1
|
Genotyping of Helicobacter pylori Virulence Genes cagA and vacA: Regional and National Study. Int J Microbiol 2021; 2021:5540560. [PMID: 34306090 PMCID: PMC8263242 DOI: 10.1155/2021/5540560] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/21/2021] [Accepted: 06/10/2021] [Indexed: 12/28/2022] Open
Abstract
Helicobacter pylori (H. pylori) plays a crucial role in the pathogenesis of gastritis, peptic ulcer, and gastric cancer. The presence of pathogenicity islands (PAI) genes contributes to the pathogenesis of many gastrointestinal disorders. Cytotoxin-associated gene A (cagA) and vacuolating cytotoxin gene (vacA) are the most known virulence genes in H. pylori. So, our aim was to study H. pylori virulence genes' role in gastric disorders pathogenesis. Our study included 150 adult patients who suffered dyspeptic symptoms and were referred to the GIT endoscopy unit. Gastric biopsies were attained for rapid urease test (RUT) and histopathological examination, and multiplex PCR technique for detection of virulence genes was performed. It was found that 100 specimens were (RUT) positive, of which sixty samples (60%) were PCR positive for H. pylori ureC gene. The vacA and cagA genes were identified in 61.6% and 53% of H. pylori strains, respectively. Only 5 cases were vacA-positive and cagA-negative. The most virulent vacA s1 allele existed in 56.6% of cases. Out of the 60 H. pylori strains, 66% had at least one virulence gene and 34% did not show any virulence gene. H. pylori infection showed significant increase with age. H. pylori are prevalent amid dyspeptic patients in our region. The main genotype combinations were vacA+/cagA+ of s1m1 genotype and they were frequently associated with peptic ulcer diseases, gastritis, and gastroesophageal reflux disease.
Collapse
|
2
|
Hatakeyama M. The role of Helicobacter pylori CagA oncoprotein in neoplastic transformation of gastric epithelial cells. RESEARCH AND CLINICAL APPLICATIONS OF TARGETING GASTRIC NEOPLASMS 2021:119-144. [DOI: 10.1016/b978-0-323-85563-1.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Sebrell TA, Hashimi M, Sidar B, Wilkinson RA, Kirpotina L, Quinn MT, Malkoç Z, Taylor PJ, Wilking JN, Bimczok D. A Novel Gastric Spheroid Co-culture Model Reveals Chemokine-Dependent Recruitment of Human Dendritic Cells to the Gastric Epithelium. Cell Mol Gastroenterol Hepatol 2019; 8:157-171.e3. [PMID: 30878664 PMCID: PMC6599165 DOI: 10.1016/j.jcmgh.2019.02.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Gastric dendritic cells (DCs) control the adaptive response to infection with Helicobacter pylori, a major risk factor for peptic ulcer disease and gastric cancer. We hypothesize that DC interactions with the gastric epithelium position gastric DCs for uptake of luminal H pylori and promote DC responses to epithelial-derived mediators. The aim of this study was to determine whether the gastric epithelium actively recruits DCs using a novel co-culture model of human gastric epithelial spheroids and monocyte-derived DCs. METHODS Spheroid cultures of primary gastric epithelial cells were infected with H pylori by microinjection. Co-cultures were established by adding human monocyte-derived DCs to the spheroid cultures and were analyzed for DC recruitment and antigen uptake by confocal microscopy. Protein array, gene expression polymerase chain reaction array, and chemotaxis assays were used to identify epithelial-derived chemotactic factors that attract DCs. Data from the co-culture model were confirmed using human gastric tissue samples. RESULTS Human monocyte-derived DCs co-cultured with gastric spheroids spontaneously migrated to the gastric epithelium, established tight interactions with the epithelial cells, and phagocytosed luminally applied H pylori. DC recruitment was increased upon H pylori infection of the spheroids and involved the activity of multiple chemokines including CXCL1, CXCL16, CXCL17, and CCL20. Enhanced chemokine expression and DC recruitment to the gastric epithelium also was observed in H pylori-infected human gastric tissue samples. CONCLUSIONS Our results indicate that the gastric epithelium actively recruits DCs for immunosurveillance and pathogen sampling through chemokine-dependent mechanisms, with increased recruitment upon active H pylori infection.
Collapse
Affiliation(s)
- Thomas A Sebrell
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Marziah Hashimi
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Barkan Sidar
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | - Royce A Wilkinson
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Liliya Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Zeynep Malkoç
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | | | - James N Wilking
- Department of Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.
| |
Collapse
|
4
|
VacA promotes CagA accumulation in gastric epithelial cells during Helicobacter pylori infection. Sci Rep 2019; 9:38. [PMID: 30631092 PMCID: PMC6328614 DOI: 10.1038/s41598-018-37095-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is the causative agent of gastric cancer, making it the only bacterium to be recognized as a Class I carcinogen by the World Health Organization. The virulence factor cytotoxin associated gene A (CagA) is a known oncoprotein that contributes to the development of gastric cancer. The other major virulence factor vacuolating cytotoxin A (VacA), disrupts endolysosomal vesicular trafficking and impairs the autophagy pathway. Studies indicate that there is a functional interplay between these virulence factors by unknown mechanisms. We show that in the absence of VacA, both host-cell autophagy and the proteasome degrade CagA during infection with H. pylori. In the presence of VacA, CagA accumulates in gastric epithelial cells. However, VacA does not affect proteasome function during infection with H. pylori suggesting that VacA−disrupted autophagy is the predominant means by which CagA accumulates. Our studies support a model where in the presence of VacA, CagA accumulates in dysfunctional autophagosomes providing a possible explanation for the functional interplay of VacA and CagA.
Collapse
|
5
|
Kabamba ET, Tuan VP, Yamaoka Y. Genetic populations and virulence factors of Helicobacter pylori. INFECTION GENETICS AND EVOLUTION 2018; 60:109-116. [PMID: 29471116 DOI: 10.1016/j.meegid.2018.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori is a bacterium that has infected more than half of the human population worldwide. This bacterium is closely associated with serious human diseases, such as gastric cancer, and identifying and understanding factors that predict bacterial virulence is a priority. In addition, this pathogen shows high genetic diversity and co-evolution with human hosts. H. pylori population genetics, therefore, has emerged as a tool to track human demographic history. As the number of genome sequences available is increasing, studies on the evolution and virulence of H. pylori are gaining momentum. This review article summarizes the most recent findings on H. pylori virulence factors and population genetics.
Collapse
Affiliation(s)
- Evariste Tshibangu Kabamba
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Internal Medicine, University of Mbujimayi Faculty of Medicine, Mbujimayi, The Democratic Republic of Congo
| | - Vo Phuoc Tuan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Endoscopy, Cho Ray Hospital, Ho Chi Minh, Viet Nam
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama-machi, Yufu-City, Oita 879-5593, Japan; Department of Medicine-Gastroenterology, Baylor College of Medicine and Michael E. Debakey Veterans Affairs Medical Center, 2002 Holcombe Blvd., Houston, TX 77030, USA.
| |
Collapse
|
6
|
Flores SE, Aitchison A, Day AS, Keenan JI. Helicobacter pylori infection perturbs iron homeostasis in gastric epithelial cells. PLoS One 2017; 12:e0184026. [PMID: 28873091 PMCID: PMC5584798 DOI: 10.1371/journal.pone.0184026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022] Open
Abstract
The iron deficiency anaemia that often accompanies infection with Helicobacter pylori may reflect increased uptake of iron into gastric epithelial cells. Here we show an infection-associated increase in total intracellular iron levels was associated with the redistribution of the transferrin receptor from the cell cytosol to the cell surface, and with increased levels of ferritin, an intracellular iron storage protein that corresponded with a significant increase in lysosomal stores of labile iron. In contrast, the pool of cytosolic labile iron was significantly decreased in infected cells. These changes in intracellular iron distribution were associated with the uptake and trafficking of H. pylori through the cells, and enhanced in strains capable of expressing the cagA virulence gene. We speculate that degradation of lysosomal ferritin may facilitate H. pylori pathogenesis, in addition to contributing to bacterial persistence in the human stomach.
Collapse
Affiliation(s)
| | - Alan Aitchison
- Department of Surgery, University of Otago, Christchurch, New Zealand
| | - Andrew S. Day
- Department of Paediatrics, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
7
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
8
|
HATAKEYAMA M. Structure and function of Helicobacter pylori CagA, the first-identified bacterial protein involved in human cancer. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:196-219. [PMID: 28413197 PMCID: PMC5489429 DOI: 10.2183/pjab.93.013] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is the strongest risk factor of gastric cancer. The cagA gene-encoded CagA protein is delivered into gastric epithelial cells via bacterial type IV secretion, where it undergoes tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs. Delivered CagA then acts as a non-physiological scaffold/hub protein by interacting with multiple host signaling molecules, most notably the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1/MARK, in both tyrosine phosphorylation-dependent and -independent manners. CagA-mediated manipulation of intracellular signaling promotes neoplastic transformation of gastric epithelial cells. Transgenic expression of CagA in experimental animals has confirmed the oncogenic potential of the bacterial protein. Structural polymorphism of CagA influences its scaffold function, which may underlie the geographic difference in the incidence of gastric cancer. Since CagA is no longer required for the maintenance of established gastric cancer cells, studying the role of CagA during neoplastic transformation will provide an excellent opportunity to understand molecular processes underlying "Hit-and-Run" carcinogenesis.
Collapse
Affiliation(s)
- Masanori HATAKEYAMA
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Correspondence should be addressed: M. Hatakeyama, Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan (e-mail: )
| |
Collapse
|
9
|
Chaturvedi R, de Sablet T, Asim M, Piazuelo MB, Barry DP, Verriere TG, Sierra JC, Hardbower DM, Delgado AG, Schneider BG, Israel DA, Romero-Gallo J, Nagy TA, Morgan DR, Murray-Stewart T, Bravo LE, Peek RM, Fox JG, Woster PM, Casero RA, Correa P, Wilson KT. Increased Helicobacter pylori-associated gastric cancer risk in the Andean region of Colombia is mediated by spermine oxidase. Oncogene 2015; 34:3429-40. [PMID: 25174398 PMCID: PMC4345146 DOI: 10.1038/onc.2014.273] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/16/2014] [Accepted: 07/19/2014] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori infection causes gastric cancer, the third leading cause of cancer death worldwide. More than half of the world's population is infected, making universal eradication impractical. Clinical trials suggest that antibiotic treatment only reduces gastric cancer risk in patients with non-atrophic gastritis (NAG), and is ineffective once preneoplastic lesions of multifocal atrophic gastritis (MAG) and intestinal metaplasia (IM) have occurred. Therefore, additional strategies for risk stratification and chemoprevention of gastric cancer are needed. We have implicated polyamines, generated by the rate-limiting enzyme ornithine decarboxylase (ODC), in gastric carcinogenesis. During H. pylori infection, the enzyme spermine oxidase (SMOX) is induced, which generates hydrogen peroxide from the catabolism of the polyamine spermine. Herein, we assessed the role of SMOX in the increased gastric cancer risk in Colombia associated with the Andean mountain region when compared with the low-risk region on the Pacific coast. When cocultured with gastric epithelial cells, clinical strains of H. pylori from the high-risk region induced more SMOX expression and oxidative DNA damage, and less apoptosis than low-risk strains. These findings were not attributable to differences in the cytotoxin-associated gene A oncoprotein. Gastric tissues from subjects from the high-risk region exhibited greater levels of SMOX and oxidative DNA damage by immunohistochemistry and flow cytometry, and this occurred in NAG, MAG and IM. In Mongolian gerbils, a prototype colonizing strain from the high-risk region induced more SMOX, DNA damage, dysplasia and adenocarcinoma than a colonizing strain from the low-risk region. Treatment of gerbils with either α-difluoromethylornithine, an inhibitor of ODC, or MDL 72527 (N(1),N(4)-Di(buta-2,3-dien-1-yl)butane-1,4-diamine dihydrochloride), an inhibitor of SMOX, reduced gastric dysplasia and carcinoma, as well as apoptosis-resistant cells with DNA damage. These data indicate that aberrant activation of polyamine-driven oxidative stress is a marker of gastric cancer risk and a target for chemoprevention.
Collapse
Affiliation(s)
- Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Thomas G. Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J. Carolina Sierra
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dana M. Hardbower
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alberto G. Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Barbara G. Schneider
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dawn A. Israel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Judith Romero-Gallo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Toni A. Nagy
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Douglas R. Morgan
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tracy Murray-Stewart
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Luis E. Bravo
- Department of Pathology, Universidad del Valle School of Medicine, Cali, Colombia
| | - Richard M. Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts lnstitute of Technology, Cambridge, MA, USA
| | - Patrick M. Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Robert A. Casero
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
10
|
High dietary salt intake exacerbates Helicobacter pylori-induced gastric carcinogenesis. Infect Immun 2013; 81:2258-67. [PMID: 23569116 DOI: 10.1128/iai.01271-12] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Persistent colonization of the human stomach with Helicobacter pylori is a risk factor for gastric adenocarcinoma, and H. pylori-induced carcinogenesis is dependent on the actions of a bacterial oncoprotein known as CagA. Epidemiological studies have shown that high dietary salt intake is also a risk factor for gastric cancer. To investigate the effects of a high-salt diet, we infected Mongolian gerbils with a wild-type (WT) cagA(+) H. pylori strain or an isogenic cagA mutant strain and maintained the animals on a regular diet or a high-salt diet. At 4 months postinfection, gastric adenocarcinoma was detected in 100% of the WT-infected/high-salt-diet animals, 58% of WT-infected/regular-diet animals, and none of the animals infected with the cagA mutant strain (P < 0.0001). Among animals infected with the WT strain, those fed a high-salt diet had more severe gastric inflammation, higher gastric pH, increased parietal cell loss, increased gastric expression of interleukin 1β (IL-1β), and decreased gastric expression of hepcidin and hydrogen potassium ATPase (H,K-ATPase) compared to those on a regular diet. Previous studies have detected upregulation of CagA synthesis in response to increased salt concentrations in the bacterial culture medium, and, concordant with the in vitro results, we detected increased cagA transcription in vivo in animals fed a high-salt diet compared to those on a regular diet. Animals infected with the cagA mutant strain had low levels of gastric inflammation and did not develop hypochlorhydria. These results indicate that a high-salt diet potentiates the carcinogenic effects of cagA(+) H. pylori strains.
Collapse
|
11
|
Difluoromethylornithine is a novel inhibitor of Helicobacter pylori growth, CagA translocation, and interleukin-8 induction. PLoS One 2011; 6:e17510. [PMID: 21386987 PMCID: PMC3046249 DOI: 10.1371/journal.pone.0017510] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 02/04/2011] [Indexed: 02/08/2023] Open
Abstract
Helicobacter pylori infects half the world's population, and carriage is lifelong without antibiotic therapy. Current regimens prescribed to prevent infection-associated diseases such as gastroduodenal ulcers and gastric cancer can be thwarted by antibiotic resistance. We reported that administration of 1% d,l-α-difluoromethylornithine (DFMO) to mice infected with H. pylori reduces gastritis and colonization, which we attributed to enhanced host immune response due to inhibition of macrophage ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. Although no ODC has been identified in any H. pylori genome, we sought to determine if DFMO has direct effects on the bacterium. We found that DFMO significantly reduced the growth rate of H. pylori in a polyamine-independent manner. Two other Gram-negative pathogens possessing ODC, Escherichia coli and Citrobacter rodentium, were resistant to the DFMO effect. The effect of DFMO on H. pylori required continuous exposure to the drug and was reversible when removed, with recovery of growth rate in vitro and the ability to colonize mice. H. pylori exposed to DFMO were significantly shorter in length than those untreated and they contained greater internal levels of ATP, suggesting severe effects on bacterial metabolism. DFMO inhibited expression of the H. pylori virulence factor cytotoxin associated gene A, and its translocation and phosphorylation in gastric epithelial cells, which was associated with a reduction in interleukin-8 expression. These findings suggest that DFMO has effects on H. pylori that may contribute to its effectiveness in reducing gastritis and colonization and may be a useful addition to anti-H. pylori therapies.
Collapse
|
12
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
13
|
Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog 2009; 5:e1000603. [PMID: 19798427 PMCID: PMC2745580 DOI: 10.1371/journal.ppat.1000603] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/04/2009] [Indexed: 12/14/2022] Open
Abstract
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host. The gram-negative bacterium Helicobacter pylori is the main causative agent of peptic ulcer and gastric cancer in humans. Our work sheds light on a new molecular mechanism by which H. pylori would exert its highly efficient colonization strategy of the human host. In this paper, we show that the H. pylori CagA protein counteracts, by two distinct non-overlapping mechanisms, the apoptotic activity of the H. pylori VacA toxin on human gastric epithelial cells so as to allow a protection of the bacterium niche against VacA, giving a rationale for the association of these two virulence factors in the most pathogenic H. pylori strains. This is a new, highly ingenious mechanism by which a bacterium locally protects its ecological niche against the action of one of its own virulence factors. However, while exerting a beneficial role for survival and growth of the bacterium by counteracting VacA toxin, CagA injection in the gastric epithelial cells triggers proinflammatory and anti-apoptotic responses which are detrimental for the human host in the long-term and favor the development of ulcer and cancer.
Collapse
|
14
|
Abstract
Helicobacter pylori infection and a high dietary salt intake are risk factors for the development of gastric adenocarcinoma. In this study, we tested the hypothesis that high salt concentrations might alter gene expression in H. pylori. Transcriptional profiling experiments indicated that the expression of multiple H. pylori genes, including cagA, was regulated in response to the concentrations of sodium chloride present in the bacterial culture medium. Increased expression of cagA in response to high salt conditions was confirmed by the use of transcriptional reporter strains and by immunoblotting. H. pylori CagA is translocated into gastric epithelial cells via a type IV secretion pathway, and on entry into target cells, CagA undergoes tyrosine phosphorylation and causes multiple cellular alterations. Coculture of gastric epithelial cells with H. pylori grown under high salt conditions resulted in increased tyrosine-phosphorylated CagA and increased secretion of interleukin-8 by the epithelial cells compared with coculture of the cells with H. pylori grown under low salt conditions. Up-regulation of H. pylori cagA expression in response to high salt concentrations may be a factor that contributes to the development of gastric adenocarcinoma.
Collapse
Affiliation(s)
- John T Loh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | |
Collapse
|
15
|
Necchi V, Candusso ME, Tava F, Luinetti O, Ventura U, Fiocca R, Ricci V, Solcia E. Intracellular, intercellular, and stromal invasion of gastric mucosa, preneoplastic lesions, and cancer by Helicobacter pylori. Gastroenterology 2007; 132:1009-23. [PMID: 17383424 DOI: 10.1053/j.gastro.2007.01.049] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/30/2006] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS It is not clear how Helicobacter pylori, an apparently extracellular pathogen colonizing the luminal side of the gastric epithelium, invariably causes an immune-inflammatory response on the stromal side of the mucosa. Penetration of H pylori into epithelial cell lines and its interaction with immune-inflammatory cells have been documented in vitro. Several investigations also showed in vivo bacterial penetration into the epithelium up to the lamina propria; however, the identification as H pylori of the bacteria-like bodies observed in unchanged, metaplastic, or neoplastic mucosa remained sometimes questionable. METHODS To search for bacteria-like organisms, we used transmission electron microscopy on endoscopic biopsy specimens from 20 dyspeptic subjects and surgical specimens of neoplastic and nonneoplastic mucosa from 20 cancerous stomachs. To ascertain the H pylori nature of the organisms found, we used 6 different antibodies directed against bacterial lysates, purified vacuolating cytotoxin A, or purified cytotoxin-associated antigen A in immunogold tests. The results were compared with those of H pylori strains cultivated in vitro. RESULTS In nonmetaplastic gastric epithelium, cytochemically proven H pylori were detected, in the majority of cases, inside cytoplasm of epithelial cells, in intraepithelial intercellular spaces, and in underlying lamina propria, often in direct contact with immune-inflammatory cells and sometimes inside small blood vessels. Cytochemically proven H pylori were also observed inside 6 of 8 intestinal metaplasias and 9 of 20 cancers. CONCLUSIONS H pylori penetrates normal, metaplastic, and neoplastic gastric epithelium in vivo, intracellularly, or interstitially to cause a strong immune-inflammatory response and promote gastric carcinogenesis.
Collapse
Affiliation(s)
- Vittorio Necchi
- Department of Human Pathology, University of Pavia, Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Brest P, Hofman V, Lassalle S, Césaro A, Ricci V, Selva E, Auberger P, Hofman P. Human polymorphonuclear leukocytes are sensitive in vitro to Helicobacter pylori vaca toxin. Helicobacter 2006; 11:544-55. [PMID: 17083376 DOI: 10.1111/j.1523-5378.2006.00457.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Interactions between bacterial components and polymorphonuclear leukocytes (PMNL) play a major pathogenic role in Helicobacter pylori-associated diseases. Activation of PMNL can be induced by contact with whole bacteria or by different H. pylori products released in the extracellular space either by active secretion or by bacterial autolysis. Among these products, H. pylori VacA is a secreted toxin inducing vacuolation and apoptosis of epithelial cells. METHODS AND RESULTS We found that non-opsonic human PMNL were sensitive to the vacuolating effect of VacA+ broth culture filtrate (BCF) and of purified VacA toxin. PMNL incubated with VacA+ BCF showed Rab7-positive large intracytoplasmic vacuoles. PMNL preincubation with H. pylori BCF of different phenotypes dramatically potentialized the oxidative burst induced by zymosan, increased phagocytosis of opsonized fluorescent beads, and up-regulated CD11b cell surface expression, but independently of the BCF VacA phenotype. Moreover, by using purified VacA toxin we showed that vacuolation induced in PMNL did not modify the rate of spontaneous PMNL apoptosis measured by caspase 3 activity. CONCLUSIONS Taken together, these data showed that human PMNL is a sensitive cell population to H. pylori VacA toxin. However, activation of PMNL (i.e., oxidative burst, phagocytosis, CD11b up-regulation) and PMNL apoptosis are not affected by VacA, raising question about the role of VacA toxin on PMNL in vivo.
Collapse
Affiliation(s)
- Patrick Brest
- INSERM ERI-21, Pasteur'Hospital and Faculty of Medicine, University of Nice, Nice, France
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Marlink KL, Bacon KD, Sheppard BC, Ashktorab H, Smoot DT, Cover TL, Deveney CW, Rutten MJ. Effects of Helicobacter pylori on intracellular Ca2+ signaling in normal human gastric mucous epithelial cells. Am J Physiol Gastrointest Liver Physiol 2003; 285:G163-76. [PMID: 12606301 DOI: 10.1152/ajpgi.00257.2002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In stomach, Helicobacter pylori (Hp) adheres to gastric mucous epithelial cells (GMEC) and initiates several different signal transduction events. Alteration of intracellular Ca2+ concentration ([Ca2+]i) is an important signaling mechanism in numerous bacteria-host model systems. Changes in [Ca2+]i induced by Hp in normal human GMEC have not yet been described; therefore, we examined effects of Hp on [Ca2+]i in normal human GMEC and a nontransformed GMEC line (HFE-145). Cultured cells were grown on glass slides, porous filters, or 96-well plates and loaded with fura 2 or fluo 4. Hp wild-type strain 60190 and vacA-, cagA-, and picB-/cagE- isogenic mutants were incubated with cells. Changes in [Ca2+]i were recorded with a fluorimeter or fluorescence plate reader. Wild-type Hp produced dose-dependent biphasic transient [Ca2+]i peak and plateau changes in both cell lines. Hp vacA- isogenic mutant produced changes in [Ca2+]i similar to those produced by wild type. Compared with wild type, cagA- and picB-/cagE- isogenic mutants produced lower peak changes and did not generate a plateau change. Preloading cultures with intracellular Ca2+ chelator BAPTA blocked all Hp-induced [Ca2+]i changes. Thapsigargin pretreatment of cultures to release Ca2+ from internal stores reduced peak change. Extracellular Ca2+ removal reduced plateau response. Hp-induced peak response was sensitive to G proteins and PLC inhibitors. Hp-induced plateau change was sensitive to G protein inhibitors, src kinases, and PLA2. These findings are the first to show that H. pylori alters [Ca2+]i in normal GMEC through a Ca2+ release/influx mechanism that depends on expression of cagA and picB/cagE genes.
Collapse
Affiliation(s)
- Katie L Marlink
- Department of Surgery, Oregon Health Sciences University, 3181 Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Emilia Mia Sordillo
- Department of Pathology and Laboratory Medicine, College of Physicians and Surgeons of Columbia University, St. Luke's-Roosevelt Hospital Center, New York, New York 10025, USA
| | | |
Collapse
|
19
|
Kawamura O, Murakami M, Araki O, Yamada T, Tomizawa S, Shimoyama Y, Minashi K, Maeda M, Kusano M, Mori M. Relationship between gastric disease and deletion of cag pathogenicity island genes of Helicobacter pylori in gastric juice. Dig Dis Sci 2003; 48:47-53. [PMID: 12645789 DOI: 10.1023/a:1021726213159] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The cag pathogenicity island genes of Helicobacter pylori (ie, cag1, cag5, cagT, cagE, and cagA) were detected by PCR in DNA extracted from endoscopically collected gastric juice, and the relationship between these genes and gastric disease was studied in 25 patients with early gastric cancer, 9 patients with gastric ulcer, and 15 patients with chronic active gastritis. In three patients with early gastric cancer and one patient with gastric ulcer, cag pathogenicity island genes were amplified although H. pylori was not detected by conventional methods. Compared with conventional methods, the sensitivity of detection of cag genes was 92.3% (36/39) and the specificity was 60% (6/10). Among the patients with cagA amplification, only cagE was not amplified in one case each with early cancer and chronic active gastritis. In addition, none of cag1, cag5, cagT, and cagE were amplified in spite of cagA amplification in one patient with gastric ulcer. This method is a simple procedure, has a high sensitivity, and appears to be useful for accurate assessment of infection with cagA-positive strains. Because deletion of cag PAI genes was found in the patients with all three gastric diseases that we studied, it was suggested that the pathogenicity of H. pylori might not be determined by cag PAI genes in those cases.
Collapse
Affiliation(s)
- Osamu Kawamura
- Department of Endoscopy and Endoscopic Surgery, Gunma University Hospital, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jones AD, Bacon KD, Jobe BA, Sheppard BC, Deveney CW, Rutten MJ. Helicobacter pylori induces apoptosis in Barrett's-derived esophageal adenocarcinoma cells. J Gastrointest Surg 2003; 7:68-76. [PMID: 12559187 DOI: 10.1016/s1091-255x(02)00129-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Helicobacter pylori may protect against the development of dysplasia in Barrett's epithelium of patients with gastroesophageal reflux disease. The aim of this study was to determine whether H. pylori preferentially induces apoptosis in Barrett's-derived cancer cells compared to normal cells. A Barrett's-derived adenocarcinoma cell line (OE33) was grown. H. pylori wild-type, isogenic vacA-, cagA(-), and picB-/cagE- mutant strains were grown on agar plates. Intact or sonicated bacteria were used to treat normal and OE33 cells for 24 hours, and Hoechst dye binding was performed to measure apoptosis. FAS protein expression was determined by Western immunoblotting. OE33 cells treated with intact H. pylori wild-type strains produced significant (P < 0.05) dose-dependent increases in apoptosis compared to normal esophageal cells. H. pylori wild-type and vacA- isogenic strains were more effective than cagA- and picB-/cage- isogenic strains in inducing apoptosis in OE33 cells. In OE33 cells, H. pylori sonicates produced lower levels of apoptosis than intact bacteria. Wild-type H. pylori strains increased Fas protein expression in OE33 cells at 18 hours. H. pylori induced apoptosis at a higher rate in the Barrett's-derived human esophageal adenocarcinoma cells than in normal esophageal cells. The H. pylori-induced apoptosis was primarily dependent on intact bacteria and the presence of the cagA and picB/cagE gene products. H. pylori-induced apoptosis may involve the Fas-caspase cascade.
Collapse
Affiliation(s)
- Andrew D Jones
- Department of Surgery, Oregon Health and Science University, L223A, 3181 SW Sam Jackson Park Rd., 97201, Portland, OR
| | - Kathy D Bacon
- Department of Surgery, Oregon Health and Science University, L223A, 3181 SW Sam Jackson Park Rd., 97201, Portland, OR
| | - Blair A Jobe
- Department of Surgery, Oregon Health and Science University, L223A, 3181 SW Sam Jackson Park Rd., 97201, Portland, OR
| | - Brett C Sheppard
- Department of Surgery, Oregon Health and Science University, L223A, 3181 SW Sam Jackson Park Rd., 97201, Portland, OR
| | - Clifford W Deveney
- Department of Surgery, Oregon Health and Science University, L223A, 3181 SW Sam Jackson Park Rd., 97201, Portland, OR
| | - Michael J Rutten
- Department of Surgery, Oregon Health and Science University, L223A, 3181 SW Sam Jackson Park Rd., 97201, Portland, OR.
| |
Collapse
|
21
|
CHEN XY, VAN DER HULST R, VAN DER ENDE A, PAN ZJ, XIAO SD, TYTGAT GNJ, TEN KATE FJW. Relevance of VacA and mucosal pathological changes in Chinese patients with upper gastrointestinal diseases before and afterHelicobacter pylorieradication. ACTA ACUST UNITED AC 2002. [DOI: 10.1046/j.1443-9573.2002.00073.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Khuroo MS. Helicobacter pylori: the unique organism. Ann Saudi Med 2002; 22:192-201. [PMID: 17159393 DOI: 10.5144/0256-4947.2002.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Mohammed Sultan Khuroo
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| |
Collapse
|
23
|
Fukuta K, Azuma T, Ito Y, Suto H, Keida Y, Wakabayashi H, Watanabe A, Kuriyama M. Clinical relevance of cagE gene from Helicobacter pylori strains in Japan. Dig Dis Sci 2002; 47:667-74. [PMID: 11911357 DOI: 10.1023/a:1017949026509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has been reported that H. pylori-containing cagE was associated with duodenal ulcer. The aims of the present study were to clarify the association between the cagE gene and clinical outcome and to analyze the relationship between the cagE gene and two other virulence factors--cagA and vacA--in two areas in Japan (Fukui and Okinawa) where the prevalence of duodenal ulcer and gastric cancer risk are quite different. Eighty of 81 isolates possessed the cagE gene, and all isolates possessed the cagA gene. The vacA genotype s1c/ml was a major genotype in both areas in Japan. There was no significant association between cagE, cagA status, or vacA genotype and clinical outcome. Phylogenetic analysis of the cagE gene indicated that most Japanese isolates formed a different cluster from strains isolated in the West with an association with the vacA genotype. In conclusion, the strains with cagE, cagA, and the s1c/ml genotype of vacA are predominant in Japan regardless of clinical outcome and construct a different phylogenetic cluster from those in the West.
Collapse
Affiliation(s)
- Kanako Fukuta
- Third Department of Internal Medicine, Toyama Medical and Pharmaceutical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Although gastric adenocarcinoma is associated with the presence of Helicobacter pylori in the stomach, only a small fraction of colonized individuals develop this common malignancy. H. pylori strain and host genotypes probably influence the risk of carcinogenesis by differentially affecting host inflammatory responses and epithelial-cell physiology. Understanding the host-microbial interactions that lead to neoplasia will improve cancer-targeted therapeutics and diagnostics, and provide mechanistic insights into other malignancies that arise within the context of microbially initiated inflammatory states.
Collapse
Affiliation(s)
- Richard M Peek
- Division of Gastroenterology, Vanderbilt University School of Medicine, Medical Center North, Nashville, Tennessee 37232-2279, USA.
| | | |
Collapse
|
25
|
Abstract
Helicobacter pylori causes persistent inflammation in the human stomach, yet only a minority of persons harbouring this organism develop peptic ulcer disease or gastric malignancy. An important question is why such variation exists among colonized individuals. Recent evidence has demonstrated that H. pylori isolates possess substantial phenotypic and genotypic diversity, which may engender differential host inflammatory responses that influence clinical outcome. For example, H. pylori strains that possess the cag pathogenicity island induce more severe gastritis and augment the risk for developing peptic ulcer disease and distal gastric cancer. An alternative, but not exclusive, hypothesis is that enhanced inflammation and injury is a consequence of an inappropriate host immune response to the chronic presence of H. pylori within the gastric niche. Investigations that precisely delineate the mechanisms responsible for induction of gastritis will ultimately help to define which H. pylori-colonized persons bear the highest risk for subsequent development of clinical disease, and thus, enable physicians to focus eradication therapy.
Collapse
Affiliation(s)
- D A Israel
- Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville 37232-2279, USA
| | | |
Collapse
|
26
|
Demirtürk L, Ozel AM, Yazgan Y, Solmazgül E, Yildirim S, Gültepe M, Gürbüz AK. CagA status in dyspeptic patients with and without peptic ulcer disease in Turkey: association with histopathologic findings. Helicobacter 2001; 6:163-8. [PMID: 11422473 DOI: 10.1046/j.1523-5378.2001.00024.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND CagA seropositivity is closely associated with that of vacuolating cytotoxin (VacA). Helicobacter pylori strains positive for both VacA and CagA were reported to be strongly associated with peptic ulcer disease. Different results reporting that cagA gene is not associated with more serious diseases, lowers the importance of CagA protein as a marker. In this study, CagA seropositivity is examined in Turkish peptic ulcer and nonulcer dyspepsia patients; histopathologic scores of CagA (+) and CagA (-) groups were compared. MATERIALS AND METHODS Sixty consecutive patients (one gastric ulcer, 13 duodenal ulcer and 46 nonulcer dyspepsia) (mean age 40.9 +/- 14.7; 33 women, 27 men) with dyspeptic complaints who underwent upper gastrointestinal (GI) endoscopy were included. Biopsies from the antrum and corpus were used for histopathologic examination and for rapid urease test. H. pylori-negative patients comprised the control group. Histopathologic findings were graded using a previously described grading system (for inflammation, activity, atrophy, intestinal metaplasia and H. pylori, grades from 0 to 3 were used to quantify the findings). In H. pylori-positive patients, antibodies against CagA protein were determined using an ELISA METHOD: RESULTS H. pylori was (+) in 46 patients. One duodenal ulcer and 13 nonulcer dyspepsia patients were negative for H. pylori. CagA positivity is significantly higher in peptic ulcer patients [12/12] than in nonulcer dyspepsia patients [25/33]. While inflammation, activity and atrophy scores were significantly higher in CagA positive patients, intestinal metaplasia and H. pylori load scores were not. Although the histopathologic scores in controls were lower than CagA (-) group, statistical significance was observed only in inflammation and intestinal metaplasia scores. CONCLUSION Development of more prominent gastritis and severe atrophy in CagA (+) patients is an indicator of the importance of CagA rather than H. pylori load. Therefore, we suggest that nonulcer dyspepsia patients should also be tested for CagA status along with the tests for H. pylori status; and a positive CagA testing should be considered as an indication for eradication treatment. If CagA is negative, further assesment should be performed to decide whether or not to treat the patient.
Collapse
Affiliation(s)
- L Demirtürk
- Department of Gastroenterology, Gülhane Military Medical Academy Haydarpaşa Training Hospital, Istanbul, Turkey
| | | | | | | | | | | | | |
Collapse
|
27
|
Hofman V, Ricci V, Mograbi B, Brest P, Luciano F, Boquet P, Rossi B, Auberger P, Hofman P. Helicobacter pylori lipopolysaccharide hinders polymorphonuclear leucocyte apoptosis. J Transl Med 2001; 81:375-84. [PMID: 11310830 DOI: 10.1038/labinvest.3780245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A prominent histologic feature of Helicobacter pylori infection is a dense infiltration of polymorphonuclear leukocytes (PMNL) in gastric mucosa. H. pylori lipopolysaccharide (LPS) has been recognized as a primary virulence factor evoking acute mucosal inflammatory reaction. Previous works have shown that H. pylori LPS immunologic activities are lower than those of enterobacterial LPS. However, the effect of H. pylori LPS on spontaneous PMNL apoptosis, and mechanisms by which this H. pylori LPS may promote PMNL survival remain to be established. In this study, we investigated, by both morphologic and biochemical approaches, the action of H. pylori LPS on PMNL apoptosis in vitro, using broth culture filtrates (BCF) of H. pylori strains with different genotypes. We found that BCF from H. pylori caused a significant delay in spontaneous PMNL apoptosis and this delay was independent of the VacA, cag pathogenicity island and urease status. We demonstrated that LPS in BCF is responsible for this effect because it was abrogated by the LPS antagonist B287 (a synthetic analog of Rhodobactersphaeroides lipid A). Moreover, BCF from H. pylori induced P42/44MAP kinase activation in PMNL. Similar results were obtained with BCF of an Escherichia coli strain. Taken together these data suggest that longer survival of PMNL induced by H. pylori LPS may increase gastric epithelium injury in H. pylori-associated diseases.
Collapse
Affiliation(s)
- V Hofman
- Laboratoire d'Anatomie-Pathologique, Faculté de Médecine, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Shirin H, Sordillo EM, Kolevska TK, Hibshoosh H, Kawabata Y, Oh SH, Kuebler JF, Delohery T, Weghorst CM, Weinstein IB, Moss SF. Chronic Helicobacter pylori infection induces an apoptosis-resistant phenotype associated with decreased expression of p27(kip1). Infect Immun 2000; 68:5321-8. [PMID: 10948161 PMCID: PMC101795 DOI: 10.1128/iai.68.9.5321-5328.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Helicobacter pylori infection is associated with the development of gastric cancer. In short-term coculture with AGS gastric cells, H. pylori inhibits cell cycle progression and induces dose-dependent apoptosis. Based on the concept that an imbalance between proliferation and apoptosis may contribute to the emergence of gastric cancer, we chronically exposed AGS cells to H. pylori as a model of chronic exposure in humans. The AGS derivatives selected by this process were stably resistant not only to H. pylori-induced apoptosis but also to apoptosis induced by other enteric bacteria and by several toxic agents including radiation and cancer chemotherapy. Like the parental AGS cells, the derivatives underwent G(1)/S-phase cell cycle inhibition in response to H. pylori. The AGS derivatives displayed a marked decrease in cellular levels of the cell cycle control protein p27(kip1). We found a similar decrease in epithelial cell p27(kip1) expression in gastric biopsy specimens from H. pylori-infected patients. These findings are consistent with observations that link decreases in the p27(kip1) level to increased susceptibility to cancer in mice with p27(kip1) deleted and to a poor prognosis of gastric cancer in humans. This is the first demonstration that bacterial infection can lead to apoptosis resistance and to cross-resistance to other inducers of apoptosis such as bacteria, chemotherapeutic agents, and radiation. The development of apoptosis resistance and downmodulation of p27(kip1) may contribute to the increased risk for gastric cancer observed in humans chronically exposed to H. pylori.
Collapse
Affiliation(s)
- H Shirin
- Department of Medicine, St. Luke's-Roosevelt Hospital Center, College of Physicians and Surgeons, Columbia University, New York, New York 10025, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hofman V, Ricci V, Galmiche A, Brest P, Auberger P, Rossi B, Boquet P, Hofman P. Effect of Helicobacter pylori on polymorphonuclear leukocyte migration across polarized T84 epithelial cell monolayers: role of vacuolating toxin VacA and cag pathogenicity island. Infect Immun 2000; 68:5225-33. [PMID: 10948148 PMCID: PMC101782 DOI: 10.1128/iai.68.9.5225-5233.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori infection can induce polymorphonuclear leukocyte (PMNL) infiltration of the gastric mucosa, which characterizes acute chronic gastritis. The mechanisms underlying this process are poorly documented. The lack of an in vitro model has considerably impaired the study of transepithelial migration of PMNL induced by H. pylori. In the present work, we used confluent polarized monolayers of the human intestinal cell line T84 grown on permeable filters to analyze the epithelial PMNL response induced by broth culture filtrates (BCFs) and bacterial suspensions from different strains of H. pylori. We have evaluated the role of the vacuolating cytotoxin VacA and of the cag pathogenicity island (PAI) of H. pylori in PMNL migration via their effects on T84 epithelial cells. We noted no difference in the rates of PMNL transepithelial migration after epithelial preincubation with bacterial suspensions or with BCFs of VacA-negative or VacA-positive H. pylori strains. In contrast, PMNL transepithelial migration was induced after incubation of the T84 cells with cag PAI-positive and cagE-positive H. pylori strains. Finally, PMNL migration was correlated with a basolateral secretion of interleukin-8 by T84 cells, thus creating a subepithelial chemotactic gradient for PMNL. These data provide evidence that the vacuolating cytotoxin VacA is not involved in PMNL transepithelial migration and that the cag PAI, with a pivotal role for the cagE gene, provokes a transcellular signal across T84 monolayers, inducing a subepithelial PMNL response.
Collapse
Affiliation(s)
- V Hofman
- Laboratoire d'Anatomie-Pathologique, IFR 50, Faculté de Médecine, 06107 Nice Cedex 01, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Korzon M, Sikorska-Wiśniewska G, Jankowski Z, Kur J, Banach P. Clinical and pathological importance of cagA-positive Helicobacter pylori strains in children with abdominal complaints. Helicobacter 1999; 4:238-42. [PMID: 10597393 DOI: 10.1046/j.1523-5378.1999.99304.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND The aim of this study was to assess the correlation between the prevalence of Helicobacter pylori strains possessing cytotoxin-associated gene A (cagA) in children and the intensity of clinical complaints and morphological changes of the gastric mucosa. MATERIALS AND METHODS A group of 80 children with gastrointestinal complaints was included in this study. Pathologists examined mucosal biopsy specimens from these patients. The urease test and multiplex polymerase chain reaction (MPCR) were used to identify H. pylori strains. RESULTS In the group of children infected with cagA-positive H. pylori strains, fourth-degree gastritis was more frequent than in the group with cagA-negative H. pylori colonization. In histopathological assessment, infection with cagA-positive H. pylori was associated also with higher grades of inflammatory intensity and activity. CONCLUSIONS Marked inflammation of the antral mucosa was significantly more frequent in children infected with cagA-positive H. pylori than in those infected with cagA-negative H. pylori, as assessed endoscopically and histopathologically. No specific symptoms for cagA-positive and cagA-negative H. pylori infection were observed.
Collapse
Affiliation(s)
- M Korzon
- Department of Paediatrics, Gastroenterology, and Paediatric Oncology, Medical University of Gdańsk, Poland.
| | | | | | | | | |
Collapse
|
31
|
Ge Z, Taylor DE. Contributions of genome sequencing to understanding the biology of Helicobacter pylori. Annu Rev Microbiol 1999; 53:353-87. [PMID: 10547695 DOI: 10.1146/annurev.micro.53.1.353] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
About half of the world's population carries Helicobacter pylori, a gram-negative, spiral bacterium that colonizes the human stomach. The link between H. pylori and, ulceration as well as its association with the development of both gastric cancer and mucosa-associated lymphoid tissue lymphoma in humans is a serious public health concern. The publication of the genome sequences of two stains of H. pylori gives rise to direct evidence on the genetic diversity reported previously with respect to gene organization and nucleotide variability from strain to strain. The genome size of H. pylori strain 26695 is 1,6697,867 bp and is 1,643,831 bp for strain J99. Approximately 89% of the predicted open reading frames are common to both of the strains, confirming H. pylori as a single species. A region containing approximately 45% of H. pylori strain-specific open reading frames, termed the plasticity zone, is present on the chromosomes, verifying that some strain variability exists. Frequent alteration of nucleotides in the third position of the triplet codons and various copies of insertion elements on the individual chromosomes appear to contribute to distinct polymorphic fingerprints among strains analyzed by restriction fragment length polymorphisms, random amplified polymorphic DNA method, and repetitive element-polymerase chain reaction. Disordered chromosomal locations of some genes seen by pulsed-field gel electrophoresis are likely caused by rearrangement or inversion of certain segments in the genomes. Cloning and functional characterization of the genes involved in acidic survival, vacuolating toxin, cag-pathogenicity island, motility, attachment to epithelial cells, natural transformation, and the biosynthesis of lipopolysaccharides have considerably increased our understanding of the molecular genetic basis for the pathogenesis of H. pylori. The homopolymeric nucleotide tracts and dinucleotide repeats, which potentially regulate the on- and off-status of the target genes by the strand-slipped mispairing mechanism, are often found in the genes encoding the outer-membrane proteins, in enzymes for lipopolysaccharide synthesis, and within DNA modification/restriction systems. Therefore, these genes may be involved in the H. pylori-host interaction.
Collapse
Affiliation(s)
- Z Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|
32
|
Marais A, Mendz GL, Hazell SL, Mégraud F. Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol Mol Biol Rev 1999; 63:642-74. [PMID: 10477311 PMCID: PMC103749 DOI: 10.1128/mmbr.63.3.642-674.1999] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The publication of the complete sequence of Helicobacter pylori 26695 in 1997 and more recently that of strain J99 has provided new insight into the biology of this organism. In this review, we attempt to analyze and interpret the information provided by sequence annotations and to compare these data with those provided by experimental analyses. After a brief description of the general features of the genomes of the two sequenced strains, the principal metabolic pathways are analyzed. In particular, the enzymes encoded by H. pylori involved in fermentative and oxidative metabolism, lipopolysaccharide biosynthesis, nucleotide biosynthesis, aerobic and anaerobic respiration, and iron and nitrogen assimilation are described, and the areas of controversy between the experimental data and those provided by the sequence annotation are discussed. The role of urease, particularly in pH homeostasis, and other specialized mechanisms developed by the bacterium to maintain its internal pH are also considered. The replicational, transcriptional, and translational apparatuses are reviewed, as is the regulatory network. The numerous findings on the metabolism of the bacteria and the paucity of gene expression regulation systems are indicative of the high level of adaptation to the human gastric environment. Arguments in favor of the diversity of H. pylori and molecular data reflecting possible mechanisms involved in this diversity are presented. Finally, we compare the numerous experimental data on the colonization factors and those provided from the genome sequence annotation, in particular for genes involved in motility and adherence of the bacterium to the gastric tissue.
Collapse
Affiliation(s)
- A Marais
- Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
33
|
Abstract
Most cases of peptic ulcer disease, gastric mucosa associated lymphoid tissue (MALT) lymphoma and cancer of the distal stomach are complications of Helicobacter pylori infection. However, as with most infections not all patients who contract the infection develop the complications of the disease. The other factors that influence the likelihood of problems arising are the virulence of the infecting organism, the genetic constitution and age of the host, and environmental factors. This paper focuses mainly upon the effect of strain differences and the causation of serious disease. There is considerable genetic variation between the different strains of H pylori, some causing a more severe inflammatory response in the host than others. These strains are also associated with a greater likelihood of causing peptic ulcer, atrophic gastritis and intestinal metaplasia and gastric cancer. There is some evidence to suggest that these more virulent organisms may also protect the host from the development of reflux oesophagitis and possibly cancer in the region of the gastro-oesophageal junction. The major difference between virulent and relatively avirulent organisms depends upon the presence of the cag pathogenicity island, a segment of DNA that has been acquired possibly from another organism and is now incorporated within the helicobacter genome. Its presence is associated with the secretion of the vacuolating toxin which is a protein known to cause damage in cell culture and in vivo. As CagA, one of the proteins produced by the pathogenicity island, is highly antigenic, people infected with more virulent strains can be identified by a blood test. Currently controversy surrounds the question as to whether all patients with H pylori should be treated for infection or whether medication should be reserved for those who already have the complications of the infection, or individuals infected with the more virulent strain of the organism.
Collapse
Affiliation(s)
- A T Axon
- Centre for Digestive Diseases, The General Infirmary at Leeds, Great George Street, Leeds LS1 3EX, UK
| |
Collapse
|
34
|
Yang H, Wu SV, Pichuantes S, Song M, Wang J, Zhou D, Xu Z, Quan S, Polito A, Walsh JH. High prevalence of cagA-positive strains in Helicobacter pylori-infected, healthy, young Chinese adults. J Gastroenterol Hepatol 1999; 14:476-80. [PMID: 10355513 DOI: 10.1046/j.1440-1746.1999.01892.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cytotoxin-associated gene A (cagA) has been implicated as a potential pathogenic marker for Helicobacter pylori-induced severe gastroduodenal diseases. Although the prevalence of cagA-positive strains has been reported in patient populations from developed countries, only limited information from developing countries is available. METHODS Polymerase chain reaction (PCR) in combination with immunoblot analysis was used to determine the prevalence of cagA and its adjacent cagE genes and to evaluate the expression of CagA protein in 55 H. pylori clinical isolates from China. RESULTS The expected PCR products derived from H. pylori cagA and cagE genes were identified in all Chinese H. pylori clinical isolates. Similarly, the CagA protein was detected in all 40 isolates tested. CONCLUSIONS These results demonstrated that the presence of the cagA gene correlated well with expression of the CagA protein in all surveyed Chinese H. pylori isolates and that infection with cagA-positive H. pylori strains is highly common in China and independent of clinical presentation.
Collapse
Affiliation(s)
- H Yang
- Center for Ulcer Research, Department of Medicine, UCLA School of Medicine and Veterans Affairs West Los Angeles Medical Center, California 90073, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gómez-Duarte OG, Bumann D, Meyer TF. The attenuated Salmonella vaccine approach for the control of Helicobacter pylori-related diseases. Vaccine 1999; 17:1667-73. [PMID: 10194821 DOI: 10.1016/s0264-410x(98)00436-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Gram-negative bacterium Helicobacter pylori is a widespread human pathogen that colonizes the gastric mucosa and is associated with gastro-intestinal illnesses such as gastritis, peptic ulcer, gastric lymphoma and gastric cancer. Current pharmacological therapies are becoming less reliable for the control of H. pylori due to the elevated costs and to the increasing number of antibiotic resistant strains. New vaccination strategies utilizing H. pylori antigens combined with adjuvants or delivery of antigens by attenuated Salmonella strains have been successful in protecting mice against H. pylori infections. Oral immunization with single doses of urease-expressing Salmonella vaccine strains elicits mucosal and systemic antibody responses and fully protects different mouse strains against challenge infections with H. pylori. The high efficacy in the mouse model, combined with remarkable immunogenicity, safety and low-cost production, makes attenuated live recombinant Salmonella promising vaccine candidates for the control of H. pylori-related diseases in humans.
Collapse
Affiliation(s)
- O G Gómez-Duarte
- Abteilung Infektionsbiologie, Max-Planck-Institut für Biologie, Tubingen, Germany
| | | | | |
Collapse
|
36
|
Abstract
Since the discovery of H. pylori in 1982 (MARSHALL 1983; WARREN 1983), research on the mechanisms of virulence of H. pylori has advanced substantially. It is now well established that urease and flagella are virulence factors of H. pylori. Although known for some time to be toxic to epithelial cells in vitro, VacA has only recently been established as a virulence factor. The cag pathogenicity island has also emerged as another virulence contender, although the specific genes involved in virulence are still being determined. Other possible virulence factors, not yet confirmed by gene disruptions, are hapA, katA, sodA, cagA, and iron-regulated genes. As of yet, no adhesins have been confirmed as being important for in vivo survival of H. pylori. With the sequence of the H. pylori genome in hand, it should be possible to more easily determine the role of specific genes in virulence. Genes of immediate interest are the OMPs, which may under go phase and antigenic variation and may represent adhesins. Additionally, virulence-related orthologs and vacA-related genes may provide some interesting findings. Once we define the genes that contribute to H. pylori virulence, we may be able to more easily develop novel therapeutic drugs or vaccines to treat and prevent H. pylori infection.
Collapse
Affiliation(s)
- D J McGee
- University of Maryland, Department of Microbiology and Immunology, Baltimore 21201, USA
| | | |
Collapse
|
37
|
Tokumaru K, Kimura K, Saifuku K, Kojima T, Satoh K, Kihira K, Ido K. CagA and cytotoxicity of Helicobacter pylori are not markers of peptic ulcer in Japanese patients. Helicobacter 1999; 4:1-6. [PMID: 10352081 DOI: 10.1046/j.1523-5378.1999.09003.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The infection with cagA-positive Helicobacter pylori strains is reported to be associated with peptic ulcer disease in developed countries, but it is controversial in Asia. To investigate the relationship between the virulence factors of H. pylori and peptic ulcer disease in Japan, we compared these between ulcer and nonulcer patients. MATERIALS AND METHODS Seventy-four strains of clinically isolated H. pylori obtained from 22 gastric ulcer (GU), 23 duodenal ulcer (DU), and 29 chronic gastritis (CG) patients were studied. The presence of vacA and cagA gene was examined by polymerase chain reaction method using two different primer sets. We evaluated the proliferation-inhibiting and lethal cytotoxicity of culture supernatants using the alamarBlue assay. RESULTS The vacA gene was identified in all strains by the original primers. S1 strains were found in 90.9% (20/22) from GU, 95.7% (22/23) from DU, and 96.6% (28/29) from CG patients. The prevalence of cagA gene determined by the first, and second primers was 90.9% (20/22), 90.9% (20/22) in strains from GU, 87.0% (20/23), 91.3% (21/23) from DU, and 86.2% (25/29), 89.7% (26/29) from CG patients, respectively. The supernatant showed cytolethal effect in 95.5% (21/22) of strains from GU, in 100% (23/23) from DU, and in 93.1% (27/29) from CG patients. There was no significant difference in the prevalence of the virulence factors between H. pylori strains isolated from patients with peptic ulcers and those with chronic gastritis. CONCLUSIONS These results indicate that cagA gene status and the proliferation-inhibiting and lethal cytotoxicity of supernatant are not reliable markers of ulcerogenicity of H. pylori in Japanese patients.
Collapse
Affiliation(s)
- K Tokumaru
- Department of Gastroenterology, Jichi Medical School, Tochigi, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Jenks PJ, Mégraud F, Labigne A. Clinical outcome after infection with Helicobacter pylori does not appear to be reliably predicted by the presence of any of the genes of the cag pathogenicity island. Gut 1998; 43:752-8. [PMID: 9824600 PMCID: PMC1727354 DOI: 10.1136/gut.43.6.752] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The development of clinical disease after infection with Helicobacter pylori has been reported to be associated with expression of the cagA gene. Recently, it has been shown that cagA is part of a multigene locus, described as the cag pathogenicity island (PAI). The role of this region in determining clinical outcome remains to be established. AIMS To investigate whether the presence of cagA is always associated with the presence of the complete cag PAI and to evaluate the distribution of selected cag genes in 73 H pylori strains isolated from patients in France. METHODS Clinical strains of H pylori were screened for selected genes of the cag PAI by polymerase chain reaction and colony hybridisation. RESULTS Of 64 strains that harboured the cagA gene, 57 (89%) also contained the entire cag PAI. The entire cag PAI was found in 85% (48/56) and 53% (9/17) of duodenal ulcer and non-ulcer dyspepsia isolates, respectively. Eight strains had deletions within the cag PAI, including deletion of the cagA gene in one isolate; the deletions were not associated with the insertion sequence IS605. Of eight strains lacking the cag PAI, four were isolated from patients with duodenal ulcer. CONCLUSION The cag PAI is not a uniform, conserved entity. Although the presence of the cag PAI is highly associated with duodenal ulcer, the clinical outcome of infection with H pylori is not reliably predicted by any gene of the cag PAI.
Collapse
Affiliation(s)
- P J Jenks
- Unité de Pathogénie Bactérienne des Muqueuses, Pasteur Institute, Paris, France.
| | | | | |
Collapse
|
39
|
Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 1998; 62:1157-70. [PMID: 9841668 PMCID: PMC98942 DOI: 10.1128/mmbr.62.4.1157-1170.1998] [Citation(s) in RCA: 400] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Studying the cross talk between nonpathogenic organisms and their mammalian hosts represents an experimental challenge because these interactions are typically subtle and the microbial societies that associate with mammalian hosts are very complex and dynamic. A large, functionally stable, climax community of microbes is maintained in the murine and human gastrointestinal tracts. This open ecosystem exhibits not only regional differences in the composition of its microbiota but also regional differences in the differentiation programs of its epithelial cells and in the spatial distribution of its component immune cells. A key experimental strategy for determining whether "nonpathogenic" microorganisms actively create their own regional habitats in this ecosystem is to define cellular function in germ-free animals and then evaluate the effects of adding single or several microbial species. This review focuses on how gnotobiotics-the study of germ-free animals-has been and needs to be used to examine how the gastrointestinal ecosystem is created and maintained. Areas discussed include the generation of simplified ecosystems by using genetically manipulatable microbes and hosts to determine whether components of the microbiota actively regulate epithelial differentiation to create niches for themselves and for other organisms; the ways in which gnotobiology can help reveal collaborative interactions among the microbiota, epithelium, and mucosal immune system; and the ways in which gnotobiology is and will be useful for identifying host and microbial factors that define the continuum between nonpathogenic and pathogenic. A series of tests of microbial contributions to several pathologic states, using germ-free and ex-germ-free mice, are proposed.
Collapse
Affiliation(s)
- P G Falk
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
40
|
Abstract
Helicobacter pylori is a gram-negative spiral bacterium confined to the habitat of gastric-type epithelium. H. pylori causes duodenal ulceration by a cumulative effect of antral predominant gastritis with increased acid secretion, consequent gastric metaplasia in the duodenum (a site of further colonization by H. pylori), duodenitis, reduced duodenal bicarbonate secretion, and mucosal damage. Bacterial factors influence outcome. Major determinants are the production of a vacuolating toxin and the presence of CagA, an immunodominant product of a nonconserved gene cagA, a marker for the cag pathogenicity island that encodes virulence genes involved in induction of epithelial chemokine responses. In ulcer patients the mucosal immune response is polarized to a T-helper-1 (Th1) cell-mediated response, which may contribute to mucosal damage. Eradication of H. pylori restores acid output to normal. Loss of both acid and bacteria halts gastroduodenitis and allows ulcer healing. Gastric metaplasia does not regress in the short term.
Collapse
Affiliation(s)
- M M Walker
- Department of Histopathology, Imperial College School of Medicine at St Mary's, London, United Kingdom
| | | |
Collapse
|
41
|
Marshall DG, Dundon WG, Beesley SM, Smyth CJ. Helicobacter pylori--a conundrum of genetic diversity. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):2925-2939. [PMID: 9846728 DOI: 10.1099/00221287-144-11-2925] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David G Marshall
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, University of Dublin, Dublin 2, Republic of Ireland
| | - William G Dundon
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, University of Dublin, Dublin 2, Republic of Ireland
| | - Sarah M Beesley
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, University of Dublin, Dublin 2, Republic of Ireland
| | - Cyril J Smyth
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, University of Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
42
|
Gunn MC, Stephens JC, Stewart JA, Rathbone BJ, West KP. The significance of cagA and vacA subtypes of Helicobacter pylori in the pathogenesis of inflammation and peptic ulceration. J Clin Pathol 1998; 51:761-4. [PMID: 10023339 PMCID: PMC500931 DOI: 10.1136/jcp.51.10.761] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS To assess the significance of cagA and vacA subtypes of Helicobacter pylori in relation to inflammation and density of bacterial colonisation in vivo within a dyspeptic UK population. METHODS Dyspeptic patients who were Helicobacter pylori positive had antral samples taken for histology and culture. Gastroduodenal pathology was noted. The grade of bacterial density and inflammation was assessed using the Sydney system. Bacterial DNA was extracted and the vacA alleles and the cagA/gene typed using PCR. RESULTS 120 patients were studied. There was high rate of cagA positive strains in this population. Bacterial density did not correlate with the presence of peptic ulceration. There was a significant association between cagA positive strains and increased inflammation and bacterial density. The vacA s1 type independently correlated with extensive chronic inflammation but there was no association with bacterial density. The vacA m type did not correlate with extent of inflammation or bacterial density. CONCLUSIONS The results suggest that cagA is important in the pathogenesis of inflammation and peptic ulceration. These findings are in keeping with the hypothesis that cagA acts as a marker for a cag pathogenicity island which encodes several genes involved in inflammation. The vacA s1 allele correlates with inflammation independently of cagA, possibly through its enhanced ability to produce the vacuolating cytotoxin.
Collapse
Affiliation(s)
- M C Gunn
- Department of Gastroenterology, Leicester Royal Infirmary, UK
| | | | | | | | | |
Collapse
|
43
|
McGowan CC, Necheva A, Thompson SA, Cover TL, Blaser MJ. Acid-induced expression of an LPS-associated gene in Helicobacter pylori. Mol Microbiol 1998; 30:19-31. [PMID: 9786182 DOI: 10.1046/j.1365-2958.1998.t01-1-01079.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To investigate urease-independent mechanisms by which Helicobacter pylori resists acid stress, subtractive RNA hybridization was used to identify H. pylori genes whose expression is induced after exposure to acid pH. This approach led to the isolation of a gene that encoded a predicted 34.8kDa protein (WbcJ), which was homologous to known bacterial O-antigen biosynthesis proteins involved in the conversion of GDP-mannose to GDP-fucose. An isogenic wbcJ null mutant strain failed to express O-antigen and Lewis X or Lewis Y determinants and was more sensitive to acid stress than was the wild-type strain. Qualitative differences in LPS profiles were observed in H. pylori cells grown at pH 5 compared with pH 7, which suggests that H. pylori may alter its LPS structure in response to acidic pH. This may be an important adaptation facilitating H. pylori colonization of the acidic gastric environment.
Collapse
Affiliation(s)
- C C McGowan
- Department of Medicine, Vanderbilt University Medical School, and Department of Veterans Affairs Medical Center, Nashville, TN, USA.
| | | | | | | | | |
Collapse
|
44
|
Yamaoka Y, Kodama T, Kashima K, Graham DY, Sepulveda AR. Variants of the 3' region of the cagA gene in Helicobacter pylori isolates from patients with different H. pylori-associated diseases. J Clin Microbiol 1998; 36:2258-63. [PMID: 9666002 PMCID: PMC105028 DOI: 10.1128/jcm.36.8.2258-2263.1998] [Citation(s) in RCA: 229] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/1998] [Accepted: 05/18/1998] [Indexed: 02/08/2023] Open
Abstract
The CagA protein of Helicobacter pylori is an immunogenic antigen of variable size and unknown function that has been associated with increased virulence as well as two mutually exclusive diseases, duodenal ulcer and gastric carcinoma. The 3' region of the cagA gene contains repeated sequences. To determine whether there are structural changes in the 3' region of cagA that predict outcome of H. pylori infection, we examined 155 cagA gene-positive H. pylori isolates from Japanese patients including 50 patients with simple gastritis, 40 with gastric ulcer, 35 with duodenal ulcer, and 30 with gastric cancer. The 3' region of the cagA gene was amplified by PCR followed by sequencing. CagA proteins were detected by immunoblotting using a polyclonal antibody against recombinant CagA. One hundred forty-five strains yielded PCR products of 642 to 651 bp; 10 strains had products of 756 to 813 bp. The sequence of the 3' region of the cagA gene in Japan differs markedly from the primary sequence of cagA genes from Western isolates. Sequence analysis of the PCR products showed four types of primary gene structure (designated types A, B, C, and D) depending on the type and number of repeats. Six of the seven type C strains were found in patients with gastric cancer (P < 0.01 in comparison to noncancer patients). Comparison of type A and type C strains from patients with gastric cancer showed that type C was associated with higher levels of CagA antibody and more severe degrees of atrophy. Differences in cagA genotype may be useful for molecular epidemiology and may provide a marker for differences in virulence among cagA-positive H. pylori strains.
Collapse
Affiliation(s)
- Y Yamaoka
- Department of Medicine, Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
45
|
Shyu RY, Jiang SY, Lai CH, Hsu CT, Young TH, Yeh MY. High frequency of cytotoxin-associated gene A in Helicobacter pylori isolated from asymptomatic subjects and peptic ulcer patients in Taiwan. J Clin Gastroenterol 1998; 27:54-9. [PMID: 9706771 DOI: 10.1097/00004836-199807000-00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cytotoxin-associated gene A (CagA), expressed in about 60% of H. pylori isolates in Western countries, may play a role in the pathogenesis of peptic ulcer. In this study, we determined the prevalence and significance of the H. pylori cagA gene and protein expression in Taiwan. Genomic DNA from antrum biopsies and H. pylori isolates were analyzed for cagA using polymerase chain reaction, Southern hybridization, or colony hybridization. CagA seropositivity was analyzed using Helico blots. In addition, Western blotting was performed to detect the CagA protein. About 94% of antrum tissues from both asymptomatic subjects and duodenal ulcer patients and all 76 H. pylori isolates (21 asymptomatic subjects, 39 with duodenal ulcers, 13 with gastric ulcers, 2 with gastric cancers, and 1 with mucosa-associated lymphoid tissue [MALT] lymphoma) were positive for the cagA gene. Moreover 77 out of 78 H. pylori-positive serum and all 27 H. pylori lysates had anti-CagA antibodies or CagA protein, respectively. H. pylori isolated from patients with various upper gastrointestinal diseases in Taiwan contained the cagA gene and expressed CagA protein at high frequencies.
Collapse
Affiliation(s)
- R Y Shyu
- Department of Internal Medicine, Tri-Service General Hospital, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | |
Collapse
|
46
|
Strobel S, Bereswill S, Balig P, Allgaier P, Sonntag HG, Kist M. Identification and analysis of a new vacA genotype variant of Helicobacter pylori in different patient groups in Germany. J Clin Microbiol 1998; 36:1285-9. [PMID: 9574692 PMCID: PMC104815 DOI: 10.1128/jcm.36.5.1285-1289.1998] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Accepted: 02/16/1998] [Indexed: 02/07/2023] Open
Abstract
The vacuolating cytotoxin of Helicobacter pylori (VacA) is known to cause cell damage to mammalian cells and is suspected to give rise to gastric epithelial lesions that might lead to peptic ulcer disease. As shown recently, the gene encoding VacA exhibits genetic variation, with three different families of signal sequences (s1a, s1b, and s2) and two families of midregion sequences (m1 and m2). In order to investigate the relationship between the presence of specific vacA genotypes and peptic ulceration, the vacA genotypes of 158 clinical isolates of H. pylori were determined. The study group consisted of 106 patients with duodenal ulceration; 52 patients with nonulcer dyspepsia (NUD) were used as controls. H. pylori of genotype s1 was isolated from 96% of the patients with ulcerations, whereas genotype s2 was only present in 4%, indicating a strong correlation between the vacA genotype and peptic ulceration (P < 0.001). In contrast, 31% of the patients from the NUD control group were infected with strains of vacA genotype s2. Particular midregion genotypes (m1 and m2) were not associated with clinical manifestations. The midregions from 18% of the isolates could not be classified by the proposed scheme. DNA sequencing revealed high homology between the untypeable midregions and that of genotype m1, with multiple base pair exchanges, some affecting the primer annealing site. Compared to those of m1 and m2 alleles, the divergent midregions from untypeable strains showed clustering, indicating the presence of a further subfamily of sequences in the midregion of vacA in German isolates, for which we propose the term "m1a." A new specific primer that we designed for typing m1a isolates might be useful in other studies.
Collapse
Affiliation(s)
- S Strobel
- Institute of Medical Microbiology and Hygiene, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Romano M, Ricci V, Di Popolo A, Sommi P, Del Vecchio Blanco C, Bruni CB, Ventura U, Cover TL, Blaser MJ, Coffey RJ, Zarrilli R. Helicobacter pylori upregulates expression of epidermal growth factor-related peptides, but inhibits their proliferative effect in MKN 28 gastric mucosal cells. J Clin Invest 1998; 101:1604-13. [PMID: 9541490 PMCID: PMC508741 DOI: 10.1172/jci1174] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute exposure to Helicobacter pylori causes cell damage and impairs the processes of cell migration and proliferation in cultured gastric mucosal cells in vitro. EGF-related growth factors play a major role in protecting gastric mucosa against injury, and are involved in the process of gastric mucosal healing. We therefore studied the acute effect of H. pylori on expression of EGF-related growth factors and the proliferative response to these factors in gastric mucosal cells (MKN 28) derived from gastric adenocarcinoma. Exposure of MKN 28 cells to H. pylori suspensions or broth culture filtrates upregulated mRNA expression of amphiregulin (AR) and heparin-binding EGF-like growth factor (HB-EGF), but not TGFalpha. This effect was specifically related to H. pylori since it was not observed with E. coli, and was independent of VacA, CagA, PicA, PicB, or ammonia. Moreover, H. pylori broth culture filtrates stimulated extracellular release of AR and HB-EGF protein by MKN 28 cells. AR and HB-EGF dose-dependently and significantly stimulated proliferation of MKN 28 cells in the absence of H. pylori filtrate, but had no effect in the presence of H. pylori broth culture filtrates. Inhibition of AR- or HB-EGF- induced stimulation of cell growth was not mediated by downregulation of the EGF receptor since EGF receptor protein levels, EGF binding affinity, number of specific binding sites for EGF, or HB-EGF- or AR-dependent tyrosine phosphorylation of the EGF receptor were not significantly altered by incubation with H. pylori broth culture filtrates. Increased expression of AR and HB-EGF were mediated by an H. pylori factor > 12 kD in size, whereas antiproliferative effects were mediated by both VacA and a factor < 12 kD in size. We conclude that H. pylori increases mucosal generation of EGF-related peptides, but in this acute experimental model, this event is not able to counteract the inhibitory effect of H. pylori on cell growth. The inhibitory effect of H. pylori on the reparative events mediated by EGF-related growth factors might play a role in the pathogenesis of H. pylori-induced gastroduodenal injury.
Collapse
Affiliation(s)
- M Romano
- Dipartimento di Biologia e Patologia Cellulare e Molecolare "L. Califano," Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università "Federico II," Napoli, Italy 80131
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Aucher P, Petit ML, Mannant PR, Pezennec L, Babin P, Fauchere JL. Use of immunoblot assay to define serum antibody patterns associated with Helicobacter pylori infection and with H. pylori-related ulcers. J Clin Microbiol 1998; 36:931-6. [PMID: 9542911 PMCID: PMC104663 DOI: 10.1128/jcm.36.4.931-936.1998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Serology has been used worldwide to detect Helicobacter pylori infection. Using an immunoblot assay with an antigen from strain ATCC 43579, we sought to determine the antibodies which were good markers of colonization and the antibody patterns associated with ulcers or atrophy. Out of 98 dyspeptic patients, 41 were colonized by H. pylori, based on a positive culture or on positive results of both a urease test and direct examination. These 41 patients were seropositive by an enzyme immunoassay, and 12 of them had ulcers and 29 had evidence of atrophy. Fifty-seven of the 98 patients were noncolonized. Twenty-five of the 57 had evidence of gastric atrophy, and 10 were seropositive; 5 of these 10 had ulcers. By Western blot analysis, 12 antibodies were significantly more frequent in sera from colonized patients, and they produced immunoreactive bands at 125, 87, 74, 66, 54, 48, 46, 42, 35, 30, 16 and 14 kDa. The presence of at least one band at 54, 35, or 42 kDa was the best marker of infection (sensitivity, 95%; specificity, 82%). In the group of colonized patients, none of the antibody patterns were correlated to gastric atrophy. Conversely, the presence of a band at 125, 87, or 35 kDa was statistically associated with the presence of an ulcer. The simultaneous presence of bands at 87 and 35 kDa predicted the risk of ulcers with 83% sensitivity and 69% specificity. By using CagA-positive and VacA-positive strains and CagA-negative and VacA-negative isogenic mutants, the antigens corresponding to the bands at 125 and 87 kDa were shown to be CagA and VacA, respectively. On the other hand, the 35-kDa antigen is a novel uncharacterized component of H. pylori. These results may help to optimize the composition of antigenic preparations for serologic detection of H. pylori colonization. Immunoblot assay would be useful for screening patients at high risk of ulcers.
Collapse
Affiliation(s)
- P Aucher
- Department of Microbiology (EA 1720), Centre Hospitalier et Universitaire, Poitiers, France
| | | | | | | | | | | |
Collapse
|
49
|
Rudi J, Kolb C, Maiwald M, Kuck D, Sieg A, Galle PR, Stremmel W. Diversity of Helicobacter pylori vacA and cagA genes and relationship to VacA and CagA protein expression, cytotoxin production, and associated diseases. J Clin Microbiol 1998; 36:944-8. [PMID: 9542913 PMCID: PMC104665 DOI: 10.1128/jcm.36.4.944-948.1998] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vacuolating cytotoxin and the cytotoxin-associated protein, encoded by vacA and cagA, respectively, are important virulence determinants of Helicobacter pylori. Sixty-five H. pylori strains were isolated from dyspeptic patients (19 with peptic ulcer disease, 43 with chronic gastritis, and 3 with gastric cancer) and studied for differences in the vacA and cagA genes and their relationship to VacA and CagA expression, cytotoxin activity, and the clinical outcome of infection. By PCR, fifty-four (83.1%) of 65 strains had the vacA signal sequence genotype s1 and only 10 (15.4%) had the type s2. After primer modification, the vacA middle-region types m1 and m2 were detected in 24 (36.9%) and 41 (63.1%) strains, respectively. The combinations s1-m2 (31 [47.7%]) and s1-m1 (23 [35.4%]) occurred more frequently than s2-m2 (10 [15.4%]) (P = 0.01). No strain with the combination s2-m1 was found. All 19 patients with peptic ulcers harbored type s1 strains, in contrast to 32 (74.4%) of 43 patients with gastritis (P = 0.02). The vacA genotype s1 was associated with the presence of cagA (P < 0.0001), VacA expression (P < 0.0001), and cytotoxin activity (P = 0.003). The cagA gene was detectable in 48 (73.8%) of 65 isolates and present in 16 (84.2%) of 19 ulcer patients and 29 (67.4%) of 43 patients with gastritis (P = 0.17). The vacA genotypes of German H. pylori isolates are identical to those previously reported. H. pylori strains of vacA type s1 are associated with the occurrence of peptic ulceration and the presence of cagA, cytotoxin activity, and VacA expression.
Collapse
Affiliation(s)
- J Rudi
- Department of Medicine, University of Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE, Reece CA, Bukanov NO, Drazek ES, Roe BA, Berg DE. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998; 28:37-53. [PMID: 9593295 DOI: 10.1046/j.1365-2958.1998.00770.x] [Citation(s) in RCA: 400] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most strains of Helicobacter pylori from patients with peptic ulcer disease or intestinal-type gastric cancer carry cagA, a gene that encodes an immunodominant protein of unknown function, whereas many of the strains from asymptomatically infected persons lack this gene. Recent studies showed that the cagA gene lies near the right end of a approximately 37kb DNA segment (a pathogenicity island, or PAI) that is unique to cagA+ strains and that the cag PAI was split in half by a transposable element insertion in the reference strain NCTC11638. In complementary experiments reported here, we also found the same cag PAI, and sequenced a 39 kb cosmid clone containing the left 'cagII' half of this PAI. Encoded in cagII were four proteins each with homology to four components of multiprotein complexes of Bordetella pertussis ('Ptl'), Agrobacterium tumefaciens ('Vir'), and conjugative plasmids ('Tra') that help deliver pertussis toxin and T (tumour inducing) and plasmid DNA, respectively, to target eukaryotic or prokaryotic cells, and also homologues of eukaryotic proteins that are involved in cytoskeletal structure. To the left of cagII in this cosmid were genes for homologues of HsIU (heat-shock protein) and Era (essential GTPase); to the right of cagII were homologues of genes for a type I restriction endonuclease and ion transport functions. Deletion of the cag PAI had no effect on synthesis of the vacuolating cytotoxin, but this deletion and several cag insertion mutations blocked induction of synthesis of proinflammatory cytokine IL-8 in gastric epithelial cells. Comparisons among H. pylori strains indicated that cag PAI gene content and arrangement are rather well conserved. We also identified two genome rearrangements with end-points in the cag PAI. One, in reference strain NCTC11638, involved IS605, a recently described transposable element (as also found by others). Another rearrangement, in 3 of 10 strains tested (including type strain NCTC11637), separated the normally adjacent cagA and picA genes and did not involve IS605. Our results are discussed in terms of how cag-encoded proteins might help trigger the damaging inflammatory responses in the gastric epithelium and possible contributions of DNA rearrangements to genome evolution.
Collapse
Affiliation(s)
- N S Akopyants
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|