1
|
Jantaree P, Yu Y, Chaithongyot S, Täger C, Sarabi MA, Meyer TF, Boccellato F, Maubach G, Naumann M. Human gastric fibroblasts ameliorate A20-dependent cell survival in co-cultured gastric epithelial cells infected by Helicobacter pylori. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119364. [PMID: 36162648 DOI: 10.1016/j.bbamcr.2022.119364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Crosstalk within the gastric epithelium, which is closely in contact with stromal fibroblasts in the gastric mucosa, has a pivotal impact in proliferation, differentiation and transformation of the gastric epithelium. The human pathogen Helicobacter pylori colonises the gastric epithelium and represents a risk factor for gastric pathophysiology. Infection of H. pylori induces the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), which is involved in the pro-inflammatory response but also in cell survival. In co-cultures with human gastric fibroblasts (HGF), we found that apoptotic cell death is reduced in the polarised human gastric cancer cell line NCI-N87 or in gastric mucosoids during H. pylori infection. Interestingly, suppression of apoptotic cell death in NCI-N87 cells involved an enhanced A20 expression regulated by NF-κB activity in response to H. pylori infection. Moreover, A20 acts as an important negative regulator of caspase-8 activity, which was suppressed in NCI-N87 cells during co-culture with gastric fibroblasts. Our results provide evidence for NF-κB-dependent regulation of apoptotic cell death in cellular crosstalk and highlight the protective role of gastric fibroblasts in gastric epithelial cell death during H. pylori infection.
Collapse
Affiliation(s)
- Phatcharida Jantaree
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Yanfei Yu
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Supattra Chaithongyot
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Christian Täger
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Mohsen Abdi Sarabi
- Department of Internal Medicine, Division of Cardiology and Angiology, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Thomas F Meyer
- Laboratory of Infection Oncology, Institute of Clinical Molecular Biology, Christian Albrechts University and University Hospital Schleswig Holstein, 24105 Kiel, Germany
| | - Francesco Boccellato
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Gunter Maubach
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany
| | - Michael Naumann
- Institute of Experimental Internal Medicine, Otto von Guericke University, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Crowley E, Hussey S. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2021:275-292.e12. [DOI: 10.1016/b978-0-323-67293-1.00027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
3
|
Mohamed AK, Elhassan NM, Awhag ZA, Ali FS, Ali ET, Mhmoud NA, Siddig EE, Hassan R, Ahmed ES, Fattahi A, Ahmed A, Muneer MS, Osman HA, Mohamed NS, Edris AMM. Prevalence of Helicobacter pylori among Sudanese patients diagnosed with colon polyps and colon cancer using immunohistochemistry technique. BMC Res Notes 2020; 13:322. [PMID: 32631443 PMCID: PMC7339555 DOI: 10.1186/s13104-020-05159-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives Infection with the bacteria Helicobacter pylori has been classified as class one carcinogen associated with increasing susceptibility of gastritis and gastric carcinoma. This study is aiming at investigating the prevalence of H. pylori among colon polyps and colon cancer patients. A descriptive cross-sectional hospital-based study was conducted between February and June 2017. Sixty-nine formalin-fixed paraffin blocks collected from colon polyps and colon cancer patients to detect H. pylori using immunohistochemistry technique. Results Of the 69 patients included in the study, 39 (56.5%) males and 30 (43.5%) were females, their age ranged from 21 to 80 years with a mean age of 47.1 ± 19.7. Of the 69 colon polyps and colon cancer patients, 44 (63.8%) were diagnosed as adenocarcinoma, 10 (14.5%) colitis, 15 (21.7%) juvenile polyposis syndrome. The results of immunohistochemistry technique showed the presence of 16 (23.2%) positive patients for H. pylori infection. Of these 16, 13 (81.3%) patients were diagnosed with adenocarcinoma and 3 (18.7%) patients were diagnosed with juvenile polyps. The results of H. pylori detection among the different colon polyps and colon cancer patients were showing a statistically significant association for H. pylori infection and adenocarcinoma, P value 0.028.
Collapse
Affiliation(s)
- Aziza K Mohamed
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Nazik M Elhassan
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Zahra A Awhag
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Fadwa S Ali
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Eman T Ali
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.,Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, National University, Sudan, Khartoum, Sudan
| | - Najwa A Mhmoud
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan.,Department of Microbiology and Immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan
| | - Emmanuel E Siddig
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan.,School of Medicine, Nile University, Khartoum, Sudan.,Department of Histopathology and Cytology, Alfarrabi College for Science and Technology, Khartoum, Sudan
| | - Rowa Hassan
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan
| | - Eiman S Ahmed
- Mycetoma Research Center, University of Khartoum, Khartoum, Sudan
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ayman Ahmed
- Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan
| | - Mohamed S Muneer
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.,Department of Radiology, Mayo Clinic, Jacksonville, FL, USA.,Department of Internal Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hussam A Osman
- Biomedical Research Laboratory, Ahfad University for Women, Omdurman, Sudan
| | - Nouh S Mohamed
- Molecular Biology Department, Alfarrabi College for sciences and Technology, Khartoum, Sudan. .,Department of Parasitology and Medical Entomology, Faculty of Medicine, Sinnar University, Sinnar, Sudan. .,Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan.
| | - Ali M M Edris
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan.,Faculty of Applied Medical Sciences, University of Bisha, Bisha, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Pereira J, Santos M, Delabio R, Barbosa M, Smith M, Payão S, Rasmussen L. Analysis of Gene Expression of miRNA-106b-5p and TRAIL in the Apoptosis Pathway in Gastric Cancer. Genes (Basel) 2020; 11:genes11040393. [PMID: 32260540 PMCID: PMC7230378 DOI: 10.3390/genes11040393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the main causes of gastric gancer. TNF-related apoptosis-inducing ligand (TRAIL) is a protein able to promote apoptosis in cancer cells, however not in gastric cancer, which presents resistance to apoptosis via TRAIL. It is believed that MicroRNA-106b-5p might be involved in this resistance, although its role in Gastric Cancer is unclear. We aimed to determine the expression of microRNA-106b-5p and TRAIL in patients with gastric diseases, infected by H. pylori, and understand the relationship between these genes and their role in apoptosis and the gastric cancer pathways. H. pylori was detected by PCR, gene expression analysis was performed by real-time-qPCR, and bioinformatics analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cytoscape software. A total of 244 patients were divided into groups (Control, Gastritis, and Cancer); H. pylori was detected in 42.2% of the samples. The cancer group had a poor expression of TRAIL (p < 0.0001) and overexpression of microRNA-106b-5p (p = 0.0005), however, our results confirmed that these genes are not directly related to each other although both are apoptosis-related regulators. Our results also indicated that H. pylori decreases microRNA-106b-5p expression and that this is a carcinogenic bacterium responsible for gastric diseases.
Collapse
Affiliation(s)
- Jéssica Pereira
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Santos
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Roger Delabio
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Mônica Barbosa
- Department of Biosciences and Technology of Institute of Tropical Pathology and Public Health, Federal University of Goias (UFG), Goiânia, Goiás 74605-050, Brazil;
| | - Marília Smith
- Department of Morphology and Genetics, Escola Paulista de Medicina, Federal University of Sao Paulo (UNIFESP), São Paulo 04023-062, Brazil;
| | - Spencer Payão
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
| | - Lucas Rasmussen
- Marilia Medical School (FAMEMA), Marília, São Paulo 17519-030, Brazil; (J.P.); (M.S.); (R.D.); (S.P.)
- Correspondence: ; Tel.: +55-14-34021856
| |
Collapse
|
5
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
6
|
Asl SF, Pourvahedi M, Mojtahedi A, Shenagari M. Analysis of babA, cagE and cagA Genes in Helicobacter pylori from Upper Gastric Patients in the North of Iran. Infect Disord Drug Targets 2019; 19:274-278. [PMID: 29766826 DOI: 10.2174/1871526518666180515113218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVE Helicobacter pylori is a Gram-negative bacterium which has a serious effect on up to half of the world's population and has been related to different gastric diseases. The goal of this study was to assess the frequency of babA, cagE and cagA genotypes among H. pylori strains isolated from gastric biopsies of endoscopic patients in the north of Iran. METHODS The present study was performed on 90 strains of H. pylori isolated from patients with gastric diseases (Gastric ulcer (GU), Duodenal ulcer (DU), Gastritis (G), Non-ulcer dyspepsia (NUD) and Gastric adenocarcinoma (GC)). DNA was extracted from all isolated strains and PCR method was performed to detect the prevalence of babA2, cagE and cagA genes using specific primers. RESULTS Among 90 samples of H. pylori, babA2, cagE, and cagA genes were detected in 42.2%, 30% and 82.2% of strains respectively. The statistical analysis showed that the prevalence of cagA gene in GU, G, DU, and NUD was significantly higher than other genes. Moreover, cagA, and babA2 genes were significantly more prevalent in GC patients compared to cagE gene. Our isolates exhibited 8 distinct arrangements of virulence patterns. The occurrence of cagA (35.6%) was the most prevalent pattern followed by cagA/babA2 (20%) and cagA/babA2/cagE (14.4%). CONCLUSION In summary, as first report from Guilan province in the north of Iran, we showed significant association between the presence of babA2, cagE, and cagA genes in different types of gastric disorders.
Collapse
Affiliation(s)
- Saba Fakhrieh Asl
- Internal Medicine Department, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehrnaz Pourvahedi
- Genetics Department, Faculty of Basic Sciences, Guilan University, Rasht, Iran
| | - Ali Mojtahedi
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Microbiology Department, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Microbiology Department, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
7
|
Ghosh S, Roy A, Singhania A, Chatterjee S, Swarnakar S, Fujita D, Bandyopadhyay A. In-vivo & in-vitro toxicity test of molecularly engineered PCMS: A potential drug for wireless remote controlled treatment. Toxicol Rep 2018; 5:1044-1052. [PMID: 30406021 PMCID: PMC6214879 DOI: 10.1016/j.toxrep.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/08/2018] [Accepted: 10/18/2018] [Indexed: 11/24/2022] Open
Abstract
PC, PCM, PCS, and PCMS are our designed & synthesized ∼8 nm PAMAM dendrimer (P) -based organic supramolecular systems, for example, PCMS has 32 molecular motors (M), 4 pH sensors (S) and 2 multi-level molecular electronic switches (C). We have reported earlier following a preliminary in-vitro test that the synthesized PCMS can selectively target cancer cell nucleotides if triggered wirelessly by an electromagnetic pulse. Here to further verify its drug potential, we have studied the preliminary efficacy, toxicity, and pharmacokinetics of P derivatives (PC, PCM, PCMS) in-vivo and in-vitro. We used ethanol-induced gastric inflammation model and cultured human gastric epithelial cells AGS to examine to the toxicity of PAMAM dendrimers cell permeability and toxicity, in (a) the cultured human gastric epithelium cells (AGS), and in (b) the gastric ulcer mice model. Here we report that the toxicity of PAMAM dendrimer (>G3.5) P can be reduced by adding C, M and S. Gastric ulcer is the primary stage of the manifestation of acute inflammation, even gastric epithelial cancer. Ethanol causes ulceration (ulcer index 30), thus upregulates both pro and active MMP-9. A 50 μl PCMS dose prior to ethanol administration reduces ulceration by ∼80% and downregulates MMP-9 and prevents oxidative damages of gastric tissue by ECM remodeling. Alcohol's inflammation of mouse stomach causes up-regulation of both pro and active MMP-9, resulting in oxidative damages of gastric tissue by ECM remodeling. PCMS in particular dose window reverses & alters ECM remodeling, thus, neutralizing alcohol-induced inflammation & generation of ROS.
Collapse
Key Words
- AGS, human caucasian gastric adenocarcinoma
- CEES, combined excitation emission spectroscopy
- CNDP, critical nanoscale design parameters
- Dendrimer toxicity
- G, generation
- Gastric ulcer
- Inflammation
- Matrix metalloproteinase
- Nonchemical drug
- P, PAMAM
- PAMAM, poly(amido)amine
- PC, PAMAM-controller
- PCM, PAMAM controller-motor
- PCMS, PAMAM-controller-motor-sensor
- ROS, radical oxygen species
Collapse
Affiliation(s)
- Subrata Ghosh
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
- CSIR-North East Institute of Science & Technology, Natural Product Chemistry Group, Chemical Science & Technology Division, Jorhat, 785006, Assam, India
| | - Anirban Roy
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Anup Singhania
- CSIR-North East Institute of Science & Technology, Natural Product Chemistry Group, Chemical Science & Technology Division, Jorhat, 785006, Assam, India
| | - Somnath Chatterjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Snehasikta Swarnakar
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kol-700032, West Bengal, India
| | - Daisuke Fujita
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
| | - Anirban Bandyopadhyay
- National Institute for Materials Science (NIMS), Nano Characterization Unit, Advanced Key Technologies Division, 1-2-1 Sengen, Tsukuba, Japan
| |
Collapse
|
8
|
Yang Y, Du J, Liu F, Wang X, Li X, Li Y. Role of caspase-3/E-cadherin in helicobacter pylori-induced apoptosis of gastric epithelial cells. Oncotarget 2017; 8:59204-59216. [PMID: 28938629 PMCID: PMC5601725 DOI: 10.18632/oncotarget.19471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
This study was designed to investigate the role of caspase-3/E-cadherin in Helicobacter pylori (H. pylori) -induced gastric epithelial apoptosis in cells, animal models and clinical gastritis patients. In cultured gastric mucosal epithelial cells, gastric glandular epithelial cells and C57BL/6 mice, H. pylori infection significantly induced apoptosis of gastric epithelial cells, down-regulated full-length E-cadherin and Bcl-2 expression, and up-regulated cleaved-caspase-3, E-cadherin/carboxy-terminal fragment 3 and Bax expression. Z-DEVD-FMK, an inhibitor of caspase-3, attenuated the effect of H. pylori. E-cadherin overexpression significantly inhibited the apoptosis of GES-1 and SGC-7901 cells induced by the H. pylori. The results from clinical studies also showed down-regulation of E-cadherin, up-regulation of cleaved-caspase-3 expression and increased apoptosis in gastric tissues from gastritis patients with H. pylori infection. These results suggest that the caspase-3/E-cadherin pathway is involved in the apoptosis of gastric epithelial cells induced by H. pylori.
Collapse
Affiliation(s)
- Yongmei Yang
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, China.,Department of Anatomy, School of Medicine, University of South China, Hengyang, China
| | - Jie Du
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| | - Fen Liu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoyan Wang
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiaohui Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| | - Yuanjian Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Science, Central South University, Changsha, China
| |
Collapse
|
9
|
Pathogen-induced ubiquitin-editing enzyme A20 bifunctionally shuts off NF-κB and caspase-8-dependent apoptotic cell death. Cell Death Differ 2017; 24:1621-1631. [PMID: 28574503 PMCID: PMC5563994 DOI: 10.1038/cdd.2017.89] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 03/24/2017] [Accepted: 05/02/2017] [Indexed: 12/19/2022] Open
Abstract
The human pathogen Helicobacter pylori infects more than half of the world’s population and is a paradigm for persistent yet asymptomatic infection but increases the risk for chronic gastritis and gastric adenocarcinoma. For successful colonization, H. pylori needs to subvert the host cell death response, which serves to confine pathogen infection by killing infected cells and preventing malignant transformation. Infection of gastric epithelial cells by H. pylori provokes direct and fast activation of the proinflammatory and survival factor NF-κB, which regulates target genes, such as CXCL8, BIRC3 and TNFAIP3. However, it is not known how H. pylori exploits NF-κB activation and suppresses the inflammatory response and host apoptotic cell death, in order to avert the innate immune response and avoid cell loss, and thereby enhance colonization to establish long-term infection. Here we assign for the first time that H. pylori and also Campylobacter jejuni-induced ubiquitin-editing enzyme A20 bifunctionally terminates NF-κB activity and negatively regulates apoptotic cell death. Mechanistically, we show that the deubiquitinylase activity of A20 counteracts cullin3-mediated K63-linked ubiquitinylation of procaspase-8, therefore restricting the activity of caspase-8. Interestingly, another inducible NF-κB target gene, the scaffold protein p62, ameliorates the interaction of A20 with procaspase-8. In conclusion, pathogen-induced de novo synthesis of A20 regulates the shut-off of the survival factor NF-κB but, on the other hand, also impedes caspase-8-dependent apoptotic cell death so as to promote the persistence of pathogens.
Collapse
|
10
|
Priya A, Kaur K, Bhattacharyya S, Chakraborti A, Ghosh S. Cell cycle arrest and apoptosis induced by enteroaggregative Escherichia coli in cultured human intestinal epithelial cells. J Med Microbiol 2017; 66:217-225. [DOI: 10.1099/jmm.0.000405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Anshu Priya
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Kiranjeet Kaur
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Shalmoli Bhattacharyya
- Department of Biophysics, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Sujata Ghosh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
11
|
Tsai HF, Hsu PN. Modulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis by Helicobacter pylori in immune pathogenesis of gastric mucosal damage. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2016; 50:4-9. [PMID: 26947589 DOI: 10.1016/j.jmii.2016.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 12/20/2015] [Accepted: 01/17/2016] [Indexed: 12/28/2022]
Abstract
Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer, gastric carcinoma, and gastric mucosa-associated lymphoid tissue lymphomas. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Enhanced gastric epithelial cell apoptosis during H. pylori infection was suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells. Human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death-receptor signaling. The induction of TRAIL sensitivity by H. pylori is dependent upon the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex through downregulation of cellular FLICE-inhibitory protein. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, significant increases in CCR6+ CD3+ T cell infiltration in the gastric mucosa was observed, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These mechanisms initiate chemokine-mediated T lymphocyte trafficking into inflamed epithelium and induce mucosal injury during Helicobacter infection. This article will review recent findings on the interactions of H. pylori with host-epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation and mucosal damage.
Collapse
Affiliation(s)
- Hwei-Fang Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
12
|
Fox S, Ryan KA, Berger AH, Petro K, Das S, Crowe SE, Ernst PB. The role of C1q in recognition of apoptotic epithelial cells and inflammatory cytokine production by phagocytes during Helicobacter pylori infection. JOURNAL OF INFLAMMATION-LONDON 2015; 12:51. [PMID: 26357509 PMCID: PMC4563842 DOI: 10.1186/s12950-015-0098-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 08/28/2015] [Indexed: 12/11/2022]
Abstract
Background Gastric epithelial cells (GECs) undergo apoptosis during H. pylori infection and phagocytes within the mucosa engulf these cells. The recognition and clearance of apoptotic cells is a multifactorial process, enhanced by the presence of various bridging molecules and opsonins which are abundant in serum. However, it is not clear how recognition or clearance may differ in the context of H. pylori infection induced apoptosis. In addition, efferocytosis of sterile apoptotic cells is known to confer anti-inflammatory properties in the engulfing phagocyte, however it is unknown if this is maintained when phagocytes encounter H. pylori-infected cells. Thus, the ability of macrophages to bind and engulf gastric epithelial cells rendered apoptotic by H. pylori infection and the association of these interactions to the modulation of phagocyte inflammatory responses was investigated in the absence and presence of serum with a particular focus on the role of serum protein C1q. Methods Control (uninfected) or H. pylori-infected AGS cells were co-cultured with THP-1 macrophages in the presence or absence of serum or serum free conditions + C1q protein (40–80 μg/mL). Binding of AGS cells to THP-1 macrophages was assessed by microscopy and cytokine (IL-6 and TNF-α) release from LPS stimulated THP-1 macrophages was quantified by ELISA. Results We show that macrophages bound preferentially to cells undergoing apoptosis subsequent to infection with H. pylori. Binding of apoptotic AGS to THP-1 macrophages was significantly inhibited when studied in the absence of serum and reconstitution of serum-free medium with purified human C1q restored binding of macrophages to apoptotic cells. Co-culture of sterile apoptotic and H. pylori-infected AGS cells both attenuated LPS-stimulated cytokine production by THP-1 macrophages. Further, direct treatment of THP-1 macrophages with C1q attenuated LPS stimulated TNF-α production. Conclusions These studies suggest that C1q opsonizes GECs rendered apoptotic by H. pylori. No differences existed in the ability of infected or sterile apoptotic cells to attenuate macrophage cytokine production, however, there may be a direct role for C1q in modulating macrophage inflammatory cytokine production to infectious stimuli. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0098-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Fox
- Department of Pathology, University of California, La Jolla, San Diego, CA USA
| | - Kieran A Ryan
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; National University Ireland, Galway, Ireland
| | - Alice H Berger
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; Broad Institute of MIT and Harvard, Boston, MA USA
| | - Katie Petro
- Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA ; Athersys, Inc, Cleveland, OH USA
| | - Soumita Das
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| | - Sheila E Crowe
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| | - Peter B Ernst
- Department of Pathology, University of California, La Jolla, San Diego, CA USA ; Division of Gastroenterology and Hepatology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
13
|
Abstract
Maternal undernutrition (MUN) results in growth-restricted newborns with reduced nephron numbers that is associated with increased risk of hypertension and renal disease. The total adult complement of nephrons is set during nephrogenesis suggesting that MUN affects the staged development of nephrons in as yet unknown manner. A possible cause may be the increased renal apoptosis; therefore, we investigated whether apoptotic signaling and cell death were increased in MUN rat kidneys. Pregnant rat dams were fed an ad libitum diet [control] or were 50% food restricted (MUN) starting at embryonic day (E) 10. Male offspring kidneys (n = 5 each, MUN and control) were analyzed for mRNA using quantitative PCR (E20) and for protein expression using Western blotting and immunohistochemistry (E20 and postnatal day 1, P1). Apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Upregulation of pro-apoptotic protein expression was detected at E20 (Fas receptor, caspase 9) and at P1 (caspase 3, Bax). The anti-apoptotic factor Bcl2 was significantly decreased in P1 kidneys. Kidney TUNEL showed apoptotic nuclei significantly increased in the P1 nephrogenic zone (MUN 3.3 + 0.3 v. C 1.6 + 0.5, P = 0.002). The majority of apoptotic nuclei co-localized to mesenchyme and pretubular aggregates in the nephrogenic zone. Differential regulation of apoptosis in mesenchyme and pretubular aggregates following parturition suggests a mechanism for nephropenia in gestational programming of the kidney.
Collapse
|
14
|
Ma J, Mark Ibekwe A, Crowley DE, Yang CH. Persistence of Escherichia coli O157 and non-O157 strains in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:822-829. [PMID: 24907617 DOI: 10.1016/j.scitotenv.2014.05.069] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/02/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
Shiga toxin producing Escherichia coli O157 and non-O157 serogroups are known to cause serious diseases in human. However, research on the persistence of E. coli non-O157 serogroups in preharvest environment is limited. In the current study, we compared the survival behavior of E. coli O157 to that of non-O157 E. coli strains in agricultural soils collected from three major fresh produce growing areas of California (CA) and Arizona (AZ). Results showed that the nonpathogenic E. coli O157:H7 4554 survived longer than the pathogenic E. coli O157:H7 EDL933 in Imperial Valley CA and Yuma AZ, but not in soils from the Salinas area. However, E. coli O157:NM was found to persist significantly longer than E. coli O157:H7 EDL933 in all soil tested from the three regions. Furthermore, two non-O157 (E. coli O26:H21 and E. coli O103:H2) survived significantly longer than E. coli O157:H7 EDL933 in all soils tested. Pearson correlation analysis showed that survival of the E. coli strains was affected by different environmental factors. Our data suggest that survival of E. coli O157 and non-O157 may be strain and soil specific, and therefore, care must be taken in data interpretation with respect to survival of this pathogen in different soils.
Collapse
Affiliation(s)
- Jincai Ma
- USDA-ARS U. S. Salinity Laboratory, Riverside, CA 92507, United States; Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - A Mark Ibekwe
- USDA-ARS U. S. Salinity Laboratory, Riverside, CA 92507, United States.
| | - David E Crowley
- Department of Environmental Sciences, University of California, Riverside, CA 92521, United States
| | - Ching-Hong Yang
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211, United States
| |
Collapse
|
15
|
Brim H, Zahaf M, Laiyemo AO, Nouraie M, Pérez-Pérez GI, Smoot DT, Lee E, Razjouyan H, Ashktorab H. Gastric Helicobacter pylori infection associates with an increased risk of colorectal polyps in African Americans. BMC Cancer 2014; 14:296. [PMID: 24774100 PMCID: PMC4022546 DOI: 10.1186/1471-2407-14-296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 03/04/2014] [Indexed: 12/12/2022] Open
Abstract
Background Gastric Helicobacter pylori (H. pylori) infection and colorectal polyps are more prevalent in African Americans than in the general population. We aimed to investigate whether gastric H. pylori infection is associated with colorectal polyps in African Americans. Methods Medical records of African Americans, 40 years and older (n = 1256) who underwent bidirectional gastrointestinal endoscopy on the same day were reviewed. H. pylori status was assessed by immunohistochemistry on gastric specimens. Colorectal polyps were confirmed by histological examination of colorectal biopsies. A subset of serum samples from healthy and polyp-bearing patients (n = 163) were analyzed by ELISA for anti-H. pylori and anti-CagA antibodies. The crude and adjusted effect of H. pylori on the risk of colorectal adenoma and polyp were computed by logistic regression models. Results The prevalence of colorectal polyps and adenomas were 456 (36%) and 300 (24%) respectively. Colorectal polyps were more prevalent in gastric H. pylori infected than non-infected subjects [43% vs. 34%; Odds Ratio (OR) (95% CI): 1.5 (1.2-1.9), P = 0.001]. Patients with H. pylori-associated chronic active gastritis were at high risk to have adenomas [Unadjusted OR (95% CI): 1.3 (1.0-1.8); P = 0.04]. There was no difference in histopathology, size, or location of polyps with respect to H. pylori status. Gastric H. pylori infection, age, male gender and high risk clinical presentations were independent risk factors for colorectal polyps. Serological testing also revealed a higher prevalence of H. pylori and its toxin Cag-A in polyp patients vs. non polyp patients’ sera, although in a non-statistically significant manner. Conclusions This study showed that current gastric H. pylori infection is associated with an increased risk of colorectal polyps in African Americans. Patients with H. pylori induced gastritis may benefit from early screening colonoscopy as a preventative measure for colorectal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hassan Ashktorab
- Department of Medicine and Cancer Center, Howard University, Washington, DC, USA.
| |
Collapse
|
16
|
Lin WC, Tsai HF, Liao HJ, Tang CH, Wu YY, Hsu PI, Cheng AL, Hsu PN. Helicobacter pylori sensitizes TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in human gastric epithelial cells through regulation of FLIP. Cell Death Dis 2014; 5:e1109. [PMID: 24603337 PMCID: PMC3973194 DOI: 10.1038/cddis.2014.81] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022]
Abstract
Helicobacter pylori (H. pylori) infection is associated with chronic gastritis, peptic ulcer and gastric cancer. Apoptosis induced by microbial infections is implicated in the pathogenesis of H. pylori infection. Here we show that human gastric epithelial cells sensitized to H. pylori confer susceptibility to TRAIL-mediated apoptosis via modulation of death receptor signaling. Human gastric epithelial cells are intrinsically resistant to TRAIL-mediated apoptosis. The induction of TRAIL sensitivity by H. pylori is dependent on the activation of caspase-8 and its downstream pathway. H. pylori induces caspase-8 activation via enhanced assembly of the TRAIL death-inducing signaling complex (DISC) through downregulation of cellular FLICE-inhibitory protein (FLIP). Overexpression of FLIP abolished the H. pylori-induced TRAIL sensitivity in human gastric epithelial cells. Our study thus demonstrates that H. pylori induces sensitivity to TRAIL apoptosis by regulation of FLIP and assembly of DISC, which initiates caspase activation, resulting in the breakdown of resistance to apoptosis, and provides insight into the pathogenesis of gastric damage in Helicobacter infection. Modulation of host apoptosis signaling by bacterial interaction adds a new dimension to the pathogenesis of Helicobacter.
Collapse
Affiliation(s)
- W-C Lin
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - H-F Tsai
- Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, Taipei, Taiwan
- Gradute Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - H-J Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - C-H Tang
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Y-Y Wu
- Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| | - P-I Hsu
- Department of Internal Medicine, Veterans General Hospital-Kaohsiung, Kaohsiung, Taiwan
| | - A-L Cheng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - P-N Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
17
|
Parra-Cid T, Calvino-Fernández M, Benito-Martínez S, Pérez-Gisbert J. Role of Reactive Oxygen Species and Apoptosis in Helicobacter pylori Infection. SYSTEMS BIOLOGY OF FREE RADICALS AND ANTIOXIDANTS 2014:1849-1870. [DOI: 10.1007/978-3-642-30018-9_143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Han SH, Joo M, Kim KM. High proportion of granzyme B+ intraepithelial lymphocytes contributes to epithelial apoptosis in Helicobacter pylori-associated lymphocytic gastritis. Helicobacter 2013; 18:290-8. [PMID: 23356909 DOI: 10.1111/hel.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Helicobacter pylori infection has been linked to the development of lymphocytic gastritis (LG) characterized by ≥25 intraepithelial lymphocytes (IELs) per 100 epithelial cells. We hypothesize that the changes in the subpopulation and/or cytotoxicity of IELs leading to epithelial cell apoptosis may be involved in the pathogenesis of H. pylori-associated LG. MATERIALS AND METHODS We examined IEL subpopulations and the expression of cytotoxic molecules by IELs in biopsy specimens from 36 patients with H. pylori-associated LG by immunostainings for CD3, CD4, CD8, T-cell-restricted intracellular antigen-1 (TIA-1), and granzyme B (GrB) and compared the results with those obtained from 49 patients with H. pylori-associated gastritis (HPG). To investigate whether the IEL-mediated cytotoxicity is related to the increase of epithelial apoptosis, we performed a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using ApopTag detection kit. RESULTS Between LG and HPG groups, significant differences in the number of CD3+, CD4+, CD8+, TIA-1+ or GrB+ IELs, and ApopTag indices were found. Among the CD3+ IELs, the proportion of CD8+ IELs or TIA-1+ IELs did not differ between two groups. The LG group showed a selective increase in GrB-positive, phenotypically activated IELs, which was paralleled by an increase in ApopTag indices. In contrast, the HPG group showed more heterogeneous IEL subpopulations with more CD4+ IELs and less GrB+ IELs compared with the LG group, and we did not find any significant variable contributing to the epithelial apoptosis in the HPG group. CONCLUSIONS This study shows that in addition to the numerical increase in the IELs, there are significant changes in the subpopulations and cytotoxicity of IELs between HPG and H. pylori-associated LG. In particular, enhanced GrB-associated cytotoxicity of the IELs in H. pylori-associated LG contributes to an increase in epithelial apoptosis.
Collapse
Affiliation(s)
- Song-Hee Han
- Department of Pathology, Inje University Ilsan Paik Hospital, 2240 Daehwa-dong, Ilsanseo-gu, Goyang-si, Gyeonggi-do, 411-706, South Korea
| | | | | |
Collapse
|
19
|
Luo JJ, Li CY, Liu S, Yu W, Tang SY, Cai HL, Zhang Y. Overexpression of Helicobacter pylori VacA N-terminal fragment induces proinflammatory cytokine expression and apoptosis in human monocytic cell line through activation of NF-κB. Can J Microbiol 2013; 59:523-33. [PMID: 23898995 DOI: 10.1139/cjm-2013-0021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vacuolating cytotoxin (VacA) is an important virulence factor in the pathogenesis of Helicobacter pylori-related diseases. The aim of this study was to investigate the function of the amino-terminal 476 residue fragment (p52) of VacA and the possible molecular mechanisms responsible for its induction of proinflammatory cytokines secretion and apoptosis. Human acute monocytic leukemia cell line THP-1 was used as an in vitro model to study proinflammatory cytokines secretion and apoptosis induced by transfection of a recombinant plasmid encoding the amino-terminal 476 residue fragment (p52) of VacA. The results showed that VacA p52 overexpression induced the production of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), nitric oxide, and reactive oxygen species in THP-1 cells in a time-dependent manner. VacA p52 overexpression also promoted THP-1 cells apoptosis. In addition, VacA p52 triggered the activation of nuclear factor kappa B (NF-κB), indicating a possible mechanism for its induction of proinflammatory cytokines secretion and cell apoptosis. Our study demonstrated that the induction of cytokines secretion and apoptosis by VacA p52 in THP-1 cells could be mediated through activation of nuclear factor kappa B.
Collapse
Affiliation(s)
- Jing-Jing Luo
- Institute of Pathogenic Biology, University of South China, Hengyang 421001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Bimczok D, Smythies LE, Waites KB, Grams JM, Stahl RD, Mannon PJ, Peter S, Wilcox CM, Harris PR, Das S, Ernst PB, Smith PD. Helicobacter pylori infection inhibits phagocyte clearance of apoptotic gastric epithelial cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:6626-6634. [PMID: 23686492 PMCID: PMC3725581 DOI: 10.4049/jimmunol.1203330] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Increased apoptotic death of gastric epithelial cells is a hallmark of Helicobacter pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells (AECs) in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR(+) mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive AEC material, indicating that gastric phagocytes are involved in AEC clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the AECs by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-α, which was expressed at higher levels in H. pylori-infected, compared with uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of AECs and higher levels of nonphagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.
Collapse
Affiliation(s)
- Diane Bimczok
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lesley E. Smythies
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ken B. Waites
- Department Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jayleen M. Grams
- Department Surgery, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Richard D. Stahl
- Department Surgery, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Peter J. Mannon
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Shajan Peter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - C. Mel Wilcox
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Paul R. Harris
- Division of Pediatrics, Unit of Gastroenterology and Nutrition, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Soumita Das
- Department of Pathology, University of California, San Diego, CA 92093
| | - Peter B. Ernst
- Department of Pathology, University of California, San Diego, CA 92093
| | - Phillip D. Smith
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- VA Medical Center, Birmingham, AL 35233
| |
Collapse
|
21
|
Kundu M. Helicobacter pylori Peptidyl Prolyl cis, trans Isomerase: A Modulator of the Host Immune Response. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6787-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Ismail Y, Lee H, Riordan SM, Grimm MC, Zhang L. The effects of oral and enteric Campylobacter concisus strains on expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells. PLoS One 2013; 8:e56888. [PMID: 23437263 PMCID: PMC3577652 DOI: 10.1371/journal.pone.0056888] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 01/18/2013] [Indexed: 01/02/2023] Open
Abstract
Campylobacter concisus, a Gram-negative bacterium that colonizes the human oral cavity, has been shown to be associated with inflammatory bowel diseases (IBD). The effects of different C. concisus strains on intestinal epithelial expression of Toll like receptors (TLR) have not been investigated. This study examined the effects of C. concisus strains isolated from patients with IBD and controls on expression of TLR4, its co-receptor myeloid differentiation factor (MD)-2; TLR2, TLR5, cyclooxygenase-2 (COX-2) and interleukin (IL)-8 in HT-29 cells.Fourteen oral and enteric C. concisus strains isolated from patients with IBD and healthy controls were co-incubated with HT-29 cells. Expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells in response to C. concisus infection was examined by Western blot, flow cytometry analysis and immunofluorescent staining visualized by confocal microscope. Production of IL-8 was evaluated by enzyme-linked immunosorbent assay.Both oral and enteric C. concisus strains upregulated expression of TLR4 in HT-29 cells. The levels of glycosylated TLR4 (Gly-TLR4) and surface TLR4 induced by C. concisus strains isolated from patients with IBD were significantly higher than those induced by C. concisus strains isolated from the healthy controls. Four C. concisus strains isolated from patients with IBD induced more than two-fold increase of surface expression of MD-2. C. concisus did not affect expression of TLR2 and TLR5. All C. concisus strains induced production of IL-8 and COX-2 in HT-29 cells.This study shows that some C. concisus strains, most from patients with IBD, upregulate surface expression of TLR4 and MD-2 in HT-29 cells. These data suggest that a potential role of specific C. concisus strains in modulating the intestinal epithelial responses to bacterial LPS needs to be investigated.
Collapse
Affiliation(s)
- Yazan Ismail
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Whales, Australia
| | - Hoyul Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Whales, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, The Prince of Wales Hospital, Sydney, New South Whales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Whales, Australia
| | - Michael C. Grimm
- St George Clinical School, University of New South Wales, Sydney, New South Whales, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Whales, Australia
| |
Collapse
|
23
|
Buret AG, Bhargava A. Modulatory mechanisms of enterocyte apoptosis by viral, bacterial and parasitic pathogens. Crit Rev Microbiol 2013; 40:1-17. [PMID: 23297858 DOI: 10.3109/1040841x.2012.746952] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Abstract
Helicobacter pylori infection remains common worldwide and is significantly associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT)lymphoma. This article reviews recent developments in the field of H. pylori with an emphasis on mechanisms of carcinogenesis, and the bacterial, environmental and host factors that may alter risk of developing gastric cancer or gastric MALT lymphoma. The topic of eradication of H. pylori to prevent the development of malignancy and the possibility of a vaccine against H. pylori are also explored.
Collapse
Affiliation(s)
- Abhishek Bhandari
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0063, USA.
| | | |
Collapse
|
25
|
Kang DW, Hwang WC, Park MH, Ko GH, Ha WS, Kim KS, Lee YC, Choi KY, Min DS. Rebamipide abolishes Helicobacter pylori CagA-induced phospholipase D1 expression via inhibition of NFκB and suppresses invasion of gastric cancer cells. Oncogene 2012; 32:3531-42. [PMID: 22890316 DOI: 10.1038/onc.2012.358] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/08/2012] [Accepted: 06/30/2012] [Indexed: 12/21/2022]
Abstract
Infection with cagA-positive Helicobacter pylori is a risk factor for the development of severe gastritis and gastric cancer (GC). CagA protein is injected into gastric epithelial cells and deregulates a variety of cellular signaling molecules. Phospholipase D (PLD) is elevated in many different types of human cancers and has been implicated as a critical factor in inflammation and carcinogenesis. In this study, we show that infection with cagA-positive H. pylori in GC cells significantly induces PLD1 expression via CagA-dependent activation of nuclear factor κB (NFκB). Interestingly, the level of PLD1 protein and IκBα phosphorylation is aberrantly upregulated in H. pylori-infected human GC tissues. Infection with cagA-positive H. pylori and expression of CagA enhanced the binding of NFκB to the PLD1 promoter, and two functional NFκB-binding sites were identified within the PLD1 promoter. Rebamipide, a mucosal-protective antiulcer agent, abolished H. pylori cagA-induced PLD1 expression via inhibition of binding of NFκB to the PLD1 promoter, and also inhibited PLD activity. Moreover, rebamipide suppressed H. pylori-induced matrix metalloproteinase-9, interleukin-8 and activation-induced cytidine deaminase expression as well as invasion of GC cells through downregulation of PLD1. Our data suggest that H. pylori cagA targets PLD1 for invasion of GC cells, and rebamipide might contribute to the antitumorigenic effect of GC cells via inhibition of the H. pylori cagA-NFκB-PLD1 signaling pathway.
Collapse
Affiliation(s)
- D W Kang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gosavi TP, Ghosh P, Kandhare AD, Kumar VS, Adil M, Rajmane AR, Bodhankar SL. Therapeutic effect of H. pylori nosode, a homeopathic preparation in healing of chronic H. pylori infected ulcers in laboratory animals. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2012. [DOI: 10.1016/s2222-1808(12)60230-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Rassow J. Helicobacter pylori vacuolating toxin A and apoptosis. Cell Commun Signal 2011; 9:26. [PMID: 22044628 PMCID: PMC3266207 DOI: 10.1186/1478-811x-9-26] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/01/2011] [Indexed: 12/16/2022] Open
Abstract
VacA, the vacuolating cytotoxin A of Helicobacter pylori, induces apoptosis in epithelial cells of the gastic mucosa and in leukocytes. VacA is released by the bacteria as a protein of 88 kDa. At the outer surface of host cells, it binds to the sphingomyelin of lipid rafts. At least partially, binding to the cells is facilitated by different receptor proteins. VacA is internalized by a clathrin-independent mechanism and initially accumulates in GPI-anchored proteins-enriched early endosomal compartments. Together with early endosomes, VacA is distributed inside the cells. Most of the VacA is eventually contained in the membranes of vacuoles. VacA assembles in hexameric oligomers forming an anion channel of low conductivity with a preference for chloride ions. In parallel, a significant fraction of VacA can be transferred from endosomes to mitochondria in a process involving direct endosome-mitochondria juxtaposition. Inside the mitochondria, VacA accumulates in the mitochondrial inner membrane, probably forming similar chloride channels as observed in the vacuoles. Import into mitochondria is mediated by the hydrophobic N-terminus of VacA. Apoptosis is triggered by loss of the mitochondrial membrane potential, recruitment of Bax and Bak, and release of cytochrome c.
Collapse
Affiliation(s)
- Joachim Rassow
- Ruhr-Universität Bochum, Institut für Physiologische Chemie, Medizinische Fakultät, Gebäude MA3, D-44780 Bochum, Germany.
| |
Collapse
|
28
|
Alvi A, Ansari SA, Ehtesham NZ, Rizwan M, Devi S, Sechi LA, Qureshi IA, Hasnain SE, Ahmed N. Concurrent proinflammatory and apoptotic activity of a Helicobacter pylori protein (HP986) points to its role in chronic persistence. PLoS One 2011; 6:e22530. [PMID: 21789261 PMCID: PMC3137634 DOI: 10.1371/journal.pone.0022530] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 06/23/2011] [Indexed: 12/12/2022] Open
Abstract
Helicobacter pylori induces cytokine mediated changes in gastroduodenal pathophysiology, wherein, the activated macrophages at the sub-mucosal space play a central role in mounting innate immune response against the antigens. The bacterium gains niche through persistent inflammation and local immune-suppression causing peptic ulcer disease or chronic gastritis; the latter being a significant risk factor for the development of gastric adenocarcinoma. What favors persistence of H. pylori in the gastric niches is not clearly understood. We report detailed characterization of a functionally unknown gene (HP986), which was detected in patient isolates associated with peptic ulcer and gastric carcinoma. Expression and purification of recombinant HP986 (rHP986) revealed a novel, ∼29 kDa protein in biologically active form which associates with significant levels of humoral immune responses in diseased individuals (p<0.001). Also, it induced significant levels of TNF-α and Interleukin-8 in cultured human macrophages concurrent to the translocation of nuclear transcription factor-κB (NF-κB). Further, the rHP986 induced apoptosis of cultured macrophages through a Fas mediated pathway. Dissection of the underlying signaling mechanism revealed that rHP986 induces both TNFR1 and Fas expression to lead to apoptosis. We further demonstrated interaction of HP986 with TNFR1 through computational and experimental approaches. Independent proinflammatory and apoptotic responses triggered by rHP986 as shown in this study point to its role, possibly as a survival strategy to gain niche through inflammation and to counter the activated macrophages to avoid clearance.
Collapse
Affiliation(s)
- Ayesha Alvi
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Suhail A. Ansari
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nasreen Z. Ehtesham
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
- National Institute of Nutrition, Hyderabad, India
| | - Mohammed Rizwan
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
| | - Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Insaf A. Qureshi
- Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Seyed E. Hasnain
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
- School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Niyaz Ahmed
- Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, India
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Dynamic of apoptosis of cells in duodenal villi infected with Eimeria acervulina in broiler chickens. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0067-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Hussey S, Jones NL. Helicobacter pylori in Childhood. PEDIATRIC GASTROINTESTINAL AND LIVER DISEASE 2011:293-308.e10. [DOI: 10.1016/b978-1-4377-0774-8.10028-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 2010; 23:713-39. [PMID: 20930071 DOI: 10.1128/cmr.00011-10] [Citation(s) in RCA: 981] [Impact Index Per Article: 65.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is a gastric pathogen that colonizes approximately 50% of the world's population. Infection with H. pylori causes chronic inflammation and significantly increases the risk of developing duodenal and gastric ulcer disease and gastric cancer. Infection with H. pylori is the strongest known risk factor for gastric cancer, which is the second leading cause of cancer-related deaths worldwide. Once H. pylori colonizes the gastric environment, it persists for the lifetime of the host, suggesting that the host immune response is ineffective in clearing this bacterium. In this review, we discuss the host immune response and examine other host factors that increase the pathogenic potential of this bacterium, including host polymorphisms, alterations to the apical-junctional complex, and the effects of environmental factors. In addition to host effects and responses, H. pylori strains are genetically diverse. We discuss the main virulence determinants in H. pylori strains and the correlation between these and the diverse clinical outcomes following H. pylori infection. Since H. pylori inhibits the gastric epithelium of half of the world, it is crucial that we continue to gain understanding of host and microbial factors that increase the risk of developing more severe clinical outcomes.
Collapse
|
32
|
Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cell Mol Immunol 2010; 7:255-9. [PMID: 20190789 DOI: 10.1038/cmi.2010.2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, gastric carcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphomas. Recent studies have shown that apoptosis of gastric epithelial cells is increased during H. pylori infection. Apoptosis induced by microbial infections are factors implicated in the pathogenesis of H. pylori infection. The enhanced gastric epithelial cell apoptosis in H. pylori infection has been suggested to play an important role in the pathogenesis of chronic gastritis and gastric pathology. In addition to directly triggering apoptosis, H. pylori induces sensitivity to tumor-necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in gastric epithelial cells via modulation of TRAIL apoptosis signaling. Moreover, H. pylori infection induces infiltration of T lymphocytes and triggers inflammation to augment apoptosis. In H. pylori infection, there was significantly increased CCR6(+)CD3(+ )T-cell infiltration in the gastric mucosa, and the CCR6 ligand, CCL20 chemokine, was selectively expressed in inflamed gastric tissues. These results implicate that the interaction between CCL20 and CCR6 may play a role in recruiting T cells to the sites of inflammation in the gastric mucosa during Helicobacter infection. Through these mechanisms, chemokine-mediated T lymphocyte trafficking into inflamed epithelium is initiated and the mucosal injury in Helicobacter infection is induced. This article will review the recent novel findings on the interactions of H. pylori with diverse host epithelial signaling pathways and events involved in the initiation of gastric pathology, including gastric inflammation, mucosal damage and development of MALT lymphomas.
Collapse
|
33
|
Machado AMD, Figueiredo C, Seruca R, Rasmussen LJ. Helicobacter pylori infection generates genetic instability in gastric cells. Biochim Biophys Acta Rev Cancer 2010; 1806:58-65. [PMID: 20122996 DOI: 10.1016/j.bbcan.2010.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/16/2010] [Accepted: 01/24/2010] [Indexed: 01/02/2023]
Abstract
The discovery that Helicobacter pylori is associated with gastric cancer has led to numerous studies that investigate the mechanisms by which H. pylori induces carcinogenesis. Gastric cancer shows genetic instability both in nuclear and mitochondrial DNA, besides impairment of important DNA repair pathways. As such, this review highlights the consequences of H. pylori infection on the integrity of DNA in the host cells. By down-regulating major DNA repair pathways, H. pylori infection has the potential to generate mutations. In addition, H. pylori infection can induce direct changes on the DNA of the host, such as oxidative damage, methylation, chromosomal instability, microsatellite instability, and mutations. Interestingly, H. pylori infection generates genetic instability in nuclear and mitochondrial DNA. Based on the reviewed literature we conclude that H. pylori infection promotes gastric carcinogenesis by at least three different mechanisms: (1) a combination of increased endogenous DNA damage and decreased repair activities, (2) induction of mutations in the mitochondrial DNA, and (3) generation of a transient mutator phenotype that induces mutations in the nuclear genome.
Collapse
|
34
|
Oxidative stress by Helicobacter pylori causes apoptosis through mitochondrial pathway in gastric epithelial cells. Apoptosis 2008; 13:1267-80. [PMID: 18766443 DOI: 10.1007/s10495-008-0255-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori is a gram negative bacterium that infects the human stomach of approximately half of the world's population. It produces oxidative stress, and mitochondria are one of the possible targets and the major intracellular source of free radicals. The present study was aimed at determining mitochondrial alterations in H. pylori-infected gastric epithelial cells and its relationship with oxidative stress, one of the recognized causes of apoptotic processes. Cells were treated with a strain of H. pylori for 24 h. Cellular oxidative burst, antioxidant defense analysis, mitochondrial alterations and apoptosis-related processes were measured. Our data provide evidence on how superoxide acts on mitochondria to initiate apoptotic pathways, with these changes occurring in the presence of mitochondrial depolarization and other morphological and functional changes. Treatment of infected cells with Vitamin E prevented increases in intracellular ROS and mitochondrial damage consistent with H. pylori inducing a mitochondrial ROS mediated programmed cell death pathway.
Collapse
|
35
|
Helicobacter pylori IgG Antibodies in Aqueous Humor and Serum of Subjects With Primary Open Angle and Pseudo-exfoliation Glaucoma in a South Indian Population. J Glaucoma 2008; 17:605-10. [DOI: 10.1097/ijg.0b013e318166f00b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Li H, Cai X, Fan X, Moquin B, Stoicov C, Houghton J. Fas Ag-FasL coupling leads to ERK1/2-mediated proliferation of gastric mucosal cells. Am J Physiol Gastrointest Liver Physiol 2008; 294:G263-75. [PMID: 17991709 DOI: 10.1152/ajpgi.00267.2007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
When cells within the gastric mucosa progress from metaplasia to dysplasia to cancer, they acquire a Fas Ag apoptosis-resistant phenotype. It is unusual to completely abolish the pathway, suggesting other forms of Fas Ag signaling may be important or even necessary for gastric cancer to progress. Little is known about alternate signaling of the Fas Ag pathway in gastric mucosal cells. Using a cell culture model of rat gastric mucosal cells, we show that gastric mucosal cells utilize a type II signaling pathway for apoptosis. Under conditions of low receptor stimulation or under conditions where apoptosis is blocked downstream of the death-inducing signal complex, Fas Ag signaling proceeds toward proliferative signaling. Under conditions favoring proliferative signaling, cFLIP is recruited to the Fas-associated death domain-like interleukin-1beta-converting enzyme at the death-inducing signal complex and activates ERK1/2. ERK1/2 in turn activates NF-kappaB. ERK1/2 stimulates proliferation, whereas NF-kappaB activation results in upregulation of the antiapoptotic protein survivin, further promoting proliferation over apoptosis. These results suggest that factors that inhibit apoptosis confer a growth advantage to the cells beyond the survival advantage of avoiding apoptosis and in effect convert the Fas Ag signaling pathway from a tumor suppressor to a tumor promoter.
Collapse
Affiliation(s)
- Hanchen Li
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | |
Collapse
|
37
|
Mojtahedi A, Salehi R, Navabakbar F, Tamizifar H, Tavakkoli H, Duronio V. Evaluation of apoptosis induction using PARP cleavage on gastric adenocarcinoma and fibroblast cell lines by different strains of Helicobacter pylori. Pak J Biol Sci 2007; 10:4097-4102. [PMID: 19090286 DOI: 10.3923/pjbs.2007.4097.4102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Helicobacter pylori is one of the most common pathogens affecting humans and is the major environmental factor in the development of gastric cancer increasing from 4 to 6 folds the risk of its development. Variations in cancer risk among H. pylori infected individuals may correlate to difference in H. pylori strains, variable host characteristics and specific interactions between host and microbial determinants. To determine the effect of different strains of H. pylori on cellular apoptosis this study was designed an in vitro model using AGS and HEF cell lines. After specified time intervals total cell proteins was extracted and subjected to SDS-PAGE and immunoblotting using anti poly ADP-ribose polymerase (PARP) antibody. Decrease in densitometric value of PARP was indicative of higher level of apoptosis. The ability of apoptosis induction in AGS and HEF cell lines by wild type (cagA+/vacA+), cagA-/vacA+, vacA-/cagA+ and double negative (cagA-/vacA-) strains were significantly different. The assessed apoptosis in AGS cell line co-cultured with wild type strain was 3.22 +/- 0.2 in 24 h, 2.8 +/- 0.1 in 48 and 2.1 +/- 0.09 in 72 h of incubation time. Similar assessment with cagA-/vacA+ strains in AGS cells was 4.17 +/- 1.49 in 24 h, 3.32 +/- 0.45 in 48 h and 2.32 +/- 0.61 in 72 h incubation. A variation in apoptotic potential between the H. pylori strains on two cells (AGS and HEF) was observed. Based on present results, it is concluded that H. pylori strains as well as target cell types are important in pathogenesis and induction of apoptosis during a specified time interval.
Collapse
Affiliation(s)
- Ali Mojtahedi
- Department of Medical Microbiology, Faculty of Medicine, Guilan University Complex, Rasht-Tehran Road, Rasht 3477, Iran
| | | | | | | | | | | |
Collapse
|
38
|
Fukui T, Nishio A, Okazaki K, Kasahara K, Saga K, Tanaka J, Uza N, Ueno S, Kido M, Ohashi S, Asada M, Nakase H, Watanabe N, Chiba T. Cross-primed CD8+ cytotoxic T cells induce severe Helicobacter-associated gastritis in the absence of CD4+ T cells. Helicobacter 2007; 12:486-97. [PMID: 17760716 DOI: 10.1111/j.1523-5378.2007.00536.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Although previous studies have reported important roles of CD4(+) type 1-helper T cells and regulatory T cells in Helicobacter-associated gastritis, the significance of CD8(+) cytotoxic T cells remains unknown. To study the roles of CD8(+) T cells, we examined the immune response in the gastric mucosa of Helicobacter felis-infected major histocompatibility complex (MHC) class II-deficient (II(-/-)) mice, which lack CD4(+) T cells. MATERIALS AND METHODS Stomachs from H. felis-infected wild-type and infected MHC II(-/-) mice were examined histologically and immunohistochemically. Gastric acidity and serum levels of anti-H. felis antibodies were measured. The expression of pro-inflammatory and anti-inflammatory cytokine, Fas-ligand, perforin, and Foxp3 genes in the gastric mucosa was investigated. RESULTS H. felis-infected MHC II(-/-) mice developed severe gastritis, accompanied by marked infiltration of CD8(+) cells. At 1 and 2 months after inoculation, mucosal inflammation and atrophy were more severe in MHC II(-/-) mice, although gastritis had reached similar advanced stages at 3 months after inoculation. There was little infiltration of CD4(+) cells, and no Foxp3-positive cells were detected in the gastric mucosa of the infected MHC II(-/-) mice. The expression of the interleukin-1beta and Fas-ligand genes was up regulated, but that of Foxp3 was down regulated in the infected MHC II(-/-) mice. Serum levels of anti-H. felis antibodies were lower in the infected MHC II(-/-) mice, despite severe gastritis. CONCLUSIONS The present study suggests that cross-primed CD8(+) cytotoxic T cells can induce severe H.-associated gastritis in the absence of CD4(+) helper T cells and that Foxp3-positive cells may have an important role in the control of gastric inflammation.
Collapse
Affiliation(s)
- Toshiro Fukui
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Laux MT, Aregullin M, Rodriguez E. Inhibition of Helicobacter pylori and Gastric Cancer Cells by Lipid Aldehydes from Viburnum opulus (Adoxaceae). Nat Prod Commun 2007. [DOI: 10.1177/1934578x0700201009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A unique group of bioactive, naturally occurring lipid aldehydes were isolated from the fruits of Viburnum opulus, (family Adoxaceae). The natural occurrences of these fatty acid derived aldehydes are reported here for the first time. Helicobacter pylori is a prevalent gastroduodenal pathogen, a causal agent of chronic gastritis and peptic ulcers and an important co-factor in gastric cancer development. We investigated the chemistry and bioactivity of these active constituents by evaluating their ability to inhibit the growth of H. pylori and to induce apoptosis in a gastric cancer cell line (CRL-5971) in vitro.
Collapse
Affiliation(s)
- Maria Teresa Laux
- College of Veterinary Medicine, Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Manuel Aregullin
- College of Agriculture and Life Science, Department of Molecular Biology & Genetics, Ithaca, NY 14853, USA
| | - Eloy Rodriguez
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Wu YY, Tsai HF, Lin WC, Hsu PI, Shun CT, Wu MS, Hsu PN. Upregulation of CCL20 and recruitment of CCR6+ gastric infiltrating lymphocytes in Helicobacter pylori gastritis. Infect Immun 2007; 75:4357-4363. [PMID: 17562763 PMCID: PMC1951156 DOI: 10.1128/iai.01660-06] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 12/27/2006] [Accepted: 06/04/2007] [Indexed: 12/26/2022] Open
Abstract
Helicobacter pylori infection is associated with an inflammatory response in the gastric mucosa, leading to chronic gastritis, peptic ulcers, and gastric cancer. There is increased T-cell infiltration at the site of infection with H. pylori. CCR6, a specific beta-chemokine receptor for CCL20 (MIP-3alpha/LARC/exodus), has recently been reported to mediate lymphocyte homeostasis and immune responses in mucosal tissue, and it may play a role in chemokine-mediated lymphocyte trafficking during gastric inflammation. In this study, we investigated the role of CCR6 and its ligand, CCL20, in inducing an inflammatory response in the gastric mucosa during H. pylori infection. Gastric infiltrating T lymphocytes were isolated from endoscopic biopsy specimens of H. pylori gastritis patients and analyzed for the expression of the CCR6 chemokine receptor. Our results demonstrated that there was significantly increased CCR6 expression in CD3(+) T cells infiltrating the gastric mucosa, and the CCR6 ligand, the CCL20 chemokine, was selectively expressed in inflamed gastric tissues. The production of CCL20 was upregulated in response to H. pylori in gastric epithelial cells when there was stimulation by the proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha. Furthermore, recombinant CCL20 induced lymphocyte chemotaxis migration in fresh gastric T cells ex vivo, indicating that the gastric T cells could migrate toward inflammatory sites via CCR6/CCL20 interaction. Our results suggest that the interaction between CCL20 and CCR6 may play a role in chemokine-mediated lymphocyte trafficking during gastric inflammation in Helicobacter infection.
Collapse
MESH Headings
- Cells, Cultured
- Chemokine CCL20
- Chemokines, CC/biosynthesis
- Chemokines, CC/genetics
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Chronic Disease
- Gastritis/immunology
- Gastritis/microbiology
- Gastritis/pathology
- Helicobacter Infections/immunology
- Helicobacter Infections/microbiology
- Helicobacter Infections/pathology
- Helicobacter pylori/immunology
- Humans
- Immunologic Memory/genetics
- Inflammation Mediators/metabolism
- Inflammation Mediators/physiology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Macrophage Inflammatory Proteins/biosynthesis
- Macrophage Inflammatory Proteins/genetics
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/genetics
- Receptors, CCR6
- Receptors, CXCR3
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- Th1 Cells/pathology
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Yi-Ying Wu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, 1 Jen-Ai Rd., Sec. 1, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ganten TM, Aravena E, Sykora J, Koschny R, Mohr J, Rudi J, Stremmel W, Walczak H. Helicobacter pylori-induced apoptosis in T cells is mediated by the mitochondrial pathway independent of death receptors. Eur J Clin Invest 2007; 37:117-25. [PMID: 17217377 DOI: 10.1111/j.1365-2362.2007.01761.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Chronic infection with Helicobacter pylori is related to the pathogenesis of the noncardia carcinoma of the stomach. In this study we investigated the mechanisms of H. pylori-induced apoptosis in T lymphocytes, which could explain a mechanism of immune evasion facilitating chronic inflammation of the mucosa and gastric carcinogenesis. MATERIALS AND METHODS The supernatant of H. pylori culture was used to study the mechanism of apoptosis induction in human leukaemia T cell lines Jurkat and CEM and in primary T cells. The cytotoxin associated gene A (CagA) and vacuolating cytotoxin A (Vac A) positive bacterial strain H. pylori 60190 (CagA(+), VacA(+)) and as a control the less toxic H. pylori strain Tx30a (CagA(-), VacA(-)) were used to produce the supernatant. Cell death was determined by DNA fragmentation and protein expression by Western blot. RESULTS H. pylori 60190-induced apoptosis was neither blocked by inhibition of the death ligands TRAIL (TNF-related apoptosis-inducing ligand), CD95L/FasL and TNF-alpha (tumour necrosis factor-a) in wild type Jurkat cells nor in FADD(def) (Fas-associated death domain protein) and caspase-8(def) subclones of the Jurkat cell line. Yet, the pancaspase inhibitor zVAD-fmk could inhibit up to 90% of H. pylori-induced apoptosis. Stable transfection of Jurkat wild type cells with Bcl-x(L and) Bcl-2 resulted in marked reduction of H. pylori-induced apoptosis, showing that the mitochondrial pathway is the key regulator. This is supported by the finding that surviving primary human lymphocytes upregulate Bcl-2 when exposed to H. pylori supernatant. CONCLUSIONS H. pylori-induced apoptosis of T cells is mediated by the mitochondrial pathway and could create a local environment that facilitates life-long infection by immune evasion.
Collapse
|
42
|
Souza HSP, Neves MS, Elia CCS, Tortori CJA, Dines I, Martinusso CA, Madi K, Andrade L, Castelo-Branco MTL. Distinct patterns of mucosal apoptosis in H pylori-associated gastric ulcer are associated with altered FasL and perforin cytotoxic pathways. World J Gastroenterol 2006; 12:6133-6141. [PMID: 17036384 PMCID: PMC4088106 DOI: 10.3748/wjg.v12.i38.6133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 06/08/2006] [Accepted: 06/14/2006] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the level of apoptosis in different mucosal compartments and the differential expression of Fas/Fas-ligand and perforin in H pylori-associated gastric ulcer. METHODS Antral specimens from patients with H pylori-related active gastric ulcer (GU), H pylori-related gastritis, and non-infected controls were analysed for densities and distribution of apoptotic cells determined by the TdT-mediated dUDP-biotin nick-end-labelling method. GU patients were submitted to eradication therapy with follow-up biopsy after 60 d. Fas, FasL, and perforin-expressing cells were assessed by immunoperoxidase, and with anti-CD3, anti-CD20 and anti-CD68 by double immunofluorescence and confocal microscopy. Quantitative analysis was performed using a computer-assisted image analyser. RESULTS H pylori-infected antrum showed greater surface epithelial apoptosis which decreased after eradication therapy. In the lamina propria, higher rates of mononuclear cell apoptosis were observed in H pylori-gastritis. Co-expression of Fas with T-cell and macrophage markers was reduced in GU. FasL- and perforin-expressing cells were increased in H pylori-infection and correlated with epithelial apoptosis. Perforin-expressing cells were also increased in GU compared with H pylori-gastritis. CONCLUSION Epithelial apoptosis is increased in H pylori-infection and correlates to FasL- and perforin-expression by T cells. Expression of perforin is correlated with the tissue damage, and may represent the enhancement of a distinct cytotoxic pathway in GU. Increased expression of FasL not paralleled by Fas on T-cells and macrophages may indicate a reduced susceptibility to the Fas/FasL-mediated apoptosis of lymphoid cells in H pylori-infection.
Collapse
Affiliation(s)
- Heitor-S-P Souza
- Departamento de Clínica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, 21941-590, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Edelblum KL, Yan F, Yamaoka T, Polk DB. Regulation of apoptosis during homeostasis and disease in the intestinal epithelium. Inflamm Bowel Dis 2006; 12:413-24. [PMID: 16670531 DOI: 10.1097/01.mib.0000217334.30689.3e] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A single epithelial layer serves as the interface between the organism and the contents of the gastrointestinal tract, underlining the importance of regulating cellular viability despite an onslaught of pathogens, toxins, waste by-products, and cytokines. A balance between cellular proliferation and apoptosis is necessary to maintain this critical barrier. Recent findings have begun to explain the mechanisms by which intestinal epithelial cells are able to survive in such an environment and how loss of normal regulatory processes may lead to inflammatory bowel disease (IBD) and predispose to inflammation-associated neoplasia. This review focuses on the regulation of physiological apoptosis in development and homeostasis and on pathological apoptosis in intestinal disease, inflammation, and neoplasia, identifying remaining questions and areas of needed investigation.
Collapse
Affiliation(s)
- Karen L Edelblum
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0696, USA
| | | | | | | |
Collapse
|
44
|
Yamasaki E, Wada A, Kumatori A, Nakagawa I, Funao J, Nakayama M, Hisatsune J, Kimura M, Moss J, Hirayama T. Helicobacter pylori vacuolating cytotoxin induces activation of the proapoptotic proteins Bax and Bak, leading to cytochrome c release and cell death, independent of vacuolation. J Biol Chem 2006; 281:11250-9. [PMID: 16436379 DOI: 10.1074/jbc.m509404200] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori vacuolating cytotoxin, VacA, which causes vacuolation of gastric epithelial cells and other types of cultured cells, is known to stimulate apoptosis via a mitochondria-dependent pathway. In the present study, we examined the mechanisms of VacA-induced mitochondrial damage. Intracellular VacA localization was monitored by immunostaining and confocal microscopy; in AZ-521 cells in which cytochrome c release was stimulated, most of VacA was localized to vacuoles rather than mitochondria. VacA reduced the membrane potential of isolated mitochondria without inducing cytochrome c release, suggesting that it did not act directly to induce cytochrome c release from mitochondria and that in intact cells, VacA-induced cytochrome c release involved apoptosis-related factor(s), such as a proapoptotic Bcl-2 family protein. In agreement, flow cyto-metric analyses using antibodies specific for activated Bax revealed that intracellular Bax was activated by VacA in a concentration- and time-dependent manner. Using active form-specific antibodies, we also observed that the Bcl-2 family protein, Bak, was activated. By confocal microscopy, Bax and Bak were activated in AZ-521 cells in which cyto-chrome c release was induced by VacA. In addition, small interfering RNA-induced silencing of the bax gene resulted in reduction of VacA-stimulated cytochrome c release, consistent with a contribution of VacA-induced Bax activation to cytochrome c release. NH4Cl enhanced both VacA-induced vacuolation and Bax activation, whereas Bax activation was not inhibited by bafilomycin A1, which inhibited vacuolation caused by VacA. These results suggest that VacA acts through different signaling pathways to induce apoptosis via Bax activation, independent of vacuolation.
Collapse
Affiliation(s)
- Eiki Yamasaki
- PRESTO, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fedwick JP, Lapointe TK, Meddings JB, Sherman PM, Buret AG. Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun 2006; 73:7844-52. [PMID: 16299274 PMCID: PMC1307049 DOI: 10.1128/iai.73.12.7844-7852.2005] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a spiral, gram-negative bacterium that specifically and persistently infects the human stomach. In some individuals, H. pylori-induced chronic gastritis may progress to gastroduodenal ulcers and gastric cancer. Currently, the host-microbe interactions that determine the clinical outcome of infection are not well defined. H. pylori strains capable of disrupting the gastric epithelial barrier may increase the likelihood of developing serious disease. In this study, H. pylori strain SS1 increased gastric, but not small intestinal, permeability in C57BL/6 mice. H. pylori strain SS1 was able to directly increase paracellular permeability, in the absence of host inflammatory cells, by disrupting the tight-junctional proteins occludin, claudin-4, and claudin-5 in confluent nontransformed epithelial cells. H. pylori SS1 also reduced claudin-4 protein levels in human gastric AGS cells. The ability of H. pylori SS1 to increase permeability appeared to be independent of the well-characterized virulence factors vacuolating cytotoxin and CagA protein. H. pylori activated myosin light-chain kinase in epithelial cells to phosphorylate myosin light chain and increase permeability by disrupting claudin-4 and claudin-5. The bacterial factor responsible for increasing epithelial permeability was heat sensitive, membrane bound, and required apical contact with monolayers. In conclusion, disruptions of the tight junctions observed in this study implicate host cell signaling pathways, including the phosphorylation of myosin light chain and the regulation of tight-junctional proteins claudin-4 and claudin-5, in the pathogenesis of H. pylori infection.
Collapse
Affiliation(s)
- Jason P Fedwick
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4
| | | | | | | | | |
Collapse
|
46
|
Goto Y, Ando T, Yamamoto K, Tamakoshi A, El-Omar E, Goto H, Hamajima N. Association between serum pepsinogens and polymorphismof PTPN11 encoding SHP-2 among Helicobacter pylori seropositive Japanese. Int J Cancer 2005; 118:203-8. [PMID: 16032704 DOI: 10.1002/ijc.21338] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Helicobacter pylori (H. pylori) plays a crucial role in the development of gastric atrophy and cancer, and cagA-positive strains, which are universal in Japan, increase the risk of these outcomes substantially. The CagA protein is injected from attached H. pylori into gastric epithelial cells and undergoes Src-dependent tyrosine phosphorylation and activation of the eukaryotic phosphatase SHP-2. The CagA/SHP-2 interactions elicit cellular changes that increase the risk of carcinogenesis. We investigated the association of a frequent single nucleotide polymorphism (SNP; JST057927; G-to-A) in the PTPN11 gene that encodes SHP-2 with gastric atrophy and gastric cancer in Japan. Gastric atrophy was assessed by measuring serum pepsinogen I and II levels. The subjects comprised 454 healthy controls (126 males; mean age, 58.4) and 202 gastric cancer cases (134 males and 68 females; mean age, 66.7). All gastric cancer cases and 250 (55%) controls were H. pylori seropositive; 179 (89%) of the gastric cancer cases had gastric atrophy compared to 137 (55%) of the H. pylori seropositive controls (p < 0.001). Among HP seropositive controls compared to the common PTPN11 G/G genotype, the odds ratio of atrophy was nonsignificantly reduced with the G/A genotype (0.70; 95% CI = 0.39-1.25) and significantly reduced with the A/A genotype (0.09; 95% CI = 0.01-0.72). Lower risk for gastric atrophy had a gene-dose association with the A allele (p = 0.01, trend test). There was a clear deficiency of the A/A genotype in those with atrophy compared to those without (1 subject in the gastric atrophy group vs. 8 in the group without). Cancer cases differed from controls in frequencies of PTPN11 G/A genotype only because of a higher prevalence of atrophy among the cancer cases. The G/A SNP in the PTPN11 gene appears to be a risk factor for gastric atrophy in subjects infected with cagA-positive H. pylori. This may explain why only a proportion of CagA-positive individuals develop gastric atrophy and gastric cancer, even though infection with cagA strains is universal in Asian countries such as Japan. The functional consequences of the G/A polymorphism remain to be elucidated.
Collapse
Affiliation(s)
- Yasuyuki Goto
- Department of Gastroenterology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Avitzur Y, Galindo-Mata E, Jones NL. Oral vaccination against Helicobacter pylori infection is not effective in mice with Fas ligand deficiency. Dig Dis Sci 2005; 50:2300-6. [PMID: 16416178 DOI: 10.1007/s10620-005-3051-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Accepted: 03/08/2005] [Indexed: 01/05/2023]
Abstract
The aim of this study was to delineate the role of the Fas pathway in vaccination against Helicobacter pylori. C57BL/6 and Fas ligand-deficient (gld) mice were divided into 3 groups: control, H. pylori infected, and orally vaccinated (H. pylori whole cell sonicate and cholera toxin adjuvant). Oral vaccination prevented H. pylori colonization in 78% of C57BL/6 mice compared to only 18% of gld mice. Vaccination did not alter the degree of apoptosis in either strain of mice. Vaccination led to significant increase in interleukin (IL)-5 and IL-10 in C57BL/6 but not gld mice. H. pylori infection increased interferon (IFN)-gamma levels in C57BL/6 but not in gld mice while vaccination had no effect on IFN-gamma levels in either strain. Oral vaccination is not effective in Fas ligand-deficient mice likely owing to lack of effective cytokine responses. This indicates that the Fas pathway plays a critical role in promoting an appropriate effector response following H. pylori vaccination.
Collapse
Affiliation(s)
- Yaron Avitzur
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
48
|
Stoicov C, Cai X, Li H, Klucevsek K, Carlson J, Saffari R, Houghton J. Major histocompatibility complex class II inhibits fas antigen-mediated gastric mucosal cell apoptosis through actin-dependent inhibition of receptor aggregation. Infect Immun 2005; 73:6311-21. [PMID: 16177302 PMCID: PMC1230908 DOI: 10.1128/iai.73.10.6311-6321.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Escape from normal apoptotic controls is thought to be essential for the development of cancer. During Helicobacter pylori infection, the leading cause of gastric cancer, activation of the Fas antigen (Fas Ag) apoptotic pathway is responsible for early atrophy and tissue loss. As disease progresses, metaplastic and dysplastic glands arise which express Fas Ag but are resistant to apoptosis and are believed to be the precursor cells for adenocarcinoma. In this report, we show that one mechanism of acquired Fas resistance is inhibition of receptor aggregation via a major histocompatibility complex class II (MHCII)-mediated, actin-dependent mechanism. For these studies we used the well-described C57BL/6 mouse model of Helicobacter pylori and Helicobacter felis infection. Under normal conditions, Fas Ag is expressed at low levels, and MHCII expression on gastric mucosal cells is negligible. With infection and inflammation, both receptors are upregulated, and 6.1% of gastric mucosal cells express MHCII in combination with Fas Ag. Using the rat gastric mucosal cell line RGM-1 transfected with murine Fas Ag and MHCIIalphabeta chains, we demonstrate that MHCII prevents Fas receptor aggregation and inhibits Fas-mediated signaling through its effects on the actin cytoskeleton. Depolymerization of actin with cytochalasin D allows receptors to aggregate and restores Fas sensitivity. These findings offer one mechanism by which gastric mucosal cells acquire Fas resistance.
Collapse
Affiliation(s)
- Calin Stoicov
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, Worcester, 01615, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Sieveking D, Leach ST, Mitchell HM, Day AS. Role of serum factors in epithelial cell responses to Helicobacter pylori infection in vitro. J Gastroenterol Hepatol 2005; 20:1610-1615. [PMID: 16174082 DOI: 10.1111/j.1440-1746.2005.03881.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Gastric epithelial cell lines have been utilized extensively as tools to define aspects of the interactions between Helicobacter pylori and host epithelial cells. Fetal calf serum (FCS) is employed as a growth stimulant, but it is unclear whether this agent may in itself alter host responses. METHODS Two gastric epithelial cell lines were utilized to ascertain the effects of varying FCS concentration on cellular responses following H. pylori infection. Media containing 0%, 5% or 10% FCS was added to cell lines prior to infection with H. pylori of defined genotype. Cellular interleukin (IL)-8 production was measured as a marker of cellular response. Effects of altered FCS upon cell viability were also determined by trypan blue exclusion. RESULTS Interleukin-8 production by AGS cells following H. pylori infection was not altered by variation of media FCS concentration. However, KATO-III cells produced greater amounts of IL-8 when media was FCS-free than at 5% or 10% FCS. Although cellular viability was not altered in AGS cells exposed to varied concentrations of FCS, viability was decreased in serum-free KATO-III cells, but not when cells were kept at 5% FCS. CONCLUSIONS Serum-derived factors alter cellular responses to H. pylori infection in a cell-line-dependent manner and impaired cellular viability may relate to this effect. However, the mechanisms for these observations are unclear and further work is now required to determine the nature of these important interactions.
Collapse
Affiliation(s)
- Daniel Sieveking
- School of Biotechnology, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
50
|
Park S, Yeo M, Jin JH, Lee KM, Jung JY, Choue R, Cho SW, Hahm KB. Rescue of Helicobacter pylori-induced cytotoxicity by red ginseng. Dig Dis Sci 2005; 50:1218-27. [PMID: 16047463 DOI: 10.1007/s10620-005-2763-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helicobacter pylori has been known to provoke gastric inflammation, ulceration, and DNA damage, based on which WHO defined H. pylori as a class I carcinogen. Although ginseng, the root of Panax ginseng C.A. Meyer, has been reported to possess antiadhesion or antimicrobial activity against H. pylori, in this study, we examined the protective effect of red ginseng extracts (RGE) against H. pylori-induced cytotoxicity and DNA damage. RGE significantly attenuated both H. pylori-induced DNA damage assessed by comet assay and apoptosis measured by DNA fragmentation. Inactivation of ERK1/2 signaling and attenuation of caspase-3 activation and PARP cleavage were revealed with RGE against H. pylori infection. RGE decreased H. pylori-stimulated IL-8 gene expression, which resulted from the transcriptional regression of NF-kappaB. In conclusion, RGE showed significant gastroprotective effects against H. pylori-associated gastric mucosal cell damage, suggesting that red ginseng could be used as a medicinal phytonutrient against H. pylori infection.
Collapse
Affiliation(s)
- Soojin Park
- Genomic Research Center for Gastroenterology, Ajou University School of Medicine, Suwon, Kyungkido, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|