1
|
Gunaratnam G, Leisering R, Wieland B, Dudek J, Miosge N, Becker SL, Bischoff M, Dawson SC, Hannig M, Jacobs K, Klotz C, Aebischer T, Jung P. Characterization of a unique attachment organelle: Single-cell force spectroscopy of Giardia duodenalis trophozoites. NANOSCALE 2024; 16:7145-7153. [PMID: 38502112 DOI: 10.1039/d4nr00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The unicellular parasite Giardia duodenalis is the causative agent of giardiasis, a gastrointestinal disease with global spread. In its trophozoite form, G. duodenalis can adhere to the human intestinal epithelium and a variety of other, artificial surfaces. Its attachment is facilitated by a unique microtubule-based attachment organelle, the so-called ventral disc. The mechanical function of the ventral disc, however, is still debated. Earlier studies postulated that a dynamic negative pressure under the ventral disc, generated by persistently beating flagella, mediates the attachment. Later studies suggested a suction model based on structural changes of the ventral discs, substrate clutching or grasping, or unspecific contact forces. In this study, we aim to contribute to the understanding of G. duodenalis attachment by investigating detachment characteristics and determining adhesion forces of single trophozoites on a smooth glass surface (RMS = 1.1 ± 0.2 nm) by fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS). Briefly, viable adherent trophozoites were approached with a FluidFM micropipette, immobilized to the micropipette aperture by negative pressure, and detached from the surface by micropipette retraction while retract force curves were recorded. These force curves displayed novel and so far undescribed characteristics for a microorganism, namely, gradual force increase on the pulled trophozoite, with localization of adhesion force shortly before cell detachment length. Respective adhesion forces reached 7.7 ± 4.2 nN at 1 μm s-1 pulling speed. Importantly, this unique force pattern was different from that of other eukaryotic cells such as Candida albicans or oral keratinocytes, considered for comparison in this study. The latter both displayed a force pattern with force peaks of different values or force plateaus (for keratinocytes) indicative of breakage of molecular bonds of cell-anchored classes of adhesion molecules or membrane components. Furthermore, the attachment mode of G. duodenalis trophozoites was mechanically resilient to tensile forces, when the pulling speeds were raised up to 10 μm s-1 and adhesion forces increased to 28.7 ± 10.5 nN. Taken together, comparative SCSF revealed novel and unique retract force curve characteristics for attached G. duodenalis, suggesting a ligand-independent suction mechanism, that differ from those of other well described eukaryotes.
Collapse
Affiliation(s)
- Gubesh Gunaratnam
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Ricarda Leisering
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Ben Wieland
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Johanna Dudek
- Clinic of Operative Dentistry and Periodontology, Saarland University, Homburg, Germany
| | - Nicolai Miosge
- Clinic of Operative Dentistry and Periodontology, Saarland University, Homburg, Germany
| | - Sören L Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Markus Bischoff
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, USA
| | - Matthias Hannig
- Clinic of Operative Dentistry and Periodontology, Saarland University, Homburg, Germany
| | - Karin Jacobs
- Experimental Physics, Saarland University, Saarbrücken, Germany
- Max Planck School, Matter to Life, Heidelberg, Germany
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Philipp Jung
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany.
| |
Collapse
|
2
|
Namazi F, Razavi SM. Herbal-based compounds: A review on treatments of cryptosporidiosis. Int J Parasitol Drugs Drug Resist 2024; 24:100521. [PMID: 38246099 PMCID: PMC10831817 DOI: 10.1016/j.ijpddr.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Cryptosporidium, a monoxenous apicomplexan coccidia, is a prevalent diarrhetic and an opportunistic agent, mainly in immunocompromised individuals. As there are few chemotherapeutic compounds that have limited efficacy, we need to identify new compounds or specific parasite targets for designing more potent drugs to treat cryptosporidiosis. Herbal products with low toxicity, environmental compatibility, wide therapeutic potential, and abundant resources can be considered alternatives for treatment. The current review tried to summarize the studies on plants or herbal bioactive constituents with anti-cryptosporidial activities. Based on constituents, plants act via different mechanisms, and further investigations are needed to clarify the exact mechanisms by which they act on the developmental stages of the parasite or host-parasite relationships.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Seyed Mostafa Razavi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
3
|
Nosala C, Hagen KD, Guest SL, Hilton NA, Müller A, Laue M, Klotz C, Aebischer A, Dawson SC. Dynamic ventral disc contraction is necessary for Giardia attachment and host pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.04.547600. [PMID: 37461436 PMCID: PMC10349954 DOI: 10.1101/2023.07.04.547600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Giardia lamblia is a common parasitic protist that infects the small intestine and causes giardiasis, resulting in diarrhea, vomiting, weight loss, and malabsorption. Giardiasis leads to cellular damage, including loss of microvilli, disruption of tight junctions, impaired barrier function, enzyme inhibition, malabsorption, and apoptosis. In the host, motile Giardia trophozoites attach to the duodenal microvilli using a unique microtubule organelle called the ventral disc. Despite early observations of disc-shaped depressions in microvilli after parasite detachment, little is known about disc-mediated attachment mechanisms and there little direct evidence showing that parasite attachment causes cellular damage. However, advancements in in vitro organoid models of infection and genetic tools have opened new possibilities for studying molecular mechanisms of attachment and the impact of attachment on the host. Through high-resolution live imaging and a novel disc mutant, we provide direct evidence for disc contraction during attachment, resolving the long-standing controversy of its existence. Specifically, we identify three types of disc movements that characterize contraction, which in combination result in a decrease in disc diameter and volume. Additionally, we investigate the consequences of attachment and disc contractility using an attachment mutant that has abnormal disc architecture. In a human organoid model, we demonstrate that this mutant has a limited ability to break down the epithelial barrier as compared to wild type. Based on this direct evidence, we propose a model of attachment that incorporates disc contraction to generates the forces required for the observed "grasping" of trophozoites on the host epithelium. Overall, this work highlights the importance of disc contractility in establishing and maintaining parasite attachment, leading to intestinal barrier breakdown.
Collapse
|
4
|
Sabatke B, Chaves PFP, Cordeiro LMC, Ramirez MI. Synergistic Effect of Polysaccharides from Chamomile Tea with Nitazoxanide Increases Treatment Efficacy against Giardia intestinalis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122091. [PMID: 36556456 PMCID: PMC9785495 DOI: 10.3390/life12122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/18/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Giardia intestinalis (syn. G. lamblia, G. duodenalis) is a protozoa parasite that produces one of the most frequent waterborne causes of diarrhea worldwide. This protozoan infects most mammals, including humans, and colonizes the small intestine, adhering to intestinal cells. The mechanism by which G. intestinalis causes diarrhea is multifactorial, causing intestinal malabsorption. The treatment of giardiasis uses chemotherapeutic drugs such as nitroimidazoles, furazolidone, paromomycin, and benzimidazole compounds. However, they are toxic, refractory, and may generate resistance. To increase efficacy, a current treatment strategy is to combine these drugs with other compounds, such as polysaccharides. Several studies have shown that polysaccharides have gastroprotective effects. Polysaccharides are high-molecular weight polymers, and they differ in structure and functions, being widely extracted from vegetables and fruits. In the present study, we show that polysaccharides found in chamomile tea (called MRW), in contact with antiparasitic agents, potentially inhibit the adhesion of parasites to intestinal cells. Moreover, at 500 µg/mL, they act synergistically with nitazoxanide (NTZ), increasing its effectiveness and decreasing the drug dose needed for giardiasis treatment.
Collapse
Affiliation(s)
- Bruna Sabatke
- Graduate Program in Microbiology, Parasitology and Pathology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil
- EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Laboratório de Biologia Molecular e Sistemática de Tripanossomatideos, Carlos Chagas Institute-Fiocruz, Curitiba 81310-020, PR, Brazil
| | - Pedro Felipe P Chaves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba 81531-980, PR, Brazil
| | - Marcel I Ramirez
- EVAHPI-Extracellular Vesicles and Host-Parasite Interactions Research Group, Laboratório de Biologia Molecular e Sistemática de Tripanossomatideos, Carlos Chagas Institute-Fiocruz, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
5
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Kolářová I, Valigurová A. Hide-and-Seek: A Game Played between Parasitic Protists and Their Hosts. Microorganisms 2021; 9:2434. [PMID: 34946036 PMCID: PMC8707157 DOI: 10.3390/microorganisms9122434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 11/17/2022] Open
Abstract
After invading the host organism, a battle occurs between the parasitic protists and the host's immune system, the result of which determines not only whether and how well the host survives and recovers, but also the fate of the parasite itself. The exact weaponry of this battle depends, among others, on the parasite localisation. While some parasitic protists do not invade the host cell at all (extracellular parasites), others have developed successful intracellular lifestyles (intracellular parasites) or attack only the surface of the host cell (epicellular parasites). Epicellular and intracellular protist parasites have developed various mechanisms to hijack host cell functions to escape cellular defences and immune responses, and, finally, to gain access to host nutrients. They use various evasion tactics to secure the tight contact with the host cell and the direct nutrient supply. This review focuses on the adaptations and evasion strategies of parasitic protists on the example of two very successful parasites of medical significance, Cryptosporidium and Leishmania, while discussing different localisation (epicellular vs. intracellular) with respect to the host cell.
Collapse
Affiliation(s)
- Iva Kolářová
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Albertov 6, 128 44 Prague, Czech Republic
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| |
Collapse
|
7
|
High-Definition DIC Imaging Uncovers Transient Stages of Pathogen Infection Cycles on the Surface of Human Adult Stem Cell-Derived Intestinal Epithelium. mBio 2021; 13:e0002222. [PMID: 35100876 PMCID: PMC8805028 DOI: 10.1128/mbio.00022-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Interactions between individual pathogenic microbes and host tissues involve fast and dynamic processes that ultimately impact the outcome of infection. Using live-cell microscopy, these dynamics can be visualized to study, e.g., microbe motility, binding and invasion of host cells, and intrahost-cell survival. Such methodology typically employs confocal imaging of fluorescent tags in tumor-derived cell line infections on glass. This allows high-definition imaging but poorly reflects the host tissue's physiological architecture and may result in artifacts. We developed a method for live-cell imaging of microbial infection dynamics on human adult stem cell-derived intestinal epithelial cell (IEC) layers. These IEC layers are grown in apical imaging chambers, optimized for physiological cell arrangement and fast, but gentle, differential interference contrast (DIC) imaging. This allows subsecond visualization of both microbial and epithelial surface ultrastructure at high resolution without using fluorescent reporters. We employed this technology to probe the behavior of two model pathogens, Salmonella enterica serovar Typhimurium and Giardia intestinalis, at the intestinal epithelial surface. Our results reveal pathogen-specific swimming patterns on the epithelium and show that Salmonella lingers on the IEC surface for prolonged periods before host cell invasion, while Giardia uses circular swimming with intermittent attachments to scout for stable adhesion sites. The method even permits tracking of individual Giardia flagella, demonstrating that active flagellar beating and attachment to the IEC surface are not mutually exclusive. This work describes a generalizable and relatively inexpensive approach to resolving dynamic pathogen-IEC layer interactions, applicable even to genetically nontractable microorganisms. IMPORTANCE Knowledge of dynamic niche-specific interactions between single microbes and host cells is essential to understand infectious disease progression. However, advances in this field have been hampered by the inherent conflict between the technical requirements for high-resolution live-cell imaging on the one hand and conditions that best mimic physiological infection niche parameters on the other. Toward bridging this divide, we present a methodology for differential interference contrast (DIC) imaging of pathogen interactions at the apical surface of enteroid-derived intestinal epithelia, providing both high spatial and temporal resolution. This alleviates the need for fluorescent reporters in live-cell imaging and provides dynamic information about microbe interactions with a nontransformed, confluent, polarized, and microvilliated human gut epithelium. Using this methodology, we uncover previously unrecognized stages of Salmonella and Giardia infection cycles at the epithelial surface.
Collapse
|
8
|
Martínez-Ocaña J, Maravilla P, Olivo-Díaz A. Interaction between human mucins and parasite glycoproteins: the role of lectins and glycosidases in colonization by intestinal protozoa. Rev Inst Med Trop Sao Paulo 2020; 62:e64. [PMID: 32901761 PMCID: PMC7477959 DOI: 10.1590/s1678-9946202062064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/17/2020] [Indexed: 08/30/2023] Open
Abstract
Intestinal mucins are the first line of defense against microorganisms. Although knowledge about the mechanisms involved in the establishment of intestinal protozoa is limited, there is evidence that these parasites produce lectin-like molecules and glycosidases, that exert both, constitutive and secretory functions, promoting the establishment of these microorganisms. In the present review, we analyse the main interactions between mucins of the host intestine and the four main protozoan parasites in humans and their implications in intestinal colonization. There are lectin-like molecules that contain complex oligosaccharide structures and N-acetylglucosamine (GlcNAc), mannose and sialic acid as main components, which are excreted/secreted by Giardia intestinalis, and recognized by the host using mannose-binding lectins (MBL). Entamoeba histolytica and Cryptosporidium spp. express the lectin galactose/N-acetyl-D-galactosamine, which facilitates their adhesion to cells. In Cryptosporidium, the glycoproteins gp30, gp40/15 and gp900 and the glycoprotein lectin CpClec are involved in protozoan adhesion to intestinal cells, forming an adhesion-attack complex. G. intestinalis and E. histolytica can also produce glycosidases such as β-N-acetyl-D-glucosaminidase, α-d-glucosidase, β-d-galactosidase, β-l-fucosidase, α-N-acetyl-d-galactosaminidase and β-mannosidase. In Blastocystis, α-D-mannose, α-D-glucose, GlcNAc, α-D-fucose, chitin and sialic acid that have been identified on their surface. Fucosidases, hexosaminidases and polygalacturonases, which may be involved in the mucin degradation process, have also been described in the Blastocystis secretoma. Similarly, symbiotic coexistence with the intestinal microbiota promotes the survival of parasites facilitating cell invasion and nutrients obtention. Furthermore, it is necessary to identify and characterize more glycosidases, which have been only partially described by in silico analyses of the parasite genome.
Collapse
Affiliation(s)
- Joel Martínez-Ocaña
- Hospital General "Dr. Manuel Gea González", Departamento de Ecología de Agentes Patógenos, Ciudad de México, Mexico
| | - Pablo Maravilla
- Hospital General "Dr. Manuel Gea González", Subdirección de Investigación, Ciudad de México, Mexico
| | - Angélica Olivo-Díaz
- Hospital General "Dr. Manuel Gea González", Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Ciudad de México, Mexico
| |
Collapse
|
9
|
Wang Y, Lu L, Zheng G, Zhang X. Microenvironment-Controlled Micropatterned Microfluidic Model (MMMM) for Biomimetic In Situ Studies. ACS NANO 2020; 14:9861-9872. [PMID: 32701267 DOI: 10.1021/acsnano.0c02701] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Attachment of trophozoites to the intestine is an indispensable step for Giardia's survival and pathogenicity in almost 280 million infections worldwide each year. However, the analysis of the attachment mechanism is difficult due to the lack of methods that can create a favorable microaerobic atmosphere. Herein, we developed an osmotic-pressure, pH, excretion, nutrition, gas, ionic-strength, flow-rate, and temperature microenvironment-controlled micropatterned microfluidic model to simulate the in vivo microenvironment to study in situ the stress applied to Giardia in the intestinal tract. We designed three nonbiological surfaces with stagger arrangement manners and integrated them with a resistance microfluidic network to split Giardia-attaching forces ingeniously and developed the term "attaching contribution rate" (ACR) to describe their corresponding contributions. Our study shows that the total attaching force measured is 49.58 Pa, with three components being 22.66 Pa (suction force), 12.52 Pa (clutching force), and 14.4 Pa (combined electrostatic and van der Waals force), respectively, with ACRs being 46%, 25%, and 29%, respectively. By decomposing the attaching force and analyzing each force component and their structure and composition basis, whole profiles of the attachment mechanisms were revealed. Our method enables the analysis of the surface attachment mechanisms and their ACRs for Giardia.
Collapse
Affiliation(s)
- Yunhua Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Environmental Micro Total Analysis Lab, Dalian University, 116622, Dalian, China
| | - Ling Lu
- Environmental Micro Total Analysis Lab, Dalian University, 116622, Dalian, China
| | - Guoxia Zheng
- Environmental Micro Total Analysis Lab, Dalian University, 116622, Dalian, China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Peirasmaki D, Ma'ayeh SY, Xu F, Ferella M, Campos S, Liu J, Svärd SG. High Cysteine Membrane Proteins (HCMPs) Are Up-Regulated During Giardia-Host Cell Interactions. Front Genet 2020; 11:913. [PMID: 33014015 PMCID: PMC7461913 DOI: 10.3389/fgene.2020.00913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Giardia intestinalis colonizes the upper small intestine of humans and animals, causing the diarrheal disease giardiasis. This unicellular eukaryotic parasite is not invasive but it attaches to the surface of small intestinal epithelial cells (IECs), disrupting the epithelial barrier. Here, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and RNA sequencing (RNAseq) to identify differentially expressed genes (DEGs) in Giardia, which might relate to the establishment of infection and disease induction. Giardia trophozoites interacted with differentiated Caco-2 cells for 1.5, 3, and 4.5 h and at each time point, 61, 89, and 148 parasite genes were up-regulated more than twofold, whereas 209, 265, and 313 parasite genes were down-regulated more than twofold. The most abundant DEGs encode hypothetical proteins and members of the High Cysteine Membrane Protein (HCMP) family. Among the up-regulated genes we also observed proteins associated with proteolysis, cellular redox balance, as well as lipid and nucleic acid metabolic pathways. In contrast, genes encoding kinases, regulators of the cell cycle and arginine metabolism and cytoskeletal proteins were down-regulated. Immunofluorescence imaging of selected, up-regulated HCMPs, using C-terminal HA-tagging, showed localization to the plasma membrane and peripheral vesicles (PVs). The expression of the HCMPs was affected by histone acetylation and free iron-levels. In fact, the latter was shown to regulate the expression of many putative giardial virulence factors in subsequent RNAseq experiments. We suggest that the plasma membrane localized and differentially expressed HCMPs play important roles during Giardia-host cell interactions.
Collapse
Affiliation(s)
- Dimitra Peirasmaki
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Showgy Y Ma'ayeh
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marcela Ferella
- Eukaryotic Single Cell Genomics Platform, Karolinska Institute, Science for Life Laboratory (SciLifeLab), Solna, Sweden
| | - Sara Campos
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Jingyi Liu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.,Science for Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Hagen KD, McInally SG, Hilton ND, Dawson SC. Microtubule organelles in Giardia. ADVANCES IN PARASITOLOGY 2020; 107:25-96. [PMID: 32122531 DOI: 10.1016/bs.apar.2019.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Giardia lamblia is a widespread parasitic protist with a complex MT cytoskeleton that is critical for motility, attachment, mitosis and cell division, and transitions between its two life cycle stages-the infectious cyst and flagellated trophozoite. Giardia trophozoites have both highly dynamic and highly stable MT organelles, including the ventral disc, eight flagella, the median body and the funis. The ventral disc, an elaborate MT organelle, is essential for the parasite's attachment to the intestinal villi to avoid peristalsis. Giardia's four flagellar pairs enable swimming motility and may also promote attachment. They are maintained at different equilibrium lengths and are distinguished by their long cytoplasmic regions and novel extra-axonemal structures. The functions of the median body and funis, MT organelles unique to Giardia, remain less understood. In addition to conserved MT-associated proteins, the genome is enriched in ankyrins, NEKs, and novel hypothetical proteins that also associate with the MT cytoskeleton. High-resolution ultrastructural imaging and a current inventory of more than 300 proteins associated with Giardia's MT cytoskeleton lay the groundwork for future mechanistic analyses of parasite attachment to the host, motility, cell division, and encystation/excystation. Giardia's unique MT organelles exemplify the capacity of MT polymers to generate intricate structures that are diverse in both form and function. Thus, beyond its relevance to pathogenesis, the study of Giardia's MT cytoskeleton informs basic cytoskeletal biology and cellular evolution. With the availability of new molecular genetic tools to disrupt gene function, we anticipate a new era of cytoskeletal discovery in Giardia.
Collapse
Affiliation(s)
- Kari D Hagen
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Shane G McInally
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Nicholas D Hilton
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, UC Davis, Davis, CA, United States.
| |
Collapse
|
12
|
Nosala C, Hagen KD, Dawson SC. 'Disc-o-Fever': Getting Down with Giardia's Groovy Microtubule Organelle. Trends Cell Biol 2017; 28:99-112. [PMID: 29153830 DOI: 10.1016/j.tcb.2017.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 10/14/2017] [Accepted: 10/25/2017] [Indexed: 11/29/2022]
Abstract
Protists have evolved a myriad of highly specialized cytoskeletal organelles that expand known functional capacities of microtubule (MT) polymers. One such innovation - the ventral disc - is a cup-shaped MT organelle that the parasite Giardia uses to attach to the small intestine of its host. The molecular mechanisms underlying the generation of suction-based forces by overall conformational changes of the disc remain unclear. The elaborate disc architecture is defined by novel proteins and complexes that decorate almost all disc MT protofilaments, and vary in composition and conformation along the length of the MTs. Future genetic, biochemical, and functional analyses of disc-associated proteins will be central toward understanding not only disc architecture and assembly, but also the overall disc conformational dynamics that promote attachment.
Collapse
Affiliation(s)
- Christopher Nosala
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, One Shields Avenue, UC Davis, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Hema M, Vasudevan S, Balamurugan P, Adline Princy S. Modulating the Global Response Regulator, LuxO of V. cholerae Quorum Sensing System Using a Pyrazine Dicarboxylic Acid Derivative (PDCA py): An Antivirulence Approach. Front Cell Infect Microbiol 2017; 7:441. [PMID: 29075619 PMCID: PMC5643417 DOI: 10.3389/fcimb.2017.00441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022] Open
Abstract
Vibrio cholerae is a Gram-negative pathogen which causes acute diarrhoeal disease, cholera by the expression of virulence genes through quorum sensing (QS) mechanism. The QS circuit of V. cholerae is controlled by the global quorum regulator, LuxO, which at low cell density (LCD) state produces major virulence factors such as, toxin co-regulated pilus (TCP) and cholera toxin (CT) to mediate infection. On the contrary, at the high cell density (HCD) state the virulent genes are downregulated and the vibrios are detached from the host intestinal epithelial cells, promoted by HapA protease. Hence, targeting the global regulator LuxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. In our earlier studies, LuxO targeted ligand, 2,3 pyrazine dicarboxylic acid (PDCA) and its derivatives having desired pharmacophore properties were chemically synthesized and were shown to have biofilm inhibition as well as synergistic activity with the conventionally used antibiotics. In the present study, the QS modulatory effect of the PDCA derivative with pyrrolidine moiety designated as PDCApy against the V. cholerae virulence gene expression was analyzed at various growth phases. The data significantly showed a several fold reduction in the expression of the genes, tcp and ct whereas the expression of hapR was upregulated at the LCD state. In addition, PDCApy reduced the adhesion and invasion of the vibrios onto the INT407 intestinal cell lines. Collectively, our data suggest that PDCApy could be a potential QS modulator (QSM) for the antivirulence therapeutic approach.
Collapse
Affiliation(s)
- M Hema
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - Sahana Vasudevan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - P Balamurugan
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| | - S Adline Princy
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA University, Thanjavur, India
| |
Collapse
|
14
|
Coelho CH, Silva ACC, Costa AO, Fernandes AP. Morphological and physiological characteristics of a virulent and zoonotic assemblage A Giardia duodenalis canine strain. Acta Trop 2017; 174:76-81. [PMID: 28689000 DOI: 10.1016/j.actatropica.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/27/2017] [Accepted: 07/04/2017] [Indexed: 12/29/2022]
Abstract
Giardiasis is an intestinal parasitosis that affects millions of people worldwide and is considered a zoonotic disease. Frequently in contact with humans, dogs are the main host involved in this zoonotic transmission. Here, we compared some aspects of Giardia duodenalis biology between two strains: a recently isolated dog strain (BHFC1) and a human reference strain (Portland-1). Growth curve analysis revealed that BHFC1 trophozoites multiply faster than the human isolate Portland-1 in axenic culture, but has a lower rate of cysts formation. Scanning electron microscopy revealed that BHFC1 trophozoites have the same conventional shape and morphological structures expected for G. duodenalis trophozoites, but presented a more prominent flange. For the best of our knowledge, this work is the first description of morphological aspects and encystation process of a G. duodenalis strain isolated from a dog. Since BHFC1 and Portland-1 have been maintained in axenic cultures for different periods of time, differences observed in growth, encystation rates and flange size may be attributed to adaptation of Portland-1 to axenic culture and lack of the environmental pressures. BHFC1 can be useful as tool for better understanding of Giardia duodenalis biology.
Collapse
|
15
|
Migration ofFasciola hepaticanewly excysted juveniles is inhibited by high-mannose and oligomannose-typeN-glycan-binding lectins. Parasitology 2017; 144:1708-1717. [DOI: 10.1017/s003118201700124x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SUMMARYFasciola hepaticahas both zoonotic importance and high economic impact in livestock worldwide. After ingestion by the definitive host, the Newly Excysted Juveniles (NEJ) penetrate the intestine before reaching the peritoneal cavity. The role of some NEJ-derived proteins in invasion has been documented, but the role of NEJ glycans or lectin-binding receptors during initial infection in the gut is still unknown. To address these questions, the migration of NEJ through rat intestine was recorded at 30 min intervals up to 150 min by twoex vivomethods. Firstly, jejunal sheets were challenged with NEJ incubated with biotinylated lectins. Secondly, untreated NEJ were incubated with distal jejunum pre-treated with lectins. BothConcanavalin A(ConA) andGalanthus nivalis(GNL), which recognize mannose-typeN-glycans, significantly inhibited NEJ migration across the jejunum. Most of the lectins bound to the tegument and oral sucker of the NEJ, but only ConA and GNL maintained this interaction over 150 min. None of the lectins examined significantly reduced NEJ migration when pre-incubated with jejunal sheets, suggesting that host glycans might not be essential for initial binding/recognition of the gut by NEJ. Agents capable of blocking mannose-typeN-glycans on the NEJ tegument may have potential for disrupting infection.
Collapse
|
16
|
Cabrera-Licona A, Solano-González E, Fonseca-Liñán R, Bazán-Tejeda ML, Raúl Argüello-García, Bermúdez-Cruz RM, Ortega-Pierres G. Expression and secretion of the Giardia duodenalis variant surface protein 9B10A by transfected trophozoites causes damage to epithelial cell monolayers mediated by protease activity. Exp Parasitol 2017; 179:49-64. [PMID: 28668253 DOI: 10.1016/j.exppara.2017.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023]
Abstract
Giardia duodenalis is the protozoan parasite responsible for most cases of parasitic diarrhea worldwide. The pathogenic mechanisms of giardiasis have not yet been fully characterized. In this context parasite's excretory/secretory products have been related to the damage induced by the parasite on enterocytes. Among these is the Variable Surface Proteins (VSPs) family involved in antigenic variation and in the induction of protective response. In proteomic analyses carried out to identify the proteases with high molecular weight secreted by Giardia trophozoites during the initial phase of interaction with IEC-6 cell monolayers we identified the VSP9B10A protein. In silico bioinformatics analyses predicted a central region in residues 324-684 displaying the catalytic triad and the substrate binding pocket of cysteine proteases. The analysis of the effect of the VSP9B10A protein on epithelial cell monolayers using trophozoites that were transfected with a plasmid carrying the vsp9b10a gene sequence under the control of a constitutive promoter showed that transfected trophozoites expressing the VSP9B10A protein caused cytotoxic damages on IEC-6 and MDCK cell monolayers. This was characterized by loss of cell-cell contacts and cell detachment from the substrate while no damage was observed with trophozoites that did not express the VSP9B10A protein. The same cytotoxic effect was detected when IEC-6 cell monolayers were incubated only with supernatants from co-cultures of IEC-6 cell monolayers with VSP9B10A transfected trophozoites and this effect was not observed when transfected trophozoites were incubated with a monospecific polyclonal antibody anti-VSP9B10A previous to interaction with IEC-6 monolayers. These results demonstrate that the VSP9B10A protein secreted upon interaction with epithelial cells caused damage in these cells. Thus this protein might be considered as a conditional virulence factor candidate. To our knowledge this is the first report on the proteolytic activity from a Giardia VSP opening new research lines on these proteins.
Collapse
Affiliation(s)
- Ariana Cabrera-Licona
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Eduardo Solano-González
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Ma Luisa Bazán-Tejeda
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Rosa Ma Bermúdez-Cruz
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| | - Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular. Centro de Investigación y Estudios Avanzados, IPN, México City, CA, 07360, Mexico.
| |
Collapse
|
17
|
Measurement of Giardia lamblia adhesion force using an integrated microfluidic assay. Anal Bioanal Chem 2016; 409:1451-1459. [DOI: 10.1007/s00216-016-0080-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/03/2016] [Indexed: 01/26/2023]
|
18
|
Singh RS, Walia AK, Kanwar JR. Protozoa lectins and their role in host–pathogen interactions. Biotechnol Adv 2016; 34:1018-1029. [DOI: 10.1016/j.biotechadv.2016.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 11/29/2022]
|
19
|
Tegument Glycoproteins and Cathepsins of Newly Excysted Juvenile Fasciola hepatica Carry Mannosidic and Paucimannosidic N-glycans. PLoS Negl Trop Dis 2016; 10:e0004688. [PMID: 27139907 PMCID: PMC4854454 DOI: 10.1371/journal.pntd.0004688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/14/2016] [Indexed: 11/19/2022] Open
Abstract
Recently, the prevalence of Fasciola hepatica in some areas has increased considerably and the availability of a vaccine to protect livestock from infection would represent a major advance in tools available for controlling this disease. To date, most vaccine-target discovery research on this parasite has concentrated on proteomic and transcriptomic approaches whereas little work has been carried out on glycosylation. As the F. hepatica tegument (Teg) may contain glycans potentially relevant to vaccine development and the Newly Excysted Juvenile (NEJ) is the first lifecycle stage in contact with the definitive host, our work has focused on assessing the glycosylation of the NEJTeg and identifying the NEJTeg glycoprotein repertoire. After in vitro excystation, NEJ were fixed and NEJTeg was extracted. Matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) analysis of released N-glycans revealed that oligomannose and core-fucosylated truncated N-glycans were the most dominant glycan types. By lectin binding studies these glycans were identified mainly on the NEJ surface, together with the oral and ventral suckers. NEJTeg glycoproteins were affinity purified after targeted biotinylation of the glycans and identified using liquid chromatography and tandem mass spectrometry (LC-MS/MS). From the total set of proteins previously identified in NEJTeg, eighteen were also detected in the glycosylated fraction, including the F. hepatica Cathepsin B3 (FhCB3) and two of the Cathepsin L3 (FhCL3) proteins, among others. To confirm glycosylation of cathepsins, analysis at the glycopeptide level by LC-ESI-ion-trap-MS/MS with collision-induced dissociation (CID) and electron-transfer dissociation (ETD) was carried out. We established that cathepsin B1 (FhCB1) on position N80, and FhCL3 (BN1106_s10139B000014, scaffold10139) on position N153, carry unusual paucimannosidic Man2GlcNAc2 glycans. To our knowledge, this is the first description of F. hepatica NEJ glycosylation and the first report of N-glycosylation of F. hepatica cathepsins. The significance of these findings for immunological studies and vaccine development is discussed.
Collapse
|
20
|
Di Genova BM, Tonelli RR. Infection Strategies of Intestinal Parasite Pathogens and Host Cell Responses. Front Microbiol 2016; 7:256. [PMID: 26973630 PMCID: PMC4776161 DOI: 10.3389/fmicb.2016.00256] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022] Open
Abstract
Giardia lamblia, Cryptosporidium sp., and Entamoeba histolytica are important pathogenic intestinal parasites and are amongst the leading causes worldwide of diarrheal illness in humans. Diseases caused by these organisms, giardiasis, cryptosporidiosis, and amoebiasis, respectively, are characterized by self-limited diarrhea but can evolve to long-term complications. The cellular and molecular mechanisms underlying the pathogenesis of diarrhea associated with these three pathogens are being unraveled, with knowledge of both the strategies explored by the parasites to establish infection and the methods evolved by hosts to avoid it. Special attention is being given to molecules participating in parasite–host interaction and in the mechanisms implicated in the diseases’ pathophysiologic processes. This review focuses on cell mechanisms that are modulated during infection, including gene transcription, cytoskeleton rearrangements, signal transduction pathways, and cell death.
Collapse
Affiliation(s)
- Bruno M Di Genova
- Departamento de Microbiologia e Imunologia, Universidade Federal de São Paulo São Paulo, Brazil
| | - Renata R Tonelli
- Departamento de Microbiologia e Imunologia, Universidade Federal de São PauloSão Paulo, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Departamento de Ciências Biológicas, Universidade Federal de São PauloDiadema, Brazil
| |
Collapse
|
21
|
Lalle M, Camerini S, Cecchetti S, Finelli R, Sferra G, Müller J, Ricci G, Pozio E. The FAD-dependent glycerol-3-phosphate dehydrogenase of Giardia duodenalis: an unconventional enzyme that interacts with the g14-3-3 and it is a target of the antitumoral compound NBDHEX. Front Microbiol 2015; 6:544. [PMID: 26082764 PMCID: PMC4450592 DOI: 10.3389/fmicb.2015.00544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/17/2015] [Indexed: 12/18/2022] Open
Abstract
The flagellated protozoan Giardia duodenalis is a worldwide parasite causing giardiasis, an acute and chronic diarrheal disease. Metabolism in G. duodenalis has a limited complexity thus making metabolic enzymes ideal targets for drug development. However, only few metabolic pathways (i.e., carbohydrates) have been described so far. Recently, the parasite homolog of the mitochondrial-like glycerol-3-phosphate dehydrogenase (gG3PD) has been identified among the interactors of the g14-3-3 protein. G3PD is involved in glycolysis, electron transport, glycerophospholipids metabolism, and hyperosmotic stress response, and is emerging as promising target in tumor treatment. In this work, we demonstrate that gG3PD is a functional flavoenzyme able to convert glycerol-3-phosphate into dihydroxyacetone phosphate and that its activity and the intracellular glycerol level increase during encystation. Taking advantage of co-immunoprecipitation assays and deletion mutants, we provide evidence that gG3PD and g14-3-3 interact at the trophozoite stage, the intracellular localization of gG3PD is stage dependent and it partially co-localizes with mitosomes during cyst development. Finally, we demonstrate that the gG3PD activity is affected by the antitumoral compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol, that results more effective in vitro at killing G. duodenalis trophozoites than the reference drug metronidazole. Overall, our results highlight the involvement of gG3PD in processes crucial for the parasite survival thus proposing this enzyme as target for novel antigiardial interventions.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Serena Cecchetti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità Rome, Italy
| | - Renata Finelli
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Gabriella Sferra
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| | - Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Bern Bern, Switzerland
| | - Giorgio Ricci
- Department of Sciences and Chemical Technologies, University of Rome "Tor Vergata" Rome, Italy
| | - Edoardo Pozio
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
22
|
Lander RL, Bailey KB, Lander AG, Alsaleh AA, Costa-Ribeiro HC, Mattos AP, Barreto DL, Houghton LA, Morison IM, Williams SM, Gibson RS. Disadvantaged pre-schoolers attending day care in Salvador, Northeast Brazil have a low prevalence of anaemia and micronutrient deficiencies. Public Health Nutr 2014; 17:1984-92. [PMID: 24008015 PMCID: PMC11108718 DOI: 10.1017/s1368980013002310] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 06/23/2013] [Accepted: 07/25/2013] [Indexed: 11/05/2022]
Abstract
OBJECTIVE To examine the micronutrient status of disadvantaged pre-schoolers from Northeast Brazil, following the introduction of pro-poor policies, by assessing the prevalence of anaemia and micronutrient deficiencies and the role of sociodemographic factors, genetic Hb disorders and parasitic infections. DESIGN In a cross-sectional study, data on sociodemographic status, health, growth, genetic Hb disorders, parasites and nutrient supply from day-care meals were obtained. Fasting blood samples were collected and analysed for Hb, serum ferritin, transferrin receptor, folate, vitamin B₁₂, retinol, Zn and Se. SETTING Seven philanthropic day-care centres serving urban slums in Salvador, Northeast Brazil. SUBJECTS Pre-schoolers aged 3-6 years from disadvantaged households. RESULTS Of the 376 sampled children, 94 % were of black or mixed race; 33 % and 29 % had at least one genetic Hb disorder and intestinal parasite, respectively. Stunting and underweight were ≤5 %; 14 % were overweight. Day-care centres supplied micronutrient-dense meals and snacks each weekday. Less than 10 % of pre-schoolers had anaemia and micronutrient deficiencies. Predictors (P < 0·05) of Hb were α(3·7) thalassaemia, Se and retinol (but not ferritin). Micronutrient predictors (P < 0·05) were: elevated α₁-glycoprotein for ferritin, Hb AS and BMI Z-score >1 for transferrin receptor, Zn and elevated α₁-glycoprotein for retinol, sex and helminths for Se, helminths for vitamin B₁₂, and Giardia intestinalis infection for serum folate. CONCLUSIONS Impaired growth, anaemia and micronutrient deficiencies were uncommon among these disadvantaged pre-schoolers attending day care. A range of interventions including provision of micronutrient-dense, fortified day-care meals, deworming and vitamin A supplementation likely contributed to improved micronutrient status, suggesting expanded coverage of these programmes.
Collapse
Affiliation(s)
- Rebecca L Lander
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Karl B Bailey
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Alastair G Lander
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | - Hugo C Costa-Ribeiro
- Hospital Universitário Professor Edgard Santos, Fima Lifshitz Research Unit, Salvador, Bahia, Brazil
| | - Angela P Mattos
- Hospital Universitário Professor Edgard Santos, Fima Lifshitz Research Unit, Salvador, Bahia, Brazil
| | - Danile L Barreto
- Hospital Universitário Professor Edgard Santos, Fima Lifshitz Research Unit, Salvador, Bahia, Brazil
| | - Lisa A Houghton
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Ian M Morison
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Sheila M Williams
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Rosalind S Gibson
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
23
|
Activity of Thymus capitellatus volatile extract, 1,8-cineole and borneol against Leishmania species. Vet Parasitol 2013; 200:39-49. [PMID: 24365244 DOI: 10.1016/j.vetpar.2013.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 11/01/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022]
Abstract
In the search for new leishmanicidal agents, Thymus capitellatus Hoffmanns. & Link (family Lamiaceae) volatile extract and its major compounds, 1,8-cineole and borneol, were tested against Leishmania infantum, Leishmania tropica and Leishmania major. Plant volatile extract (essential oil) was analysed by GC and GC-MS and the activity of essential oil on Leishmania promastigotes viability was assessed using tetrazolium-dye colorimetric method (MTT). The MTT test was also used to assess the cytotoxicity of essential oil on macrophages and bovine aortic endothelial cells. Effects on parasites were also analyzed by flow cytometry in order to assess mitochondrial transmembrane electrochemical gradient (JC-1), analyze phosphatidylserine externalization (annexin V-FITC, propidium iodide) and evaluate cell cycle (DNase-free, RNase, PI). Morphological and ultrastructural studies were performed by light, scanning and transmission electron microscopy. T. capitellatus volatile extract exhibited anti-parasite activity on Leishmania species, with IC50 values ranging from 35 to 62 μg/ml. However, major compounds 1,8-cineole and borneol did not showed biological activity suggesting that these monoterpenes are not responsible for the antileishmanial activity of T. capitellatus essential oil. Appearance of aberrant-shaped cells, mitochondrial swelling and autophagosomal structures were some of the ultrastructural alterations exhibited among treated promastigote cells. T. capitellatus promoted leishmanicidal effect by triggering a programmed cell death as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. The volatile extract did not induced cytotoxic effects on mammalian cells. Taken together, these results suggest that T. capitellatus may represent a valuable source for therapeutic control of leishmaniasis in humans and animals.
Collapse
|
24
|
Jex AR, Koehler AV, Ansell BR, Baker L, Karunajeewa H, Gasser RB. Getting to the guts of the matter: The status and potential of ‘omics’ research of parasitic protists of the human gastrointestinal system. Int J Parasitol 2013; 43:971-82. [DOI: 10.1016/j.ijpara.2013.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 11/17/2022]
|
25
|
Lenaghan SC, Chen J, Zhang M. Modeling and analysis of propulsion in the multiflagellated micoorganism Giardia lamblia. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012726. [PMID: 23944509 DOI: 10.1103/physreve.88.012726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/16/2013] [Indexed: 06/02/2023]
Abstract
The goal of this work was to analyze the propulsion of multiflagellated microorganisms, and to draw insight to the underlying physics and biology of the movement. Giardia lamblia was chosen as the model organism due to its unique ability to mechanically attach to various surfaces, its rapid movement, and its fine control over steering and navigation. In this work, a mechanics model was utilized to study the mechanics and propulsive contribution of the ventral and anterior flagella in Giardia. It was discovered that energy is supplied mainly at the proximal portion of these flagella, supporting the hypothesis that a decreasing adenosine triphosphate (ATP) gradient along the length of the flagella would not affect the motion observed. Similarly, the elasticity of the flagella allows the energy input at the proximal portion to be transferred to the distal portion, where the majority of thrust is generated. Specifically, we found that the ventral flagella are the driving force for planar propulsion and turning, while the anterior flagella are used for steering and control.
Collapse
Affiliation(s)
- Scott C Lenaghan
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
26
|
Goyal N, Rishi P, Shukla G. Lactobacillus rhamnosus GG antagonizes Giardia intestinalis induced oxidative stress and intestinal disaccharidases: an experimental study. World J Microbiol Biotechnol 2013; 29:1049-57. [PMID: 23361971 DOI: 10.1007/s11274-013-1268-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 01/18/2013] [Indexed: 01/24/2023]
Abstract
The present study describes the in vivo modulatory potential of Lactobacillus rhamnosus GG (LGG), an effective probiotic, in Giardia intestinalis-infected BALB/c mice. Experimentally, it was observed that oral administration of lactobacilli prior or simultaneous with Giardia trophozoites to mice, efficiently (p < 0.05) reduced both the severity and duration of giardiasis. More specifically, probiotics fed, Giardia-infected mice, showed a significant increase in the levels of antioxidants [reduced glutathione (GSH) and superoxide dismutase (SOD)] and intestinal disaccharidases [sucrase and lactase] and decreased levels of oxidants in the small intestine, in comparison with Giardia-infected mice. Histopathological findings also revealed almost normal cellular morphology of the small intestine in probiotic-fed Giardia-infected mice compared with fused enterocytes, villous atrophy and increased infiltration of lymphocytes in Giardia-infected mice. The results of the present study has shed new light on the anti-oxidative properties of LGG in Giardia mediated tissue injury, thereby suggesting that the effects of probiotic LGG are biologically plausible and could be used as an alternative microbial interference therapy.
Collapse
Affiliation(s)
- Nisha Goyal
- Department of Microbiology, Panjab University, Chandigarh 160014, India
| | | | | |
Collapse
|
27
|
Zarebavani M, Dargahi D, Einollahi N, Dashti N, Mohebali M, Rezaeian M. Serum levels of zinc, copper, vitamin B12, folate and immunoglobulins in individuals with giardiasis. IRANIAN JOURNAL OF PUBLIC HEALTH 2012; 41:47-53. [PMID: 23641390 PMCID: PMC3640781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 10/21/2012] [Indexed: 11/08/2022]
Abstract
BACKGROUND Giardia lamblia is one of the most important intestinal parasites. The aim of this study was to measure serum levels of IgA, IgE, zinc, copper, vitamin B12 and folate in individuals with giardiasis in comparison to normal subjects. METHODS The study was carried out among 49 Giardia positive and 39 age and sex matched healthy volunteers. Examination of stool samples was done by direct wet smear and formol-ether concentration method. Serum samples were obtained for further laboratory examination. IgA levels were measured by Single Radial Immune Diffusion (SRID). IgE levels were measured by ELISA kit. Zinc and copper levels was measured by Ziestchem Diagnostics Kit and colorimetric endpoint-method respectively. Vitamin B12 and folate levels were measured by DRG Diagnostics Kit and Enzyme Immunoassay method respectively. All data were analyzed using SPSS version 17. RESULTS There was a statistically significant difference in IgA, IgE, copper and zinc levels between positive and negative groups (P<0.05). There was no significant difference between vitamin B12 and folate levels between the two groups. Mean values of Giardia positive and negative groups for IgA were 309.26 and 216.89 mg/dl, IgE 167.34 and 35.49 IU/ml, copper 309.74 and 253.61 μg/dl and zinc 69.41 and 144.75 μg/dl respectively. CONCLUSION The results showed levels of IgA may correlate more closely with giardiasis than IgE. Regarding trace elements, giardiasis elevated serum copper levels, while it decreased serum zinc. Finally, there was no significant difference in serum levels of vitamin B12 and folic acid between the two groups.
Collapse
Affiliation(s)
- M Zarebavani
- Dept. of Medical Laboratory Sciences, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - D Dargahi
- Dept. of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - N Einollahi
- Dept. of Medical Laboratory Sciences, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Authors: ,
| | - N Dashti
- Dept. of Medical Laboratory Sciences, School of Allied Health Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - M Mohebali
- Dept. of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - M Rezaeian
- Dept. of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Corresponding Authors: ,
| |
Collapse
|
28
|
Feline Tritrichomonas foetus adhere to intestinal epithelium by receptor-ligand-dependent mechanisms. Vet Parasitol 2012. [PMID: 23182300 DOI: 10.1016/j.vetpar.2012.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tritrichomonas foetus (TF) is a protozoan that infects the feline ileum and colon resulting in chronic diarrhea. Up to 30% of young purebred cats are infected with TF and the infection is recognized as pandemic. Only a single drug, characterized by a narrow margin of safety and emerging development of resistance, is effective for treatment. While the venereal pathogenicity of bovine TF is attributed to adherence to uterovaginal epithelium, the pathogenesis of diarrhea in feline TF infection is unknown. The aim of this study was to establish an in vitro model of feline TF adhesion to intestinal epithelium. Confluent monolayers of porcine intestinal epithelial cells (IPEC-J2) were infected with axenic cultures of feline TF that were labeled with [(3)H] thymidine or CFSE and harvested at log-phase. The effect of multiplicity and duration of infection, viability of TF, binding competition, formalin fixation and cytoskeletal inhibitors on adherence of feline TF to IPEC-J2 monolayers was quantified by liquid scintillation counting and immunofluorescence. [(3)H] thymidine and CFSE-labeled TF reproducibly adhered to IPEC-J2 monolayers. Clinical isolates of feline TF adhered to the intestinal epithelium in significantly greater numbers than Pentatrichomonas hominis, the latter of which is a presumably nonpathogenic trichomonad. Adhesion of TF required viable trophozoites but was independent of cytoskeletal activity. Based on saturation and competition binding experiments, adherence of feline TF to the epithelium occurred via specific receptor-ligand interactions. The developed model provides a valuable resource for assessing pathogenic mechanisms of feline TF and developing novel pharmacologic therapies for blocking the adhesion of feline TF to the intestinal epithelium.
Collapse
|
29
|
Chile N, Evangelista J, Gilman RH, Arana Y, Palma S, Sterling CR, Garcia HH, Gonzalez A, Verastegui M. Standardization of a fluorescent-based quantitative adhesion assay to study attachment of Taenia solium oncosphere to epithelial cells in vitro. J Immunol Methods 2012; 376:89-96. [PMID: 22178422 DOI: 10.1016/j.jim.2011.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Revised: 12/01/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022]
Abstract
To fully understand the preliminary stages of Taenia solium oncosphere attachment in the gut, adequate tools and assays are necessary to observe and quantify this event that leads to infection. A fluorescent-based quantitative adhesion assay, using biotinylated activated-oncospheres and monolayers of Chinese hamster ovary cells (CHO-K1) or human intestinal monolayer cells (INT-407, HCT-8 or HT-29), was developed to study initial events during the infection of target cells and to rapidly quantify the in vitro adhesion of T. solium oncospheres. Fluorescein streptavidin was used to identify biotinylated activated-oncospheres adhered to cells. This adherence was quantified using an automated fluorescence plate reader, and the results were expressed as fluorescence intensity values. A series of three assays were performed. The first was to identify the optimum number of biotinylated activated-oncospheres to be used in the adhesion assay. The goal of the second assay was to validate this novel method with the established oncosphere-binding system using the immunofluorescent-antibody assay (IFA) method to quantify oncosphere adhesion. A total of 10,000 biotinylated activated-oncospheres were utilized to assess the role of sera and laminin (LM) in oncosphere adherence to a CHO-K1 cell monolayer. The findings that sera and LM increase the adhesion of oncospheres to monolayer cells were similar to results that were previously obtained using the IFA method. The third assay compared the adherence of biotinylated activated-oncospheres to different types of human intestinal monolayer cells. In this case, the fluorescence intensity was greatest when using the INT-407 cell monolayer. We believe this new method of quantification offers the potential for rapid, large-scale screening to study and elucidate specific molecules and mechanisms involved in oncosphere-host cell attachment.
Collapse
Affiliation(s)
- Nancy Chile
- Laboratory of Infectious Diseases Research, Department of Cellular and Molecular Sciences, School of Sciences and Philosophy Universidad Peruana Cayetano Heredia, PO Box 5045, Lima, Peru
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Machado M, Pires P, Dinis AM, Santos-Rosa M, Alves V, Salgueiro L, Cavaleiro C, Sousa MC. Monoterpenic aldehydes as potential anti-Leishmania agents: activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major. Exp Parasitol 2012; 130:223-31. [PMID: 22227102 DOI: 10.1016/j.exppara.2011.12.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/20/2011] [Indexed: 11/17/2022]
Abstract
In order to contribute for the search of new drugs for leishmaniasis, we study the susceptibility of Leishmania infantum, Leishmania tropica and Leishmania major to Cymbopogon citratus essential oil and major compounds, mrycene and citral. C. citratus and citral were the most active inhibiting L. infantum, L. tropica and L. major growth at IC(50) concentrations ranging from 25 to 52 μg/ml and from 34 to 42 μg/ml, respectively. L. infantum promastigotes exposed to essential oil and citral underwent considerable ultrastructural alterations, namely mitochondrial and kinetoplast swelling, autophagosomal structures, disruption of nuclear membrane and nuclear chromatin condensation. C. citratus essential oil and citral promoted the leishmanicidal effect by triggering a programmed cell death. In fact, the leishmanicidal activity was mediated via apoptosis as evidenced by externalization of phosphatidylserine, loss of mitochondrial membrane potential, and cell-cycle arrest at the G(0)/G(1) phase. Taken together, ours findings lead us to propose that citral was responsible for anti-Leishmania activity of the C. citratus and both may represent a valuable source for therapeutic control of leishmaniasis.
Collapse
Affiliation(s)
- M Machado
- Faculdade de Farmácia/CEF, Universidade de Coimbra, Azinhaga de Santa Comba, 3030-548 Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Novel structural components of the ventral disc and lateral crest in Giardia intestinalis. PLoS Negl Trop Dis 2011; 5:e1442. [PMID: 22206034 PMCID: PMC3243723 DOI: 10.1371/journal.pntd.0001442] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/05/2011] [Indexed: 12/20/2022] Open
Abstract
Giardia intestinalis is a ubiquitous parasitic protist that is the causative agent of giardiasis, one of the most common protozoan diarrheal diseases in the world. Giardia trophozoites attach to the intestinal epithelium using a specialized and elaborate microtubule structure, the ventral disc. Surrounding the ventral disc is a less characterized putatively contractile structure, the lateral crest, which forms a continuous perimeter seal with the substrate. A better understanding of ventral disc and lateral crest structure, conformational dynamics, and biogenesis is critical for understanding the mechanism of giardial attachment to the host. To determine the components comprising the ventral disc and lateral crest, we used shotgun proteomics to identify proteins in a preparation of isolated ventral discs. Candidate disc-associated proteins, or DAPs, were GFP-tagged using a ligation-independent high-throughput cloning method. Based on disc localization, we identified eighteen novel DAPs, which more than doubles the number of known disc-associated proteins. Ten of the novel DAPs are associated with the lateral crest or outer edge of the disc, and are the first confirmed components of this structure. Using Fluorescence Recovery After Photobleaching (FRAP) with representative novel DAP::GFP strains we found that the newly identified DAPs tested did not recover after photobleaching and are therefore structural components of the ventral disc or lateral crest. Functional analyses of the novel DAPs will be central toward understanding the mechanism of ventral disc-mediated attachment and the mechanism of disc biogenesis during cell division. Since attachment of Giardia to the intestine via the ventral disc is essential for pathogenesis, it is possible that some proteins comprising the disc could be potential drug targets if their loss or disruption interfered with disc biogenesis or function, preventing attachment.
Collapse
|
32
|
Maia-Brigagão C, Morgado-Díaz JA, De Souza W. Giardia disrupts the arrangement of tight, adherens and desmosomal junction proteins of intestinal cells. Parasitol Int 2011; 61:280-7. [PMID: 22146155 DOI: 10.1016/j.parint.2011.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 10/20/2011] [Accepted: 11/01/2011] [Indexed: 01/22/2023]
Abstract
Giardia duodenalis is a parasitic protozoan that causes diarrhea and other symptoms which together constitute a disease known as giardiasis. Although the disease has been well defined, the mechanisms involving the establishment of the infection have not yet been fully elucidated. In this study, we show that after 24h of interaction between parasites and intestinal Caco-2 cells, there was an alteration of the paracellular permeability, as observed by an approximate 42% of reduction in the transepithelial electrical resistance and permeation to ruthenium red, which was concomitant with ultrastructural changes. Nevertheless, epithelium viability was not affected. We also demonstrate that there was no change in expression of junctional proteins (tight and adherens) but that the distribution of these proteins in Caco-2 cells after parasite adhesion was significantly altered, as observed via laser scanning confocal microscopy 3D reconstruction. The present work shows that adhesion of Giardia duodenalis trophozoites to intestinal cells in vitro induces disturbances of the tight, adherens and desmosomal junctions.
Collapse
Affiliation(s)
- C Maia-Brigagão
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
33
|
Humen MA, Pérez PF, Liévin-Le Moal V. Lipid raft-dependent adhesion of Giardia intestinalis trophozoites to a cultured human enterocyte-like Caco-2/TC7 cell monolayer leads to cytoskeleton-dependent functional injuries. Cell Microbiol 2011; 13:1683-702. [PMID: 21790940 DOI: 10.1111/j.1462-5822.2011.01647.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gardia intestinalis, the aetiological agent of giardiasis, one of the most common intestinal diseases in both developing and developed countries, induces a loss of epithelial barrier function and functional injuries of the enterocyte by mechanisms that remain unknown. Three possible mechanisms have been proposed: (i) Giardia may directly alter the epithelial barrier after a close interaction between the trophozoite and polarized intestinal cells, (ii) intestinal functions may be altered by factors secreted by Giardia including an 'enterotoxin', proteinases and lectins, and (iii) based on mouse studies, a mechanism involving the intervention of activated T lymphocytes. We used fully differentiated cultured human intestinal Caco-2/TC7 cells forming a monolayer and expressing several polarized functions of enterocytes of small intestine to investigate the mechanisms by which G. intestinalis induces structural and functional alterations in the host intestinal epithelium. We first report that adhesion of G. intestinalis at the brush border of enterocyte-like cells involves the lipid raft membrane microdomains of the trophozoite. We report an adhesion-dependent disorganization of the apical F-actin cytoskeleton that, in turn, results in a dramatic loss of distribution of functional brush border-associated proteins, including sucrase-isomaltase (SI), dipeptidylpeptidase IV (DPP IV) and fructose transporter, GLUT5, and a decrease in sucrose enzyme activity in G. intestinalis-infected enterocyte-like cells. We observed that the G. intestinalis trophozoite promotes an adhesion-dependent decrease in transepithelial electrical resistance (TER) accompanied by a rearrangement of functional tight junction (TJ)-associated occludin, and delocalization of claudin-1. Finally, we found that whereas the occludin rearrangement induced by G. intestinalis was related to apical F-actin disorganization, the delocalization of claudin-1 was not.
Collapse
|
34
|
Impaired parasite attachment as fitness cost of metronidazole resistance in Giardia lamblia. Antimicrob Agents Chemother 2011; 55:4643-51. [PMID: 21825286 DOI: 10.1128/aac.00384-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Infections with the diarrheagenic protozoan pathogen Giardia lamblia are most commonly treated with metronidazole (Mz). Treatment failures with Mz occur in 10 to 20% of cases and Mz resistance develops in the laboratory, yet clinically, Mz-resistant (Mz(r)) G. lamblia has rarely been isolated from patients. To understand why clinical Mz(r) isolates are rare, we questioned whether Mz resistance entails fitness costs to the parasite. Our studies employed several newly generated and established isogenic Mz(r) cell lines with stable, high-level resistance to Mz and significant cross-resistance to tinidazole, nitazoxanide, and furazolidone. Oral infection of suckling mice revealed that three of five Mz(r) cell lines could not establish infection, while two Mz(r) cell lines infected pups, albeit with reduced efficiencies. Failure to colonize resulted from a diminished capacity of the parasite to attach to the intestinal mucosa in vivo and to epithelial cells and plastic surfaces in vitro. The attachment defect was related to impaired glucose metabolism, since the noninfectious Mz(r) lines consumed less glucose, and glucose promoted ATP-independent parasite attachment in the parental lines. Thus, resistance of Giardia to Mz is accompanied by a glucose metabolism-related attachment defect that can interfere with colonization of the host. Because glucose-metabolizing pathways are important for activation of the prodrug Mz, it follows that a fitness trade-off exists between diminished Mz activation and reduced infectivity, which may explain the observed paucity of clinical Mz(r) isolates of Giardia. However, the data also caution that some forms of Mz resistance do not markedly interfere with in vivo infectivity.
Collapse
|
35
|
Giardia flagellar motility is not directly required to maintain attachment to surfaces. PLoS Pathog 2011; 7:e1002167. [PMID: 21829364 PMCID: PMC3150270 DOI: 10.1371/journal.ppat.1002167] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/31/2011] [Indexed: 11/19/2022] Open
Abstract
Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined “suction-based” mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing “hydrodynamic model” of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is important for positioning and orienting trophozoites prior to attachment. Drugs affecting flagellar motility may result in lower levels of attachment by indirectly limiting the number of parasites that can position the ventral disc properly against a surface and against peristaltic flow. Giardia is a widespread, single-celled, intestinal parasite that infects millions of people and animals each year. Colonization of the small intestine is a critical part of Giardia's life cycle in any host. This colonization is initiated when cells attach to the intestinal wall via a specialized suction cup-like structure, the ventral disc. In the host, Giardia moves by beating four pairs of flagella; movement of the ventral pair has been implicated in attachment. This study shows that the beating of the flagella is not important for attachment, but rather for positioning Giardia close to the intestinal wall prior to attachment, and thus disproves the commonly held model of giardial attachment. This work implies that drugs targeting Giardia motility could prevent or slow attachment, leading to lower rates of infection.
Collapse
|
36
|
High-speed microscopic imaging of flagella motility and swimming in Giardia lamblia trophozoites. Proc Natl Acad Sci U S A 2011; 108:E550-8. [PMID: 21808023 DOI: 10.1073/pnas.1106904108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report, in this paper, several findings about the swimming and attachment mechanisms of Giardia lamblia trophozoites. These data were collected using a combination of a high-contrast CytoViva imaging system and a particle image velocimetry camera, which can capture images at speeds greater than 800 frames/s. Using this system, we discovered that, during rapid swimming of Giardia trophozoites, undulations of the caudal region contributed to forward propulsion combined with the beating of the flagella pairs. It was also discovered, in contrast to previous studies with 10 times slower image sampling technique, that the anterior and posterolateral flagella beat with a clearly defined power stroke and not symmetrical undulations. During the transition from free swimming to attachment, trophozoites modified their swimming behavior from a rapid rotating motion to a more stable planar swimming. While using this planar swimming motion, the trophozoites used the flagella for propulsion and directional control. In addition to examination of the posterolateral and anterior flagella, a model to describe the motion of the ventral flagella was derived, indicating that the ventral flagella beat in an expanding sine wave. In addition, the structure of the ventrocaudal groove creates boundary conditions that determine the form of beating of the ventral flagella. The results from this study indicate that Giardia is able to simultaneously generate both ciliary beating and typical eukaryotic flagellar beating using different pairs of flagella.
Collapse
|
37
|
Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: Effects on growth, viability, adherence and ultrastructure. Exp Parasitol 2011; 127:732-9. [DOI: 10.1016/j.exppara.2011.01.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 11/26/2010] [Accepted: 01/19/2011] [Indexed: 11/23/2022]
|
38
|
Lalle M, Camerini S, Cecchetti S, Blasetti Fantauzzi C, Crescenzi M, Pozio E. Giardia duodenalis 14-3-3 protein is polyglycylated by a tubulin tyrosine ligase-like member and deglycylated by two metallocarboxypeptidases. J Biol Chem 2010; 286:4471-84. [PMID: 21135098 DOI: 10.1074/jbc.m110.181511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The flagellated protozoan Giardia duodenalis is a parasite of the upper part of the small intestine of mammals, including humans, and an interesting biological model. Giardia harbors a single 14-3-3 isoform, a multifunctional protein family, that is modified at the C terminus by polyglycylation, an unusual post-translational modification consisting of the covalent addition of one or multiple glycines on the γ-carboxyl groups of specific glutamic acids. Polyglycylation affects the intracellular localization of g14-3-3, as the shortening of the polyglycine chain is correlated with a partial relocalization of 14-3-3 inside the nuclei during encystation. In this work we demonstrate that the gTTLL3, a member of the tubulin tyrosine ligase-like family, is the enzyme responsible for the 14-3-3 polyglycylation. We also identify two metallopeptidases of the M20 family, here termed gDIP1 (giardial dipeptidase 1) and gDIP2, as enzymes able to shorten the g14-3-3 polyglycine tail both in vivo and in vitro. Finally, we show that the ectopic expression of gDIP2 alters the g14-3-3 localization and strongly hampers the cyst formation. In conclusion, we have identified a polyglycylase and two deglycylases that act in concert to modulate the stage-dependent glycylation status of the multifunctional regulatory g14-3-3 protein in G. duodenalis.
Collapse
Affiliation(s)
- Marco Lalle
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Inducible nitric oxide synthase in duodenum of children with Giardia lamblia infection. Folia Histochem Cytobiol 2010; 48:191-6. [PMID: 20675273 DOI: 10.2478/v10042-008-0111-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The investigation were performed on children with Giardia lamblia infection, diagnosed on the basis of positive stool tests for Giardia antigen (Elisa) or by microscopical detection of trophozoites in duodenal fluid. In duodenal biopsies morphological studies and immunohistochemical reaction for inducible nitric oxide synthase (iNOS) were performed. The control group was made up of duodenal tissue of children with excluded giardiasis and inflammation of the upper part of gastrointestinal tract. The duodenal biopsies from children without Giardia lamblia infection were found to have a high immunoreactivity for iNOS in enterocytes, the cells of intestinal crypts, endothelial cells of vessels and connective tissue cells of lamina propria. In children with giardiasis: in some biopsies the expression of iNOS was as high as in control group, in others was weaker detectable and the shortening of intestinal villi was seen. There were also duodenal biopsies with the lack of immunoreactivity for iNOS, with shorter villi and a large amount of mucus in the intestinal epithelium. Beside of goblet cells, also enterocytes were loaded with mucus. The pathological changes may cause malabsorption and also may have a negative influence on the defense of the intestinal wall against Giardia lamblia infection. The different morphological and immunohistochemical results in the duodenum of children with giardiasis can elucidate a variety of clinical symptoms from asymptomatic to severe infection.
Collapse
|
40
|
Castillo-Romero A, Leon-Avila G, Wang CC, Perez Rangel A, Camacho Nuez M, Garcia Tovar C, Ayala-Sumuano JT, Luna-Arias JP, Hernandez JM. Rab11 and actin cytoskeleton participate in Giardia lamblia encystation, guiding the specific vesicles to the cyst wall. PLoS Negl Trop Dis 2010; 4:e697. [PMID: 20532229 PMCID: PMC2879372 DOI: 10.1371/journal.pntd.0000697] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 04/06/2010] [Indexed: 12/30/2022] Open
Abstract
Background Giardia passes through two stages during its life cycle, the trophozoite and the cyst. Cyst formation involves the synthesis of cyst wall proteins (CWPs) and the transport of CWPs into encystation-specific vesicles (ESVs). Active vesicular trafficking is essential for encystation, but the molecular machinery driving vesicular trafficking remains unknown. The Rab proteins are involved in the targeting of vesicles to several intracellular compartments through their association with cytoskeletal motor proteins. Methodology and Principal Findings In this study, we found a relationship between Rab11 and the actin cytoskeleton in CWP1 transport. Confocal microscopy showed Rab11 was distributed throughout the entire trophozoite, while in cysts it was translocated to the periphery of the cell, where it colocalized with ESVs and microfilaments. Encystation was also accompanied by changes in rab11 mRNA expression. To evaluate the role of microfilaments in encystation, the cells were treated with latrunculin A. Scanning electron microscopy showed this treatment resulted in morphological damages to encysted parasites. The intensity of fluorescence-labeled Rab11 and CWP1 in ESVs and cyst walls was reduced, and rab11 and cwp1 mRNA levels were down-regulated. Furthermore, knocking down Rab11 with a hammerhead ribozyme resulted in an up to 80% down-regulation of rab11 mRNA. Although this knockdown did not appear lethal for trophozoites and did not affect cwp1 expression during the encystation, confocal images showed CWP1 was redistributed throughout the cytosol. Conclusions and Significance Our results indicate that Rab11 participates in the early and late encystation stages by regulating CWP1 localization and the actin-mediated transport of ESVs towards the periphery. In addition, alterations in the dynamics of actin affected rab11 and cwp1 expression. Our results provide new information about the molecules involved in Giardia encystation and suggest that Rab11 and actin may be useful as novel pharmacological targets. The encystation process is crucial for survival and transmission of Giardia lamblia to new hosts. During this process, vesicular trafficking and the cytoskeleton play important roles. In eukaryotic cells, intracellular transport is regulated by proteins, including Rab-GTPases and SNAREs, which regulate vesicle formation along with recognition of and binding to the target membrane. Cytoskeletal structures are also involved in these processes. In this study, we demonstrate the participation of Rab11 in the transport of encystation-specific vesicles (ESVs). Additionally, we demonstrate that disruption of actin microfilaments affects ESVs transport. The modification of actin dynamics was also correlated with a reduction in rab11 and cwp1 expression. Furthermore, down-regulation of rab11 mRNA by a specific hammerhead ribozyme caused nonspecific localization of CWP1. We thus provide new information about the molecular machinery that regulates Giardia lamblia encystation. Given our findings, Rab11 and actin may be useful targets to block Giardia encystation.
Collapse
Affiliation(s)
- Araceli Castillo-Romero
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Gloria Leon-Avila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, México DF, México
| | - Ching C. Wang
- Chemistry and Chemical Biology Graduate Program, Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Armando Perez Rangel
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Minerva Camacho Nuez
- Departamento de Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, México DF, México
| | - Carlos Garcia Tovar
- Departamento de Ciencias Biológicas, FES-Cuautitlán Universidad Nacional Autónoma de México, México, México
| | | | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
| | - Jose Manuel Hernandez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, México DF, México
- * E-mail:
| |
Collapse
|
41
|
|
42
|
The effects of dihydroartemisinin on Giardia lamblia morphology and cell cycle in vitro. Parasitol Res 2010; 107:369-75. [PMID: 20422219 DOI: 10.1007/s00436-010-1872-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/04/2010] [Indexed: 10/19/2022]
Abstract
Several anti-Giardia drugs, such as metronidazole, tinidazole, mebendazole, albendazole and furazolidone, are usually effective but have severe side effects and potential toxicity. An urgent need exists for more effective and less toxic agents that can act against this protozoan. For this purpose, the effects of dihydroartemisinin (DHA) on Giardia lamblia were investigated in vitro. Axenically grown G. lamblia trophozoites were treated with DHA (LD(50) = 200 microg/mL) at different time intervals. The morphological and ultrastructural changes of the treated trophozoites were observed by both light and transmission electron microscopy (TEM). Changes in the cell cycle of the treated cells were observed by flow cytometry. By light microscopy, we observed that DHA-treated trophozoites were detached from the wall of the culture tube and shown bradypraxia and bubbles in the dorsal and ventral surfaces. Ultrastructural observations by TEM revealed that DHA promoted modifications of the cell shape, pronounced dorsal vesiculation, plasma membrane blebbing, disaggregation of ribosomes, depletion of cytoplasmic matrix and heavy deposition of electron-dense precipitates on the cytoplasm and nucleus. The main changes observed in the treated group included the following: (1) trophozoites were rounder in shape and the endoplasmic reticulum was dilated, (2) enlarged trophozoites contained lamella structures and deformed nuclei, (3) trophozoites displayed dissolved cytoplasm with large vacuole spaces or decreased cytoplasmic volume, (4) adhesive disc bubbles or the lamella structures of cytoplasm were clearly observed, and (5) cell division was arrested. Using microscopy and cytometry techniques, we demonstrate that changes in G. lamblia morphology and cell cycle state were induced by DHA.
Collapse
|
43
|
Mosquito cell line glycoproteins: an unsuitable model system for the Plasmodium ookinete-mosquito midgut interaction? Parasit Vectors 2010; 3:22. [PMID: 20338056 PMCID: PMC2861666 DOI: 10.1186/1756-3305-3-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/25/2010] [Indexed: 11/10/2022] Open
Abstract
Background Mosquito midgut glycoproteins may act as key recognition sites for the invading malarial ookinete. Effective transmission blocking strategies require the identification of novel target molecules. We have partially characterised the surface glycoproteins of two cell lines from two mosquito species; Anopheles stephensi and Anopheles gambiae, and investigated the binding of Plasmodium berghei ookinetes to carbohydrate ligands on the cells. Cell line extracts were run on SDS-PAGE gels and carbohydrate moieties determined by blotting against a range of biotinylated lectins. In addition, specific glycosidases were used to cleave the oligosaccharides. Results An. stephensi 43 and An. gambiae 55 cell line glycoproteins expressed oligosaccharides containing oligomannose and hybrid oligosaccharides, with and without α1-6 core fucosylation; N-linked oligosaccharides with terminal Galβ1-3GalNAc or GalNAcβ1-3Gal; O-linked α/βGalNAc. An. stephensi 43 cell line glycoproteins also expressed N-linked Galβ1-4R and O-linked Galβ1-3GalNAc. Although P. berghei ookinetes bound to both mosquito cell lines, binding could not be inhibited by GlcNAc, GalNAc or Galactose. Conclusions Anopheline cell lines displayed a limited range of oligosaccharides. Differences between the glycosylation patterns of the cell lines and mosquito midgut epithelial cells could be a factor why ookinetes did not bind in a carbohydrate inhibitable manner. Anopheline cell lines are not suitable as a potential model system for carbohydrate-mediated adhesion of Plasmodium ookinetes.
Collapse
|
44
|
Anti-Giardia activity of phenolic-rich essential oils: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure. Parasitol Res 2010; 106:1205-15. [DOI: 10.1007/s00436-010-1800-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/29/2010] [Indexed: 10/19/2022]
|
45
|
Abstract
Giardia intestinalis, a common parasitic protist, possesses a complex microtubule cytoskeleton critical for cellular function and transitioning between the cyst and trophozoite life cycle stages. The giardial microtubule cytoskeleton is comprised of highly dynamic and stable structures. Novel microtubule structures include the ventral disc that is essential for the parasite's attachment to the intestinal villi to avoid peristalsis. The completed Giardia genome combined with new molecular genetic tools and live imaging will aid in the characterization and analysis of cytoskeletal dynamics in Giardia. Fundamental areas of giardial cytoskeletal biology remain to be explored and knowledge of the molecular mechanisms of cytoskeletal functioning is needed to better understand Giardia's unique biology and pathogenesis.
Collapse
Affiliation(s)
- Scott C Dawson
- Department of Microbiology, One Shields Avenue, UC Davis, Davis, CA 95616, USA
| | | |
Collapse
|
46
|
Participation of actin on Giardia lamblia growth and encystation. PLoS One 2009; 4:e7156. [PMID: 19774081 PMCID: PMC2743995 DOI: 10.1371/journal.pone.0007156] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 08/26/2009] [Indexed: 12/31/2022] Open
Abstract
Background Microfilaments play a determinant role in different cell processes such as: motility, cell division, phagocytosis and intracellular transport; however, these structures are poorly understood in the parasite Giardia lamblia. Methodology and Principal Findings By confocal microscopy using TRITC-phalloidin, we found structured actin distributed in the entire trophozoite, the label stand out at the ventral disc, median body, flagella and around the nuclei. During Giardia encystation, a sequence of morphological changes concurrent to modifications on the distribution of structured actin and in the expression of actin mRNA were observed. To elucidate whether actin participates actively on growth and encystation, cells were treated with Cytochalasin D, Latrunculin A and Jasplakinolide and analyzed by confocal and scanning electron microscopy. All drugs caused a growth reduction (27 to 45%) and changes on the distribution of actin. Besides, 60 to 80% of trophozoites treated with the drugs, exhibited damage at the caudal region, alterations in the flagella and wrinkles-like on the plasma membrane. The drugs also altered the cyst-yield and the morphology, scanning electron microscopy revealed diminished cytokinesis, cysts with damages in the wall and alterations in the size and on the intermembranal space. Furthermore, the drugs caused a significant reduction of the intensity of flourescence-labeled CWP1 on ESV and on cyst wall, this was coincident with a reduction of CWP1 gene expression (34%). Conclusions and Significance All our results, indicated an important role of actin in the morphology, growth and encystation and indirectly suggested an actin role in gene expression.
Collapse
|
47
|
Giardia duodenalis: Pathological alterations in gerbils, Meriones unguiculatus, infected with different dosages of trophozoites. Exp Parasitol 2008; 118:449-57. [DOI: 10.1016/j.exppara.2007.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/18/2007] [Accepted: 10/08/2007] [Indexed: 11/18/2022]
|
48
|
Hernández-Sánchez J, Liñan RF, Salinas-Tobón MDR, Ortega-Pierres G. Giardia duodenalis: adhesion-deficient clones have reduced ability to establish infection in Mongolian gerbils. Exp Parasitol 2008; 119:364-72. [PMID: 18456259 DOI: 10.1016/j.exppara.2008.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/20/2008] [Accepted: 03/22/2008] [Indexed: 11/15/2022]
Abstract
The role of Giardia duodenalis surface molecules in the attachment of trophozoites to epithelial cells has been established through the dual strategies of characterizing G. duodenalis clones with deficient adhesion and blocking experiments with surface-specific monoclonal antibodies. Also, the infectivity of the analyzed clones was tested using Mongolian gerbils as experimental model. Two adhesion-deficient G. duodenalis clones, C6 and C7, were isolated from the wild type C5 clone which in turn was obtained from the WB strain. The adhesion efficiencies of C6 and C7 clones (48.2+/-4.9 and 32.6+/-2.4, respectively) were significantly lower as compared with WB strain or C5 clone (82.8+/-6.4 and 79.9+/-7.9). Analysis of radiolabel surface proteins by 1D and 2D SDS-PAGE revealed prominently labelled 28 and 88 kDa components in C6 and C7 clones and a major 200 kDa protein in the C5 clone and the WB strain. The 88 and 200 kDa components are acidic proteins by two-dimensional electrophoretic analyses. The most striking difference between wild-type and adhesion-deficient Giardia trophozoites was the reduced expression of a 200 kDa surface protein in the latter. Significantly, a mAb (IG3) specific for the 200 kDa protein that reacted with more than 99% of WB and C5 trophozoites and less than 1% of C6 and C7 trophozoites as determined by indirect immunofluorescence inhibited the adhesion of trophozoites from WB and C5 clone to Madin Darby Canine Kidney cells by 52% and 40.9%, respectively, suggesting a participation of this antigen in adherence. Finally, the functional relevance of trophozoite adhesion to epithelial cells was indicated by the reduced capacity of the adhesion-deficient clones to establish the infection in Mongolian gerbils.
Collapse
Affiliation(s)
- Javier Hernández-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
49
|
Hansen WR, Fletcher DA. Tonic shock induces detachment of Giardia lamblia. PLoS Negl Trop Dis 2008; 2:e169. [PMID: 18270543 PMCID: PMC2238710 DOI: 10.1371/journal.pntd.0000169] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 12/13/2007] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The parasite Giardia lamblia must remain attached to the host small intestine in order to proliferate and subsequently cause disease. However, little is known about the factors that may cause detachment in vivo, such as changes in the aqueous environment. Osmolality within the proximal small intestine can vary by nearly an order of magnitude between host fed and fasted states, while pH can vary by several orders of magnitude. Giardia cells are known to regulate their volume when exposed to changes in osmolality, but the short-timescale effects of osmolality and pH on parasite attachment are not known. METHODOLOGY AND PRINCIPAL FINDINGS We used a closed flow chamber assay to test the effects of rapid changes in media osmolality, tonicity, and pH on Giardia attachment to both glass and C2(Bbe)-1 intestinal cell monolayer surfaces. We found that Giardia detach from both surfaces in a tonicity-dependent manner, where tonicity is the effective osmolality experienced by the cell. Detachment occurs with a characteristic time constant of 25 seconds (SD = 10 sec, n = 17) in both hypo- and hypertonic media but is otherwise insensitive to physiologically relevant changes in media composition and pH. Interestingly, cells that remain attached are able to adapt to moderate changes in tonicity. By exposing cells to a timed pattern of tonicity variations and adjustment periods, we found that it is possible to maximize the tonicity change experienced by the cells, overcoming the adaptive response and resulting in extensive detachment. CONCLUSIONS AND SIGNIFICANCE These results, conducted with human-infecting Giardia on human intestinal epithelial monolayers, highlight the ability of Giardia to adapt to the changing intestinal environment and suggest new possibilities for treatment of giardiasis by manipulation of tonicity in the intestinal lumen.
Collapse
Affiliation(s)
- Wendy R. Hansen
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
| | - Daniel A. Fletcher
- Biophysics Graduate Group, University of California, Berkeley, California, United States of America
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| |
Collapse
|
50
|
Anthony JP, Fyfe L, Stewart D, McDougall GJ, Smith HV. The effect of blueberry extracts on Giardia duodenalis viability and spontaneous excystation of Cryptosporidium parvum oocysts, in vitro. Methods 2007; 42:339-48. [PMID: 17560322 DOI: 10.1016/j.ymeth.2007.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 02/08/2007] [Accepted: 02/15/2007] [Indexed: 01/12/2023] Open
Abstract
The protozoan parasites Giardia duodenalis and Cryptosporidium parvum are common causes of diarrhoea, worldwide. Effective drug treatment is available for G. duodenalis, but with anecdotal evidence of resistance or reduced compliance. There is no effective specific chemotherapeutic intervention for Cryptosporidium. Recently, there has been renewed interest in the antimicrobial properties of berries and their phenolic compounds but little work has been done on their antiparasitic actions. The effect of various preparations of blueberry (Vaccinium myrtillus) extract on G. duodenalis trophozoites and C. parvum oocysts were investigated. Pressed blueberry extract, a polyphenolic-rich blueberry extract, and a commercially produced blueberry drink (Bouvrage) all demonstrated antigiardial activity. The polyphenol-rich blueberry extract reduced trophozoite viability in a dose dependent manner. At 167 microgml(-1), this extract performed as well as all dilutions of pressed blueberry extract and the Bouvrage beverage (9.6+/-2.8% live trophozoites remaining after 24h incubation). The lowest dilution of blueberry extract tested (12.5% v/v) contained >167 microgml(-1) of polyphenolic compounds suggesting that polyphenols are responsible for the reduced survival of G. duodenalis trophozoites. The pressed blueberry extract, Bouvrage beverage and the polyphenolic-rich blueberry extract increased the spontaneous excystation of C. parvum oocysts at 37 degrees C, compared to controls, but only at a dilution of 50% Bouvrage beverage, equivalent to 213 microgml(-1) gallic acid equivalents in the polyphenolic-rich blueberry extract. Above this level, spontaneous excystation is decreased. We conclude that water soluble extracts of blueberries can kill G. duodenalis trophozoites and modify the morphology of G. duodenalis and C. parvum.
Collapse
Affiliation(s)
- J-P Anthony
- Dietetics, Nutrition and Biological Sciences, Queen Margaret University, Clerwood Terrace, Edinburgh EH12 8TS, UK
| | | | | | | | | |
Collapse
|