1
|
Karpov DS, Goncharenko AV, Usachev EV, Vasina DV, Divisenko EV, Chalenko YM, Pochtovyi AA, Ovchinnikov RS, Makarov VV, Yudin SM, Tkachuk AP, Gushchin VA. A Strategy for the Rapid Development of a Safe Vibrio cholerae Candidate Vaccine Strain. Int J Mol Sci 2021; 22:ijms222111657. [PMID: 34769085 PMCID: PMC8583953 DOI: 10.3390/ijms222111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022] Open
Abstract
Approximately 1/6 of humanity is at high risk of experiencing cholera epidemics. The development of effective and safe vaccines against Vibrio cholerae, the primary cause of cholera, is part of the public health measures to prevent cholera epidemics. Natural nontoxigenic V. cholerae isolates represent a source of new genetically improved and relatively safe vaccine strains. However, the genomic engineering of wild-type V. cholerae strains is difficult, and these strains are genetically unstable due to their high homologous recombination activity. We comprehensively characterized two V. cholerae isolates using genome sequencing, bioinformatic analysis, and microscopic, physiological, and biochemical tests. Genetic constructs were Gibson assembled and electrotransformed into V. cholerae. Bacterial colonies were assessed using standard microbiological and immunological techniques. As a result, we created a synthetic chromoprotein-expressing reporter operon. This operon was used to improve the V. cholerae genome engineering approach and monitor the stability of the genetic constructs. Finally, we created a stable candidate V. cholerae vaccine strain bearing a recA deletion and expressing the β-subunit of cholera toxin. Thus, we developed a strategy for the rapid creation of genetically stable and relatively safe candidate vaccine strains. This strategy can be applied not only to V. cholerae but also to other important human bacterial pathogens.
Collapse
Affiliation(s)
- Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str., 32, 119991 Moscow, Russia
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.G.); (E.V.U.); (D.V.V.); (A.P.T.); (V.A.G.)
- Correspondence: ; Tel.: +7-(499)-135-98-01
| | - Anna V. Goncharenko
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.G.); (E.V.U.); (D.V.V.); (A.P.T.); (V.A.G.)
| | - Evgenii V. Usachev
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.G.); (E.V.U.); (D.V.V.); (A.P.T.); (V.A.G.)
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
| | - Daria V. Vasina
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.G.); (E.V.U.); (D.V.V.); (A.P.T.); (V.A.G.)
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
| | - Elizaveta V. Divisenko
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
| | - Yaroslava M. Chalenko
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
| | - Andrei A. Pochtovyi
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Roman S. Ovchinnikov
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
| | - Valentin V. Makarov
- Centre for Strategic Planning of FMBA of Russia, 119121 Moscow, Russia; (V.V.M.); (S.M.Y.)
| | - Sergei M. Yudin
- Centre for Strategic Planning of FMBA of Russia, 119121 Moscow, Russia; (V.V.M.); (S.M.Y.)
| | - Artem P. Tkachuk
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.G.); (E.V.U.); (D.V.V.); (A.P.T.); (V.A.G.)
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
| | - Vladimir A. Gushchin
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.G.); (E.V.U.); (D.V.V.); (A.P.T.); (V.A.G.)
- N.F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya str., 18, 123098 Moscow, Russia; (E.V.D.); (Y.M.C.); (A.A.P.); (R.S.O.)
- Department of Virology, Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
2
|
Kamruzzaman M, Kelly M, Charles RC, Harris JB, Calderwood SB, Akter A, Biswas R, Kaisar MH, Bhuiyan TR, Ivers LC, Ternier R, Jerome JG, Pfister HB, Lu X, Soliman SE, Ruttens B, Saksena R, Mečárová J, Čížová A, Qadri F, Bystrický S, Kováč P, Xu P, Ryan ET. Defining Polysaccharide-Specific Antibody Targets against Vibrio cholerae O139 in Humans following O139 Cholera and following Vaccination with a Commercial Bivalent Oral Cholera Vaccine, and Evaluation of Conjugate Vaccines Targeting O139. mSphere 2021; 6:e0011421. [PMID: 34232076 PMCID: PMC8386440 DOI: 10.1128/msphere.00114-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cholera caused by Vibrio cholerae O139 could reemerge, and proactive development of an effective O139 vaccine would be prudent. To define immunoreactive and potentially immunogenic carbohydrate targets of Vibrio cholerae O139, we assessed immunoreactivities of various O-specific polysaccharide (OSP)-related saccharides with plasma from humans hospitalized with cholera caused by O139, comparing responses to those induced in recipients of a commercial oral whole-cell killed bivalent (O1 and O139) cholera vaccine (WC-O1/O139). We also assessed conjugate vaccines containing selected subsets of these saccharides for their ability to induce protective immunity using a mouse model of cholera. We found that patients with wild-type O139 cholera develop IgM, IgA, and IgG immune responses against O139 OSP and many of its fragments, but we were able to detect only a moderate IgM response to purified O139 OSP-core, and none to its fragments, in immunologically naive recipients of WC-O1/O139. We found that immunoreactivity of O139-specific polysaccharides with antibodies elicited by wild-type infection markedly increase when saccharides contain colitose and phosphate residues, that a synthetic terminal tetrasaccharide fragment of OSP is more immunoreactive and protectively immunogenic than complete OSP, that native OSP-core is a better protective immunogen than the synthetic OSP lacking core, and that functional vibriocidal activity of antibodies predicts in vivo protection in our model but depends on capsule thickness. Our results suggest that O139 OSP-specific responses are not prominent following vaccination with a currently available oral cholera vaccine in immunologically naive humans and that vaccines targeting V. cholerae O139 should be based on native OSP-core or terminal tetrasaccharide. IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae serogroup O1 or O139. Protection against cholera is serogroup specific, and serogroup specificity is defined by O-specific polysaccharide (OSP). Little is known about immunity to O139 OSP. In this study, we used synthetic fragments of the O139 OSP to define immune responses to OSP in humans recovering from cholera caused by V. cholerae O139, compared these responses to those induced by the available O139 vaccine, and evaluated O139 fragments in next-generation conjugate vaccines. We found that the terminal tetrasaccharide of O139 is a primary immune target but that the currently available bivalent cholera vaccine poorly induces an anti-O139 OSP response in immunologically naive individuals.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Aklima Akter
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Rajib Biswas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Louise C. Ivers
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Xiaowei Lu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Sameh E. Soliman
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Bart Ruttens
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Rina Saksena
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Akter A, Kelly M, Charles RC, Harris JB, Calderwood SB, Bhuiyan TR, Biswas R, Xu P, Kováč P, Qadri F, Ryan ET. Parenteral Vaccination with a Cholera Conjugate Vaccine Boosts Vibriocidal and Anti-OSP Responses in Mice Previously Immunized with an Oral Cholera Vaccine. Am J Trop Med Hyg 2021; 104:2024-2030. [PMID: 33872211 PMCID: PMC8176512 DOI: 10.4269/ajtmh.20-1511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/15/2021] [Indexed: 11/20/2022] Open
Abstract
Oral cholera vaccination protects against cholera; however, responses in young children are low and of short duration. The best current correlates of protection against cholera target Vibrio cholerae O-specific polysaccharide (anti-OSP), including vibriocidal responses. A cholera conjugate vaccine has been developed that induces anti-OSP immune responses, including memory B-cell responses. To address whether cholera conjugate vaccine would boost immune responses following oral cholera vaccination, we immunized mice with oral cholera vaccine Inaba CVD 103-HgR or buffer only (placebo) on day 0, followed by parenteral boosting immunizations on days 14, 42, and 70 with cholera conjugate vaccine Inaba OSP: recombinant tetanus toxoid heavy chain fragment or phosphate buffered saline (PBS)/placebo. Compared with responses in mice immunized with oral vaccine alone or intramuscular cholera conjugate vaccine alone, mice receiving combination vaccination developed significantly higher vibriocidal, IgM OSP-specific serum responses and OSP-specific IgM memory B-cell responses. A combined vaccination approach, which includes oral cholera vaccination followed by parenteral cholera conjugate vaccine boosting, results in increased immune responses that have been associated with protection against cholera. These results suggest that such an approach should be evaluated in humans.
Collapse
Affiliation(s)
- Aklima Akter
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Meagan Kelly
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts
| | - Richelle C Charles
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Jason B Harris
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,4Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.,5Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts
| | - Stephen B Calderwood
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Taufiqur R Bhuiyan
- 2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rajib Biswas
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Peng Xu
- 6NIDDK, LBC, National Institutes of Health, Bethesda, Maryland
| | - Pavol Kováč
- 6NIDDK, LBC, National Institutes of Health, Bethesda, Maryland
| | - Firdausi Qadri
- 2icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Edward T Ryan
- 1Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts.,3Department of Medicine, Harvard Medical School, Boston, Massachusetts.,7Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
4
|
A Self-Assembling Whole-Cell Vaccine Antigen Presentation Platform. J Bacteriol 2018; 200:JB.00752-17. [PMID: 29483163 DOI: 10.1128/jb.00752-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/20/2018] [Indexed: 01/09/2023] Open
Abstract
Diarrhea is the most common infection in children under the age of 5 years worldwide. In spite of this, only a few vaccines to treat infectious diarrhea exist, and many of the available vaccines are sparingly and sporadically administered. Major obstacles to the development and widespread implementation of vaccination include the ease and cost of production, distribution, and delivery. Here we present a novel, customizable, and self-assembling vaccine platform that exploits the Vibrio cholerae bacterial biofilm matrix for antigen presentation. We use this technology to create a proof-of-concept, live-attenuated whole-cell vaccine that is boosted by spontaneous association of a secreted protein antigen with the cell surface. Sublingual administration of this live-attenuated vaccine to mice confers protection against V. cholerae challenge and elicits the production of antigen-specific IgA in stool. The platform presented here enables the development of antigen-boosted vaccines that are simple to produce and deliver, addressing many of the obstacles to vaccination against diarrheal diseases. This may also serve as a paradigm for the development of broadly protective biofilm-based vaccines against other mucosal infections.IMPORTANCE Diarrheal disease is the most common infection afflicting children worldwide. In resource-poor settings, these infections are correlated with cognitive delay, stunted growth, and premature death. With the development of efficacious, affordable, and easily administered vaccines, such infections could be prevented. While a major focus of research on biofilms has been their elimination, here we harness the bacterial biofilm to create a customizable platform for cost-effective, whole-cell mucosal vaccines that self-incorporate secreted protein antigens. We use this platform to develop a sublingually administered live-attenuated prototype vaccine based on Vibrio cholerae This serves not only as a proof of concept for a multivalent vaccine against common bacterial enteric pathogens but also as a paradigm for vaccines utilizing other bacterial biofilms to target mucosal infections.
Collapse
|
5
|
Sublingual Adjuvant Delivery by a Live Attenuated Vibrio cholerae-Based Antigen Presentation Platform. mSphere 2018; 3:3/3/e00245-18. [PMID: 29875145 PMCID: PMC5990885 DOI: 10.1128/msphere.00245-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/16/2018] [Indexed: 01/06/2023] Open
Abstract
Diarrheal disease is the most common infectious disease of children in the developing world. Our goal is to develop a diarrheal antigen presentation platform based on whole Vibrio cholerae cells that does not depend on protein purification. We have previously shown the feasibility of genetically fusing antigens to the V. cholerae biofilm matrix protein RbmA for presentation on the cell surface. A mucosal adjuvant could improve immunogenicity of such a vaccine at the mucosal surface. Here we engineer a live attenuated V. cholerae vaccine to constitutively synthesize mmCT, a nontoxic form of cholera toxin. When this vaccine is delivered sublingually, in vivo-synthesized mmCT acts as both an adjuvant and antigen. This could greatly increase the magnitude and duration of the immune response elicited by codelivered heterologous antigens. A sublingually delivered heterologous antigen presentation platform that does not depend on antigen or adjuvant purification would be of great benefit in protection against diarrheal disease. In proof-of-concept studies, we previously showed that when a fusion protein comprised of the Vibrio cholerae biofilm matrix protein RbmA and the B subunit of cholera toxin (R-CTB) is expressed from a plasmid within V. cholerae, R-CTB is sequestered in the biofilm matrix, leading to decoration of the cell surface. Sublingual delivery of live attenuated R-CTB-decorated cells results in a mucosal immune response to CTB. To improve the immune response to diarrheal antigens presented by this platform, we have engineered our live attenuated vaccine to express the mucosal adjuvant mmCT (i.e., multiply mutated CT). Here we report that delivery of this adjuvant via sublingual administration of our vaccine enhances the mucosal immune response to V. cholerae LPS and elicits a systemic and mucosal immune response to CTB. However, provision of R-CTB with mmCT selectively blunts the mucosal immune response to CTB. We propose that mmCT delivered by this live attenuated Vibrio cholerae vaccine platform may serve as a mucosal adjuvant for heterologous antigens, provided they are not too similar to mmCT. IMPORTANCE Diarrheal disease is the most common infectious disease of children in the developing world. Our goal is to develop a diarrheal antigen presentation platform based on whole Vibrio cholerae cells that does not depend on protein purification. We have previously shown the feasibility of genetically fusing antigens to the V. cholerae biofilm matrix protein RbmA for presentation on the cell surface. A mucosal adjuvant could improve immunogenicity of such a vaccine at the mucosal surface. Here we engineer a live attenuated V. cholerae vaccine to constitutively synthesize mmCT, a nontoxic form of cholera toxin. When this vaccine is delivered sublingually, in vivo-synthesized mmCT acts as both an adjuvant and antigen. This could greatly increase the magnitude and duration of the immune response elicited by codelivered heterologous antigens.
Collapse
|
6
|
A Cholera Conjugate Vaccine Containing O-specific Polysaccharide (OSP) of V. cholerae O1 Inaba and Recombinant Fragment of Tetanus Toxin Heavy Chain (OSP:rTTHc) Induces Serum, Memory and Lamina Proprial Responses against OSP and Is Protective in Mice. PLoS Negl Trop Dis 2015; 9:e0003881. [PMID: 26154421 PMCID: PMC4495926 DOI: 10.1371/journal.pntd.0003881] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vibrio cholerae is the cause of cholera, a severe watery diarrhea. Protection against cholera is serogroup specific. Serogroup specificity is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). METHODOLOGY Here we describe a conjugate vaccine for cholera prepared via squaric acid chemistry from the OSP of V. cholerae O1 Inaba strain PIC018 and a recombinant heavy chain fragment of tetanus toxin (OSP:rTTHc). We assessed a range of vaccine doses based on the OSP content of the vaccine (10-50 μg), vaccine compositions varying by molar loading ratio of OSP to rTTHc (3:1, 5:1, 10:1), effect of an adjuvant, and route of immunization. PRINCIPLE FINDINGS Immunized mice developed prominent anti-OSP and anti-TT serum IgG responses, as well as vibriocidal antibody and memory B cell responses following intramuscular or intradermal vaccination. Mice did not develop anti-squarate responses. Intestinal lamina proprial IgA responses targeting OSP occurred following intradermal vaccination. In general, we found comparable immune responses in mice immunized with these variations, although memory B cell and vibriocidal responses were blunted in mice receiving the highest dose of vaccine (50 μg). We found no appreciable change in immune responses when the conjugate vaccine was administered in the presence or absence of immunoadjuvant alum. Administration of OSP:rTTHc resulted in 55% protective efficacy in a mouse survival cholera challenge model. CONCLUSION We report development of an Inaba OSP:rTTHc conjugate vaccine that induces memory responses and protection against cholera in mice. Development of an effective cholera conjugate vaccine that induces high level and long-term immune responses against OSP would be beneficial, especially in young children who respond poorly to polysaccharide antigens.
Collapse
|
7
|
Comparative proteomic analysis reveals activation of mucosal innate immune signaling pathways during cholera. Infect Immun 2015; 83:1089-103. [PMID: 25561705 DOI: 10.1128/iai.02765-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vibrio cholerae O1 is a major cause of acute watery diarrhea in over 50 countries. Evidence suggests that V. cholerae O1 may activate inflammatory pathways, and a recent study of a Bangladeshi population showed that variants in innate immune genes play a role in mediating susceptibility to cholera. We analyzed human proteins present in the small intestine of patients infected with V. cholerae O1 to characterize the host response to this pathogen. We collected duodenal biopsy specimens from patients with acute cholera after stabilization and again 30 days after initial presentation. Peptides extracted from biopsy specimens were sequenced and quantified using label-free mass spectrometry and SEQUEST. Twenty-seven host proteins were differentially abundant between the acute and convalescent stages of infection; the majority of these have known roles in innate defense, cytokine production, and apoptosis. Immunostaining confirmed that two proteins, WARS and S100A8, were more abundant in lamina propria cells during the acute stage of cholera. Analysis of the differentially abundant proteins revealed the activation of key regulators of inflammation by the innate immune system, including Toll-like receptor 4, nuclear factor kappa-light-chain-enhancer of activated B cells, mitogen-activated protein kinases, and caspase-dependent inflammasomes. Interleukin-12β (IL-12β) was a regulator of several proteins that were activated during cholera, and we confirmed that IL-12β was produced by lymphocytes recovered from duodenal biopsy specimens of cholera patients. Our study shows that a broad inflammatory response is generated in the gut early after onset of cholera, which may be critical in the development of long-term mucosal immunity against V. cholerae O1.
Collapse
|
8
|
Alam MM, Bufano MK, Xu P, Kalsy A, Yu Y, Freeman YW, Sultana T, Rashu MR, Desai I, Eckhoff G, Leung DT, Charles RC, LaRocque RC, Harris JB, Clements JD, Calderwood SB, Qadri F, Vann WF, Kováč P, Ryan ET. Evaluation in mice of a conjugate vaccine for cholera made from Vibrio cholerae O1 (Ogawa) O-specific polysaccharide. PLoS Negl Trop Dis 2014; 8:e2683. [PMID: 24516685 PMCID: PMC3916310 DOI: 10.1371/journal.pntd.0002683] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/18/2013] [Indexed: 11/18/2022] Open
Abstract
Background Protective immunity against cholera is serogroup specific. Serogroup specificity in Vibrio cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Methodology Here we report the evaluation in mice of a conjugate vaccine for cholera (OSP:TThc) made from V. cholerae O1 Ogawa O-Specific Polysaccharide–core (OSP) and recombinant tetanus toxoid heavy chain fragment (TThc). We immunized mice intramuscularly on days 0, 21, and 42 with OSP:TThc or OSP only, with or without dmLT, a non-toxigenic immunoadjuvant derived from heat labile toxin of Escherichia coli. Principal Findings We detected significant serum IgG antibody responses targeting OSP following a single immunization in mice receiving OSP:TThc with or without adjuvant. Anti-LPS IgG responses were detected following a second immunization in these cohorts. No anti-OSP or anti-LPS IgG responses were detected at any time in animals receiving un-conjugated OSP with or without immunoadjuvant, and in animals receiving immunoadjuvant alone. Responses were highest following immunization with adjuvant. Serum anti-OSP IgM responses were detected in mice receiving OSP:TThc with or without immunoadjuvant, and in mice receiving unconjugated OSP. Serum anti-LPS IgM and vibriocidal responses were detected in all vaccine cohorts except in mice receiving immunoadjuvant alone. No significant IgA anti-OSP or anti-LPS responses developed in any group. Administration of OSP:TThc and adjuvant also induced memory B cell responses targeting OSP and resulted in 95% protective efficacy in a mouse lethality cholera challenge model. Conclusion We describe a protectively immunogenic cholera conjugate in mice. Development of a cholera conjugate vaccine could assist in inducing long-term protective immunity, especially in young children who respond poorly to polysaccharide antigens. Cholera is a severe dehydrating diarrheal illness of humans caused by organisms Vibrio cholerae serogroups O1 or O139 serogroup organisms. Protective immunity against cholera is serogroup specific. Serogroup specificity in V. cholerae is determined by the O-specific polysaccharide (OSP) of lipopolysaccharide (LPS). Generally, polysaccharides are poorly immunogenic, especially in young children. Unfortunately, children bear a large burden of cholera globally. Here we describe a novel cholera conjugate vaccine and show that it induces immune responses in mice, including memory responses, to OSP, the T cell-independent antigen that probably is the target of protective immunity to cholera. These responses were highest following immunization of the vaccine with a novel immunoadjuvant, dmLT. We also show that immunization of mice with this conjugate vaccine protects against challenge with wild-type V. cholerae. A protectively immunogenic cholera conjugate vaccine that induces long-term memory responses could have particular utility in young children who are most at risk of cholera.
Collapse
Affiliation(s)
- Mohammad Murshid Alam
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Megan Kelly Bufano
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anuj Kalsy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Y. Yu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Y. Wu Freeman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Tania Sultana
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Md. Rasheduzzaman Rashu
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - Ishaan Desai
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Grace Eckhoff
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John D. Clements
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research, Bangladesh (ICDDR,B), Dhaka, Bangladesh
| | - W. F. Vann
- CBER, FDA, Laboratory of Bacterial Toxins, Bethesda, Maryland, United States of America
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Quach J, St-Pierre J, Chadee K. The future for vaccine development against Entamoeba histolytica. Hum Vaccin Immunother 2014; 10:1514-21. [PMID: 24504133 DOI: 10.4161/hv.27796] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amebiasis, one of the top three parasitic causes of mortality worldwide. In the majority of infected individuals, E. histolytica asymptomatically colonizes the large intestine, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Vaccinations using native and recombinant forms of the parasite Gal-lectin have been successful in protecting animals against intestinal amebiasis and amebic liver abscess. Protection against amebic liver abscesses has also been reported by targeting other E. histolytica components including the serine-rich protein and the 29-kDa-reductase antigen. To date, vaccines against the Gal-lectin hold the most promise but clinical trials will be required to validate its efficacy in humans. Here, we review the current strategies and future perspectives involved in the development of a vaccine against E. histolytica.
Collapse
Affiliation(s)
- Jeanie Quach
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Joëlle St-Pierre
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Kris Chadee
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| |
Collapse
|
10
|
Barroso L, Abhyankar M, Noor Z, Read K, Pedersen K, White R, Fox C, Petri WA, Lyerly D. Expression, purification, and evaluation of recombinant LecA as a candidate for an amebic colitis vaccine. Vaccine 2013; 32:1218-24. [PMID: 23827311 DOI: 10.1016/j.vaccine.2013.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/06/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022]
Abstract
Entamoeba histolytica, which causes amebic colitis and liver abscess, is considered a major enteric pathogen in residents and travelers to developing countries where the disease is endemic. Interaction of this protozoan parasite with the intestine is mediated through the binding of the trophozoite stage to intestinal mucin and epithelium via a galactose and N-acetyl-d-galactosamine (Gal/GalNAc) lectin comprised of a disulfide linked heavy (ca. 180 kDa) and light chain (ca. 35 kDa) and a noncovalently bound intermediate subunit (ca. 150 kDa). Our efforts to develop a vaccine against this pathogen have focused on an internal 578 amino acid fragment, designated LecA, located within the cysteine-rich region of the heavy chain subunit because: (i) it is a major target of adherence-blocking antibodies of seropositive individuals and (ii) vaccination with his-tagged LecA provides protection in animal models. We developed a purification process for preparing highly purified non-tagged LecA using a codon-optimized gene expressed in Escherichia coli. The process consisted of: (i) cell lysis, collection and washing of inclusion bodies; (ii) solubilization and refolding of denatured LecA; and (iii) a polishing gel filtration step. The purified fragment existed primarily as a random coil with β-sheet structure, contained low endotoxin and nucleic acid, was highly immunoreactive, and elicited antibodies that recognized native lectin and that inhibited in vitro adherence of trophozoites to CHO cells. Immunization of CBA mice with LecA resulted in significant protection against cecal colitis. Our procedure yields sufficient amounts of highly purified LecA for future studies on stability, immunogenicity, and protection with protein-adjuvant formulations.
Collapse
Affiliation(s)
- L Barroso
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - M Abhyankar
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - Z Noor
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - K Read
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - K Pedersen
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - R White
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - C Fox
- Infectious Disease Research Institute, Seattle, WA, USA
| | - W A Petri
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - D Lyerly
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA.
| |
Collapse
|
11
|
Transcutaneous immunization with a Vibrio cholerae O1 Ogawa synthetic hexasaccharide conjugate following oral whole-cell cholera vaccination boosts vibriocidal responses and induces protective immunity in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:594-602. [PMID: 22357651 DOI: 10.1128/cvi.05689-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A shortcoming of currently available oral cholera vaccines is their induction of relatively short-term protection against cholera compared to that afforded by wild-type disease. We were interested in whether transcutaneous or subcutaneous boosting using a neoglycoconjugate vaccine made from a synthetic terminal hexasaccharide of the O-specific polysaccharide of Vibrio cholerae O1 (Ogawa) coupled to bovine serum albumin as a carrier (CHO-BSA) could boost lipopolysaccharide (LPS)-specific and vibriocidal antibody responses and result in protective immunity following oral priming immunization with whole-cell cholera vaccine. We found that boosting with CHO-BSA with immunoadjuvantative cholera toxin (CT) or Escherichia coli heat-labile toxin (LT) following oral priming with attenuated V. cholerae O1 vaccine strain O395-NT resulted in significant increases in serum anti-V. cholerae LPS IgG, IgM, and IgA (P < 0.01) responses as well as in anti-Ogawa (P < 0.01) and anti-Inaba (P < 0.05) vibriocidal titers in mice. The LPS-specific IgA responses in stool were induced by transcutaneous (P < 0.01) but not subcutaneous immunization. Immune responses following use of CT or LT as an adjuvant were comparable. In a neonatal mouse challenge assay, immune serum from boosted mice was associated with 79% protective efficacy against death. Our results suggest that transcutaneous and subcutaneous boosting with a neoglycoconjugate following oral cholera vaccination may be an effective strategy to prolong protective immune responses against V. cholerae.
Collapse
|
12
|
Bharati K, Ganguly NK. Cholera toxin: a paradigm of a multifunctional protein. Indian J Med Res 2011; 133:179-87. [PMID: 21415492 PMCID: PMC3089049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cholera toxin (CT) was discovered exactly half a century ago by S.N. De. We have come a long way since this epoch-making discovery. Retrospectively, science had to wait a long time since Koch's prediction of the existence of a toxin, and its actual discovery by De. CT is not just another enterotoxin that causes the signs and symptoms of the dreaded disease, cholera. It is unique in many respects, starting from its structure to its functions. CT is a multifunctional protein that is capable of influencing the immune system in many ways. It not only has remarkable adjuvant properties, but also acts as an anti-inflammatory agent, by modulating specific signal transduction pathways. Its immunomodulatory properties can be harnessed for treatment of various autoimmune disorders, and have shown great promise in the area of immunotherapeutics. CT can truly be considered as a paradigm of a multifunctional protein.
Collapse
Affiliation(s)
| | - Nirmal K. Ganguly
- National Institute of Immunology, New Delhi, India,Reprint requests: Prof. N.K. Ganguly, Distinguished Biotechnology Research Professor & Advisor, Translational Health Science and Technology Institute, National Institute of Immunology, Aruna Asaf Ali Marg, J.N.U. Complex, New Delhi 110 067, India e-mail:
| |
Collapse
|
13
|
Rollenhagen JE, Kalsy A, Saksena R, Sheikh A, Alam MM, Qadri F, Calderwood SB, Kovác P, Ryan ET. Transcutaneous immunization with a synthetic hexasaccharide-protein conjugate induces anti-Vibrio cholerae lipopolysaccharide responses in mice. Vaccine 2009; 27:4917-22. [PMID: 19563890 DOI: 10.1016/j.vaccine.2009.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 05/29/2009] [Accepted: 06/09/2009] [Indexed: 01/20/2023]
Abstract
Antibodies specific for Vibrio cholerae lipopolysaccaride (LPS) are common in humans recovering from cholera, and constitute a primary component of the vibriocidal response, a serum complement-mediated bacteriocidal response correlated with protection against cholera. In order to determine whether transcutaneous immunization (TCI) with a V. cholerae neoglycoconjugate (CHO-BSA) comprised of a synthetic terminal hexasaccharide of the O-specific polysaccharide of V. cholerae O1 (Ogawa) conjugated with bovine serum albumin (BSA) could induce anti-V. cholerae LPS and vibriocidal responses, we applied CHO-BSA transcutaneously in the presence or absence of the immune adjuvant cholera toxin (CT) to mice. Transcutaneously applied neoglycoconjugate elicited prominent V. cholerae specific LPS IgG responses in the presence of CT, but not IgM or IgA responses. CT applied on the skin induced strong IgG and IgA serum responses. TCI with neoglycoconjugate did not elicit detectable vibriocidal responses, protection in a mouse challenge assay, or stool anti-V. cholerae IgA responses, irrespective of the presence or absence of CT. Our results suggest that transcutaneously applied synthetic V. cholerae neoglycoconjugate is safe and immunogenic, but predominantly induces systemic LPS responses of the IgG isotype.
Collapse
|
14
|
Enhanced vaccine antigen delivery by Salmonella using antibiotic-free operator-repressor titration-based plasmid stabilisation compared to chromosomal integration. Microb Pathog 2009; 46:201-6. [PMID: 19490834 DOI: 10.1016/j.micpath.2009.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/08/2009] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
Live attenuated bacteria provide the potential to replace traditional needle-based vaccination with an orally administered vaccine. The heterologous antigen gene is usually transformed as a multi-copy plasmid into the bacterial cell, but plasmids in live bacterial vaccine strains are often unstable, so an alternative approach is to integrate the single-copy antigen gene into the bacterial chromosome. We report a comparison between the chromosomally integrated and the plasmid-borne Bacillus anthracis protective antigen gene in live Salmonella enterica serovar Typhimurium, using the Operator-Repressor Titration (ORT) system to ensure stable plasmid maintenance. These studies demonstrate that the stabilised plasmid approach of gene expression produced greater amounts of antigenic protein, which in turn resulted in higher antibody responses and levels of protection in mice.
Collapse
|
15
|
Construction of a Vibrio cholerae prototype vaccine strain O395-N1-E1 which accumulates cell-associated cholera toxin B subunit. Vaccine 2008; 26:5443-8. [PMID: 18582519 DOI: 10.1016/j.vaccine.2008.05.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 05/21/2008] [Accepted: 05/28/2008] [Indexed: 11/24/2022]
Abstract
Because of its production and use in Vietnam, the most widely used oral cholera vaccine consists of heat- or formalin-killed Vibrio cholerae whole cells (WC). An earlier version of this type of vaccine called whole cell-recombinant B subunit vaccine (BS-WC) produced in Sweden also contained the B subunit of cholera toxin (CTB). Both WC and BS-WC vaccines produced moderate levels of protection in field trials designed to evaluate their cholera efficacy. V. cholerae cells in these vaccines induce antibacterial immunity, and CTB contributes to the vaccine's efficacy presumably by stimulating production of anti-toxin neutralizing antibody. Although more effective than the WC vaccine, the BS-WC vaccine has not been adopted for manufacture by developing world countries primarily because the CTB component is difficult to manufacture and include in the vaccine in the doses needed to induce significant immune responses. We reasoned this was a technical problem that might be solved by engineering strains of V. cholerae that express cell-associated CTB that would co-purify with the bacterial cell fraction during the manufacture of WC vaccine. Here we report that construction of a V. cholerae O1 classical strain, O395-N1-E1, that has been engineered to accumulate CTB in the periplasmic fraction by disrupting the epsE gene of type II secretion pathway. O395-N1-E1 induces anti-CTB IgG and vibriocidal antibodies in mice immunized with two doses of formalin killed whole cells. Intraperitoneal immunization of mice with O395-N1-E1 induced a significantly higher anti-CTB antibody response compared to that of the parental strain, O395-N1. Our results suggest that this prototype cholera vaccine candidate strain may assist in preparing improved and inexpensive oral BS-WC cholera vaccine without the need to purify CTB separately.
Collapse
|
16
|
Teixeira JE, Huston CD. Participation of the serine-rich Entamoeba histolytica protein in amebic phagocytosis of apoptotic host cells. Infect Immun 2008; 76:959-66. [PMID: 18086807 PMCID: PMC2258814 DOI: 10.1128/iai.01455-07] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/28/2007] [Accepted: 12/07/2007] [Indexed: 11/20/2022] Open
Abstract
Entamoeba histolytica is an intestinal ameba that causes dysentery and liver abscesses. Cytotoxicity and phagocytosis of host cells characterize invasive E. histolytica infection. Prior to phagocytosis of host cells, E. histolytica induces apoptotic host cell death, using a mechanism that requires contact via an amebic galactose-specific lectin. However, lectin inhibition only partially blocks phagocytosis of already dead cells, implicating at least one additional receptor in phagocytosis. To identify receptors for engulfment of apoptotic cells, monoclonal antibodies against E. histolytica membrane antigens were screened for inhibition of phagocytosis. Of 43 antibodies screened, one blocked lectin-independent uptake of apoptotic cells, with >90% inhibition at a dose of 20 microg/ml (P < 0.0003 versus control). The same antibody also inhibited adherence to apoptotic lymphocytes and, to a lesser extent, adherence to and killing of viable lymphocytes. The antigen recognized by the inhibitory antibody was purified by affinity chromatography and identified by liquid chromatography-mass spectrometry as the serine-rich E. histolytica protein (SREHP). Consistent with this, the inhibitory antibody bound to recombinant SREHP present in bacterial lysates on immunoblots. The SREHP is an abundant immunogenic surface protein of unclear function. The results of this unbiased antibody screen strongly implicate the SREHP as a participant in E. histolytica phagocytosis and suggest that it may play an important role in adherence to apoptotic cells.
Collapse
Affiliation(s)
- Jose E Teixeira
- Department of Medicine, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
17
|
Cancer immunotherapy based on recombinant Salmonella enterica serovar Typhimurium aroA strains secreting prostate-specific antigen and cholera toxin subunit B. Cancer Gene Ther 2007; 15:85-93. [PMID: 18084243 DOI: 10.1038/sj.cgt.7701109] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Prostate cancer is the most common malignant tumor in men and is normally associated with increased serum levels of prostate-specific antigen (PSA). Therefore, PSA is one potential target for a prostate cancer vaccine. In this study we analyzed the functionality of new bacterial PSA vaccines, expressed and secreted via the hemolysin (HlyA) secretion system of Escherichia coli, the prototype of Type I secretion systems (T1SS) using an attenuated Salmonella enterica serovar Typhimurium aroA strain as carrier. The data demonstrate that a bacterial live vaccine encompassing T1SS in combination with cholera toxin subunit B can be successfully used for delivery of PSA to induce cytotoxic CD8+ T-cell responses resulting in an efficient prevention of tumor growth in mice.
Collapse
|
18
|
Rhie GE, Jung HM, Park J, Kim BS, Mekalanos JJ. Construction of cholera toxin B subunit-producing Vibrio cholerae strains using the Mariner-FRT transposon delivery system. ACTA ACUST UNITED AC 2007; 52:23-8. [PMID: 18070076 DOI: 10.1111/j.1574-695x.2007.00346.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The most widely used oral whole-cell-recombinant B subunit cholera vaccine contains the nontoxic cholera toxin B subunit (CTXB) and either heat- or formalin-killed Vibrio cholerae O1 strains. Vibrio cholerae O1 strains in the vaccine provide antibacterial immunity, and CTXB contributes to the vaccine's efficacy by stimulating production of anti-CTXB antibody. Various attempts have been made to increase CTXB production. In this study, the mariner-FRT transposon delivery system developed by Chiang and Mekalanos was used to place the ctxB gene under the control of a strong chromosomal promoter in a nontoxigenic V. cholerae El Tor strain, M7922. The expression level of CTXB in transposon insertion mutant clones was screened by ganglioside-dependent enzyme-linked immunosorbent assay. Among CTXB-producing V. cholerae clones that were isolated, M7922-C1 produced the highest amount of CTXB (3.17+/-1.69 microg mL(-1)). M7922-C1 harbors a single insertion of ctxB into VC0972, which encodes a putative porin protein. Although the level of CTXB expression in this strain was not exceptionally high, this study indicates the possibility of using this delivery system to construct vaccine strains that overexpress specific antigens.
Collapse
Affiliation(s)
- Gi-Eun Rhie
- Division of High-risk Pathogen Research, Center for Infectious Diseases, National Institute of Health, Seoul, Korea.
| | | | | | | | | |
Collapse
|
19
|
Roland KL, Cloninger C, Kochi SK, Thomas LJ, Tinge SA, Rouskey C, Killeen KP. Construction and preclinical evaluation of recombinant Peru-15 expressing high levels of the cholera toxin B subunit as a vaccine against enterotoxigenic Escherichia coli. Vaccine 2007; 25:8574-84. [DOI: 10.1016/j.vaccine.2007.09.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 09/18/2007] [Accepted: 09/25/2007] [Indexed: 11/27/2022]
|
20
|
Silva AJ, Eko FO, Benitez JA. Exploiting cholera vaccines as a versatile antigen delivery platform. Biotechnol Lett 2007; 30:571-9. [PMID: 18008168 DOI: 10.1007/s10529-007-9594-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Accepted: 10/29/2007] [Indexed: 02/03/2023]
Abstract
The development of safe, immunogenic and protective cholera vaccine candidates makes possible their use as a versatile antigen delivery platform. Foreign antigens can be delivered to the immune system with cholera vaccines by expressing heterologous antigens in live attenuated vectors, as fusion proteins with cholera toxin subunits combined with inactivated Vibrio cholerae whole cells or by exposing them on the surface of V. cholerae ghosts. Progress in our understanding of the genes expressed by V. cholerae during infection creates unprecedented opportunities to develop an improved generation of vaccine vectors to induce immune protection against a broad range of pathogenic organisms.
Collapse
Affiliation(s)
- Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, 720 Westview Dr., SW Atlanta, GA 30310, USA.
| | | | | |
Collapse
|
21
|
Abstract
Entamoeba histolytica is a eukaryotic protozoan parasite and is the causative agent of amebic colitis and amebic liver abscess. Many insights into the innate and acquired immune responses to infection with E. histolytica have been made in recent years. These findings have provided a foundation for producing a vaccine that could help to prevent the initial establishment of infection in the intestinal wall. The galactose and N-acetyl-D-galactosamine-specific lectin on the surface of the ameba is an immunodominant molecule that is highly conserved and has an integral role in the stimulation of these immune responses. The structure of the lectin has been defined, and the heavy subunit with its cysteine-rich region has been demonstrated in animal models to have some efficacy as a possible vaccine agent for prevention of amebic infection. Finding an ideal animal model of amebic intestinal infection has been difficult, but the C3H mouse and severe combined immunodeficient mouse-human intestinal xenograft models have both provided valuable insights into the first line of immune defense at the mucosal wall of the colon. Providing safe food and water to all people in the developing world is a formidable task that is not achievable in the foreseeable future. However, a vaccine for amebiasis could make a significant impact on the morbidity and mortality from the disease. Many components of the ameba are immunogenic and may serve as targets for a future vaccine, including the galactose and N-acetyl-D-galactosamine lectin, the serine-rich E. histolytica protein, cysteine proteinases, lipophosphoglycans, amebapores and the 29-kDa protein.
Collapse
Affiliation(s)
- Omer A Chaudhry
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1340, USA.
| | | |
Collapse
|
22
|
Abstract
Amoebiasis, infection by the protozoan parasite Entamoeba histolytica, remains a global health problem, despite the availability of effective treatment. While improved sanitation could lead to the eradication of this disease, it is unlikely that this will occur worldwide in the foreseeable future; thus alternative measures must be pursued. One approach is to develop a vaccine to prevent this deadly disease. Clinical studies indicate that mucosal immunity may provide some protection against recurrent intestinal infection with E. histolytica, but there is no clear evidence that protective immunity develops after amoebic liver abscess. Over the past decade, progress in vaccine development has been facilitated by new animal models that allow better testing of potential vaccine candidates and the application of recombinant technology to vaccine design. Oral vaccines and DNA-based vaccines have been successfully tested in animals models for immunogenicity and efficacy. There has been significant progress on a number of fronts, but there are unanswered questions regarding the effectiveness of immune responses in preventing disease in man and, as yet, no testing of any of these vaccines in humans has been performed. In addition, there are strong economic barriers to developing an amoebiasis vaccine and questions about how and where an effective vaccine would be utilized.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Hazra A, Silva AJ, Benitez JA. Expression of foreign proteins in a Vibrio cholerae vaccine strain using the stationary phase hemagglutinin/protease promoter. Biotechnol Lett 2007; 29:1093-7. [PMID: 17431549 DOI: 10.1007/s10529-007-9359-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 03/07/2007] [Indexed: 11/25/2022]
Abstract
The use of the hemagglutinin(HA)/protease promoter and secretion signals to drive expression and secretion of a foreign antigen in a live genetically attenuated cholera vaccine candidate is demonstrated. A Vibrio cholerae vaccine strain, containing a HA/protease-tetanus toxin C fragment (TCF) fusion, produced soluble-and cell-associated TCF. The fraction of TCF secreted to the culture medium was degraded unless expressed in a HA/protease-defective vaccine strain. Comparison of the hapA promoter with the strong Tac promoter using quantitative real time PCR revealed that at least five times more TCF mRNA was produced when expressed from the hapA promoter.
Collapse
Affiliation(s)
- Anupam Hazra
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | |
Collapse
|
24
|
Abstract
Live, orally administered, attenuated vaccine strains of Vibrio cholerae have many theoretical advantages over killed vaccines. A single oral inoculation could result in intestinal colonization and rapid immune responses, obviating the need for repetitive dosing. Live V. cholerae organisms can also respond to the intestinal environment and immunological exposure to in vivo expressed bacterial products, which could result in improved immunological protection against wild-type V. cholerae infection. The concern remains that live oral cholera vaccines may be less effective among partially immune individuals in cholera endemic areas as pre-existing antibodies can inhibit live organisms and decrease colonization of the gut. A number of live oral cholera vaccines have been developed to protect against cholera caused by the classical and El Tor serotypes of V. cholerae O1, including CVD 103-HgR, Peru-15 and V. cholerae 638. A number of live oral cholera vaccines have also been similarly developed to protect against cholera caused by V. cholerae O139, including CVD 112 and Bengal-15. Live, orally administered, attenuated cholera vaccines are in various stages of development and evaluation.
Collapse
Affiliation(s)
- Edward T Ryan
- Massachusetts General Hospital Tropical & Geographic Medicine Center, Division of Infectious Diseases, Jackson 504 55 Fruit Street, Boston, MA 02114, USA.
| | | | | |
Collapse
|
25
|
Favre D, Lüdi S, Stoffel M, Frey J, Horn MP, Dietrich G, Spreng S, Viret JF. Expression of enterotoxigenic Escherichia coli colonization factors in Vibrio cholerae. Vaccine 2006; 24:4354-68. [PMID: 16581160 DOI: 10.1016/j.vaccine.2006.02.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/22/2006] [Accepted: 02/28/2006] [Indexed: 10/24/2022]
Abstract
As a first step towards a vaccine against diarrhoeal disease caused by enterotoxigenic Escherichia coli (ETEC), we have studied the expression of several ETEC antigens in the live attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Colonization factors (CF) CFA/I, CS3, and CS6 were expressed at the surface of V. cholerae CVD 103-HgR. Both CFA/I and CS3 required the co-expression of a positive regulator for expression, while CS6 was expressed without regulation. Up-regulation of CF expression in V. cholerae was very efficient, so that high amounts of CFA/I and CS3 similar to those in wild-type ETEC were synthesized from chromosomally integrated CF and positive regulator loci. Increasing either the operon and/or the positive regulator gene dosage resulted in only a small increase in CFA/I and CS3 expression. In contrast, the level of expression of the non-regulated CS6 fimbriae appeared to be more dependent on gene dosage. While CF expression in wild-type ETEC is known to be tightly thermoregulated and medium dependent, it seems to be less stringent in V. cholerae. Finally, co-expression of two or three CFs in the same strain was efficient even under the control of one single regulator gene.
Collapse
Affiliation(s)
- Didier Favre
- Berna Biotech Ltd., Department of Live Bacterial Vaccines, Rehhagstrasse 79, 3018 Bern, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Snow MJ, Stanley SL. Recent Progress in Vaccines for Amebiasis. Arch Med Res 2006; 37:280-7. [PMID: 16380333 DOI: 10.1016/j.arcmed.2005.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 09/20/2005] [Indexed: 11/20/2022]
Abstract
The persistence of amebiasis as a global health problem, despite the availability of effective treatment, has led to the search for vaccines to prevent this deadly disease. Recent clinical studies suggest that mucosal immunity could provide some protection against recurrent intestinal infection with E. histolytica, but there is contradictory evidence about protective immunity after amebic liver abscess. Progress in vaccine development has been facilitated by new animal models that allow better testing of potential vaccine candidates and by the application of recombinant technology to vaccine design. Oral vaccines utilizing amebic antigens either co-administered with some form of cholera toxin or expressed in attenuated strains of Salmonella or Vibrio cholera have been developed and tested in animals for mucosal immunogenicity. Although there has been significant progress on a number of fronts, there are unanswered questions regarding the effectiveness of immune responses in preventing disease in man and, as yet, no testing of any of these vaccines in humans has been performed.
Collapse
Affiliation(s)
- Margaret J Snow
- Department of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
27
|
Abstract
Developing efficient adjuvants for human vaccines, in order to elicit broad and sustained immune responses at systemic or mucosal levels, remains a challenge for the vaccine industry. Conventional approaches in the past have been largely empirical and partially successful. Selection was based on the balance between toxicity and adjuvanticity, first in an animal model, and then in clinical trials. The advent of improved biochemical techniques has allowed for the purification or construction of new and well characterised adjuvants. In addition, recent advances in our understanding of the immune system, most particularly with respect to early proinflammatory signals, have led to the identification of new biological targets for vaccine adjuvants. In particular, one can now choose adjuvants able to selectively induce T helper (Th)-1 and/or Th2 responses, according to the vaccine target and the desired immune response. As our knowledge of the cell types and cytokines interacting in the immune responses increases, so does our understanding of the mode of action of adjuvants, as well as the way in which they produce adverse effects.
Collapse
Affiliation(s)
- Bruno Guy
- Research Department, Aventis Pasteur, Marcy l'Etoile, France.
| | | |
Collapse
|
28
|
Antigen Delivery Systems II: Development of Live Recombinant Attenuated Bacterial Antigen and DNA Vaccine Delivery Vector Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50060-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Affiliation(s)
- Camille N Kotton
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
30
|
Garmory HS, Leary SEC, Griffin KF, Williamson ED, Brown KA, Titball RW. The use of live attenuated bacteria as a delivery system for heterologous antigens. J Drug Target 2004; 11:471-9. [PMID: 15203915 DOI: 10.1080/10611860410001670008] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Live attenuated mutants of several pathogenic bacteria have been exploited as potential vaccine vectors for heterologous antigen delivery by the mucosal route. Such live vectors offer the advantage of potential delivery in a single oral, intranasal or inhalational dose, stimulating both systemic and mucosal immune responses. Over the years, a range of strategies have been developed to allow controlled and stable delivery of antigens and improved immunogenicity where required. Most of these approaches have been evaluated in Salmonella vaccine vectors and, as a result, several live attenuated recombinant Salmonella vaccines are now in human clinical trials. In this review, these strategies and their use in the development of a delivery system for the Yersinia pestis V antigen are described.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Heterophile/genetics
- Antigens, Heterophile/immunology
- Bacterial Vaccines/administration & dosage
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Humans
- Mouth Mucosa
- Mucous Membrane
- Pore Forming Cytotoxic Proteins
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Yersinia pestis/immunology
Collapse
|
31
|
Asaduzzaman M, Ryan ET, John M, Hang L, Khan AI, Faruque ASG, Taylor RK, Calderwood SB, Qadri F. The major subunit of the toxin-coregulated pilus TcpA induces mucosal and systemic immunoglobulin A immune responses in patients with cholera caused by Vibrio cholerae O1 and O139. Infect Immun 2004; 72:4448-54. [PMID: 15271902 PMCID: PMC470637 DOI: 10.1128/iai.72.8.4448-4454.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diarrhea caused by Vibrio cholerae is known to give long-lasting protection against subsequent life-threatening illness. The serum vibriocidal antibody response has been well studied and has been shown to correlate with protection. However, this systemic antibody response may be a surrogate marker for mucosal immune responses to key colonization factors of this organism, such as the toxin-coregulated pilus (TCP) and other factors. Information regarding immune responses to TCP, particularly mucosal immune responses, is lacking, particularly for patients infected with the El Tor biotype of V. cholerae O1 or V. cholerae O139 since highly purified TcpA from these strains has not been available previously for use in immune assays. We studied the immune responses to El Tor TcpA in cholera patients in Bangladesh. Patients had substantial and significant increases in TcpA-specific antibody-secreting cells in the circulation on day 7 after the onset of illness, as well as similar mucosal responses as determined by an alternate technique, the assay for antibody in lymphocyte supernatant. Significant increases in antibodies to TcpA were also seen in sera and feces of patients on days 7 and 21 after the onset of infection. Overall, 93% of the patients showed a TcpA-specific response in at least one of the specimens compared with the results obtained on day 2 and with healthy controls. These results demonstrate that TcpA is immunogenic following natural V. cholerae infection and suggest that immune responses to this antigen should be evaluated for potential protection against subsequent life-threatening illness.
Collapse
Affiliation(s)
- Muhammad Asaduzzaman
- International Centre for Diarrhoeal Disease Research, Mohakhali, Dhaka, Bangladesh
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bujanover S, Katz U, Bracha R, Mirelman D. A virulence attenuated amoebapore-less mutant of Entamoeba histolytica and its interaction with host cells. Int J Parasitol 2003; 33:1655-63. [PMID: 14636681 DOI: 10.1016/s0020-7519(03)00268-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Entamoeba histolytica, the protozoan parasite which causes amoebiasis, is an exclusively human pathogen so developing a vaccine could effectively impact the spread of the disease. Recently we developed a genetically modified avirulent strain, termed G3, from the virulent E. histolytica strain HM-1:IMSS. The new strain lacks the important virulence factor, the amoebapore-A. The objective of our current study was to investigate the avirulence of the attenuated strain as well as to examine the antigenic and immunogenic responses of these trophozoites as potential candidates for a live vaccine. Functional assays were conducted to characterise the virulent behaviour of the G3 strain. This behaviour was compared to the virulent strain HM-1:IMSS and the non-virulent strain Rahman. Western blots were conducted to confirm the lack of amoebapore-A in the E. histolytica G3 strain and to demonstrate that it had no influence on the presence of other virulence factors. Results of these two sets of tests proved the G3 strain to be phenotypically similar to the avirulent Rahman strain while antigenically identical to the virulent HM-1:IMSS, apart from the lack of the amoebapore-A protein. Intraperitoneal immunisation of hamsters with G3 trophozoites compared to sham immunised hamsters resulted in IgG anti-HM-1:IMSS antibodies. The level of humoral response was variable and further testing has to take place before introducing this new strain as a vaccine.
Collapse
Affiliation(s)
- Shay Bujanover
- Department of Biological Chemistry, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
33
|
Liang W, Wang S, Yu F, Zhang L, Qi G, Liu Y, Gao S, Kan B. Construction and evaluation of a safe, live, oral Vibrio cholerae vaccine candidate, IEM108. Infect Immun 2003; 71:5498-504. [PMID: 14500467 PMCID: PMC201064 DOI: 10.1128/iai.71.10.5498-5504.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
IEM101, a Vibrio cholerae O1 El Tor Ogawa strain naturally deficient in CTXPhi, was previously selected as a live cholera vaccine candidate. To make a better and safer vaccine that can induce protective immunity against both the bacteria and cholera toxin (CT), a new vaccine candidate, IEM108, was constructed by introducing a ctxB gene and an El Tor-derived rstR gene into IEM101. The ctxB gene codes for the protective antigen CTB subunit, and the rstR gene mediates phage immunity. The stable expression of the two genes was managed by a chromosome-plasmid lethal balanced system based on the housekeeping gene thyA. Immunization studies indicate that IEM108 generates good immune responses against both the bacteria and CT. After a single-dose intraintestinal vaccination with 10(9) CFU of IEM108, both anti-CTB immunoglobulin G and vibriocidal antibodies were detected in the immunized-rabbit sera. However, only vibriocidal antibodies are detected in rabbits immunized with IEM101. In addition, IEM108 but not IEM101 conferred full protection against the challenges of four wild-type toxigenic strains of V. cholerae O1 and 4 micro g of CT protein in a rabbit model. By introducing the rstR gene, the frequency of conjugative transfer of a recombinant El Tor-derived RS2 suicidal plasmid to IEM108 was decreased 100-fold compared to that for IEM101. This indicated that the El Tor-derived rstR cloned in IEM108 was fully functional and could effectively inhibit the El Tor-derived CTXPhi from infecting IEM108. Our results demonstrate that IEM108 is an efficient and safe live oral cholera vaccine candidate that induces antibacterial and antitoxic immunity and CTXPhi phage immunity.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Bacterial/blood
- Bacteriophages/genetics
- Base Sequence
- Cholera/immunology
- Cholera/prevention & control
- Cholera Toxin/genetics
- Cholera Toxin/immunology
- Cholera Vaccines/administration & dosage
- Cholera Vaccines/genetics
- Cholera Vaccines/isolation & purification
- Cholera Vaccines/pharmacology
- DNA, Bacterial/genetics
- Genes, Bacterial
- Rabbits
- Safety
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/genetics
- Vaccines, Attenuated/isolation & purification
- Vaccines, Attenuated/pharmacology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/isolation & purification
- Vaccines, Synthetic/pharmacology
- Vibrio cholerae/genetics
- Vibrio cholerae/immunology
- Vibrio cholerae/virology
Collapse
Affiliation(s)
- Weili Liang
- Priority Laboratory of Medical Molecular Bacteriology, Ministry of Health, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The demand for new and improved vaccines against human diseases has continued unabated over the past century. While the need continues for traditional vaccines in areas such as infectious diseases, there is an increasing demand for new therapies in nontraditional areas, such as cancer treatment, bioterrorism and food safety. Prompted by these changes, there has been a renewed interest in the application and development of live, attenuated bacteria expressing foreign antigens as vaccines. The application of bacterial vector vaccines to human maladies has been studied most extensively in attenuted strains of Salmonella. Live, attenuated strains of Shigella, Listeria monocytogenes, Mycobacterium bovis-BCG and Vibrio cholerae provide unique alternatives in terms of antigen delivery and immune presentation, however and also show promise as potentially useful bacterial vectors.
Collapse
Affiliation(s)
- Sims K Kochi
- Avant Immunotherapeutics, Inc., Needham, MA 02494, USA.
| | | | | |
Collapse
|
35
|
Webster DE, Gahan ME, Strugnell RA, Wesselingh SL. Advances in Oral Vaccine Delivery Options. ACTA ACUST UNITED AC 2003. [DOI: 10.2165/00137696-200301040-00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
36
|
Avall-Jääskeläinen S, Kylä-Nikkilä K, Kahala M, Miikkulainen-Lahti T, Palva A. Surface display of foreign epitopes on the Lactobacillus brevis S-layer. Appl Environ Microbiol 2002; 68:5943-51. [PMID: 12450814 PMCID: PMC134443 DOI: 10.1128/aem.68.12.5943-5951.2002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
So far, the inability to establish viable Lactobacillus surface layer (S-layer) null mutants has hampered the biotechnological applications of Lactobacillus S-layers. In this study, we demonstrate the utilization of Lactobacillus brevis S-layer subunits (SlpA) for the surface display of foreign antigenic epitopes. With an inducible expression system, L. brevis strains producing chimeric S-layers were obtained after testing of four insertion sites in the slpA gene for poliovirus epitope VP1, that comprises 10 amino acids. The epitope insertion site allowing the best surface expression was used for the construction of an integration vector carrying the gene region encoding the c-Myc epitopes from the human c-myc proto-oncogene, which is composed of 11 amino acids. A gene replacement system was optimized for L. brevis and used for the replacement of the wild-type slpA gene with the slpA-c-myc construct. A uniform S-layer, displaying on its surface the desired antigen in all of the S-layer protein subunits, was obtained. The success of the gene replacement and expression of the uniform SlpA-c-Myc recombinant S-layer was confirmed by PCR, Southern blotting MALDI-TOF mass spectrometry, whole-cell enzyme-linked immunosorbent assay, and immunofluorescence microscopy. Furthermore, the integrity of the recombinant S-layer was studied by electron microscopy, which indicated that the S-layer lattice structure was not affected by the presence of c-Myc epitopes. To our knowledge, this is the first successful expression of foreign epitopes in every S-layer subunit of a Lactobacillus S-layer while still maintaining the S-layer lattice structure.
Collapse
Affiliation(s)
- Silja Avall-Jääskeläinen
- Department of Basic Veterinary Sciences, Section of Microbiology, FIN-00014 University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
37
|
Sciutto E, Fragoso G, Manoutcharian K, Gevorkian G, Rosas-Salgado G, Hernández-Gonzalez M, Herrera-Estrella L, Cabrera-Ponce J, López-Casillas F, González-Bonilla C, Santiago-Machuca A, Ruíz-Pérez F, Sánchez J, Goldbaum F, Aluja A, Larralde C. New approaches to improve a peptide vaccine against porcine Taenia solium cysticercosis. Arch Med Res 2002; 33:371-8. [PMID: 12234527 DOI: 10.1016/s0188-4409(02)00376-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cysticercosis caused by Taenia solium frequently affects human health and rustic porciculture. Cysticerci may localize in the central nervous system of humans causing neurocysticercosis, a major health problem in undeveloped countries. Prevalence and intensity of this disease in pigs and humans are related to social factors (poor personal hygiene, low sanitary conditions, rustic rearing of pigs, open fecalism) and possibly to biological factors such as immunity, genetic background, and gender. The indispensable role of pigs as an obligatory intermediate host in the life cycle offers the possibility of interfering with transmission through vaccination of pigs. An effective vaccine based on three synthetic peptides against pig cysticercosis has been successfully developed and proved effective in experimental and field conditions. The well-defined peptides that constitute the cysticercosis vaccine offer the possibility to explore alternative forms of antigen production and delivery systems that may improve the cost/benefit of this and other vaccines. Encouraging results were obtained in attempts to produce large amounts of these peptides and increased its immunogenicity by expression in recombinant filamentous phage (M13), in transgenic plants (carrots and papaya), and associated to bacterial immunogenic carrier proteins.
Collapse
Affiliation(s)
- Edda Sciutto
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Mexico City, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
John M, Bridges EA, Miller AO, Calderwood SB, Ryan ET. Comparison of mucosal and systemic humoral immune responses after transcutaneous and oral immunization strategies. Vaccine 2002; 20:2720-6. [PMID: 12034098 DOI: 10.1016/s0264-410x(02)00208-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to compare the ability of transcutaneous and oral immunization strategies to induce mucosal and systemic immune responses, we inoculated mice transcutaneously with cholera toxin (CT) or the non-toxic B subunit of cholera toxin (CtxB), or orally with Peru2(pETR1), an attenuated vaccine strain of Vibrio cholerae expressing CtxB. In addition, we also evaluated dual immunization regimens (oral inoculation with transcutaneous boosting, and transcutaneous immunization with oral boosting) in an attempt to optimize induction of both mucosal and systemic immune responses. We found that transcutaneous immunization with purified CtxB or CT induces much more prominent systemic IgG anti-CtxB responses than does oral inoculation with a vaccine vector strain of V. cholerae expressing CtxB. In comparison, anti-CtxB IgA in serum, stool and bile were comparable in mice either transcutaneously or orally immunized. Overall, the most prominent systemic and mucosal anti-CtxB responses occurred in mice that were orally primed with Peru2(pETR1) and transcutaneously boosted with CT. Our results suggest that combination oral and transcutaneous immunization strategies may most prominently induce both mucosal and systemic humoral responses.
Collapse
Affiliation(s)
- Manohar John
- Tropical & Geographic Medicine Center, Division of Infectious Diseases, Jackson 504, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
The efficiency of any live bacterial vector vaccine hinges on its ability to present sufficient foreign antigen to the human immune system to initiate the desired protective immune response(s). However, synthesis of sufficient levels of heterologous antigen can result in an increase in metabolic burden with an accompanying decrease in the fitness of the live vector, which can ultimately lower desired immune responses to both live vector and heterologous antigen. Here, we explore the underlying mechanisms of metabolic load and propose ways of minimizing such burdens to enhance the fitness and immunogenicity of Salmonella-based live vector vaccines.
Collapse
Affiliation(s)
- J E Galen
- Center for Vaccine Development, University of Maryland School of Medicine, 685 W. Baltimore St, Baltimore, MD 21201, USA.
| | | |
Collapse
|
40
|
Affiliation(s)
- E T Ryan
- Tropical and Geographic Medicine Center, Travelers' Advice and Immunization Center, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
41
|
John M, Crean TI, Calderwood SB, Ryan ET. In vitro and in vivo analyses of constitutive and in vivo-induced promoters in attenuated vaccine and vector strains of Vibrio cholerae. Infect Immun 2000; 68:1171-5. [PMID: 10678922 PMCID: PMC97263 DOI: 10.1128/iai.68.3.1171-1175.2000] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The optimal promoter for in vivo expression of heterologous antigens by live, attenuated vaccine vector strains of Vibrio cholerae is unclear; in vitro analyses of promoter activity may not accurately predict expression of antigens in vivo. We therefore introduced plasmids expressing the B subunit of cholera toxin (CtxB) under the control of a number of promoters into V. cholerae vaccine strain Peru2. We evaluated the tac promoter, which is constitutively expressed in V. cholerae, as well as the in vivo-induced V. cholerae heat shock htpG promoter and the in vivo-induced V. cholerae iron-regulated irgA promoter. The functionality of all promoters was confirmed in vitro. In vitro antigenic expression was highest in vaccine strains expressing CtxB under the control of the tac promoter (2 to 5 microgram/ml/unit of optical density at 600 nm [OD(600)]) and, under low-iron conditions, in strains containing the irgA promoter (5 microgram/ml/OD(600)). We orally inoculated mice with the various vaccine strains and used anti-CtxB immune responses as a marker for in vivo expression of CtxB. The vaccine strain expressing CtxB under the control of the tac promoter elicited the most prominent specific anti-CtxB responses in vivo (serum immunoglobulin G [IgG], P </= 0.05; serum IgA, P </= 0.05; stool IgA, P </= 0.05; bile IgA, P </= 0.05), despite the finding that the tac and irgA promoters expressed equivalent amounts of CtxB in vitro. Vibriocidal antibody titers were equivalent in all groups of animals. Our results indicate that in vitro assessment of antigen expression by vaccine and vector strains of V. cholerae may correlate poorly with immune responses in vivo and that of the promoters examined, the tac promoter may be best suited for expression from plasmids of at least certain heterologous antigens in such strains.
Collapse
Affiliation(s)
- M John
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
42
|
Crean TI, John M, Calderwood SB, Ryan ET. Optimizing the germfree mouse model for in vivo evaluation of oral Vibrio cholerae vaccine and vector strains. Infect Immun 2000; 68:977-81. [PMID: 10639476 PMCID: PMC97235 DOI: 10.1128/iai.68.2.977-981.2000] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The germfree mouse model of Vibrio cholerae infection can be used to judge immune responses to V. cholerae vaccine and vector strains. In the original model, a single oral inoculation was administered on day 0, a booster oral inoculation was administered on day 14, and immune responses were analyzed with samples collected on day 28. Unfortunately, immune responses in this model frequently were low level, and interanimal variability occurred. In order to improve this model, we evaluated various primary and booster V. cholerae inoculation schedules. The most prominent systemic and mucosal antibody responses were measured in mice that received a multiple primary inoculation series on days 0, 2, 4, and 6 and booster inoculations on days 28 and 42. These modifications result in improved preliminary evaluation of V. cholerae vaccine and vector strains in mice.
Collapse
Affiliation(s)
- T I Crean
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
43
|
Ryan ET, Crean TI, Kochi SK, John M, Luciano AA, Killeen KP, Klose KE, Calderwood SB. Development of a DeltaglnA balanced lethal plasmid system for expression of heterologous antigens by attenuated vaccine vector strains of Vibrio cholerae. Infect Immun 2000; 68:221-6. [PMID: 10603391 PMCID: PMC97124 DOI: 10.1128/iai.68.1.221-226.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that more prominent immune responses are induced to antigens expressed from multicopy plasmids in live attenuated vaccine vector strains of Vibrio cholerae than to antigens expressed from single-copy genes on the V. cholerae chromosome. Here, we report the construction of a DeltaglnA derivative of V. cholerae vaccine strain Peru2. This mutant strain, Peru2DeltaglnA, is unable to grow on medium that does not contain glutamine; this growth deficiency is complemented by pKEK71-NotI, a plasmid containing a complete copy of the Salmonella typhimurium glnA gene, or by pTIC5, a derivative of pKEK71-NotI containing a 1. 8-kbp fragment that directs expression of CtxB with a 12-amino-acid epitope of the serine-rich Entamoeba histolytica protein fused to the amino terminus. Strain Peru2DeltaglnA(pTIC5) produced 10-fold more SREHP-12-CtxB in supernatants than did ETR3, a Peru2-derivative strain containing the same fragment inserted on the chromosome. To assess immune responses to antigens expressed by this balanced lethal system in vivo, we inoculated germfree mice on days 0, 14, 28, and 42 with Peru2DeltaglnA, Peru2DeltaglnA(pKEK71-NotI), Peru2(pTIC5), Peru2DeltaglnA(pTIC5), or ETR3. All V. cholerae strains were recoverable from stool for 8 to 12 days after primary inoculation, including Peru2DeltaglnA; strains containing plasmids continued to harbor pKEK71-NotI or pTIC5 for 8 to 10 days after primary inoculation. Animals were sacrificed on day 56, and serum, stool and biliary samples were analyzed for immune responses. Vibriocidal antibody responses, reflective of in vivo colonization, were equivalent in all groups of animals. However, specific anti-CtxB immune responses in serum (P </= 0.05) and bile (P </= 0. 001) were significantly higher in animals that received Peru2DeltaglnA(pTIC5) than in those that received ETR3, confirming the advantage of higher-level antigen expression in vivo. The development of this balanced lethal system thus permits construction and maintenance of vaccine and vector strains of V. cholerae that express high levels of immunogenic antigens from plasmid vectors without the need for antibiotic selection pressure.
Collapse
Affiliation(s)
- E T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Oral delivery represents one of the most pursued approaches for large-scale human vaccination. Due to the different characteristics of mucosal immune response, as compared with systemic response, oral immunization requires particular methods of antigen preparation and selective strategies of adjuvanticity. In this paper, we describe the preparation and use of genetically detoxified bacterial toxins as mucosal adjuvants and envisage the possibility of their future exploitation for human oral vaccines.
Collapse
Affiliation(s)
- G Del Giudice
- IRIS, Research Center, Chiron SpA, Via Fiorentina 1, Siena, I-53100, Italy
| | | | | |
Collapse
|
45
|
Ryan ET, Crean TI, John M, Butterton JR, Clements JD, Calderwood SB. In vivo expression and immunoadjuvancy of a mutant of heat-labile enterotoxin of Escherichia coli in vaccine and vector strains of Vibrio cholerae. Infect Immun 1999; 67:1694-701. [PMID: 10085006 PMCID: PMC96516 DOI: 10.1128/iai.67.4.1694-1701.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae secretes cholera toxin (CT) and the closely related heat-labile enterotoxin (LT) of Escherichia coli, the latter when expressed in V. cholerae. Both toxins are also potent immunoadjuvants. Mutant LT molecules that retain immunoadjuvant properties while possessing markedly diminished enterotoxic activities when expressed by E. coli have been developed. One such mutant LT molecule has the substitution of a glycine residue for arginine-192 [LT(R192G)]. Live attenuated strains of V. cholerae that have been used both as V. cholerae vaccines and as vectors for inducing mucosal and systemic immune responses directed against expressed heterologous antigens have been developed. In order to ascertain whether LT(R192G) can act as an immunoadjuvant when expressed in vivo by V. cholerae, we introduced a plasmid (pCS95) expressing this molecule into three vaccine strains of V. cholerae, Peru2, ETR3, and JRB14; the latter two strains contain genes encoding different heterologous antigens in the chromosome of the vaccine vectors. We found that LT(R192G) was expressed from pCS95 in vitro by both E. coli and V. cholerae strains but that LT(R192G) was detectable in the supernatant fraction of V. cholerae cultures only. In order to assess potential immunoadjuvanticity, groups of germfree mice were inoculated with the three V. cholerae vaccine strains alone and compared to groups inoculated with the V. cholerae vaccine strains supplemented with purified CT as an oral immunoadjuvant or V. cholerae vaccine strains expressing LT(R192G) from pCS95. We found that mice continued to pass stool containing V. cholerae strains with pCS95 for at least 4 days after oral inoculation, the last day evaluated. We found that inoculation with V. cholerae vaccine strains containing pCS95 resulted in anti-LT(R192G) immune responses, confirming in vivo expression. We were unable to detect immune responses directed against the heterologous antigens expressed at low levels in any group of animals, including animals that received purified CT as an immunoadjuvant. We were, however, able to measure increased vibriocidal immune responses against vaccine strains in animals that received V. cholerae vaccine strains expressing LT(R192G) from pCS95 compared to the responses in animals that received V. cholerae vaccine strains alone. These results demonstrate that mutant LT molecules can be expressed in vivo by attenuated vaccine strains of V. cholerae and that such expression can result in an immunoadjuvant effect.
Collapse
Affiliation(s)
- E T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | | | | | | | |
Collapse
|
46
|
Secundino I, Paniagua-Solís J, Isibasi A, Sanchez J. A cloning vector for efficient generation of cholera toxin B gene fusions for epitope screening. Mol Biotechnol 1999; 11:101-4. [PMID: 10367286 DOI: 10.1007/bf02789180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Gene fusion proteins with epitopes attached to the amino end of cholera toxin B subunit (CTB) are useful to raise immunological responses. We describe a cloning vector, designated pCTBtet, carrying a tetracycline resistance gene (TetR) between the leader peptide and mature CTB. Removal of TetR to insert oligonucleotides encoding fusion epitopes allowed for screening of tetracycline-sensitive clones. Restoration of the correct CTB reading phase was subsequently used to choose gene fusion candidate colonies. The use of pCTBtet permitted the rapid construction of 8 fusion proteins carrying 9-24 aa from Salmonella typhi OmpC and 6 hybrids with 7-31 aa from Escherichia coli colonization factor CFAI.
Collapse
Affiliation(s)
- I Secundino
- Unidad de Investigación Médica en Inmunoquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS. México, D.F
| | | | | | | |
Collapse
|
47
|
Killeen K, Spriggs D, Mekalanos J. Bacterial mucosal vaccines: Vibrio cholerae as a live attenuated vaccine/vector paradigm. Curr Top Microbiol Immunol 1999; 236:237-54. [PMID: 9893363 DOI: 10.1007/978-3-642-59951-4_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- K Killeen
- Virus Research Institute, Cambridge, USA
| | | | | |
Collapse
|
48
|
Karlsson MR, Kahu H, Hanson LA, Telemo E, Dahlgren UI. Neonatal colonization of rats induces immunological tolerance to bacterial antigens. Eur J Immunol 1999; 29:109-18. [PMID: 9933092 DOI: 10.1002/(sici)1521-4141(199901)29:01<109::aid-immu109>3.0.co;2-s] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We wanted to investigate the immunological events occurring in rats intestinally colonized from birth (neonatally) or at adult age with an ovalbumin (OVA)-producing Escherichia coli O6K13 strain, carrying type 1 pili. The neonatally colonized animals responded with lower delayed type hypersensitivity (DTH) against OVA and lower levels of IgG antibodies against OVA, O6 lipopolysaccharide (LPS) and type 1 pili compared to age-matched controls. The IgG antibody response against the bystander antigen, human serum albumin (HSA), was lower in the neonatally colonized animals than in the controls co-immunized with HSA and E. coli, indicating a release of suppressive factors induced by the bacterial antigens. The adult colonized animals showed an increased DTH and antibody response against OVA after immunization. They also had high pre-immunization levels of IgG anti-O6 LPS antibodies compared to controls. However, the relative increase in IgG anti-O6 LPS antibody levels after the immunization with dead E. coli was much lower in the adult colonized animals. The present results suggest that neonatal animals develop tolerance against antigen on bacterial colonizers of the intestine. In addition, this tolerance contains components of suppression.
Collapse
Affiliation(s)
- M R Karlsson
- Department of Clinical Immunology, University of Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
49
|
Abstract
Our understanding of the biology of several intestinal parasites has progressed considerably in the past year, especially in the area of molecular biology. Information from molecular and genetic analyses has been used increasingly to improve understanding of pathogenesis, to apply improved diagnostic methods, and to seek new vaccination strategies. There were fewer relevant clinical studies than in previous years, but some are notable. Control of helminth infections by mass chemotherapy in school age children appears an achievable goal in many communities. Vaccine trials against some protozoan infections continue to show promise in animal models.
Collapse
Affiliation(s)
- A Das
- Gastroenterology Section, 111E (W), V.A. Medical Center, 10701 East Boulevard, Cleveland, OH 44106, USA
| | | |
Collapse
|
50
|
Huston CD, Petri WA. Host-pathogen interaction in amebiasis and progress in vaccine development. Eur J Clin Microbiol Infect Dis 1998; 17:601-14. [PMID: 9832261 DOI: 10.1007/bf01708342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Entamoeba histolytica, the causative organism of invasive intestinal and extraintestinal amebiasis, infects approximately 50 million people each year, causing an estimated 40 to 100 thousand deaths annually. Because amebae only infect humans and some higher non-human primates, an anti-amebic vaccine could theoretically eradicate the organism. Uncontrolled epidemiologic studies indicate that acquired immunity to amebic infection probably occurs and that such a vaccine might be feasible. Application of molecular biologic techniques has led to rapid progress towards understanding how Entamoeba histolytica causes disease, and to the identification of several amebic proteins associated with virulence. These proteins are now being evaluated as potential vaccine components. Parenteral and oral vaccine preparations containing recombinant amebic proteins have been effective in preventing disease in a gerbil model of amebic liver abscess. Although systemic and mucosal cellular and humoral immunity both appear to play a role in protection against Entamoeba histolytica, the relative importance of each in the human immune response remains unknown. No animal model of intestinal amebiasis currently exists, moreover, so it has been impossible to evaluate protection against colonization and colitis. Further investigation of the fundamental mechanisms by which Entamoeba histolytica causes disease and of the human immune response to amebic infection is necessary to assess the true feasibility of an anti-amebic vaccine.
Collapse
Affiliation(s)
- C D Huston
- Department of Internal Medicine, University of Vermont College of Medicine, Burlington 05401, USA
| | | |
Collapse
|