1
|
Phyu EM, Charoenkul K, Nasamran C, Chamsai E, Thaw YN, Phyu HW, Soe HW, Chaiyawong S, Amonsin A. Whole genome characterization of feline coronaviruses in Thailand: evidence of genetic recombination and mutation M1058L in pathotype switch. Front Vet Sci 2025; 12:1451967. [PMID: 40027354 PMCID: PMC11869453 DOI: 10.3389/fvets.2025.1451967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025] Open
Abstract
Feline coronavirus (FCoV) is a significant pathogen that infects the feline population worldwide. FCoV can cause mild enteric disease and a fatal systemic disease called feline infectious peritonitis (FIP). In this study, a cross-sectional survey of FCoV in domestic cats from small animal hospitals in Thailand was conducted from January to December 2021. Our result showed that out of 238 samples tested for FCoV using 3' UTR-specific RT-PCR, 18.7% (28/150) of asymptomatic cats and 25.5% (12/47) of cats with unknown status tested positive for FCoVs. Additionally, 51.2% (21/41) of cats with suspected FIP were found to be positive for FCoVs. Genotype identification using S gene-specific RT-PCR showed that all FCoV-positive samples (n = 61) were FCoV type I. This study obtained the whole genome sequences (n = 3) and S gene sequences (n = 21) of Thai-FCoVs. Notably, this study is the first to report the whole genome of Thai-FCoV. Phylogenetic analysis indicated that Thai-FCoVs were closely related to FCoVs from China and Europe. Additionally, the Thai-FCoVs exhibited specific amino acid substitutions (M1058L) associated with the pathotype switch. Recombination events were found to mainly occur in the ORF1ab and S gene regions of Thai-FCoVs. This study provides insights into the occurrence, genetic diversity, virulence amino acid mutations, and potential recombination of FCoVs in the domestic cat population in Thailand, contributing to our understanding of FCoV epidemiology.
Collapse
Affiliation(s)
- Eaint Min Phyu
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- The International Graduate Course of Veterinary Science and Technology, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Charoenkul
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanakarn Nasamran
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Ekkapat Chamsai
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Yu Nandi Thaw
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Hnin Wai Phyu
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Han Win Soe
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Supassama Chaiyawong
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Alongkorn Amonsin
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Veterinary Public Health, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Martinez A, Lavergne E, Brauge C, Laveran E, Bertagnoli S, Boucraut-Baralon C, Bessière P. Feline coronavirus-associated uveitis: The eye as a gateway to systemic spread and feline infectious peritonitis? Vet Microbiol 2025; 301:110355. [PMID: 39752898 DOI: 10.1016/j.vetmic.2024.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
Feline coronavirus (FCoV) is a virus endemic in cat populations. Specific genomic mutations give it a strong tropism for macrophages, allowing systemic infection and the development of a disease known as feline infectious peritonitis. This disease takes various clinical presentations, and can manifest as uveitis. Two mutations in the spike protein have been identified as possibly associated with FIP: mutations M1058L and S1060A. 193 clinical samples of aqueous humor were collected, all PCR-positive for feline coronavirus. Samples were taken either from cats with a clinical picture compatible with an ocular form of FIP (with uveitis and general clinical signs), or from cats with uveitis only. We sequenced the region of the S gene coding for positions 1058 and 1060 for 77 samples. The aim of the study was to determine whether viruses from cats with clinical signs compatible with FIP were more likely to harbor the M1058L and S1060A mutations. Our results confirm that these mutations are associated with severe disease, and also show that ocular samples from cats with uveitis alone are more likely to contain FECV.
Collapse
Affiliation(s)
| | | | - Clément Brauge
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Emma Laveran
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Pierre Bessière
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
3
|
Chou AA, Lin CH, Chang YC, Chang HW, Lin YC, Pi CC, Kan YM, Chuang HF, Chen HW. Antiviral activity of Vigna radiata extract against feline coronavirus in vitro. Vet Q 2024; 44:1-13. [PMID: 38712855 PMCID: PMC11078076 DOI: 10.1080/01652176.2024.2349665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal illness caused by a mutated feline coronavirus (FCoV). This disease is characterized by its complexity, resulting from systemic infection, antibody-dependent enhancement (ADE), and challenges in accessing effective therapeutics. Extract derived from Vigna radiata (L.) R. Wilczek (VRE) exhibits various pharmacological effects, including antiviral activity. This study aimed to investigate the antiviral potential of VRE against FCoV, addressing the urgent need to advance the treatment of FIP. We explored the anti-FCoV activity, antiviral mechanism, and combinational application of VRE by means of in vitro antiviral assays. Our findings reveal that VRE effectively inhibited the cytopathic effect induced by FCoV, reduced viral proliferation, and downregulated spike protein expression. Moreover, VRE blocked FCoV in the early and late infection stages and was effective under in vitro ADE infection. Notably, when combined with VRE, the polymerase inhibitor GS-441524 or protease inhibitor GC376 suppressed FCoV more effectively than monotherapy. In conclusion, this study characterizes the antiviral property of VRE against FCoV in vitro, and VRE possesses therapeutic potential for FCoV treatment.
Collapse
Affiliation(s)
- Ai-Ai Chou
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chung-Hui Lin
- National Taiwan University Veterinary Hospital, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- TACS-alliance Research Center, Taipei, Taiwan
| | - Yen-Chen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Lin
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Chia-Chen Pi
- King’s Ground Biotech Co., Ltd., Pingtung, Taiwan
| | - Yao-Ming Kan
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hao-Fen Chuang
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Dong B, Zhang X, Zhong X, Hu W, Lin Z, Zhang S, Deng H, Lin W. Prevalence of natural feline coronavirus infection in domestic cats in Fujian, China. Virol J 2024; 21:2. [PMID: 38172898 PMCID: PMC10765712 DOI: 10.1186/s12985-023-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Only few studies have investigated the prevalence of feline coronavirus (FCoV) infection in domestic cats in Fujian, China. This is the first study to report the prevalence rate of FCoV infection in domestic cats in Fujian, China, and to analyse the epidemiological characteristics of FCoV infection in the region. A total of 112 cat faecal samples were collected from animal hospitals and catteries in the Fujian Province. RNA was extracted from faecal material for reverse transcription polymerase chain reaction (RT-PCR). The prevalence rate of FCoV infection was determined, and its epidemiological risk factors were analysed. The overall prevalence of FCoV infection in the cats, was 67.9%. We did not observe a significant association between the age, sex, or breed of the cats included in the study and the prevalence rate of the viral infection. Phylogenetic analysis showed that the four strains from Fujian were all type I FCoV. This is the first study to analyse the prevalence and epidemiological characteristics of FCoV infection in domestic cats in Fujian, China, using faecal samples. The results of this study provide preliminary data regarding the prevalence of FCoV infection in the Fujian Province for epidemiological studies on FCoV in China and worldwide. Future studies should perform systematic and comprehensive epidemiological investigations to determine the prevalence of FCoV infection in the region.
Collapse
Affiliation(s)
- Bo Dong
- College of Life Science of Longyan University, 364012, Longyan, China.
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Fujian Province University, Longyan University, Longyan, China.
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.
| | - Xiaodong Zhang
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Xiaowei Zhong
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Wenqian Hu
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Zhihui Lin
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Shuo Zhang
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Haiyan Deng
- College of Life Science of Longyan University, 364012, Longyan, China
| | - Weiming Lin
- College of Life Science of Longyan University, 364012, Longyan, China.
- Engineering Research Center for the Prevention and Control of Animal Original Zoonosis, College of Life Science, Fujian Province University, Longyan University, Longyan, China.
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.
| |
Collapse
|
5
|
Xie Y, Chen C, Zhang D, Jiao Z, Chen Y, Wang G, Tan Y, Zhang W, Xiao S, Peng G, Shi Y. Diversity for endoribonuclease nsp15-mediated regulation of alpha-coronavirus propagation and virulence. Microbiol Spectr 2023; 11:e0220923. [PMID: 37938022 PMCID: PMC10715224 DOI: 10.1128/spectrum.02209-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/24/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Understanding the role of the endoribonuclease non-structural protein 15 (nsp15) (EndoU) in coronavirus (CoV) infection and pathogenesis is essential for vaccine target discovery. Whether the EndoU activity of CoV nsp15, as a virulence-related protein, has a diverse effect on viral virulence needs to be further explored. Here, we found that the transmissible gastroenteritis virus (TGEV) and feline infectious peritonitis virus (FIPV) nsp15 proteins antagonize SeV-induced interferon-β (IFN-β) production in human embryonic kidney 293 cells. Interestingly, compared with wild-type infection, infection with EnUmt-TGEV or EnUmt-FIPV did not change the IFN-β response or reduce viral propagation in immunocompetent cells. The results of animal experiments showed that EnUmt viruses did not reduce the clinical presentation and mortality caused by TGEV and FIPV. Our findings enrich the understanding of nsp15-mediated regulation of alpha-CoV propagation and virulence and reveal that the conserved functions of nonstructural proteins have diverse effects on the pathogenicity of CoVs.
Collapse
Affiliation(s)
- Yunfei Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chener Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhe Jiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yixi Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Gang Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yubei Tan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Wanpo Zhang
- Veterinary Pathology Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shaobo Xiao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Guiqing Peng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Yuejun Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
6
|
Cao H, Gu H, Kang H, Jia H. Development of a rapid reverse genetics system for feline coronavirus based on TAR cloning in yeast. Front Microbiol 2023; 14:1141101. [PMID: 37032894 PMCID: PMC10076789 DOI: 10.3389/fmicb.2023.1141101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Reverse genetics has become an indispensable tool to gain insight into the pathogenesis of viruses and the development of vaccines. The yeast-based synthetic genomics platform has demonstrated the novel capabilities to genetically reconstruct different viruses. Methods In this study, a transformation-associated recombination (TAR) system in yeast was used to rapidly rescue different strains of feline infectious peritonitis virus, which causes a deadly disease of cats for which there is no effective vaccine. Results and discussion Using this system, the viruses could be rescued rapidly and stably without multiple cloning steps. Considering its speed and ease of manipulation in virus genome assembly, the reverse genetics system developed in this study will facilitate the research of the feline coronaviruses pathogenetic mechanism and the vaccine development.
Collapse
|
7
|
Thayer V, Gogolski S, Felten S, Hartmann K, Kennedy M, Olah GA. 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines. J Feline Med Surg 2022; 24:905-933. [PMID: 36002137 PMCID: PMC10812230 DOI: 10.1177/1098612x221118761] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CLINICAL IMPORTANCE Feline infectious peritonitis (FIP) is one of the most important infectious diseases and causes of death in cats; young cats less than 2 years of age are especially vulnerable. FIP is caused by a feline coronavirus (FCoV). It has been estimated that around 0.3% to 1.4% of feline deaths at veterinary institutions are caused by FIP. SCOPE This document has been developed by a Task Force of experts in feline clinical medicine as the 2022 AAFP/EveryCat Feline Infectious Peritonitis Diagnosis Guidelines to provide veterinarians with essential information to aid their ability to recognize cats presenting with FIP. TESTING AND INTERPRETATION Nearly every small animal veterinary practitioner will see cases. FIP can be challenging to diagnose owing to the lack of pathognomonic clinical signs or laboratory changes, especially when no effusion is present. A good understanding of each diagnostic test's sensitivity, specificity, predictive value, likelihood ratio and diagnostic accuracy is important when building a case for FIP. Before proceeding with any diagnostic test or commercial laboratory profile, the clinician should be able to answer the questions of 'why this test?' and 'what do the results mean?' Ultimately, the approach to diagnosing FIP must be tailored to the specific presentation of the individual cat. RELEVANCE Given that the disease is fatal when untreated, the ability to obtain a correct diagnosis is critical. The clinician must consider the individual patient's history, signalment and comprehensive physical examination findings when selecting diagnostic tests and sample types in order to build the index of suspicion 'brick by brick'. Research has demonstrated efficacy of new antivirals in FIP treatment, but these products are not legally available in many countries at this time. The Task Force encourages veterinarians to review the literature and stay informed on clinical trials and new drug approvals.
Collapse
|
8
|
Oliveira A, Pereira MA, Mateus TL, Mesquita JR, Vala H. Seroprevalence of SARS-CoV-2 in Client-Owned Cats from Portugal. Vet Sci 2022; 9:363. [PMID: 35878380 PMCID: PMC9315516 DOI: 10.3390/vetsci9070363] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
The close contact between humans and domestic cats raises concerns about the potential risks of SARS-CoV-2 transmission. Thus, this study aims to investigate anti-SARS-CoV-2 seroprevalence in client-owned cats from Portugal and evaluate the infection risk of cats that maintain contact with human COVID-19 cases. A total of 176 cats, belonging to 94 households, were sampled. Cat owners answered an online questionnaire, and cats were screened for antibodies against SARS-CoV-2 using a commercial ELISA. Twenty (21.3%) households reported at least one confirmed human COVID-19 case. Forty cats (22.7%) belonged to a COVID-19-positive and 136 (77.3%) to a COVID-19-negative household. The seroprevalences of cats from COVID-19-positive and -negative households were 5.0% (2/40) and 0.7% (1/136). The two SARS-CoV-2-seropositive cats from COVID-19-positive households had an indoor lifestyle, and their owners stated that they maintained a close and frequent contact with them, even after being diagnosed with COVID-19, pointing towards human-to-cat transmission. The SARS-CoV-2-seropositive cat from the COVID-19-negative household had a mixed indoor/outdoor lifestyle and chronic diseases. Owners of the three SARS-CoV-2-seropositive cats did not notice clinical signs or behavior changes. This study highlights the low risk of SARS-CoV-2 transmission from COVID-19-positive human household members to domestic cats, even in a context of close and frequent human-animal contact.
Collapse
Affiliation(s)
- Andreia Oliveira
- Escola Superior Agrária de Ponte de Lima, Instituto Politécnico de Viana do Castelo, 4990-706 Ponte de Lima, Portugal;
- Hospital Veterinário de Gaia, 4415-369 Pedroso, Portugal
| | - Maria Aires Pereira
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, 3500-606 Viseu, Portugal;
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal
- CERNAS-IPV Research Centre, Polytechnic Institute of Viseu, Campus Politécnico, 3504-510 Viseu, Portugal
| | - Teresa Letra Mateus
- CISAS-Center for Research and Development in Agrifood Systems and Sustainability, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, 4900-347 Viana do Castelo, Portugal;
- EpiUnit-Instituto de Saúde Pública da Universidade do Porto, Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-091 Porto, Portugal;
- Veterinary and Animal Research Centre (CECAV), Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - João R. Mesquita
- EpiUnit-Instituto de Saúde Pública da Universidade do Porto, Laboratory for Integrative and Translational Research in Population Health (ITR), 4050-091 Porto, Portugal;
- ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-600 Porto, Portugal
| | - Helena Vala
- Instituto Politécnico de Viseu, Escola Superior Agrária de Viseu, 3500-606 Viseu, Portugal;
- CERNAS-IPV Research Centre, Polytechnic Institute of Viseu, Campus Politécnico, 3504-510 Viseu, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| |
Collapse
|
9
|
Cook S, Castillo D, Williams S, Haake C, Murphy B. Serotype I and II Feline Coronavirus Replication and Gene Expression Patterns of Feline Cells-Building a Better Understanding of Serotype I FIPV Biology. Viruses 2022; 14:1356. [PMID: 35891338 PMCID: PMC9320447 DOI: 10.3390/v14071356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a disease of domestic cats caused by the genetic variant of the feline coronavirus (FCoV) and feline infectious peritonitis virus (FIPV), currently grouped into two serotypes, I and II. Although serotype I FIPV is more prevalent in cats with FIP, serotype II has been more extensively studied in vitro due to the relative ease in propagating this viral serotype in culture systems. As a result, more is known about serotype II FIPV than the more biologically prevalent serotype I. The primary cell receptor for serotype II has been determined, while it remains unknown for serotype I. The recent development of a culture-adapted feline cell line that more effectively propagates serotype I FIPV, FCWF-4 CU, derived from FCWF-4 cells available through the ATCC, offers the potential for an improved understanding of serotype I FIPV biology. To learn more about FIPV receptor biology, we determined targeted gene expression patterns in feline cells variably permissive to replication of serotype I or II FIPV. We utilized normal feline tissues to determine the immunohistochemical expression patterns of two known coronavirus receptors, ACE2 and DC-SIGN. Lastly, we compared the global transcriptomes of the two closely related FCWF-4 cell lines and identified viral transcripts with potential importance for the differential replication kinetics of serotype I FIPV.
Collapse
Affiliation(s)
- Sarah Cook
- Graduate Group Integrative Pathobiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| | - Sonyia Williams
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| | - Christine Haake
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Brian Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| |
Collapse
|
10
|
Camero M, Lanave G, Catella C, Lucente MS, Sposato A, Mari V, Tempesta M, Martella V, Buonavoglia A. ERDRP-0519 inhibits feline coronavirus in vitro. BMC Vet Res 2022; 18:55. [PMID: 35078478 PMCID: PMC8787031 DOI: 10.1186/s12917-022-03153-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Coronaviruses (CoVs) are major human and animal pathogens and antiviral drugs are pursued as a complementary strategy, chiefly if vaccines are not available. Feline infectious peritonitis (FIP) is a fatal systemic disease of felids caused by FIP virus (FIPV), a virulent pathotype of feline enteric coronavirus (FeCoV). Some antiviral drugs active on FIPV have been identified, but they are not available in veterinary medicine. ERDRP-0519 (ERDRP) is a non-nucleoside inhibitor, targeting viral RNA polymerase, effective against morbilliviruses in vitro and in vivo. Results The antiviral efficacy of ERDRP against a type II FIPV was evaluated in vitro in Crandell Reese Feline Kidney (CRFK) cells. ERDRP significantly inhibited replication of FIPV in a dose-dependent manner. Viral infectivity was decreased by up to 3.00 logarithms in cell cultures whilst viral load, estimated by quantification of nucleic acids, was reduced by nearly 3.11 logaritms. Conclusions These findings confirm that ERDRP is highly effective against a CoV. Experiments will be necessary to assess whether ERDRP is suitable for treatment of FIPV in vivo. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03153-3.
Collapse
Affiliation(s)
- Michele Camero
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy.
| | - Cristiana Catella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | | - Alessio Sposato
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Viviana Mari
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | | |
Collapse
|
11
|
Doki T, Takahashi K, Hasegawa N, Takano T. In vitro antiviral effects of GS-441524 and itraconazole combination against feline infectious peritonitis virus. Res Vet Sci 2022; 144:27-33. [PMID: 35033848 PMCID: PMC8739810 DOI: 10.1016/j.rvsc.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022]
Abstract
Feline infectious peritonitis virus (FIPV: virulent feline coronavirus) causes a fatal disease called feline infectious peritonitis (FIP) in wild and domestic cat species. Recent studies identified several antiviral drugs that are effective against FIPV. Drug combination is one of the important strategies in the development of novel treatments for viral infections. GS-441524, a nucleoside analog, and itraconazole, a triazole antifungal drug, have been reported that have antiviral effect against FIPV. This study aims to investigate whether the combination of GS-441524 and itraconazole has synergic antiviral effect against FIPV. The antiviral effect was measured by plaque reduction assay using felis catus whole fatus-4 cell. The plaque reduction of GS-441524 against type I FIPVs increased as the concentration of itraconazole increased. The similar result was obtained for type II FIPV. In addition, the calculated combination index (CI) demonstrated that there was a strong synergy between GS-441524 and itraconazole. It is concluded that the combination of GS-441524 and itraconazole may enhance the individual effect of each drug against replication of type I FIPVs and may contribute to development more effective treatment strategy for FIP.
Collapse
Affiliation(s)
- Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | - Ken Takahashi
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Nobuhisa Hasegawa
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | - Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| |
Collapse
|
12
|
Dong B, Zhang G, Zhang X, Chen X, Zhang M, Li L, Lin W. Development of an Indirect ELISA Based on Spike Protein to Detect Antibodies against Feline Coronavirus. Viruses 2021; 13:v13122496. [PMID: 34960764 PMCID: PMC8707903 DOI: 10.3390/v13122496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Feline coronavirus (FCoV) is a pathogenic virus commonly found in cats that causes a benign enteric illness and fatal systemic disease, feline infectious peritonitis. The development of serological diagnostic tools for FCoV is helpful for clinical diagnosis and epidemiological investigation. Therefore, this study aimed to develop an indirect enzyme-linked immunosorbent assay (iELISA) to detect antibodies against FCoV using histidine-tagged recombinant spike protein. FCoV S protein (1127–1400 aa) was expressed and used as an antigen to establish an ELISA. Mice and rabbits immunized with the protein produced antibodies that were recognized and bound to the protein. The intra-assay coefficient of variation (CV) was 1.15–5.04% and the inter-assay CV was 4.28–15.13%, suggesting an acceptable repeatability. iELISA did not cross-react with antisera against other feline viruses. The receiver operating characteristic curve analysis revealed an 86.7% sensitivity and 93.3% specificity for iELISA. Serum samples (n = 107) were tested for anti-FCoV antibodies, and 70.09% of samples were positive for antibodies against FCoV. The iELISA developed in our study can be used to measure serum FCoV antibodies due to its acceptable repeatability, sensitivity, and specificity. Additionally, field sample analysis data demonstrated that FCoV is highly prevalent in cat populations in Fujian province, China.
Collapse
Affiliation(s)
- Bo Dong
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Correspondence: (W.L.); (B.D.); Tel.: +86-597-279-7255 (B.D. & W.L.)
| | - Gaoqiang Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Xiaodong Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Xufei Chen
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Meiling Zhang
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Linglin Li
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
| | - Weiming Lin
- Department of Veterinary Medicine and Animal Science, College of Life Science of Longyan University, Longyan 364012, China; (G.Z.); (X.Z.); (X.C.); (M.Z.); (L.L.)
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Correspondence: (W.L.); (B.D.); Tel.: +86-597-279-7255 (B.D. & W.L.)
| |
Collapse
|
13
|
Parkhe P, Verma S. Evolution, Interspecies Transmission, and Zoonotic Significance of Animal Coronaviruses. Front Vet Sci 2021; 8:719834. [PMID: 34738021 PMCID: PMC8560429 DOI: 10.3389/fvets.2021.719834] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses are single-stranded RNA viruses that affect humans and a wide variety of animal species, including livestock, wild animals, birds, and pets. These viruses have an affinity for different tissues, such as those of the respiratory and gastrointestinal tract of most mammals and birds and the hepatic and nervous tissues of rodents and porcine. As coronaviruses target different host cell receptors and show divergence in the sequences and motifs of their structural and accessory proteins, they are classified into groups, which may explain the evolutionary relationship between them. The interspecies transmission, zoonotic potential, and ability to mutate at a higher rate and emerge into variants of concern highlight their importance in the medical and veterinary fields. The contribution of various factors that result in their evolution will provide better insight and may help to understand the complexity of coronaviruses in the face of pandemics. In this review, important aspects of coronaviruses infecting livestock, birds, and pets, in particular, their structure and genome organization having a bearing on evolutionary and zoonotic outcomes, have been discussed.
Collapse
Affiliation(s)
| | - Subhash Verma
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
14
|
Establishment of Full-Length cDNA Clones and an Efficient Oral Infection Model for Feline Coronavirus in Cats. J Virol 2021; 95:e0074521. [PMID: 34406859 DOI: 10.1128/jvi.00745-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Feline infectious peritonitis virus (FIPV) is the etiologic agent of feline infectious peritonitis (FIP) and causes fatal disease in cats of almost all ages. Currently, there are no clinically approved drugs or effective vaccines for FIP. Furthermore, the pathogenesis of FIP is still not fully understood. There is an urgent need for an effective infection model of feline infectious peritonitis induced by FIPV. Here, we constructed a field type I FIPV full-length cDNA clone, pBAC-QS, corresponding to the isolated FIPV QS. By replacing the FIPV QS spike gene with the commercially available type II FIPV 79-1146 (79-1146_CA) spike gene, we established and rescued a recombinant virus, designated rQS-79. Moreover, we constructed 79-1146_CA infectious full-length cDNA pBAC-79-1146_CA, corresponding to recombinant feline coronavirus (FCoV) 79-1146_CA (r79-1146_CA). In animal experiments with 1- to 2-year-old adult cats orally infected with the recombinant virus, rQS-79 induced typical FIP signs and 100% mortality. In contrast to cats infected with rQS-79, cats infected with 79-1146_CA did not show obvious signs. Furthermore, by rechallenging rQS-79 in surviving cats previously infected with 79-1146_CA, we found that there was no protection against rQS-79 with different titers of neutralizing antibodies. However, high titers of neutralizing antibodies may help prolong the cat survival time. Overall, we report the first reverse genetics of virulent recombinant FCoV (causing 100% mortality in adult cats) and attenuated FCoV (causing no mortality in adult cats), which will be powerful tools to study pathogenesis, antiviral drugs, and vaccines for FCoV. IMPORTANCE Tissue- or cell culture-adapted feline infectious peritonitis virus (FIPV) usually loses pathogenicity. To develop a highly virulent FIPV, we constructed a field isolate type I FIPV full-length clone with the spike gene replaced by the 79-1146 spike gene, corresponding to a virus named rQS-79, which induces high mortality in adult cats. rQS-79 represents the first described reverse genetics system for highly pathogenic FCoV. By further constructing the cell culture-adapted FCoV 79-1146_CA, we obtained infectious clones of virulent and attenuated FCoV. By in vitro and in vivo experiments, we established a model that can serve to study the pathogenic mechanisms of FIPV. Importantly, the wild-type FIPV replicase skeleton of serotype I will greatly facilitate the screening of antiviral drugs, both in vivo and in vitro.
Collapse
|
15
|
Pomorska-Mól M, Turlewicz-Podbielska H, Gogulski M, Ruszkowski JJ, Kubiak M, Kuriga A, Barket P, Postrzech M. A cross-sectional retrospective study of SARS-CoV-2 seroprevalence in domestic cats, dogs and rabbits in Poland. BMC Vet Res 2021; 17:322. [PMID: 34620166 PMCID: PMC8495444 DOI: 10.1186/s12917-021-03033-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background Coronaviruses (CoVs) have long been known to cause infection in domestic and free-living birds and mammals including humans. The zoonotic origin of SARS-CoV-2 and the biological properties of CoVs, including ability to cross interspecies barriers, enable its emergence in populations of various animals, including companion animals (cats, dogs, rabbits) an area requiring further study. To date, several cases of cats and dogs positive for SARS-CoV-2 and/or specific antibodies have been described. The aim of our cross-sectional retrospective study is to determine seroprevalence of SARS-CoV-2 in domestic dog, cat and rabbit population during recent COVID-19 pandemic in Poland. Results In total, serum samples from 279 cats and 343 dogs and 29 rabbits were used in the study. The seroprevalence of SARS-CoV-2 in cats and dogs reached 1.79% (95% CI: 0.77 – 4.13) and 1.17% (95% CI 0.45 – 2.96), respectively (p ≥ 0.05). Anti- SARS-CoV-2 antibodies were detected in 5 cats (mean S/P% 106 ± 48.23) and 4 dogs (mean S/P% 78.5 ± 16.58). All 29 samples from rabbits were negative for SARS-CoV-2 antibodies. No significant gender or age differences in seroprevalence in dogs and cats (p ≥ 0.05) were found. None of the animals with anti-SARS-CoV-2 antibodies displayed respiratory or gastrointestinal signs at the time of sampling. Conclusions Our results confirmed previous findings that SARS-CoV-2 infections in companion animals occurs but are not frequent. Future serological testing of large pet population may provide a comprehensive picture of disease dynamics in companion animals.
Collapse
Affiliation(s)
- Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland.
| | - Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland
| | - Maciej Gogulski
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland
| | - Jakub J Ruszkowski
- Department of Animal Anatomy, Faculty of Veterinary Medicine and Animals Sciences, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625, Poznan, Poland
| | - Magdalena Kubiak
- Department of Internal Medicine and Diagnostics, Faculty of Veterinary Medicine and Animal Sciences, Poznan University of Life Sciences, Wolynska 35, 60-637, Poznan, Poland
| | - Anna Kuriga
- Department of Preclinical Sciences and Infectious Diseases, Poznan University of Life Sciences, Wołynska 35, 60-637, Poznan, Poland
| | - Przemysław Barket
- Veterinary Clinic Centrum Małych Zwierząt S.C. M. i P. Barket, Przemysl, Poland
| | | |
Collapse
|
16
|
Delaplace M, Huet H, Gambino A, Le Poder S. Feline Coronavirus Antivirals: A Review. Pathogens 2021; 10:1150. [PMID: 34578182 PMCID: PMC8469112 DOI: 10.3390/pathogens10091150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Feline coronaviruses (FCoV) are common viral pathogens of cats. They usually induce asymptomatic infections but some FCoV strains, named Feline Infectious Peritonitis Viruses (FIPV) lead to a systematic fatal disease, the feline infectious peritonitis (FIP). While no treatments are approved as of yet, numerous studies have been explored with the hope to develop therapeutic compounds. In recent years, two novel molecules (GS-441524 and GC376) have raised hopes given the encouraging results, but some concerns about the use of these molecules persist, such as the fear of the emergence of viral escape mutants or the difficult tissue distribution of these antivirals in certain affected organs. This review will summarize current findings and leads in the development of antiviral therapy against FCoV both in vitro and in vivo, with the description of their mechanisms of action when known. It highlights the molecules, which could have a broader effect on different coronaviruses. In the context of the SARS-CoV-2 pandemic, the development of antivirals is an urgent need and FIP could be a valuable model to help this research area.
Collapse
Affiliation(s)
| | | | | | - Sophie Le Poder
- 1UMR 1161 Virologie, INRAE-ENVA-ANSES, École Nationale Vétérinaire d’Alfort, Maisons-Alfort, 94704 Paris, France; (M.D.); (H.H.); (A.G.)
| |
Collapse
|
17
|
Catella C, Camero M, Lucente MS, Fracchiolla G, Sblano S, Tempesta M, Martella V, Buonavoglia C, Lanave G. Virucidal and antiviral effects of Thymus vulgaris essential oil on feline coronavirus. Res Vet Sci 2021; 137:44-47. [PMID: 33932822 PMCID: PMC8061179 DOI: 10.1016/j.rvsc.2021.04.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 01/12/2023]
Abstract
Feline infectious peritonitis (FIP) is a fatal systemic disease of felids caused by a Coronavirus (CoV) (FIPV). In spite of its clinical relevance and impact on feline health, currently the therapeutic possibilities for treatment of FIP in cats are limited. The emergence of the pandemic Severe Respiratory Syndrome (SARS) coronavirus (CoV) type 2 (SARS-CoV-2), etiological agent of the 2019 Coronavirus Disease (COVID-19), able to infect a broad spectrum of animal species including cats, triggered the interest for the development of novel molecules with antiviral activity for treatment of CoV infections in humans and animals. Essential oils (EOs) have raised significant attention for their antiviral properties integrating and, in some cases, replacing conventional drugs. Thymus vulgaris EO (TEO) has been previously shown to be effective against several RNA viruses including CoVs. In the present study the antiviral efficacy of TEO against FIPV was evaluated in vitro. TEO at 27 μg/ml was able to inhibit virus replication with a significant reduction of 2 log10 TCID50/50 μl. Moreover, virucidal activity was tested using TEO at 27 and 270 μg/ml, over the cytotoxic threshold, determining a reduction of viral titre as high as 3.25 log10 TCID50/50 μl up to 1 h of time contact. These results open several perspectives in terms of future applications and therapeutic possibilities for coronaviruses considering that FIPV infection in cats could be a potential model for the study of antivirals against CoVs.
Collapse
Affiliation(s)
- Cristiana Catella
- Department of Veterinary Medicine, University of Aldo Moro of Bari, Valenzano, Italy
| | - Michele Camero
- Department of Veterinary Medicine, University of Aldo Moro of Bari, Valenzano, Italy
| | - Maria Stella Lucente
- Department of Veterinary Medicine, University of Aldo Moro of Bari, Valenzano, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Aldo Moro of Bari, Bari, Italy
| | - Sabina Sblano
- Department of Pharmacy-Drug Sciences, University of Aldo Moro of Bari, Bari, Italy
| | - Maria Tempesta
- Department of Veterinary Medicine, University of Aldo Moro of Bari, Valenzano, Italy
| | - Vito Martella
- Department of Veterinary Medicine, University of Aldo Moro of Bari, Valenzano, Italy
| | - Canio Buonavoglia
- Department of Veterinary Medicine, University of Aldo Moro of Bari, Valenzano, Italy
| | - Gianvito Lanave
- Department of Veterinary Medicine, University of Aldo Moro of Bari, Valenzano, Italy.
| |
Collapse
|
18
|
Colina SE, Serena MS, Echeverría MG, Metz GE. Clinical and molecular aspects of veterinary coronaviruses. Virus Res 2021; 297:198382. [PMID: 33705799 PMCID: PMC7938195 DOI: 10.1016/j.virusres.2021.198382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina.
| |
Collapse
|
19
|
Takano T, Satoh K, Doki T. Possible Antiviral Activity of 5-Aminolevulinic Acid in Feline Infectious Peritonitis Virus (Feline Coronavirus) Infection. Front Vet Sci 2021; 8:647189. [PMID: 33644160 PMCID: PMC7903937 DOI: 10.3389/fvets.2021.647189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/20/2021] [Indexed: 11/13/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a life-threatening infectious disease of cats caused by virulent feline coronavirus (FIP virus: FIPV). For the treatment of FIP, several effective antivirals were recently reported, but many of these are not available for practical use. 5-amino levulinic acid (5-ALA) is a low-molecular-weight amino acid synthesized in plant and animal cells. 5-ALA can be synthesized in a large amount, and it is widely applied in the medical and agricultural fields. We hypothesized that 5-ALA inhibits FIPV infection. Therefore, we evaluated its antiviral activity against FIPV in felis catus whole fetus-4 cells and feline primary macrophages. FIPV infection was significantly inhibited by 250 μM 5-ALA. Our study suggested that 5-ALA is applicable for the treatment and prevention of FIPV infection.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Kumi Satoh
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, Department of Veterinary Medicine, Kitasato University, Towada, Japan
| |
Collapse
|
20
|
Diagnostic Value of Detecting Feline Coronavirus RNA and Spike Gene Mutations in Cerebrospinal Fluid to Confirm Feline Infectious Peritonitis. Viruses 2021; 13:v13020186. [PMID: 33513683 PMCID: PMC7912268 DOI: 10.3390/v13020186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Cats with neurologic feline infectious peritonitis (FIP) are difficult to diagnose. Aim of this study was to evaluate the diagnostic value of detecting feline coronavirus (FCoV) RNA and spike (S) gene mutations in cerebrospinal fluid (CSF). METHODS The study included 30 cats with confirmed FIP (six with neurological signs) and 29 control cats (eleven with neurological signs) with other diseases resulting in similar clinical signs. CSF was tested for FCoV RNA by 7b-RT-qPCR in all cats. In RT-qPCR-positive cases, S-RT-qPCR was additionally performed to identify spike gene mutations. RESULTS Nine cats with FIP (9/30, 30%), but none of the control cats were positive for FCoV RNA in CSF. Sensitivity of 7b-RT-qPCR in CSF was higher for cats with neurological FIP (83.3%; 95% confidence interval (95% CI) 41.8-98.9) than for cats with non-neurological FIP (16.7%; 95% CI 6.1-36.5). Spike gene mutations were rarely detected. CONCLUSIONS FCoV RNA was frequently present in CSF of cats with neurological FIP, but only rarely in cats with non-neurological FIP. Screening for spike gene mutations did not enhance specificity in this patient group. Larger populations of cats with neurological FIP should be explored in future studies.
Collapse
|
21
|
Fritz M, Rosolen B, Krafft E, Becquart P, Elguero E, Vratskikh O, Denolly S, Boson B, Vanhomwegen J, Gouilh MA, Kodjo A, Chirouze C, Rosolen SG, Legros V, Leroy EM. High prevalence of SARS-CoV-2 antibodies in pets from COVID-19+ households. One Health 2020; 11:100192. [PMID: 33169106 PMCID: PMC7641531 DOI: 10.1016/j.onehlt.2020.100192] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
In a survey of household cats and dogs of laboratory-confirmed COVID-19 patients, we found a high seroprevalence of SARS-CoV-2 antibodies, ranging from 21% to 53%, depending on the positivity criteria chosen. Seropositivity was significantly greater among pets from COVID-19+ households compared to those with owners of unknown status. Our results highlight the potential role of pets in the spread of the epidemic.
Collapse
Affiliation(s)
- Matthieu Fritz
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) (IRD 224 - CNRS 5290 - Université de Montpellier), Montpellier, France
| | - Béatrice Rosolen
- Service de Maladies Infectieuses et Tropicales, CHRU hôpital Jean-Minjoz, Besançon, France
| | - Emilie Krafft
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy-l'Etoile, France
| | - Pierre Becquart
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) (IRD 224 - CNRS 5290 - Université de Montpellier), Montpellier, France
| | - Eric Elguero
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) (IRD 224 - CNRS 5290 - Université de Montpellier), Montpellier, France
| | - Oxana Vratskikh
- Environment and Infectious Risk Unit, Laboratory for Urgent Response to Biological Threats, Institut Pasteur, Paris, France
| | - Solène Denolly
- CIRI - Centre International de Recherche en Infectiologie, Team EVIR, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Team EVIR, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Jessica Vanhomwegen
- Environment and Infectious Risk Unit, Laboratory for Urgent Response to Biological Threats, Institut Pasteur, Paris, France.,The OIE Collaborating Centre for Detection and Identification in Humans of Emerging Animal Pathogens, Institut Pasteur, Paris, France
| | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0), Normandie Université, 14000 Caen, France.,Laboratoire de Virologie, Centre Hospitalo-Universitaire, Caen, France
| | - Angeli Kodjo
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy-l'Etoile, France
| | - Catherine Chirouze
- Service de Maladies Infectieuses et Tropicales, CHRU hôpital Jean-Minjoz, Besançon, France.,UMR Chrono-Environnement - Université de Bourgogne Franche-Comté, Besançon, France
| | - Serge G Rosolen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Clinique Vétérinaire Voltaire, Asnières, France
| | - Vincent Legros
- Université de Lyon, VetAgro Sup, Campus Vétérinaire de Lyon, Marcy-l'Etoile, France.,CIRI - Centre International de Recherche en Infectiologie, Team EVIR, Université de Lyon, Université Claude Bernard Lyon 1, INSERM, U111, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Eric M Leroy
- Institut de Recherche pour le Développement (IRD), Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC) (IRD 224 - CNRS 5290 - Université de Montpellier), Montpellier, France
| |
Collapse
|
22
|
Dickinson PJ. Coronavirus Infection of the Central Nervous System: Animal Models in the Time of COVID-19. Front Vet Sci 2020; 7:584673. [PMID: 33195610 PMCID: PMC7644464 DOI: 10.3389/fvets.2020.584673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/21/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring coronaviral infections have been studied for several decades in the context of companion and production animals, and central nervous system involvement is a common finding, particularly in cats with feline infectious peritonitis (FIP). These companion and production animal coronaviruses have many similarities to recent human pandemic-associated coronaviruses such as SARS-CoV, MERS-CoV, and SARS-CoV2 (COVID-19). Neurological involvement is being increasingly recognized as an important clinical presentation in human COVID-19 patients, often associated with para-infectious processes, and potentially with direct infection within the CNS. Recent breakthroughs in the treatment of coronaviral infections in cats, including neurological FIP, have utilized antiviral drugs similar to those currently in human COVID-19 clinical trials. Differences in specific coronavirus and host factors are reflected in major variations in incidence and mechanisms of CNS coronaviral infection and pathology between species; however, broad lessons relating to treatment of coronavirus infection present within the CNS may be informative across species.
Collapse
Affiliation(s)
- Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
23
|
Pearson M, LaVoy A, Chan LLY, Dean GA. High-throughput viral microneutralization method for feline coronavirus using image cytometry. J Virol Methods 2020; 286:113979. [PMID: 32979406 PMCID: PMC7510446 DOI: 10.1016/j.jviromet.2020.113979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/12/2020] [Accepted: 09/19/2020] [Indexed: 01/24/2023]
Abstract
There are no approved antiviral drugs or recommended vaccines for feline coronavirus infection. Plate-based image cytometry is used for high-throughput viral microneutralization assays. Image cytometry is faster and more sensitive than traditional plaque reduction neutralization tests. Cell seeding density, plate surface coating, virus concentration and incubation time, fluorescent labeling, and buffers were optimized. Cross-neutralization between FCoV type I and II viruses was not observed.
Feline coronaviruses (FCoV) are members of the alphacoronavirus genus that are further characterized by serotype (types I and II) based on the antigenicity of the spike (S) protein and by pathotype based on the associated clinical conditions. Feline enteric coronaviruses (FECV) are associated with the vast majority of infections and are typically asymptomatic. Within individual animals, FECV can mutate and cause a severe and usually fatal disease called feline infectious peritonitis (FIP), the leading infectious cause of death in domestic cat populations. There are no approved antiviral drugs or recommended vaccines to treat or prevent FCoV infection. The plaque reduction neutralization test (PRNT) traditionally employed to assess immune responses and to screen therapeutic and vaccine candidates is time-consuming, low-throughput, and typically requires 2–3 days for the formation and manual counting of cytolytic plaques. Host cells are capable of carrying heavy viral burden in the absence of visible cytolytic effects, thereby reducing the sensitivity of the assay. In addition, operator-to-operator variation can generate uncertainty in the results and digital records are not automatically created. To address these challenges we developed a novel high-throughput viral microneutralization assay, with quantification of virus-infected cells performed in a plate-based image cytometer. Host cell seeding density, microplate surface coating, virus concentration and incubation time, wash buffer and fluorescent labeling were optimized. Subsequently, this FCoV viral neutralization assay was used to explore immune correlates of protection using plasma from naturally FECV-infected cats. We demonstrate that the high-throughput viral neutralization assay using the Celigo Image Cytometer provides a robust and efficient method for the rapid screening of therapeutic antibodies, antiviral compounds, and vaccines. This method can be applied to various viral infectious diseases to accelerate vaccine and antiviral drug discovery and development.
Collapse
Affiliation(s)
- Morgan Pearson
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| | - Alora LaVoy
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| | - Leo Li-Ying Chan
- Department of Advanced Technology R&D, Nexcelom Bioscience LLC, Lawrence, MA, 01843, United States.
| | - Gregg A Dean
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, 80523, United States
| |
Collapse
|
24
|
Detection of Feline Coronavirus in Feline Effusions by Immunofluorescence Staining and Reverse Transcription Polymerase Chain Reaction. Pathogens 2020; 9:pathogens9090698. [PMID: 32854379 PMCID: PMC7559213 DOI: 10.3390/pathogens9090698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022] Open
Abstract
Feline coronavirus (FCoV), the pathogen for feline infectious peritonitis, is a lethal infectious agent that can cause effusions in the pleural and abdominal cavities in domestic cats. To study the epidemiology of FCoV in Taiwan, 81 FIP-suspected sick cats with effusive specimens were recruited to test for FCoV infection using immunofluorescence staining and reverse transcription-polymerase chain reaction as detection methods, and viral RNAs were recovered from the specimens to conduct genotyping and phylogenetic analysis based on the spike (S) protein gene. The results revealed that a total of 47 (47/81, 58%) of the sick cats were positive for FCoV in the effusion samples, of which 39 were successfully sequenced and comprised of 21 type I strains, 9 type II strains, and 9 co-infections. The signalment analysis of these sick cats revealed that only the sex of cats showed a significant association (odds ratio = 2.74, 95% confidence interval = 1.06–7.07, p = 0.03) with the infection of FCoV, while age and breed showed no association. FCoV-positive cats demonstrated a significantly lower albumin to globulin ratio than negative individuals (p = 0.0004). The partial S gene-based phylogenetic analysis revealed that the type I strains demonstrated genetic diversity forming several clades, while the type II strains were more conserved. This study demonstrates the latest epidemiological status of FCoV infection in the northern part of Taiwan among sick cats and presents comparisons of Taiwan and other countries.
Collapse
|
25
|
Low Incidence and Mortality from SARS-CoV-2 in Southern Europe. Proposal of a hypothesis for Arthropod borne Herd immunity. Med Hypotheses 2020; 143:110121. [PMID: 32759006 PMCID: PMC7375308 DOI: 10.1016/j.mehy.2020.110121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/16/2020] [Indexed: 11/24/2022]
Abstract
SARS-CoV-2 incidence and mortality in Europe have shown wide variation. Northern Italy in particular the Lombardy region, north-eastern French regions, Switzerland and Belgium were amongst the hardest hit, while the central and southern Italian regions, all the Balkan countries from Slovenia to Greece and the Islands of Malta and Cyprus had much fewer cases and deaths per capita, and deaths per number of cases. Differences in public health measures, and health care delivery, in the author’s opinion, can only partly explain the difference. The geographical distribution of Phlebotomus sand-flies and the relative distribution of arthropod borne diseases Leishmaniasis and Phlebovirus infections especially the Sicilian Sandfly fever group corresponds to most areas of low prevalence of SARS-CoV-2. A hypothesis is proposed whereby repeated arthropod or sandfly vector infection of humans by novel viruses of zoonotic origins carrying bat or mammalian RNA/DNA, such as phleboviruses may have resulted in the development of an effective evolutionary immune response to most novel zoonotic viruses such as SARS-CoV-2 by means of survival of the fittest possibly over many generations. This process probably ran in parallel and concurrent with the progressive evolution of novel coronaviruses which spread from one mammalian species to another. Other possible, but less likely mechanisms for the role of sandfly meals within a much shorter time frame may have led to, (i) previous exposure and infection of humans with the SARS-Cov-2 virus itself, or a closely related corona virus in the previous decades, or (ii) exposure of human populations to parts coronavirus protein namely either S or more likely N protein carried mechanically by arthropods, but without clinical disease causing direct immunity or (iii) by causing infection with other arthropod borne viruses which could carry bat DNA/RNA and have similar functional proteins resulting in an immediate cross-reactive immune response rather than by natural selection. The Evidence possibly supporting or disputing this hypothesis is reviewed, however the major problem with the hypothesis is that to date no coronavirus has ever been isolated from arthropods. Such a hypothesis can only be supported by research investigating the possible biological relationship of arthropods and coronaviruses where paradoxically they may be promoting immunity rather than disease.
Collapse
|
26
|
Doki T, Toda M, Hasegawa N, Hohdatsu T, Takano T. Therapeutic effect of an anti-human-TNF-alpha antibody and itraconazole on feline infectious peritonitis. Arch Virol 2020; 165:1197-1206. [PMID: 32236683 PMCID: PMC7110289 DOI: 10.1007/s00705-020-04605-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Feline infectious peritonitis (FIP) is a fatal disease in wild and domestic cat species. Although several drugs are expected to be useful as treatments for FIP, no drugs are available in clinical practice. In this study, we evaluated the therapeutic effect of combined use of adalimumab (an anti-human-TNF-alpha monoclonal antibody, ADA) and itraconazole (ICZ), which are presently available to veterinarians. The neutralizing activity of ADA against fTNF-alpha-induced cytotoxicity was measured in WEHI-164 cells. Ten specific pathogen-free (SPF) cats were inoculated intraperitoneally with type I FIPV KU-2. To the cats that developed FIP, ADA (10 mg/animal) was administered twice between day 0 and day 4 after the start of treatment. ICZ (50 mg/head, SID) was orally administered daily from day 0 after the start of treatment. ADA demonstrated dose-dependent neutralizing activity against rfTNF-alpha. In an animal experiment, 2 of 3 cats showed improvements in FIP clinical symptoms and blood chemistry test results, an increase in the peripheral blood lymphocyte count, and a decrease in the plasma alpha 1-AGP level were observed after the beginning of treatment. One of the cats failed to respond to treatment and was euthanized, although the viral gene level in ascites temporarily decreased after the start of treatment. ADA was found to have neutralizing activity against rfTNF-alpha. The combined use of ADA and ICZ showed a therapeutic effect for experimentally induced FIP. We consider these drugs to be a treatment option until effective anti-FIPV drugs become available.
Collapse
Affiliation(s)
- Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Masahiro Toda
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Nobuhisa Hasegawa
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Tsutomu Hohdatsu
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
27
|
Doki T, Tarusawa T, Hohdatsu T, Takano T. In Vivo Antiviral Effects of U18666A Against Type I Feline Infectious Peritonitis Virus. Pathogens 2020; 9:pathogens9010067. [PMID: 31963705 PMCID: PMC7169457 DOI: 10.3390/pathogens9010067] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background: The cationic amphiphilic drug U18666A inhibits the proliferation of type I FIPV in vitro. In this study, we evaluated the in vivo antiviral effects of U18666A by administering it to SPF cats challenged with type I FIPV. Methods: Ten SPF cats were randomly assigned to two experimental groups. FIPV KU-2 were inoculated intraperitoneally to cats. The control group was administered PBS, and the U18666A-treated group was administered U18666A subcutaneously at 2.5 mg/kg on day 0, and 1.25 mg/kg on days 2 and 4 after viral inoculation. Results: Two of the five control cats administered PBS alone developed FIP. Four of the five cats administered U18666A developed no signs of FIP. One cat that temporarily developed fever, had no other clinical symptoms, and no gross lesion was noted on an autopsy after the end of the experiment. The FIPV gene was detected intermittently in feces and saliva regardless of the development of FIP or administration of U18666A. Conclusions: When U18666A was administered to cats experimentally infected with type I FIPV, the development of FIP might be suppressed compared with the control group. However, the number of animals with FIP is too low to establish anti-viral effect of U18666A in cats.
Collapse
Affiliation(s)
| | | | | | - Tomomi Takano
- Correspondence: ; Tel.: +81-176-23-4371; Fax: +81-176-23-8703
| |
Collapse
|
28
|
Jaimes JA, Millet JK, Stout AE, André NM, Whittaker GR. A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses. Viruses 2020; 12:v12010083. [PMID: 31936749 PMCID: PMC7019228 DOI: 10.3390/v12010083] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 01/08/2020] [Indexed: 11/16/2022] Open
Abstract
Feline coronavirus (FCoV) is a complex viral agent that causes a variety of clinical manifestations in cats, commonly known as feline infectious peritonitis (FIP). It is recognized that FCoV can occur in two different serotypes. However, differences in the S protein are much more than serological or antigenic variants, resulting in the effective presence of two distinct viruses. Here, we review the distinct differences in the S proteins of these viruses, which are likely to translate into distinct biological outcomes. We introduce a new concept related to the non-taxonomical classification and differentiation among FCoVs by analyzing and comparing the genetic, structural, and functional characteristics of FCoV and the FCoV S protein among the two serotypes and FCoV biotypes. Based on our analysis, we suggest that our understanding of FIP needs to consider whether the presence of these two distinct viruses has implications in clinical settings.
Collapse
Affiliation(s)
- Javier A. Jaimes
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Jean K. Millet
- Virologie et Immunologie Moléculaires, INRAE, Université Paris-Saclay, 78352 Jouy-en-Josas, France;
| | - Alison E. Stout
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Nicole M. André
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
| | - Gary R. Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA; (J.A.J.); (A.E.S.); (N.M.A.)
- Correspondence:
| |
Collapse
|
29
|
McKay LA, Meachem M, Snead E, Brannen T, Mutlow N, Ruelle L, Davies JL, van der Meer F. Prevalence and mutation analysis of the spike protein in feline enteric coronavirus and feline infectious peritonitis detected in household and shelter cats in western Canada. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2020; 84:18-23. [PMID: 31949325 PMCID: PMC6921991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 06/10/2023]
Abstract
Feline infectious peritonitis (FIP) is a fatal disease for which no simple antemortem diagnostic assay is available. A new polymerase chain reaction (PCR) test has recently been developed that targets the spike protein region of the FIP virus (FIPV) and can identify specific mutations (M1030L or S1032A), the presence of which indicates a shift from feline enteric coronavirus (FeCV) to FIPV. This test will only be useful in the geographical region of interest, however, if the FIP viruses contain these mutations. The primary objective of this study was to determine the presence of the M1030L or S1032A mutations in FeCV derived from stool samples from a selected group of healthy cats from households and shelters and determine how many of these cats excrete FeCV. The secondary objective was to evaluate how often these specific FIPV mutations were present in tissue samples derived from cats diagnosed with FIP at postmortem examination. Feline enteric coronavirus (FeCV) was detected in 46% of fecal samples (86/185), all were FeCV type 1, with no difference between household or shelter cats. Only 45% of the FIPV analyzed contained the previously reported M1030L or S1032A mutations. It should be noted that, as the pathological tissue samples were opportunistically obtained and not specifically obtained for PCR testing, caution is warranted in interpreting these data.
Collapse
Affiliation(s)
- Laura A McKay
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| | - Melissa Meachem
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| | - Elisabeth Snead
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| | - Terri Brannen
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| | - Natasha Mutlow
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| | - Liz Ruelle
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| | - Jennifer L Davies
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| | - Frank van der Meer
- Department of Ecosystem and Public Health (McKay, Davies, van der Meer) and Diagnostic Services Unit (Davies), Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta; Department of Veterinary Pathology (Meachem) and Department of Small Animal Clinical Sciences (Snead), Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan; Meow Foundation, Calgary, Alberta (Brannen); Fish Creek Pet Hospital, Calgary, Alberta (Mutlow); Wild Rose Cat Clinic, Calgary, Alberta (Ruelle)
| |
Collapse
|
30
|
Takano T, Wakayama Y, Doki T. Endocytic Pathway of Feline Coronavirus for Cell Entry: Differences in Serotype-Dependent Viral Entry Pathway. Pathogens 2019; 8:pathogens8040300. [PMID: 31888266 PMCID: PMC6963708 DOI: 10.3390/pathogens8040300] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/15/2019] [Indexed: 12/30/2022] Open
Abstract
Feline coronavirus (FCoV) is a pathogen causing a lethal infectious disease in cats, feline infectious peritonitis. It has two serotypes (type I FCoV and type II FCoV). According to our previous study, type I FCoV infection is inhibited by compounds inducing intracellular cholesterol accumulation, whereas type II FCoV infection is not inhibited. Intracellular cholesterol accumulation was reported to disrupt late endosome function. Based on these findings, types I and II FCoV are considered to enter the cytosol through late and early endosomes, respectively. We investigated whether the antiviral activities of a late endosome trafficking inhibitor and cholesterol-accumulating agents are different between the FCoV serotypes. The late endosome trafficking inhibitor did not inhibit type II FCoV infection, but it inhibited type I FCoV infection. Type I FCoV infection was inhibited by cholesterol-accumulating triazoles, but not by non-cholesterol-accumulating triazoles. These phenomena were observed in both feline cell lines and feline primary macrophages. This study provides additional information on the differences in intracellular reproductive cycle between type I and type II FCoV.
Collapse
|
31
|
Felten S, Hartmann K. Diagnosis of Feline Infectious Peritonitis: A Review of the Current Literature. Viruses 2019; 11:v11111068. [PMID: 31731711 PMCID: PMC6893704 DOI: 10.3390/v11111068] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease that poses several challenges for veterinarians: clinical signs and laboratory changes are non-specific, and there are two pathotypes of the etiologic agent feline coronavirus (FCoV), sometimes referred to as feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV) that vary fundamentally in their virulence, but are indistinguishable by a number of diagnostic methods. This review focuses on all important steps every veterinary practitioner has to deal with and new diagnostic tests that can be considered when encountering a cat with suspected FIP with the aim to establish a definitive diagnosis. It gives an overview on all available direct and indirect diagnostic tests and their sensitivity and specificity reported in the literature in different sample material. By providing summarized data for sensitivity and specificity of each diagnostic test and each sample material, which can easily be accessed in tables, this review can help to facilitate the interpretation of different diagnostic tests and raise awareness of their advantages and limitations. Additionally, diagnostic trees depict recommended diagnostic steps that should be performed in cats suspected of having FIP based on their clinical signs or clinicopathologic abnormalities. These steps can easily be followed in clinical practice.
Collapse
|
32
|
Emmler L, Felten S, Matiasek K, Balzer HJ, Pantchev N, Leutenegger C, Hartmann K. Feline coronavirus with and without spike gene mutations detected by real-time RT-PCRs in cats with feline infectious peritonitis. J Feline Med Surg 2019; 22:791-799. [PMID: 31729897 PMCID: PMC7206566 DOI: 10.1177/1098612x19886671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Feline infectious peritonitis (FIP) emerges when feline coronaviruses (FCoVs) mutate within their host to a highly virulent biotype and the immune response is not able to control the infection. FCoV spike (S) gene mutations are considered to contribute to the change in virulence by enabling FCoV infection of and replication in macrophages. This study investigated the presence of FCoV with and without S gene mutations in cats with FIP using two different real-time RT-PCRs on different samples obtained under clinical conditions. METHODS Fine-needle aspirates (FNAs) and incisional biopsies (IBs) of popliteal and mesenteric lymph nodes, liver, spleen, omentum and kidneys (each n = 20), EDTA blood (n = 13), buffy coat smears (n = 13), serum (n = 11), effusion (n = 14), cerebrospinal fluid (n = 16), aqueous humour (n = 20) and peritoneal lavage (n = 6) were obtained from 20 cats with FIP diagnosed by immunohistochemistry. Samples were examined by RT-PCR targeting the FCoV 7b gene, detecting all FCoV, and S gene mutation RT-PCR targeting mutations in nucleotides 23531 and 23537. The prevalence of FCoV detected in each sample type was calculated. RESULTS In 20/20 cats, FCoV with S gene mutations was present in at least one sample, but there was variation in which sample was positive. FCoV with mutations in the S gene was most frequently found in effusion (64%, 95% confidence interval [CI] 39-89), followed by spleen, omentum and kidney IBs (50%, 95% CI 28-72), mesenteric lymph node IBs and FNAs (45%, 95% CI 23-67), and FNAs of spleen and liver and liver IBs (40%, 95% CI 19-62). CONCLUSIONS AND RELEVANCE In these 20 cats with FIP, FCoVs with S gene mutations were found in every cat in at least one tissue or fluid sample. This highlights the association between mutated S gene and systemic FCoV spread. Examining a combination of different samples increased the probability of finding FCoV with the mutated S gene.
Collapse
Affiliation(s)
- Laura Emmler
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sandra Felten
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | | | | - Katrin Hartmann
- Clinic of Small Animal Medicine, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
33
|
Establishment of a Virulent Full-Length cDNA Clone for Type I Feline Coronavirus Strain C3663. J Virol 2019; 93:JVI.01208-19. [PMID: 31375588 PMCID: PMC6803248 DOI: 10.1128/jvi.01208-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Feline infectious peritonitis (FIP) is one of the most important infectious diseases in cats and is caused by feline coronavirus (FCoV). Tissue culture-adapted type I FCoV shows reduced FIP induction in experimental infections, which complicates the understanding of FIP pathogenesis caused by type I FCoV. We previously found that the type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats through the naturally infectious route. In this study, we employed a bacterial artificial chromosome-based reverse genetics system to gain more insights into FIP caused by the C3633 strain. We successfully generated recombinant virus (rC3663) from Fcwf-4 cells transfected with infectious cDNA that showed growth kinetics similar to those shown by the parental virus. Next, we constructed a reporter C3663 virus carrying the nanoluciferase (Nluc) gene to measure viral replication with high sensitivity. The inhibitory effects of different compounds against rC3663-Nluc could be measured within 24 h postinfection. Furthermore, we found that A72 cells derived from canine fibroblasts permitted FCoV replication without apparent cytopathic effects. Thus, our reporter virus is useful for uncovering the infectivity of type I FCoV in different cell lines, including canine-derived cells. Surprisingly, we uncovered aberrant viral RNA transcription of rC3663 in A72 cells. Overall, we succeeded in obtaining infectious cDNA clones derived from type I FCoV that retained its virulence. Our recombinant FCoVs are powerful tools for increasing our understanding of the viral life cycle and pathogenesis of FIP-inducing type I FCoV.IMPORTANCE Feline coronavirus (FCoV) is one of the most significant coronaviruses, because this virus induces feline infectious peritonitis (FIP), which is a lethal disease in cats. Tissue culture-adapted type I FCoV often loses pathogenicity, which complicates research on type I FCoV-induced feline infectious peritonitis (FIP). Since we previously found that type I FCoV strain C3663 efficiently induces FIP in specific-pathogen-free cats, we established a reverse genetics system for the C3663 strain to obtain recombinant viruses in the present study. By using a reporter C3663 virus, we were able to examine the inhibitory effect of 68 compounds on C3663 replication in Fcwf-4 cells and infectivity in a canine-derived cell line. Interestingly, one canine cell line, A72, permitted FCoV replication but with low efficiency and aberrant viral gene expression.
Collapse
|
34
|
Perera KD, Rathnayake AD, Liu H, Pedersen NC, Groutas WC, Chang KO, Kim Y. Characterization of amino acid substitutions in feline coronavirus 3C-like protease from a cat with feline infectious peritonitis treated with a protease inhibitor. Vet Microbiol 2019; 237:108398. [PMID: 31585653 PMCID: PMC6779346 DOI: 10.1016/j.vetmic.2019.108398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022]
Abstract
Feline infectious peritonitis (FIP) is a highly fatal disease caused by a virulent feline coronavirus in domestic and wild cats. We have previously reported the synthesis of potent coronavirus 3C-like protease (3CLpro) inhibitors and the efficacy of a protease inhibitor, GC376, in client-owned cats with FIP. In this study, we studied the effect of the amino acid changes in 3CLpro of feline coronavirus from a feline patient who received antiviral treatment for prolonged duration. We generated recombinant 3CLpro containing the identified amino acid changes (N25S, A252S or K260 N) and determined their susceptibility to protease inhibitors in the fluorescence resonance energy transfer assay. The assay showed that N25S in 3CLpro confers a small change (up to 1.68-fold increase in the 50% inhibitory concentration) in susceptibility to GC376, but other amino acid changes do not affect susceptibility. Modelling of 3CLpro carrying the amino acid changes was conducted to probe the structural basis for these findings. The results of this study may explain the observed absence of clinical resistance to the long-term antiviral treatment in the patients.
Collapse
Affiliation(s)
- Krishani Dinali Perera
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | | - Hongwei Liu
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
35
|
Acar DD, Stroobants VJE, Favoreel H, Saelens X, Nauwynck HJ. Identification of peptide domains involved in the subcellular localization of the feline coronavirus 3b protein. J Gen Virol 2019; 100:1417-1430. [PMID: 31483243 PMCID: PMC7079696 DOI: 10.1099/jgv.0.001321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Feline coronavirus (FCoV) has been identified as the aetiological agent of feline infectious peritonitis (FIP), a highly fatal systemic disease in cats. FCoV open reading frame 3 (ORF3) encodes accessory proteins 3a, 3b and 3 c. The FCoV 3b accessory protein consists of 72 amino acid residues and localizes to nucleoli and mitochondria. The present work focused on peptide domains within FCoV 3b that drive its intracellular trafficking. Transfection of different cell types with FCoV 3b fused to enhanced green fluorescent protein (EGFP) or 3×FLAG confirmed localization of FCoV 3b in the mitochondria and nucleoli. Using serial truncated mutants, we showed that nucleolar accumulation is controlled by a joint nucleolar and nuclear localization signal (NoLS/NLS) in which the identified overlapping pat4 motifs (residues 53–57) play a critical role. Mutational analysis also revealed that mitochondrial translocation is mediated by N-terminal residues 10–35, in which a Tom20 recognition motif (residues 13–17) and two other overlapping hexamers (residues 24–30) associated with mitochondrial targeting were identified. In addition, a second Tom20 recognition motif was identified further downstream (residues 61–65), although the mitochondrial translocation evoked by these residues seemed less efficient as a diffuse cytoplasmic distribution was also observed. Assessing the spatiotemporal distribution of FCoV 3b did not provide convincing evidence of dynamic shuttling behaviour between the nucleoli and the mitochondria.
Collapse
Affiliation(s)
- Delphine D. Acar
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Veerle J. E. Stroobants
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman Favoreel
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Hans J. Nauwynck
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- *Correspondence: Hans J. Nauwynck,
| |
Collapse
|
36
|
Serological Screening for Coronavirus Infections in Cats. Viruses 2019; 11:v11080743. [PMID: 31412572 PMCID: PMC6723642 DOI: 10.3390/v11080743] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Coronaviruses (CoVs) are widespread among mammals and birds and known for their potential for cross-species transmission. In cats, infections with feline coronaviruses (FCoVs) are common. Several non-feline coronaviruses have been reported to infect feline cells as well as cats after experimental infection, supported by their ability to engage the feline receptor ortholog for cell entry. However, whether cats might become naturally infected with CoVs of other species is unknown. We analyzed coronavirus infections in cats by serological monitoring. In total 137 cat serum samples and 25 FCoV type 1 or type 2-specific antisera were screened for the presence of antibodies against the S1 receptor binding subunit of the CoV spike protein, which is immunogenic and possesses low amino acid sequence identity among coronavirus species. Seventy-eight sera were positive for antibodies that recognized one or more coronavirus S1s whereas 1 serum exclusively reacted with human coronavirus 229E (HCoV-229E) and two sera exclusively reacted with porcine delta coronavirus (PDCoV). We observed antigenic cross-reactivity between S1s of type 1 and type 2 FCoVs, and between FCoV type 1 and porcine epidemic diarrhea virus (PEDV). Domain mapping of antibody epitopes indicated the presence of conserved epitope(s) particularly in the CD domains of S1. The cross-reactivity of FCoV type 1 and PEDV was also observed at the level of virus neutralization. To conclude, we provide the first evidence of antigenic cross-reactivity among S1 proteins of coronaviruses, which should be considered in the development of serological diagnoses. In addition, the potential role of cats in cross-species transmission of coronaviruses cannot be excluded.
Collapse
|
37
|
Mustaffa-Kamal F, Liu H, Pedersen NC, Sparger EE. Characterization of antiviral T cell responses during primary and secondary challenge of laboratory cats with feline infectious peritonitis virus (FIPV). BMC Vet Res 2019; 15:165. [PMID: 31118053 PMCID: PMC6532132 DOI: 10.1186/s12917-019-1909-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 05/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Feline infectious peritonitis (FIP) is considered highly fatal in its naturally occurring form, although up to 36% of cats resist disease after experimental infection, suggesting that cats in nature may also resist development of FIP in the face of infection with FIP virus (FIPV). Previous experimental FIPV infection studies suggested a role for cell-mediated immunity in resistance to development of FIP. This experimental FIPV infection study in specific pathogen free (SPF) kittens describes longitudinal antiviral T cell responses and clinical outcomes ranging from rapid progression, slow progression, and resistance to disease. Results Differences in disease outcome provided an opportunity to investigate the role of T cell immunity to FIP determined by T cell subset proliferation after stimulation with different viral antigens. Reduced total white blood cell (WBC), lymphocyte and T cell counts in blood were observed during primary acute infection for all experimental groups including cats that survived without clinical FIP. Antiviral T cell responses during early primary infection were also similar between cats that developed FIP and cats remaining healthy. Recovery of antiviral T cell responses during the later phase of acute infection was observed in a subset of cats that survived longer or resisted disease compared to cats showing rapid disease progression. More robust T cell responses at terminal time points were observed in lymph nodes compared to blood in cats that developed FIP. Cats that survived primary infection were challenged a second time to pathogenic FIPV and tested for antiviral T cell responses over a four week period. Nine of ten rechallenged cats did not develop FIP or T cell depletion and all cats demonstrated antiviral T cell responses at multiple time points after rechallenge. Conclusions In summary, definitive adaptive T cell responses predictive of disease outcome were not detected during the early phase of primary FIPV infection. However emergence of antiviral T cell responses after a second exposure to FIPV, implicated cellular immunity in the control of FIPV infection and disease progression. Virus host interactions during very early stages of FIPV infection warrant further investigation to elucidate host resistance to FIP.
Collapse
Affiliation(s)
- Farina Mustaffa-Kamal
- Department of Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA. .,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Hongwei Liu
- Center for Companion Animal Health, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Niels C Pedersen
- Department of Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA.,Center for Companion Animal Health, University of California, One Shields Avenue, Davis, CA, 95616, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, University of California, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
38
|
Takano T, Akiyama M, Doki T, Hohdatsu T. Antiviral activity of itraconazole against type I feline coronavirus infection. Vet Res 2019; 50:5. [PMID: 30658691 PMCID: PMC6339390 DOI: 10.1186/s13567-019-0625-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/07/2019] [Indexed: 11/10/2022] Open
Abstract
Feline coronaviruses (FCoVs) are the causative agents of severe systemic disease (feline infectious peritonitis: FIP) in domestic and wild cats. FCoVs have been classified into serotypes I and II. Type I FCoV is the dominant serotype (approximately 70-90%) worldwide. Therefore, it is necessary to provide antiviral agents for type I FCoV infection. In this study, we demonstrated that itraconazole (ICZ), practically used for fungal infections in cats, inhibits the type I FCoV infection. ICZ also exhibited antiviral effect in cells after viral infection, suggesting that ICZ could potentially be used as a therapeutic.
Collapse
Affiliation(s)
- Tomomi Takano
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Misuzu Akiyama
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tomoyoshi Doki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Tsutomu Hohdatsu
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan.
| |
Collapse
|
39
|
Li C, Liu Q, Kong F, Guo D, Zhai J, Su M, Sun D. Circulation and genetic diversity of Feline coronavirus type I and II from clinically healthy and FIP-suspected cats in China. Transbound Emerg Dis 2018; 66:763-775. [PMID: 30468573 PMCID: PMC7168551 DOI: 10.1111/tbed.13081] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 11/19/2018] [Indexed: 01/06/2023]
Abstract
Feline infectious peritonitis (FIP) is a fatal infectious disease of wild and domestic cats, and the occurrence of FIP is frequently reported in China. To trace the evolution of type I and II feline coronavirus in China, 115 samples of ascetic fluid from FIP-suspected cats and 54 fecal samples from clinically healthy cats were collected from veterinary hospitals in China. The presence of FCoV in the samples was detected by RT-PCR targeting the 6b gene. The results revealed that a total of 126 (74.6%, 126/169) samples were positive for FCoV: 75.7% (87/115) of the FIP-suspected samples were positive for FCoV, and 72.2% (39/54) of the clinically healthy samples were positive for FCoV. Of the 126 FCoV-positive samples, 95 partial S genes were successfully sequenced. The partial S gene-based genotyping indicated that type I FCoV and type II FCoV accounted for 95.8% (91/95) and 4.2% (4/95), respectively. The partial S gene-based phylogenetic analyses showed that the 91 type I FCoV strains exhibited genetic diversity; the four type II FCoV strains exhibited a close relationship with type II FCoV strains from Taiwan. Three type I FCoV strains, HLJ/HRB/2016/10, HLJ/HRB/2016/11 and HLJ/HRB/2016/13, formed one potential new clade in the nearly complete genome-based phylogenetic trees. Further analysis revealed that FCoV infection appeared to be significantly correlated with a multi-cat environment (p < 0.01) and with age (p < 0.01). The S gene of the three type I FCoV strains identified in China, BJ/2017/27, BJ/2018/22 and XM/2018/04, exhibited a six nucleotide deletion (C4035 AGCTC4040 ). Our data provide evidence that type I and type II FCoV strains co-circulate in the FIP-affected cats in China. Type I FCoV strains exhibited high prevalence and genetic diversity in both FIP-affected cats and clinically healthy cats, and a multi-cat environment and age (<6 months) were significantly associated with FCoV infection.
Collapse
Affiliation(s)
- Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiujin Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Junjun Zhai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mingjun Su
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
40
|
Feline Leukemia Virus (FeLV) Disease Outcomes in a Domestic Cat Breeding Colony: Relationship to Endogenous FeLV and Other Chronic Viral Infections. J Virol 2018; 92:JVI.00649-18. [PMID: 29976676 DOI: 10.1128/jvi.00649-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Exogenous feline leukemia virus (FeLV) is a feline gammaretrovirus that results in a variety of disease outcomes. Endogenous FeLV (enFeLV) is a replication-defective provirus found in species belonging to the Felis genus, which includes the domestic cat (Felis catus). There have been few studies examining interaction between enFeLV genotype and FeLV progression. We examined point-in-time enFeLV and FeLV viral loads, as well as occurrence of FeLV/enFeLV recombinants (FeLV-B), to determine factors relating to clinical disease in a closed breeding colony of cats during a natural infection of FeLV. Coinfections with feline foamy virus (FFV), feline gammaherpesvirus 1 (FcaGHV-1), and feline coronavirus (FCoV) were also documented and analyzed for impact on cat health and FeLV disease. Correlation analysis and structural equation modeling techniques were used to measure interactions among disease parameters. Progressive FeLV disease and FeLV-B presence were associated with higher FeLV proviral and plasma viral loads. Female cats were more likely to have progressive disease and FeLV-B. Conversely, enFeLV copy number was higher in male cats and negatively associated with progressive FeLV disease. Males were more likely to have abortive FeLV disease. FFV proviral load was found to correlate positively with higher FeLV proviral and plasma viral load, detection of FeLV-B, and FCoV status. Male cats were much more likely to be infected with FcaGHV-1 than female cats. This analysis provides insights into the interplay between endogenous and exogenous FeLV during naturally occurring disease and reveals striking variation in the infection patterns among four chronic viral infections of domestic cats.IMPORTANCE Endogenous retroviruses are harbored by many animals, and their interactions with exogenous retroviral infections have not been widely studied. Feline leukemia virus (FeLV) is a relevant model system to examine this question, as endogenous and exogenous forms of the virus exist. In this analysis of a large domestic cat breeding colony naturally infected with FeLV, we documented that enFeLV copy number was higher in males and inversely related to FeLV viral load and associated with better FeLV disease outcomes. Females had lower enFeLV copy numbers and were more likely to have progressive FeLV disease and FeLV-B subtypes. FFV viral load was correlated with FeLV progression. FFV, FcaGHV-1, and FeLV displayed markedly different patterns of infection with respect to host demographics. This investigation revealed complex coinfection outcomes and viral ecology of chronic infections in a closed population.
Collapse
|
41
|
Reverse Genetics for Type I Feline Coronavirus Field Isolate To Study the Molecular Pathogenesis of Feline Infectious Peritonitis. mBio 2018; 9:mBio.01422-18. [PMID: 30065095 PMCID: PMC6069117 DOI: 10.1128/mbio.01422-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Feline infectious peritonitis (FIP), one of the most important lethal infections of cats, is caused by feline infectious peritonitis virus (FIPV), the high-virulence biotype of feline coronaviruses (FCoVs). FIPVs are suggested to emerge from feline enteric coronaviruses (FECVs) by acquiring mutations in specific genes in the course of persistent infections. Although numerous studies identified mutations predicted to be responsible for the FECV-FIPV biotype switch, the presumed roles of specific genetic changes in FIP pathogenesis have not been confirmed experimentally. Reverse genetics systems established previously for serotype I and the less common serotype II FCoVs were based on cell culture-adapted FIPV strains which, however, were shown to be unsuitable for FIP pathogenesis studies in vivo To date, systems to produce and manipulate recombinant serotype I field viruses have not been developed, mainly because these viruses cannot be grown in vitro Here, we report the first reverse genetics system based on a serotype I FECV field isolate that is suitable to produce high-titer stocks of recombinant FECVs. We demonstrate that these recombinant viruses cause productive persistent infections in cats that are similar to what is observed in natural infections. The system provides an excellent tool for studying FCoVs that do not grow in standard cell culture systems and will greatly facilitate studies into the molecular pathogenesis of FIP. Importantly, the system could also be adapted for studies of other RNA viruses with large genomes whose production and characterization in vivo are currently hampered by the lack of in vitro propagation systems.IMPORTANCE The availability of recombinant serotype I FCoV field isolates that are amenable to genetic manipulation is key to studying the molecular pathogenesis of FIP, especially since previous studies using cell culture-adapted FIPVs had proven unsuccessful. To our knowledge, we report the first serotype I FECV field isolate-based reverse genetics system that allows the production of high-titer recombinant virus stocks that can be used for subsequent in vivo studies in cats. The system represents a milestone in FCoV research. It provides an essential tool for studying the molecular pathogenesis of FIP and, more specifically, the functions of specific gene products in causing a fundamentally different progression of disease following acquisition of specific mutations. The system developed in this study will also be useful for studying other coronaviruses or more distantly related RNA viruses with large genomes for which suitable in vitro culture systems are not available.
Collapse
|
42
|
Shirato K, Chang HW, Rottier PJM. Differential susceptibility of macrophages to serotype II feline coronaviruses correlates with differences in the viral spike protein. Virus Res 2018; 255:14-23. [PMID: 29936068 PMCID: PMC7114831 DOI: 10.1016/j.virusres.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Differences in the S protein modulate serotype II FCoV infection of macrophages. Critical residues in the spike S2 domain of type II FCoV affecting cell tropism. Cooperativity at 5 positions in the S protein modulates FCoV macrophage entry.
The ability to infect and replicate in monocytes/macrophages is a critically distinguishing feature between the two feline coronavirus (FCoV) pathotypes: feline enteric coronavirus (FECV; low-virulent) and feline infectious peritonitis virus (FIPV; lethal). Previously, by comparing serotype II strains FIPV 79-1146 and FECV 79-1683 and recombinant chimeric forms thereof in cultured feline bone marrow macrophages, we mapped this difference to the C-terminal part of the viral spike (S) protein (S2). In view of the later identified diagnostic difference in this very part of the S protein of serotype I FCoV pathotypes, the present study aimed to further define the contribution of the earlier observed ten amino acids difference to the serotype II virus phenotype in macrophages. Using targeted RNA recombination as a reverse genetics system we introduced the mutations singly and in combinations into the S gene and evaluated their effects on the infection characteristics of the mutant viruses in macrophages. While some of the single mutations had a significant effect, none of them fully reverted the infection phenotype. Only by combining five specific mutations the infections mediated by the FIPV and FECV spike proteins could be fully blocked or potentiated, respectively. Hence, the differential macrophage infection phenotype is caused by the cooperative effect of five mutations, which occur in five functionally different domains of the spike fusion subunit S2. The significance of these observations will be discussed, taking into account also some questions related to the identity of the virus strains used.
Collapse
Affiliation(s)
- Kazuya Shirato
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | - Hui-Wen Chang
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Peter J M Rottier
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
43
|
Barker EN, Stranieri A, Helps CR, Porter EL, Davidson AD, Day MJ, Knowles T, Kipar A, Tasker S. Limitations of using feline coronavirus spike protein gene mutations to diagnose feline infectious peritonitis. Vet Res 2017; 48:60. [PMID: 28982390 PMCID: PMC5629788 DOI: 10.1186/s13567-017-0467-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/15/2017] [Indexed: 12/23/2022] Open
Abstract
Feline infectious peritonitis (FIP) is a fatal disease of cats, and a sequela of systemic feline coronavirus (FCoV) infection. Mutations in the viral spike (S) gene have been associated with FCoVs found in tissues from cats with FIP, but not FCoVs found in faeces from healthy cats, and are implicated in monocyte/macrophage tropism and systemic spread. This study was designed to determine whether S gene mutation analysis can reliably diagnose FIP. Cats were categorised as with FIP (n = 57) or without FIP (n = 45) based on gross post-mortem and histopathological examination including immunohistochemistry for FCoV antigen. RNA was purified from available tissue, fluid and faeces. Reverse-transcriptase quantitative-PCR (RT-qPCR) was performed on all samples using FCoV-specific primers, followed by sequencing of a section of the S gene on RT-qPCR positive samples. Samples were available from a total of 102 cats. Tissue, fluid, and faecal samples from cats with FIP were more likely to be FCoV RT-qPCR-positive (90.4, 78.4 and 64.6% respectively) than those from cats without FIP (7.8, 2.1 and 20% respectively). Identification of S gene mutated FCoVs as an additional step to the detection of FCoV alone, only moderately increased specificity for tissue samples (from 92.6 to 94.6%) but specificity was unchanged for fluid samples (97.9%) for FIP diagnosis; however, sensitivity was markedly decreased for tissue (from 89.8 to 80.9%) and fluid samples (from 78.4 to 60%) for FIP diagnosis. These findings demonstrate that S gene mutation analysis in FCoVs does not substantially improve the ability to diagnose FIP as compared to detection of FCoV alone.
Collapse
Affiliation(s)
- Emily N Barker
- School of Veterinary Sciences, University of Bristol, Bristol, UK.
| | | | - Chris R Helps
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Emily L Porter
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Andrew D Davidson
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Michael J Day
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Toby Knowles
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Institute of Global Health, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Séverine Tasker
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
44
|
Takano T, Endoh M, Fukatsu H, Sakurada H, Doki T, Hohdatsu T. The cholesterol transport inhibitor U18666A inhibits type I feline coronavirus infection. Antiviral Res 2017; 145:96-102. [PMID: 28780424 PMCID: PMC7113792 DOI: 10.1016/j.antiviral.2017.07.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 01/16/2023]
Abstract
Feline infectious peritonitis (FIP) is a feline coronavirus (FCoV)-induced fatal disease in wild and domestic cats. FCoV exists in two serotypes. Type I FCoV is the dominant serotype worldwide. Therefore, it is necessary to develop antiviral drugs against type I FCoV infection. We previously reported that type I FCoV is closely associated with cholesterol throughout the viral life cycle. In this study, we investigated whether U18666A, the cholesterol synthesis and transport inhibitor, shows antiviral effects against type I FCoV. U18666A induced cholesterol accumulation in cells and inhibited type I FCoV replication. Surprisingly, the antiviral activity of U18666A was suppressed by the histone deacetylase inhibitor (HDACi), Vorinostat. HDACi has been reported to revert U18666A-induced dysfunction of Niemann-Pick C1 (NPC1). In conclusion, these findings demonstrate that NPC1 plays an important role in type I FCoV infection. U18666A or other cholesterol transport inhibitor may be considered as the antiviral drug for the treatment of cats with FIP.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Misaki Endoh
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Hiroaki Fukatsu
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Haruko Sakurada
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tsutomu Hohdatsu
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan.
| |
Collapse
|
45
|
Takano T, Nakaguchi M, Doki T, Hohdatsu T. Antibody-dependent enhancement of serotype II feline enteric coronavirus infection in primary feline monocytes. Arch Virol 2017; 162:3339-3345. [PMID: 28730523 PMCID: PMC7086811 DOI: 10.1007/s00705-017-3489-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/05/2017] [Indexed: 01/15/2023]
Abstract
Feline coronavirus (FCoV) has been classified into two biotypes: avirulent feline coronavirus (feline enteric coronavirus: FECV) and virulent feline coronavirus (feline infectious peritonitis virus: FIPV). In FIPV infection, antibody-dependent enhancement (ADE) has been reported and was shown to be associated with severe clinical disease. On the other hand, the potential role of ADE in FECV infection has not been examined. In this study, using laboratory strains of serotype II FIPV WSU 79-1146 (FIPV 79-1146) and serotype II FECV WSU 79-1683 (FECV 79-1683), we investigated the relationship between ADE and induction of inflammatory cytokines, which are pathogenesis-related factors, for each strain. As with ADE of FIPV 79-1146 infection, a monoclonal antibody against the spike protein of FCoV (mAb 6-4-2) enhanced FECV 79-1683 replication in U937 cells and primary feline monocytes. However, the ADE activity of FECV 79-1683 was lower than that of FIPV 79-1146. Moreover, mRNA levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) significantly increased with ADE of FIPV 79-1146 infection in primary feline monocytes, but FECV 79-1683 did not demonstrate an increase in these levels. In conclusion, infection of monocytes by FECV was enhanced by antibodies, but the efficiency of infection was lower than that of FIPV.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Mamiko Nakaguchi
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tsutomu Hohdatsu
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan.
| |
Collapse
|
46
|
Abstract
Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed “discriminatory” mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies.
Collapse
Affiliation(s)
- G Tekes
- Institute of Virology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| | - H-J Thiel
- Institute of Virology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
47
|
Kim Y, Liu H, Galasiti Kankanamalage AC, Weerasekara S, Hua DH, Groutas WC, Chang KO, Pedersen NC. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor. PLoS Pathog 2016; 12:e1005531. [PMID: 27027316 PMCID: PMC4814111 DOI: 10.1371/journal.ppat.1005531] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/07/2016] [Indexed: 02/01/2023] Open
Abstract
Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further development for important coronaviruses in animals and humans. Coronaviruses are important pathogens in humans and animals. Although some coronaviruses can cause severe illness in humans and animals with considerable fatality, there is no antiviral drugs available for coronavirus infections. Feline infectious peritonitis (FIP), caused by virulent feline coronavirus, is the leading infectious cause of death in young cats, and also threatens endangered captive wild cats. We have previously reported series of small molecule protease inhibitors with broad-spectrum activity against important human and animal coronaviruses. In this report, we provide, for the first time, experimental evidence of efficacy and safety of one of the protease inhibitors in laboratory cats with experimentally induced FIP. These findings suggest that direct inhibition of virus replication by a protease inhibitor can be devised as a viable treatment option for coronavirus infection and our protease inhibitor has a potential to be developed into an effective therapeutic agent for FIP.
Collapse
Affiliation(s)
- Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Hongwei Liu
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, Davis, California, United States of America
| | | | - Sahani Weerasekara
- Department of Chemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Duy H. Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - William C. Groutas
- Department of Chemistry, Wichita State University, Wichita, Kansas, United States of America
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Niels C. Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, Davis, California, United States of America
| |
Collapse
|
48
|
Feline Coronavirus RT-PCR Assays for Feline Infectious Peritonitis Diagnosis. SPRINGER PROTOCOLS HANDBOOKS 2016. [PMCID: PMC7121893 DOI: 10.1007/978-1-4939-3414-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Feline infectious peritonitis (FIP) is a highly fatal systemic disease in cats, caused by feline coronavirus (FCoV) infection. FCoV usually has little clinical significance; however, a mutation of this avirulent virus (feline enteric coronavirus) to a virulent type (FIP virus) can lead to FIP incidence. It is difficult to diagnose FIP, since the viruses cannot be distinguished using serological or virological methods. Recently, genetic techniques, such as RT-PCR, have been conducted for FIP diagnosis. In this chapter, the reliability of RT-PCR and procedures used to determine FCoV infection as part of antemortem FIP diagnosis is described.
Collapse
|
49
|
Takano T, Satomi Y, Oyama Y, Doki T, Hohdatsu T. Differential effect of cholesterol on type I and II feline coronavirus infection. Arch Virol 2015; 161:125-33. [PMID: 26514843 PMCID: PMC7086697 DOI: 10.1007/s00705-015-2655-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/19/2015] [Indexed: 10/31/2022]
Abstract
Feline infectious peritonitis (FIP) is a fatal disease of domestic and wild felidae that is caused by feline coronavirus (FCoV). FCoV has been classified into types I and II. Since type I FCoV infection is dominant in the field, it is necessary to develop antiviral agents and vaccines against type I FCoV infection. However, few studies have been conducted on type I FCoV. Here, we compare the effects of cholesterol on types I and II FCoV infections. When cells were treated methyl-β-cyclodextrin (MβCD) and inoculated with type I FCoV, the infection rate decreased significantly, and the addition of exogenous cholesterol to MβCD-treated cells resulted in the recovery of the infectivity of type I FCoV. Furthermore, exogenous cholesterol increased the infectivity of type I FCoV. In contrast, the addition of MβCD and exogenous cholesterol had little effect on the efficiency of type II FCoV infection. These results strongly suggest that the dependence of infection by types I and II FCoV on cholesterol differs.
Collapse
Affiliation(s)
- Tomomi Takano
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yui Satomi
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Yuu Oyama
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tomoyoshi Doki
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Tsutomu Hohdatsu
- Laboratory of Veterinary Infectious Disease, School of Veterinary Medicine, Kitasato University, Towada, Japan.
| |
Collapse
|
50
|
Abstract
Feline infectious peritonitis (FIP) is one of the most important fatal infectious diseases of cats, the pathogenesis of which has not yet been fully revealed. The present review focuses on the biology of feline coronavirus (FCoV) infection and the pathogenesis and pathological features of FIP. Recent studies have revealed functions of many viral proteins, differing receptor specificity for type I and type II FCoV, and genomic differences between feline enteric coronaviruses (FECVs) and FIP viruses (FIPVs). FECV and FIP also exhibit functional differences, since FECVs replicate mainly in intestinal epithelium and are shed in feces, and FIPVs replicate efficiently in monocytes and induce systemic disease. Thus, key events in the pathogenesis of FIP are systemic infection with FIPV, effective and sustainable viral replication in monocytes, and activation of infected monocytes. The host's genetics and immune system also play important roles. It is the activation of monocytes and macrophages that directly leads to the pathologic features of FIP, including vasculitis, body cavity effusions, and fibrinous and granulomatous inflammatory lesions. Advances have been made in the clinical diagnosis of FIP, based on the clinical pathologic findings, serologic testing, and detection of virus using molecular (polymerase chain reaction) or antibody-based methods. Nevertheless, the clinical diagnosis remains challenging in particular in the dry form of FIP, which is partly due to the incomplete understanding of infection biology and pathogenesis in FIP. So, while much progress has been made, many aspects of FIP pathogenesis still remain an enigma.
Collapse
Affiliation(s)
- A Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland.
| | | |
Collapse
|