention trial, reduced SE counts were observed in liver (P < or = 0.05), cecal contents, and fecal shedding (P < or = 0.05) in birds fed 10% or 5% EYP. Histological examination of cecal wall and cecal tonsils at 23 days postinfection indicated a lesser degree of intestinal pathology. In the elimination trial, a significantly lower (P < or = 0.05) number of SE reached the liver and spleen, and a reduction in cecal carriage and fecal shedding was observed. The histological changes in the cecal mucosa and cecal tonsils reflected an apparent inflammation and mucosal repair and also suggested that the infection had not completely resolved, confirming SE bacterial isolations in the cecal tissue. The present study indicates that supplementing the diets of broilers with 5% nonimmunized EYP, at the early stages of the growing period, reduces preharvest Salmonella load with a minimal degree of intestinal pathology.
Collapse
Affiliation(s)
- A Agunos
- Department of Food Science, University of Guelph, Ontario, Canada
| | | | | |
Collapse
|
42
|
Hasenstein JR, Zhang G, Lamont SJ. Analyses of Five gallinacin genes and the Salmonella enterica serovar Enteritidis response in poultry. Infect Immun 2006; 74:3375-80. [PMID: 16714567 PMCID: PMC1479296 DOI: 10.1128/iai.00027-06] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/06/2006] [Accepted: 03/06/2006] [Indexed: 11/20/2022] Open
Abstract
Gallinacins in poultry are functional equivalents of mammalian beta-defensins, which constitute an integral component of the innate immune system. Salmonella enterica serovar Enteritidis is a gram-negative bacterium that negatively affects both human and animal health. To analyze the association of genetic variations of the gallinacin genes with the phenotypic response to S. enterica serovar Enteritidis, an F1 population of chickens was created by crossing four outbred broiler sires to dams of two highly inbred lines. The F1 chicks were evaluated for bacterial colonization after pathogenic S. enterica serovar Enteritidis inoculation and for circulating antibody levels after inoculation with S. enterica serovar Enteritidis bacterin vaccine. Five candidate genes were studied, including gallinacins 2, 3, 4, 5, and 7. Gene fragments were sequenced from the founder individuals of the resource population, and a mean of 13.2 single-nucleotide polymorphisms (SNP) per kilobase was identified. One allele-defining SNP per gene was utilized to test for statistical associations of sire alleles with progeny response to S. enterica serovar Enteritidis. Among the five gallinacin genes evaluated, the Gal3 and Gal7 SNPs in broiler sires were found to be associated with antibody production after S. enterica serovar Enteritidis vaccination. Utilization of these SNPs as molecular markers for the response to S. enterica serovar Enteritidis may result in the enhancement of the immune response in poultry.
Collapse
Affiliation(s)
- Jason R Hasenstein
- Department of Animal Science, Iowa State University, 2255 Kildee Hall, Ames, IA 50011-3150, USA
| | | | | |
Collapse
|
43
|
Cotter PF, Van Eerden E. Natural anti-Gal and Salmonella-specific antibodies in bile and plasma of hens differing in diet efficiency. Poult Sci 2006; 85:435-40. [PMID: 16553272 DOI: 10.1093/ps/85.3.435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Specific anti-Salmonella enteritidis (SE) and natural anti-alpha-gal epitope (Galalpha1-3Galbeta-1-4GlcNAc-R; anti-Gal) antibodies were measured in plasma sample pools and individual bile specimens obtained from hens differing in diet efficiency. More SE somatic (O) and flagellar (H) antibodies were found in plasma pools from efficient hens (R-) compared with nonefficient hens (R+) after oral challenge with live SE. Mean titers of somatic agglutinins in bile were 2.3 in R- hens and 1.9 in R+ hens (P = 0.06) following live challenge. Salmonella enteritidis antibodies were also found in bile of nonchallenged hens of both types but their levels were not significantly different. Flagellar (H) agglutinin scores were higher in SE-challenged hens compared with nonchallenged hens (3.1 vs. 2.1; P < or = 0.004) but efficiency types did not differ. Bile also contained high titers of the anti-Gal antibody indicated by the agglutination of glutaraldehyde-stabilized rabbit erythrocytes. The average titer of all SE-nonexposed hens was 9.0 corresponding to 1:5,120 when corrected for the initial dilution and expressed in conventional terms. Salmonella enteritidis exposure was associated with higher anti-Gal titers. The average anti-Gal titer for all SE-exposed hens was 10.0, corresponding to 1:10,240 in conventional terms; this difference was significant (P < or = 0.016). Diet efficiency type-associated differences in anti-Gal titers were not significant. Collectively, our data indicate that diet efficiency status is not associated with compromised Salmonella-specific immune responses. Rather it appears that the immune responses of diet efficient hens (R-) are also more efficient. This is because R- hens produced higher levels of O- and H-type antibody only as the result of direct exposure to living SE. On the contrary, R+ hens produced H-type antibody because of challenge with heat-killed SE, a circumstance that will not result in disease. Moreover, the hen type difference does not seem to occur at the expense of innate immunity as measured by anti-Gal antibody levels.
Collapse
Affiliation(s)
- P F Cotter
- Framingham State College, Framingham, MA 01701-9101, USA.
| | | |
Collapse
|
44
|
Cotter PF, Van Eerden E. Salmonella Challenge Affects the Antibody Isotype Profile of Bile in Hens Differing in Metabolic Efficiency. Poult Sci 2006; 85:861-5. [PMID: 16673763 DOI: 10.1093/ps/85.5.861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Gel precipitation reactions determined antibody isotypes in bile from hens differing in dietary efficiency. Ouchterlony double diffusion employing alpha-chain specific goat-anti-chicken IgA, rabbit anti-chicken IgG, goat anti-chicken IgM, black turtle bean (BTB), and Jacalin lectins as precipitating reagents detected bile IgA, IgG, and IgM from Salmonella exposed and nonexposed hens. The IgA was present in 1 of 3 forms designated by reagent and frequency: IgAB (precipitated by BTB lectin) 100%; IgAA (precipitated by anti-alpha chain antibody) 98%, and IgAJ (precipitated by Jacalin) 97%. That both BTB and Jacalin precipitates contain IgA was confirmed by immuno-dot blots using affinity purified alpha-chain specific antibody, establishing each as IgA glycoforms. Three measurements of Ouchterlony precipitates were made; d1 and d2 indicate diffusion from sample or reagent wells, lambda indicates arc length. Mean values for lambda, estimating quantity, were IgAA (11.3 mm) and IgAB (11.6 mm) and IgAJ (8.3 mm). The crescent shape IgAJ arc and its slower diffusion (d1) suggested its molecular weight is greater than either IgAA or IgAB. Arc lengths of individual samples were not significantly correlated suggesting that these are independent components of bile. Oral Salmonella enteritidis challenge resulted in a highly significant difference in bile IgA profiles. The IgAJ arc lengths (lambda) in R- hens increased by 20% over those in nonchallenged R- hens. Conversely S. enteritidis challenge was associated with a decrease of 10% in IgAJ arc lengths in nonefficient (R+) hens. Salmonella enteritidis challenge was not associated with arc length differences in either IgAA or IgAB. The IgG was present in all specimens, and in 9 of 59 (15%) 2 forms were detected. The IgG quantity was unaffected by either efficiency type or S. enteritidis challenge. The IgM was detected in only 2 of 59 (3.4%) specimens. Our observations suggest IgA of bile is composed of multiple forms influenced both by diet efficiency status and S. enteritidis exposure. It appears that the latter resulted in an increased quantity of IgAJ in R- hens, and suggests the existence of functional differences among the various IgA types.
Collapse
|
45
|
Babu U, Dalloul RA, Okamura M, Lillehoj HS, Xie H, Raybourne RB, Gaines D, Heckert RA. Salmonella enteritidis clearance and immune responses in chickens following Salmonella vaccination and challenge. Vet Immunol Immunopathol 2004; 101:251-7. [PMID: 15350755 DOI: 10.1016/j.vetimm.2004.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Revised: 05/06/2004] [Accepted: 05/20/2004] [Indexed: 11/27/2022]
Abstract
Our previous work showed that the cell-mediated immunity (CMI) was enhanced by live Salmonella vaccine (LV). The objective of this study was to evaluate the impact of live and killed Salmonella vaccines on Salmonella enteritidis (SE) clearance and to determine if the clearance was mediated by cell-mediated and/or humoral immunity. Chickens were first immunized at 2 weeks of age followed by a booster dose at 4 weeks, challenged with live SE 2 weeks later (6-week-old) and tested for CMI, antibody response and SE clearance 1-week post SE-challenge (7-week-old). Spleen cell proliferation induced by SE-flagella and Concanavalin A (Con A) were significantly higher and SE shedding was significantly lower in the LV group. The splenic CD3 population was significantly lower and B cells were higher in the control group compared to all the SE-challenged groups (with and without vaccination). Serum antibody to SE-flagella and envelope were significantly higher in the KV group compared to all the other groups. These results suggest that LV protects against SE infection, probably by enhancing the CMI.
Collapse
Affiliation(s)
- U Babu
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, HFS-326, 8301 Muirkirk Road, Laurel, MD 20708, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Huang Z, Panda A, Elankumaran S, Govindarajan D, Rockemann DD, Samal SK. The hemagglutinin-neuraminidase protein of Newcastle disease virus determines tropism and virulence. J Virol 2004; 78:4176-84. [PMID: 15047833 PMCID: PMC374304 DOI: 10.1128/jvi.78.8.4176-4184.2004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays a crucial role in the process of infection. However, the exact contribution of the HN gene to NDV pathogenesis is not known. In this study, the role of the HN gene in NDV virulence was examined. By use of reverse genetics procedures, the HN genes of a virulent recombinant NDV strain, rBeaudette C (rBC), and an avirulent recombinant NDV strain, rLaSota, were exchanged. The hemadsorption and neuraminidase activities of the chimeric viruses showed significant differences from those of their parental strains, but heterotypic F and HN pairs were equally effective in fusion promotion. The tissue tropism of the viruses was shown to be dependent on the origin of the HN protein. The chimeric virus with the HN protein derived from the virulent virus exhibited a tissue predilection similar to that of the virulent virus, and vice versa. The chimeric viruses with reciprocal HN proteins either gained or lost virulence, as determined by a standard intracerebral pathogenicity index test of chickens and by the mean death time in chicken embryos (a measure devised to classify these viruses), indicating that virulence is a function of the amino acid differences in the HN protein. These results are consistent with the hypothesis that the virulence of NDV is multigenic and that the cleavability of F protein alone does not determine the virulence of a strain.
Collapse
Affiliation(s)
- Zhuhui Huang
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | |
Collapse
|