1
|
Curvino EJ, Roe EF, Freire Haddad H, Anderson AR, Woodruff ME, Votaw NL, Segura T, Hale LP, Collier JH. Engaging natural antibody responses for the treatment of inflammatory bowel disease via phosphorylcholine-presenting nanofibres. Nat Biomed Eng 2024; 8:628-649. [PMID: 38012308 PMCID: PMC11128482 DOI: 10.1038/s41551-023-01139-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Alexa R Anderson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Reuschlé Q, Van Heddegem L, Bosteels V, Moncan M, Depauw S, Wadier N, Maréchal S, De Nolf C, Delgado V, Messai Y, Stolzenberg MC, Magérus A, Werck A, Olagne J, Li Q, Lefevre G, Korganow AS, Rieux-Laucat F, Janssens S, Soulas-Sprauel P. Loss of function of XBP1 splicing activity of IRE1α favors B cell tolerance breakdown. J Autoimmun 2024; 142:103152. [PMID: 38071801 DOI: 10.1016/j.jaut.2023.103152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 03/23/2024]
Abstract
Anti-nuclear antibodies are the hallmark of autoimmune diseases such as systemic lupus erythematosus (SLE) and scleroderma. However, the molecular mechanisms of B cell tolerance breakdown in these pathological contexts are poorly known. The study of rare familial forms of autoimmune diseases could therefore help to better describe common biological mechanisms leading to B cell tolerance breakdown. By Whole-Exome Sequencing, we identified a new heterozygous mutation (p.R594C) in ERN1 gene, encoding IRE1α (Inositol-Requiring Enzyme 1α), in a multiplex family with several members presenting autoantibody-mediated autoimmunity. Using human cell lines and a knock-in (KI) transgenic mouse model, we showed that this mutation led to a profound defect of IRE1α ribonuclease activity on X-Box Binding Protein 1 (XBP1) splicing. The KI mice developed a broad panel of autoantibodies, however in a subclinical manner. These results suggest that a decrease of spliced form of XBP1 (XBP1s) production could contribute to B cell tolerance breakdown and give new insights into the function of IRE1α which are important to consider for the development of IRE1α targeting strategies.
Collapse
Affiliation(s)
- Quentin Reuschlé
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France; Arthritis R&D, Neuilly sur Seine, France
| | - Laurien Van Heddegem
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Victor Bosteels
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Matthieu Moncan
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Sabine Depauw
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France
| | - Nadège Wadier
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France
| | - Sandra Maréchal
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Clint De Nolf
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Barriers in Inflammation, VIB Center for Inflammation Research, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Virginia Delgado
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France
| | | | - Marie-Claude Stolzenberg
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Aude Magérus
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Angélique Werck
- Department of Pathology, University Hospital, Strasbourg, France
| | - Jérôme Olagne
- Department of Pathology, University Hospital, Strasbourg, France; Department of Adult Nephrology, University Hospital, Strasbourg, France
| | - Quan Li
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Guillaume Lefevre
- Inserm, U1286 - INFINITE - Institute for Translational Research in Inflammation, University of Lille, CHU Lille, Lille, France
| | - Anne-Sophie Korganow
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France; Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France
| | - Frédéric Rieux-Laucat
- Université Paris Cité, Laboratoire d'immunogénétique des maladies auto-immunes pédiatriques, Institut Imagine, INSERM UMR_S1163, Paris, France
| | - Sophie Janssens
- Laboratory for ER Stress and Inflammation, VIB Center for Inflammation Research, Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Pauline Soulas-Sprauel
- Laboratoire d'ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, F-67000, Strasbourg, France; Strasbourg University, Faculty of Pharmacy and Faculty of Medicine, Strasbourg, France; Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Strasbourg University Hospital, F-67000, Strasbourg, France.
| |
Collapse
|
3
|
Abbasi K, Tahamtan Y, Moazamian E, Hosseini MH. Formalin and ferric chloride inactivated Pasteurella multocida type a adjuvanted with bacterial DNA and alum as a new vaccine candidate in sheep pasteurellosis. Microb Pathog 2023; 183:106282. [PMID: 37591320 DOI: 10.1016/j.micpath.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023]
Abstract
The aim of the present study was to investigate humoral and cellular immune responses in sheep inoculated with inactivated P. multocida antigen with alum and bacterial DNA adjuvant by identifying IgG and cytokines from serum and cell culture. Sheep were immunized with iron and formalin-inactivated antigens at an interval of 2 weeks. These immunogens were mixed with alum adjuvant and P. multocida type A DNA (AbDNA). After injection and blood sampling, the serum antibody titer and cellular immune responses (IL-4, IFN-γ, and TNF-α) on serum samples and lymphocyte cell were tested by ELISA. The ELISA results showed a higher antibody titer in the bDNA adjuvant group compared to the alum adjuvant group and the control group. In general, the level of IgG in the serum of immunized animals was significantly increased compared to the control group. The peak antibody titer (1.794) was observed on the 28th day of injection in the IIV-AbDNA group. After immunization, inactivation with iron and bDNA adjuvant increased cytokine production compared to other experimental and control groups. High levels of lymphocyte and serum titers of IL-4, IFN-γ, and TNF-α were also obtained in the IIV-AbDNA group. The findings showed that killed P. multocida type A antigens formulated with bacterial DNA as an adjuvant are candidates for new immunogens against P. multocida infections in sheep. The inactivation of bacteria with iron also enhanced proper immune responses.
Collapse
Affiliation(s)
- Keivandokht Abbasi
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Yahya Tahamtan
- Department of Microbiology, Shiraz Branch, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Shiraz, Iran.
| | - Elham Moazamian
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hossein Hosseini
- Department of Microbiology, Shiraz Branch, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization, Shiraz, Iran
| |
Collapse
|
4
|
Tognetti F, Biagini M, Denis M, Berti F, Maione D, Stranges D. Evolution of Vaccines Formulation to Tackle the Challenge of Anti-Microbial Resistant Pathogens. Int J Mol Sci 2023; 24:12054. [PMID: 37569427 PMCID: PMC10418901 DOI: 10.3390/ijms241512054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
The increasing diffusion of antimicrobial resistance (AMR) across more and more bacterial species emphasizes the urgency of identifying innovative treatment strategies to counter its diffusion. Pathogen infection prevention is among the most effective strategies to prevent the spread of both disease and AMR. Since their discovery, vaccines have been the strongest prophylactic weapon against infectious diseases, with a multitude of different antigen types and formulative strategies developed over more than a century to protect populations from different pathogens. In this review, we review the main characteristics of vaccine formulations in use and under development against AMR pathogens, focusing on the importance of administering multiple antigens where possible, and the challenges associated with their development and production. The most relevant antigen classes and adjuvant systems are described, highlighting their mechanisms of action and presenting examples of their use in clinical trials against AMR. We also present an overview of the analytical and formulative strategies for multivalent vaccines, in which we discuss the complexities associated with mixing multiple components in a single formulation. This review emphasizes the importance of combining existing knowledge with advanced technologies within a Quality by Design development framework to efficiently develop vaccines against AMR pathogens.
Collapse
Affiliation(s)
- Francesco Tognetti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | | | | | | | | | | |
Collapse
|
5
|
Enhancement of Immune Response of Bioconjugate Nanovaccine by Loading of CpG through Click Chemistry. J Pers Med 2023; 13:jpm13030507. [PMID: 36983689 PMCID: PMC10052328 DOI: 10.3390/jpm13030507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
CpG is a widely used adjuvant that enhances the cellular immune response by entering antigen-presenting cells and binding with receptors. The traditional physical mixing of the antigen and CpG adjuvant results in a low adjuvant utilization rate. Considering the efficient delivery capacity of nanovaccines, we developed an attractive strategy to covalently load CpG onto the nanovaccine, which realized the co-delivery of both CpG and the antigen. Briefly, the azide-modified CpG was conjugated to a bioconjugate nanovaccine (NP-OPS) against Shigella flexneri through a simple two-step reaction. After characterization of the novel vaccine (NP-OPS-CpG), a series of in vitro and in vivo experiments were performed, including in vivo imaging, lymph node sectioning, and dendritic cell stimulation, and the results showed that more CpG reached the lymph nodes after covalent coupling. Subsequent flow cytometry analysis of lymph nodes from immunized mice showed that the cellular immune response was greatly promoted by the nanovaccine coupled with CpG. Moreover, by analyzing the antibody subtypes of immunized mice, NP-OPS-CpG was found to further promote a Th1-biased immune response. Thus, we developed an attractive method to load CpG on a nanovaccine that is simple, convenient, and is especially suitable for immune enhancement of vaccines against intracellular bacteria.
Collapse
|
6
|
Sircy LM, Harrison-Chau M, Novis CL, Baessler A, Nguyen J, Hale JS. Protein Immunization Induces Memory CD4 + T Cells That Lack Th Lineage Commitment. THE JOURNAL OF IMMUNOLOGY 2021; 207:1388-1400. [PMID: 34380649 DOI: 10.4049/jimmunol.2100210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/01/2021] [Indexed: 11/19/2022]
Abstract
Acute viral infection generates lineage-committed Th1 and T follicular helper (Tfh) memory cells that recall their lineage-specific functions following secondary challenge with virus. However, the lineage commitment of effector and memory Th cells in vivo following protein vaccination is poorly understood. In this study, we analyzed effector and memory CD4+ T cell differentiation in mice (Mus musculus) following adjuvanted glycoprotein immunization compared with acute lymphocytic choriomeningitis virus infection. Glycoprotein immunization induced CXCR5- non-Tfh effector and memory CD4+ T cells that surprisingly had not undergone polarization toward any particular Th cell lineage but had undergone memory differentiation. However, upon challenge with virus, these Th lineage-nonpolarized memory CD4+ T cells were able to generate Th1 secondary effector cells, demonstrating their lineage plasticity. In addition, Tfh and memory Tfh cells were generated in response to protein immunization, and these cells differed from infection-induced Tfh cells by their lack of the transcription factor Tbet. Rechallenge experiments demonstrated that viral infection, but not protein immunization, during either the primary or secondary immune response, restricts the recall of Bcl6 expression and the generation of germinal center Tfh cells. Together, these data demonstrate that protein immunization generates a combination of nonpolarized memory cells that are highly plastic and memory Tfh cells that can undergo further Th1-like modulation during a secondary response to viral infection.
Collapse
Affiliation(s)
- Linda M Sircy
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | | | - Andrew Baessler
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - Jacklyn Nguyen
- Department of Pathology, University of Utah, Salt Lake City, UT
| | - J Scott Hale
- Department of Pathology, University of Utah, Salt Lake City, UT
| |
Collapse
|
7
|
Santiesteban-Lores LE, Cabrera-Crespo J, Carvalho E. Development of a pneumococcal conjugate vaccine based on chemical conjugation of polysaccharide serotype 6B to PspA. Microb Pathog 2021; 158:105092. [PMID: 34274454 DOI: 10.1016/j.micpath.2021.105092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
The use of conjugate vaccines remains an effective intervention to prevent pneumococcal diseases. In order to expand vaccine coverage, the inclusion of pneumococcal proteins as carriers is a propitious alternative that has been explored over the past few years. In this study, pneumococcal surface protein A (PspA) clade 1, family 1 (PspA1) and clade 3, family 2 (PspA3) were used as carrier proteins for pneumococcal capsular polysaccharide serotype 6B (Ps6B). Employing an improved reductive amination chemistry, 50% of Ps6B was incorporated to each protein, PspA1 and PspA3. The effect of chemical modifications in Ps6B and PspA was assessed by an antigenicity assay and circular dichroism, respectively. Fragmentation and oxidation decreased the antigenicity of Ps6B while conjugation improved antigenicity. In the same manner, introduction of adipic acid dihydrazide (ADH) reduced PspA secondary structure content, which was partially restored after conjugation. Immunization of Ps6B-PspA1 and Ps6B-PspA3 conjugates in mice induced specific IgG antibodies against the Ps6B and the protein; and anti-PspA antibodies had functional activity against two pneumococcal strains with different serotypes. These results suggest that chemical coupling between Ps6B and PspA did not affect antigenic epitopes and support the further development of PspA as a carrier protein in pneumococcal conjugate vaccines to provide broader protection.
Collapse
Affiliation(s)
- Lazara Elena Santiesteban-Lores
- Programa de Pós Graduação Interunidades em Biotecnologia Instituto Butantan/IPT/USP, São Paulo, Brazil; Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil.
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
8
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
9
|
Teixeira AF, Fernandes LG, Cavenague MF, Takahashi MB, Santos JC, Passalia FJ, Daroz BB, Kochi LT, Vieira ML, Nascimento AL. Adjuvanted leptospiral vaccines: Challenges and future development of new leptospirosis vaccines. Vaccine 2019; 37:3961-3973. [DOI: 10.1016/j.vaccine.2019.05.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/16/2019] [Accepted: 05/21/2019] [Indexed: 12/26/2022]
|
10
|
Prophylactic Herpes Simplex Virus 2 (HSV-2) Vaccines Adjuvanted with Stable Emulsion and Toll-Like Receptor 9 Agonist Induce a Robust HSV-2-Specific Cell-Mediated Immune Response, Protect against Symptomatic Disease, and Reduce the Latent Viral Reservoir. J Virol 2017; 91:JVI.02257-16. [PMID: 28228587 DOI: 10.1128/jvi.02257-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Several prophylactic vaccines targeting herpes simplex virus 2 (HSV-2) have failed in the clinic to demonstrate sustained depression of viral shedding or protection from recurrences. Although these vaccines have generated high titers of neutralizing antibodies (NAbs), their induction of robust CD8 T cells has largely been unreported, even though evidence for the importance of HSV-2 antigen-specific CD8 T cells is mounting in animal models and in translational studies involving subjects with active HSV-2-specific immune responses. We developed a subunit vaccine composed of the NAb targets gD and gB and the novel T cell antigen and tegument protein UL40, and we compared this vaccine to a whole-inactivated-virus vaccine (formaldehyde-inactivated HSV-2 [FI-HSV-2]). We evaluated different formulations in combination with several Th1-inducing Toll-like receptor (TLR) agonists in vivo In mice, the TLR9 agonist cytosine-phosphate-guanine (CpG) oligodeoxynucleotide formulated in a squalene-based oil-in-water emulsion promoted most robust, functional HSV-2 antigen-specific CD8 T cell responses and high titers of neutralizing antibodies, demonstrating its superiority to vaccines adjuvanted by monophosphoryl lipid A (MPL)-alum. We further established that FI-HSV-2 alone or in combination with adjuvants as well as adjuvanted subunit vaccines were successful in the induction of NAbs and T cell responses in guinea pigs. These immunological responses were coincident with a suppression of vaginal HSV-2 shedding, low lesion scores, and a reduction in latent HSV-2 DNA in dorsal root ganglia to undetectable levels. These data support the further preclinical and clinical development of prophylactic HSV-2 vaccines that contain appropriate antigen and adjuvant components responsible for programming elevated CD8 T cell responses.IMPORTANCE Millions of people worldwide are infected with herpes simplex virus 2 (HSV-2), and to date, an efficacious prophylactic vaccine has not met the rigors of clinical trials. Attempts to develop a vaccine have focused primarily on glycoproteins necessary for HSV-2 entry as target antigens and to which the dominant neutralizing antibody response is directed during natural infection. Individuals with asymptomatic infection have exhibited T cell responses against specific HSV-2 antigens not observed in symptomatic individuals. We describe for the first time the immunogenicity profile in animal models of UL40, a novel HSV-2 T cell antigen that has been correlated with asymptomatic HSV-2 disease. Additionally, vaccine candidates adjuvanted by a robust formulation of the CpG oligonucleotide delivered in emulsion were superior to unadjuvanted or MPL-alum-adjuvanted formulations at eliciting a robust cell-mediated immune response and blocking the establishment of a latent viral reservoir in the guinea pig challenge model of HSV-2 infection.
Collapse
|
11
|
Protection against Streptococcus suis Serotype 2 Infection Using a Capsular Polysaccharide Glycoconjugate Vaccine. Infect Immun 2016; 84:2059-2075. [PMID: 27113360 DOI: 10.1128/iai.00139-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/20/2016] [Indexed: 11/20/2022] Open
Abstract
Streptococcus suis serotype 2 is an encapsulated bacterium and one of the most important bacterial pathogens in the porcine industry. Despite decades of research for an efficient vaccine, none is currently available. Based on the success achieved with other encapsulated pathogens, a glycoconjugate vaccine strategy was selected to elicit opsonizing anti-capsular polysaccharide (anti-CPS) IgG antibodies. In this work, glycoconjugate prototypes were prepared by coupling S. suis type 2 CPS to tetanus toxoid, and the immunological features of the postconjugation preparations were evaluated in vivo In mice, experiments evaluating three different adjuvants showed that CpG oligodeoxyribonucleotide (ODN) induces very low levels of anti-CPS IgM antibodies, while the emulsifying adjuvants Stimune and TiterMax Gold both induced high levels of IgGs and IgM. Dose-response trials comparing free CPS with the conjugate vaccine showed that free CPS is nonimmunogenic independently of the dose used, while 25 μg of the conjugate preparation was optimal in inducing high levels of anti-CPS IgGs postboost. With an opsonophagocytosis assay using murine whole blood, sera from immunized mice showed functional activity. Finally, the conjugate vaccine showed immunogenicity and induced protection in a swine challenge model. When conjugated and administered with emulsifying adjuvants, S. suis type 2 CPS is able to induce potent IgM and isotype-switched IgGs in mice and pigs, yielding functional activity in vitro and protection against a lethal challenge in vivo, all features of a T cell-dependent response. This study represents a proof of concept for the potential of glycoconjugate vaccines in veterinary medicine applications against invasive bacterial infections.
Collapse
|
12
|
Hib Vaccines: Past, Present, and Future Perspectives. J Immunol Res 2016; 2016:7203587. [PMID: 26904695 PMCID: PMC4745871 DOI: 10.1155/2016/7203587] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022] Open
Abstract
Haemophilus influenzae type b (Hib) causes many severe diseases, including epiglottitis, pneumonia, sepsis, and meningitis. In developed countries, the annual incidence of meningitis caused by bacteria is approximately 5–10 cases per population of 100,000. The Hib conjugate vaccine is considered protective and safe. Adjuvants, molecules that can enhance and/or regulate the fundamental immunogenicity of an antigen, comprise a wide range of diverse compounds. While earlier developments of adjuvants created effective products, there is still a need to create new generations, rationally designed based on recent discoveries in immunology, mainly in innate immunity. Many factors may play a role in the immunogenicity of Hib conjugate vaccines, such as the polysaccharides and proteins carrier used in vaccine construction, as well as the method of conjugation. A Hib conjugate vaccine has been constructed via chemical synthesis of a Hib saccharide antigen. Two models of carbohydrate-protein conjugate have been established, the single ended model (terminal amination-single method) and cross-linked lattice matrix (dual amination method). Increased knowledge in the fields of immunology, molecular biology, glycobiology, glycoimmunology, and the biology of infectious microorganisms has led to a dramatic increase in vaccine efficacy.
Collapse
|
13
|
Improved immunogenicity and protective efficacy of a divalent DNA vaccine encoding Brucella L7/L12-truncated Omp31 fusion protein by a DNA priming and protein boosting regimen. Mol Immunol 2015; 66:384-91. [DOI: 10.1016/j.molimm.2015.04.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 12/16/2022]
|
14
|
Vaccination with recombinant L7/L12-truncated Omp31 protein induces protection against Brucella infection in BALB/c mice. Mol Immunol 2015; 65:287-92. [DOI: 10.1016/j.molimm.2015.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 11/20/2022]
|
15
|
Anish C, Khan N, Upadhyay AK, Sehgal D, Panda AK. Delivery of polysaccharides using polymer particles: implications on size-dependent immunogenicity, opsonophagocytosis, and protective immunity. Mol Pharm 2014; 11:922-37. [PMID: 24446810 DOI: 10.1021/mp400589q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial capsular polysaccharides are components of many modern vaccines, but they are weakly immunogenic. Herein, we describe the delivery of pneumococcal capsular polysaccharide serotype-1 (PCP-1) in polylactide polymeric particles to enhance its immunogenicity. Immunization with PCP-1-entrapped particles elicited long-term memory antibody responses from a single intramuscular injection. PCP-1-entrapped nanoparticles (NPs) elicited significantly higher anti-PCP-1 IgG responses than that observed with soluble and microparticles (MPs) formulations. Delivering PCP-1 and pneumococcal proteins in same particles did not improve the IgG response. The sera of animals immunized with PCP-1-entrapped particles promoted efficient opsonophagocytosis of pneumococci by macrophages. Single-dose immunization with PCP-1-entrapped particles conferred a long-term serotype-specific protection against lethal pneumococcal challenge. The higher immunogenicity of PCP-1 nanoparticles showed correlation with enhanced uptake by antigen-presenting cells. The results highlight the potential of polymeric nanoparticles as an efficient means of presenting polysaccharide antigens to the immune system.
Collapse
Affiliation(s)
- Chakkumkal Anish
- Product Development Cell, ‡Molecular Immunology Laboratory, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
16
|
Clarke ET, Williams NA, Findlow J, Borrow R, Heyderman RS, Finn A. Polysaccharide-specific memory B cells generated by conjugate vaccines in humans conform to the CD27+IgG+ isotype-switched memory B Cell phenotype and require contact-dependent signals from bystander T cells activated by bacterial proteins to differentiate into plasma cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:6071-83. [PMID: 24227777 DOI: 10.4049/jimmunol.1203254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The polysaccharides (PS) surrounding encapsulated bacteria are generally unable to activate T cells and hence do not induce B cell memory (BMEM). PS conjugate vaccines recruit CD4(+) T cells via a carrier protein, such as tetanus toxoid (TT), resulting in the induction of PS-specific BMEM. However, the requirement for T cells in the subsequent activation of the BMEM at the time of bacterial encounter is poorly understood, despite having critical implications for protection. We demonstrate that the PS-specific BMEM induced in humans by a meningococcal serogroup C PS (Men C)-TT conjugate vaccine conform to the isotype-switched (IgG(+)CD27(+)) rather than the IgM memory (IgM(+)CD27(+)) phenotype. Both Men C and TT-specific BMEM require CD4(+) T cells to differentiate into plasma cells. However, noncognate bystander T cells provide such signals to PS-specific BMEM with comparable effect to the cognate T cells available to TT-specific BMEM. The interaction between the two populations is contact-dependent and is mediated in part through CD40. Meningococci drive the differentiation of the Men C-specific BMEM through the activation of bystander T cells by bacterial proteins, although these signals are enhanced by T cell-independent innate signals. An effect of the TT-specific T cells activated by the vaccine on unrelated BMEM in vivo is also demonstrated. These data highlight that any protection conferred by PS-specific BMEM at the time of bacterial encounter will depend on the effectiveness with which bacterial proteins are able to activate bystander T cells. Priming for T cell memory against bacterial proteins through their inclusion in vaccine preparations must continue to be pursued.
Collapse
Affiliation(s)
- Edward T Clarke
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
Conjugation of polysaccharide 6B from Streptococcus pneumoniae with pneumococcal surface protein A: PspA conformation and its effect on the immune response. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:858-66. [PMID: 23554468 DOI: 10.1128/cvi.00754-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the substantial beneficial effects of incorporating the 7-valent pneumococcal conjugate vaccine (PCV7) into immunization programs, serotype replacement has been observed after its widespread use. As there are many serotypes currently documented, the use of a conjugate vaccine relying on protective pneumococcal proteins as active carriers is a promising alternative to expand PCV coverage. In this study, capsular polysaccharide serotype 6B (PS6B) and recombinant pneumococcal surface protein A (rPspA), a well-known protective antigen from Streptococcus pneumoniae, were covalently attached by two conjugation methods. The conjugation methodology developed by our laboratory, employing 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMT-MM) as an activating agent through carboxamide formation, was compared with reductive amination, a classical methodology. DMT-MM-mediated conjugation was shown to be more efficient in coupling PS6B to rPspA clade 1 (rPspA1): 55.0% of PS6B was in the conjugate fraction, whereas 24% was observed in the conjugate fraction with reductive amination. The influence of the conjugation process on the rPspA1 structure was assessed by circular dichroism. According to our results, both conjugation processes reduced the alpha-helical content of rPspA; reduction was more pronounced when the reaction between the polysaccharide capsule and rPspA1 was promoted between the carboxyl groups than the amine groups (46% and 13%, respectively). Regarding the immune response, both conjugates induced functional anti-rPspA1 and anti-PS6B antibodies. These results suggest that the secondary structure of PspA1, as well as its reactive groups (amine or carboxyl) involved in the linkage to PS6B, may not play an important role in eliciting a protective immune response to the antigens.
Collapse
|
18
|
Romeu B, Gonzalez E, Lastre M, Pérez O. Can mucosal adjuvants contribute to the induction of immunological memory induced via unconjugated T-cell-independent antigens? J Drug Target 2012; 20:502-8. [PMID: 22632258 DOI: 10.3109/1061186x.2012.693497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vaccination remains the most cost-effective method for preventing infectious diseases. Key to vaccine design is the development of immunological memory, which is an essential property of the adaptive immune system. Bacterial polysaccharide conjugate vaccines are the gold standard currently used to confer protection of the host by inducing humoral immune responses against T-cell-independent antigens. Conjugate vaccines are effective, but we propose that local mucosal immune responses are likely to also play an important role in inducing immunity, and they have been less explored than systemic and adaptive immune responses. Adjuvants have been used to improve the immune response to vaccine antigens, however, no mucosal adjuvant has been licensed for human use. Here we describe the recent progress in the use of mucosal adjuvants to achieve significant immune responses against T-cell-independent antigens. We also introduce the idea that studying the mechanisms that induce cell sub-populations with strong immunological memory may facilitate the design of novel vaccine formulations, in particular in cases of B-cell unresponsiveness to thymus-independent stimuli.
Collapse
Affiliation(s)
- Belkis Romeu
- Immunology Department, Research and Development, Finlay Institute, Havana, Cuba
| | | | | | | |
Collapse
|
19
|
Timing of Toll-like receptor 9 agonist administration in pneumococcal vaccination impacts both humoral and cellular immune responses as well as nasopharyngeal colonization in mice. Infect Immun 2012; 80:1744-52. [PMID: 22371375 DOI: 10.1128/iai.00079-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs, CpG ODN, are Toll-like receptor 9 agonists (TLR9a), which have been used as adjuvants in pneumococcal vaccines to improve antibody responses in immunodeficient patients. Here, we examined whether the coadministration of TLR9a with pneumococcal CRM(197)-conjugate vaccine enhances protection against pneumococcal colonization, the levels of antipolysaccharide antibodies, and the CD4(+) T-cell responses. Wild-type BALB/c mice and B-cell-deficient BALB/c Igh-J(tm1Dhu) mice were immunized twice with the following: (i) PCV alone; (ii) simultaneous PCV and TLR9a; (iii) PCV and then TLR9a, after a 48-h delay; (iv) TLR9a alone; and (v) phosphate-buffered saline. Nasopharyngeal protection, serum antibodies, CD4(+) T-cell responses, and clearance of bacteremia after intraperitoneal challenge with Streptococcus pneumoniae 6B were evaluated. We found decreased nasopharyngeal protection against S. pneumoniae 6B colonization after simultaneous immunization with PCV and TLR9a compared to immunization with PCV alone in wild-type BALB/c mice (P = 0.037). A similar trend was observed in B-cell-deficient BALB/c Igh-J(tm1Dhu) mice. Simultaneous administration did not enhance antibody levels and lowered the CRM(197)-specific cytokine release of gamma interferon, interleukin-2 (IL-2), IL-5 and IL-13. Immunization with PCV and then TLR9a, after a 48-h delay, significantly improved nasopharyngeal protection compared to simultaneous administration (P = 0.011). Furthermore, delaying TLR9a delivery increased antibody titers compared to both simultaneous administration (P = 0.001) and PCV immunization alone (P = 0.026). In conclusion, the immunological and clinical impact of adjuvanting a pneumococcal conjugate vaccine (Prevnar; Pfizer) with a TLR9a is highly depended on timing of the adjuvant administration. Thus, careful timing of adjuvant administration may improve novel vaccine formulations.
Collapse
|
20
|
Romeu B, González E, Zayas C, Del Campo J, Acevedo R, Cuello M, Valdes Y, Balboa J, Cabrera O, Lastre M, Pérez O. AFCo1 as nasal adjuvant of capsular polysaccharide from Neisseria meningitidis serogroup C induces systemic and mucosal immune responses. ACTA ACUST UNITED AC 2011; 43:809-13. [PMID: 21671827 DOI: 10.3109/00365548.2011.586648] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Increasing emphasis is being placed on the mucosal administration of vaccines in order to stimulate mucosal as well as systemic responses. Findings from our group suggest that proteoliposome-derived cochleate (AFCo1) acts as a potent mucosal adjuvant. As an alternative to chemical conjugation, the current study aimed to determine the benefit of using AFCo1 to improve the mucosal and systemic immune responses to capsular polysaccharide of Neisseria meningitidis serogroup C (PsC), a model of a thymus-independent (TI) antigen. Therefore, intranasal (i.n.) immunization of 3 doses 1 week apart with AFCo1 plus PsC in mice was conducted. Highly specific anti-PsC IgA responses and an anti-PsC IgG response were obtained. The subclass pattern induced against PsC was similar to that induced with the meningococcal vaccine. In summary, AFCo1 as nasal adjuvant was demonstrated to be capable of eliciting mucosal and systemic specific responses against a TI antigen.
Collapse
|
21
|
Chandrashekar PM, Venkatesh YP. Fructans from aged garlic extract produce a delayed immunoadjuvant response to ovalbumin antigen in BALB/c mice. Immunopharmacol Immunotoxicol 2011; 34:174-80. [PMID: 21631395 DOI: 10.3109/08923973.2011.584066] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Garlic (Allium sativum) is known for its innumerable biological activities including immunomodulation. Aged garlic extract (AGE), an odorless garlic preparation, has been shown to have superior immunomodulatory properties over raw garlic extract. Although garlic is a very rich source of fructans (17%, fresh weight basis), AGE contains only 0.22% of raw garlic fructans. Aged garlic fructans (AGF) have recently been shown to possess immunomodulatory activities in vitro. Natural adjuvants capable of eliciting better immune response of a model antigen are important in developing newer vaccines. In the present study, the adjuvant activity of AGF has been investigated in BALB/c mice using ovalbumin (OVA, 30 µg) as an experimental antigen. The body weights of animals did not change significantly indicating that the administration of garlic fructans is well-tolerated. AGF produce a significant humoral (serum IgG) response to OVA in BALB/c mice administered mucosally by either intranasal or oral route--a delayed response appearing on 50th day at a dose of 30 µg AGF by intranasal route. However, the serum IgG response was seen earlier on 35th day at a dose of 100 µg AGF by oral route. Higher concentrations of AGF (>50 µg) were inhibitory for adjuvant activity by intranasal administration. These observations indicate that AGF display immunoadjuvant activity for a test antigen though the humoral immune response is delayed.
Collapse
|
22
|
Outer membrane protein complex of Meningococcus enhances the antipolysaccharide antibody response to pneumococcal polysaccharide-CRM₁₉₇ conjugate vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:724-9. [PMID: 21450979 DOI: 10.1128/cvi.00053-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial polysaccharides (PS) are T cell-independent antigens that do not induce immunologic memory and are poor immunogens in infants. Conjugate vaccines in which the PS is covalently linked to a carrier protein have enhanced immunogenicity that resembles that of T cell-dependent antigens. The Haemophilus influenzae type b (Hib) conjugate vaccine, which uses the outer membrane protein complex (OMPC) from meningococcus as a carrier protein, elicits protective levels of anti-capsular PS antibody (Ab) after a single dose, in contrast to other conjugate vaccines, which require multiple doses. We have previously shown that OMPC robustly engages Toll-like receptor 2 (TLR2) and enhances the early anti-Hib PS Ab titer associated with an increase in TLR2-mediated induction of cytokines. We now show that the addition of OMPC to the 7-valent pneumococcal PS-CRM₁₉₇ conjugate vaccine during immunization significantly increases the anti-PS IgG and IgM responses to most serotypes of pneumococcus contained in the vaccine. The addition of OMPC also increased the likelihood of anti-PS IgG3 production against serotypes 4, 6B, 9V, 18C, 19F, and 23F. Splenocytes from mice who had received OMPC with the pneumococcal conjugate vaccine produced significantly more interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor alpha (TNF-α), and gamma interferon (IFN-γ) than splenocytes from mice who received phosphate-buffered saline (PBS) plus the conjugate vaccine. We conclude that OMPC enhances the anti-PS Ab response to pneumococcal PS-CRM₁₉₇ conjugate vaccine, an effect associated with a distinct change in cytokine profile. It may be possible to reduce the number of conjugate vaccine doses required to achieve protective Ab levels by priming with adjuvants that are TLR2 ligands.
Collapse
|
23
|
Fukuyama Y, King JD, Kataoka K, Kobayashi R, Gilbert RS, Hollingshead SK, Briles DE, Fujihashi K. A combination of Flt3 ligand cDNA and CpG oligodeoxynucleotide as nasal adjuvant elicits protective secretory-IgA immunity to Streptococcus pneumoniae in aged mice. THE JOURNAL OF IMMUNOLOGY 2011; 186:2454-61. [PMID: 21242514 DOI: 10.4049/jimmunol.1002837] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous study showed that a combination of a plasmid-expressing Flt3 ligand (pFL) and CpG oligodeoxynucleotides (CpG ODN) as a combined nasal adjuvant elicited mucosal immune responses in aged (2-y-old) mice. In this study, we investigated whether a combination of pFL and CpG ODN as a nasal adjuvant for a pneumococcal surface protein A (PspA) would enhance PspA-specific secretory-IgA Ab responses, which could provide protective mucosal immunity against Streptococcus pneumoniae infection in aged mice. Nasal immunization with PspA plus a combination of pFL and CpG ODN elicited elevated levels of PspA-specific secretory-IgA Ab responses in external secretions and plasma in both young adult and aged mice. Significant levels of PspA-specific CD4(+) T cell proliferative and PspA-induced Th1- and Th2- type cytokine responses were noted in nasopharyngeal-associated lymphoreticular tissue, cervical lymph nodes, and spleen of aged mice, which were equivalent to those in young adult mice. Additionally, increased numbers of mature-type CD8, CD11b-expressing dendritic cells were detected in mucosal inductive and effector lymphoid tissues of aged mice. Importantly, aged mice given PspA plus a combination of pFL and CpG ODN showed protective immunity against nasal S. pneumoniae colonization. These results demonstrate that nasal delivery of a combined DNA adjuvant offers an attractive possibility for protection against S. pneumoniae in the elderly.
Collapse
Affiliation(s)
- Yoshiko Fukuyama
- Department of Pediatric Dentistry, Immunobiology Vaccine Center, Institute of Oral Health Research, University of Alabama at Birmingham, AL 35294-0007, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Safari D, Dekker HAT, Rijkers G, Snippe H. Codelivery of adjuvants at the primary immunization site is essential for evoking a robust immune response to neoglycoconjugates. Vaccine 2011; 29:849-54. [DOI: 10.1016/j.vaccine.2010.10.084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/15/2010] [Accepted: 10/23/2010] [Indexed: 02/02/2023]
|
25
|
The thymus-independent immunity conferred by a pneumococcal polysaccharide is mediated by long-lived plasma cells. Blood 2009; 114:4432-40. [PMID: 19767510 DOI: 10.1182/blood-2009-01-200014] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It was recently shown that bacterial thymus-independent (TI) antigens confer long-lasting immunity and generate memory B lymphocytes. However, reactivation of TI memory B cells is repressed in immunocompetent mice, thus raising the issue of the mechanism whereby TI vaccines confer immune protection. Here, we propose an explanation to this apparent paradox by showing that a Streptococcus pneumoniae capsular polysaccharide (PS) generates long-lived bone marrow (BM) plasma cells which frequency can be increased by CpG oligodeoxynucleotides (ODNs). The adjuvant effect of CpG ODNs on the PS3 Ab response is directly targeted to B cells and does not involve B-1a cells. We also demonstrated that BM plasma cells generated in response to the thymus-dependent (TD) form of the PS vaccine have a higher secretion capacity than those produced after immunization with the CpG-adjuvanted PS vaccine. Finally, we show that the PS-specific BM plasma cell compartment is sufficient to confer full protection of vaccinated mice against S pneumoniae infection. Altogether, our results show that TI antigens like their TD counterparts can generate both the lymphoid and the plasma cell component of B-cell memory. They also provide a framework for the improvement and widespread usage of TI vaccines.
Collapse
|
26
|
Amemiya K, Meyers JL, Rogers TE, Fast RL, Bassett AD, Worsham PL, Powell BS, Norris SL, Krieg AM, Adamovicz JJ. CpG oligodeoxynucleotides augment the murine immune response to the Yersinia pestis F1-V vaccine in bubonic and pneumonic models of plague. Vaccine 2009; 27:2220-9. [PMID: 19428836 DOI: 10.1016/j.vaccine.2009.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 02/02/2009] [Accepted: 02/05/2009] [Indexed: 11/28/2022]
Abstract
The current U.S. Department of Defense candidate plague vaccine is a fusion between two Yersinia pestis proteins: the F1 capsular protein, and the low calcium response (Lcr) V-protein. We hypothesized that an immunomodulator, such as CpG oligodeoxynucleotide (ODN)s, could augment the immune response to the plague F1-V vaccine in a mouse model for plague. CpG ODNs significantly augmented the antibody response and efficacy of a single dose of the plague vaccine in murine bubonic and pneumonic models of plague. In the latter study, we also found an overall significant augmentation the immune response to the individual subunits of the plague vaccine by CpG ODN 2006. In a long-term, prime-boost study, CpG ODN induced a significant early augmentation of the IgG response to the vaccine. The presence of CpG ODN induced a significant increase in the IgG2a subclass response to the vaccine up to 5 months after the boost. Our studies showed that CpG ODNs significantly augmented the IgG antibody response to the plague vaccine, which increased the probability of survival in murine models of plague (P<0.0001).
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702, United States.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Neonatal and infantile immune responses to encapsulated bacteria and conjugate vaccines. Clin Dev Immunol 2008; 2008:628963. [PMID: 18825269 PMCID: PMC2553187 DOI: 10.1155/2008/628963] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Revised: 06/25/2008] [Accepted: 08/01/2008] [Indexed: 12/21/2022]
Abstract
Encapsulated bacteria are responsible for the majority of mortality among neonates and infants. The major components on the surface of these bacteria are polysaccharides which are important virulence factors. Immunity against these components protects against disease. However, most of the polysaccharides are thymus-independent (TI)-2 antigens which induce an inadequate immune response in neonates and infants. The mechanisms that are thought to play a role in the unresponsiveness of this age group to TI-2 stimuli will be discussed. The lack of immune response may be overcome by conjugating the polysaccharides to a carrier protein. This transforms bacterial polysaccharides from a TI-2 antigen into a thymus-dependent (TD) antigen, thereby inducing an immune response and immunological memory in neonates and infants. Such conjugated vaccines have been shown to be effective against the most common causes of invasive disease caused by encapsulated bacteria in neonates and children. These and several other approaches in current vaccine development will be discussed.
Collapse
|
28
|
Wang Y, Shan C, Ming S, Liu Y, Du Y, Jiang G. Immunoadjuvant effects of bacterial genomic DNA and CpG oligodeoxynucleotides on avian influenza virus subtype H5N1 inactivated oil emulsion vaccine in chicken. Res Vet Sci 2008; 86:399-405. [PMID: 18977008 DOI: 10.1016/j.rvsc.2008.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 09/04/2008] [Accepted: 09/16/2008] [Indexed: 11/19/2022]
Abstract
This study investigated the immunoadjuvant effects of three types of bacterial genomic DNA and CpG oligonucleotides (CpG ODN) on the avian influenza virus (AIV) subtype H5N1 inactivated oil emulsion vaccine under two immunization strategies. The genomic DNA extracted from Escherichia coli O(2), Staphylococcus aureus,Streptococcus faecalis FQ68, and synthetic CpG ODN were used as adjuvants, and their effects on the AIV oil emulsion vaccine were examined in chickens. The results indicated that when administered separately from the vaccine, adjuvants induced lower haemagglutination inhibition (HI) titres and serum IgG titres but resulted in higher concentrations of IFN-gamma and IL-10. In contrast, when combined with the oil emulsion vaccine prior to inoculation, CpG ODN induced higher HI, IgG titres and IFN-gamma concentration but resulted in lower IL-10 concentration. These data suggest that, depending on the immunization approaches, adjuvants may exert distinct immune effects in chickens receiving AIV H5N1 oil emulsion vaccine: the prior incorporation of CpG ODN into the vaccine may augment both the humoral and Th1 type immune responses, while separate inoculation of adjuvants has not shown better adjuvanticity.
Collapse
Affiliation(s)
- Yimeng Wang
- School of Biological and Food Engineering, Dalian Polytechnic University, Dalian 116034, PR China.
| | | | | | | | | | | |
Collapse
|
29
|
Guo YJ, Wu D, Wang KY, Sun SH. Adjuvant effects of bacillus Calmette-Guerin DNA or CpG-oligonucleotide in the immune response to Taenia solium cysticercosis vaccine in porcine. Scand J Immunol 2008; 66:619-27. [PMID: 18021362 DOI: 10.1111/j.1365-3083.2007.02013.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The immune stimulation properties of CpG-oligonucleotides (CpG-ODN) containing a central unmethylated CpG motif could be useful for vaccination against parasite infection. However, the high cost of synthetic CpG-ODN has limited its use in veterinary vaccines. In this study, we investigated whether genomic DNA derived from Mycobacterium bovis bacillus Calmette-Guerin (BCG-DNA) could be used as an effective adjuvant to enhance the immunogenicity and the protective capacity of recombinant cC1 antigen (rcC1) against pig cysticercosis. Pigs were vaccinated with rcC1 plus CpG-containing DNA adjuvants (BCG-DNA or CpG-ODN) or rcC1 alone. Immunization with rcC1 alone induced a Th1-biased response, whereas coadministration of rcC1 with BCG-DNA or CpG-ODN increased levels of IgG2, IFN-gamma, percentage of CD8+ and specific proliferation of peripheral blood mononuclear cells. Four weeks after the last immunization, pigs were infected with Taenia solium eggs. A high level of protection (81%) was induced by rcC1 immunization that was not significantly increased by the CpG-containing DNA. These data indicate that coadministration of rcC1 plus BCG-DNA or CpG-ODN significantly enhanced Th1 response but did not improve the level of the protection induced.
Collapse
Affiliation(s)
- Y-J Guo
- Department of Medical Genetics, The Second Military Medical University, Shanghai, China
| | | | | | | |
Collapse
|
30
|
Olafsdottir TA, Hannesdottir SG, Giudice GD, Trannoy E, Jonsdottir I. Effects of LT-K63 and CpG2006 on phenotype and function of murine neonatal lymphoid cells. Scand J Immunol 2007; 66:426-34. [PMID: 17850587 DOI: 10.1111/j.1365-3083.2007.01970.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The immature state of the immune system of neonates makes them vulnerable to infectious agents, including Streptococcus pneumoniae. The aim of our study was to analyse and compare the effects of Escherichia coli heat-labile enterototoxin (LT)-K63 and CpG2006 on cells and key molecules of the neonatal immune system, using a previously established immunization model with pneumococcal polysaccharide of serotype 1 conjugated to tetanus toxoid (TT) (Pnc1-TT). The cellular response was evaluated by measuring cytokine secretion and proliferation upon in vitro stimulation with TT, the protein moiety of Pnc1-TT, and antibody (Ab) to both the polysaccharide (PS) and protein parts of the vaccine were measured by enzyme-linked immunosorbent assay (ELISA). Antigen (Ag)-presenting and co-stimulatory capacity of neonatal B-cells was evaluated by staining for major histocompatibility complex (MHC)II, CD80, CD86 and CD40. The results showed that both LT-K63 and CpG2006 significantly enhanced the neonatal Ab response to Pnc1-TT. Spleen cells from mice receiving LT-K63 showed enhanced proliferation and interferon (IFN)-gamma, interleukin (IL)-4, IL-5 and IL-10 secretion upon TT stimulation, whereas cells from mice receiving CpG2006 could only enhance IL-10 secretion. LT-K63 and to a lesser extent CpG2006 enhanced the capacity of B-cells to up-regulate the expression of co-stimulatory and activation markers compared with those of mice receiving Pnc1-TT alone. Thus, we conclude that LT-K63 markedly improves T-cell activation whereas the direct adjuvant effect of CpG2006 on neonatal B-cells may partly compensate for lower T-cell help resulting in enhanced neonatal Ab responses to both the TT and PS parts of the vaccine by both adjuvants.
Collapse
Affiliation(s)
- T A Olafsdottir
- Department of Immunology, Landspitali-University Hospital, and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
31
|
Li Y, Gottschalk M, Esgleas M, Lacouture S, Dubreuil JD, Willson P, Harel J. Immunization with recombinant Sao protein confers protection against Streptococcus suis infection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:937-43. [PMID: 17567767 PMCID: PMC2044494 DOI: 10.1128/cvi.00046-07] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sao is a Streptococcus suis surface protein recently identified as a potential vaccine candidate. In this study, recombinant Sao in combination with Quil A provided cross-protection against S. suis serotype 2 disease in mouse and pig vaccination protocols. Subcutaneous immunization of mice elicited strong immunoglobulin G (IgG) antibody responses. All four IgG subclasses were induced, with the IgG2a titer being the highest, followed by those of IgG1, IgG2b, and IgG3. Challenge of the mice with S. suis strain 31533 resulted in a mortality rate of 80% for the control group, which received Quil A only. In contrast, all of the mice immunized with Sao survived. In a pig vaccination protocol, intramuscular immunization with Sao also elicited significant humoral antibody responses, and both the IgG1 and IgG2 subclasses were induced, with a predominance of IgG2 production. In vitro assay showed that Sao-induced antibodies significantly promoted the ability of porcine neutrophils in opsonophagocytic killing of S. suis. An aerosol challenge of the pigs with S. suis strain 166 resulted in clinical signs characteristic of S. suis infection in diseased pigs. The vaccine group showed significantly better survival, lower clinical scores, and less S. suis recovery from postmortem tissue samples than did the control group. Furthermore, this study also revealed that although challenge S. suis strains express Sao size variants, recombinant Sao conferred cross-protection. These data demonstrate that recombinant Sao formulated with Quil A triggers strong opsonizing antibody responses which confer efficient immunity against challenge infection with heterologous S. suis type 2.
Collapse
Affiliation(s)
- Yuanyi Li
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, C.P. 5000, St.-Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Chen Q, Sen G, Snapper CM. Endogenous IL-1R1 signaling is critical for cognate CD4+ T cell help for induction of in vivo type 1 and type 2 antipolysaccharide and antiprotein Ig isotype responses to intact Streptococcus pneumoniae, but not to a soluble pneumococcal conjugate vaccine. THE JOURNAL OF IMMUNOLOGY 2006; 177:6044-51. [PMID: 17056530 DOI: 10.4049/jimmunol.177.9.6044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
MyD88(-/-) mice exhibit defective innate, diminished CD4(+) T cell-dependent (TD) type 1, but enhanced type 2, humoral immunity in response to intact Streptococcus pneumoniae (Pn). Because type 1 IL-1R (IL-1R1) signaling is MyD88 dependent, a role for endogenous IL-1 was determined. IL-1R1(-/-), in contrast to MyD88(-/-), mice exhibited relatively intact innate splenic cytokine expression in response to Pn. Nevertheless, IL-1R1(-/-), like MyD88(-/-), mice were more sensitive to killing with live Pn relative to wild-type controls. Although IL-1R1(-/-) mice elicited a normal T cell-independent IgM antipolysaccharide (PS) response to heat-killed Pn, the induction of PS- and protein-specific cognate, but not noncognate, TD type 1 and type 2 IgG isotypes were markedly reduced. Additionally, CD4(+) T cells from Pn-primed IL-1R1(-/-) mice failed to elicit IFN-gamma, IL-5, or IL-13 secretion upon restimulation with Pn in vitro, whereas MyD88(-/-) mice secreted normal levels of IFN-gamma and enhanced levels of IL-5 and IL-13. In contrast, IgG responses to a soluble, pneumococcal protein-PS conjugate, with or without adjuvant, showed little dependence on IL-1R1 and normal CD4(+) T cell priming. These data are the first to demonstrate a nonredundant role for endogenous IL-1 in TD induction of humoral immune responses to an intact pathogen, although not a pathogen-derived soluble conjugate, suggesting that antigenic context is a key determinant for IL-1 dependence. These data further suggest that IL-1 may be critical for preserving CD4(+) Th2 function in the presence, but not absence, of MyD88-dependent signaling via TLRs.
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
33
|
McCluskie MJ, Krieg AM. Enhancement of infectious disease vaccines through TLR9-dependent recognition of CpG DNA. Curr Top Microbiol Immunol 2006; 311:155-78. [PMID: 17048708 DOI: 10.1007/3-540-32636-7_6] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The adaptive immune system-with its remarkable ability to generate antigen-specific antibodies and T lymphocytes against pathogens never before "seen" by an organism-is one of the marvels of evolution. However, to generate these responses, the adaptive immune system requires activation by the innate immune system. Toll-like receptors (TLRs) are perhaps the best-understood family of innate immune receptors for detecting infections and stimulating adaptive immune responses. TLR9 appears to have evolved to recognize infections by a subtle structural difference between eukaryotic and prokaryotic/viral DNA; only the former frequently methylates CpG dinucleotides. Used as vaccine adjuvants, synthetic oligodeoxynucleotide (ODN) ligands for TLR9--CpG ODN--greatly enhance the speed and strength of the immune responses to vaccination.
Collapse
Affiliation(s)
- M J McCluskie
- Coley Pharmaceutical Group, Inc., 93 Worcester Street, Suite 101, Wellesley, MA 02481, USA
| | | |
Collapse
|
34
|
Sen G, Chen Q, Snapper CM. Immunization of aged mice with a pneumococcal conjugate vaccine combined with an unmethylated CpG-containing oligodeoxynucleotide restores defective immunoglobulin G antipolysaccharide responses and specific CD4+-T-cell priming to young adult levels. Infect Immun 2006; 74:2177-86. [PMID: 16552048 PMCID: PMC1418916 DOI: 10.1128/iai.74.4.2177-2186.2006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polysaccharide (PS)-protein conjugate vaccines, in contrast to purified PS vaccines, recruit CD4+-T-cell help and restore defective PS-specific humoral immunity in the immature host. Surprisingly, in the immunocompromised, aged host, anti-PS responses to conjugate vaccines are typically no better than those elicited by purified PS vaccines. Although aging leads to defects in multiple immune cell types, diminished CD4+-T-cell helper function has recently been shown to play a dominant role. We show that in response to immunization with purified pneumococcal capsular PS serotype 14 (PPS14) in saline, the T-cell-independent immunoglobulin G (IgG) anti-PPS14 response in aged mice was comparable to that in young mice. In contrast, the T-cell-dependent IgG anti-PPS14 response to a soluble conjugate of PPS14 and pneumococcal surface protein A (PspA) (PPS14-PspA) in saline was markedly defective. This was associated with defective priming of PspA-specific CD4+ T cells. In contrast, immunization of aged mice with PPS14-PspA combined with an unmethylated CpG-containing oligodeoxynucleotide (CpG-ODN) restored IgG anti-PPS14 responses to young adult levels, which were substantially higher than those observed using purified PPS14. This was associated with enhanced PspA-specific CD4+-T-cell priming. Similarly, intact Streptococcus pneumoniae capsular type 14, which contains Toll-like receptor (TLR) ligands, also induced substantial, though modestly reduced, T-cell-dependent (TD) IgG ant-PPS14 responses in aged mice. Spleen and peritoneal cells from aged and young adult mice made comparable levels of proinflammatory cytokines in response to CpG-ODN, although cells from aged mice secreted higher levels of interleukin-10. Collectively, these data suggest that inclusion of a TLR ligand, as an adjuvant, with a conjugate vaccine can correct defective TD IgG anti-PS responses in elderly patients by augmenting CD4+-T-cell help.
Collapse
Affiliation(s)
- Goutam Sen
- Department of Pathology, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | |
Collapse
|
35
|
Kuklin NA, Clark DJ, Secore S, Cook J, Cope LD, McNeely T, Noble L, Brown MJ, Zorman JK, Wang XM, Pancari G, Fan H, Isett K, Burgess B, Bryan J, Brownlow M, George H, Meinz M, Liddell ME, Kelly R, Schultz L, Montgomery D, Onishi J, Losada M, Martin M, Ebert T, Tan CY, Schofield TL, Nagy E, Meineke A, Joyce JG, Kurtz MB, Caulfield MJ, Jansen KU, McClements W, Anderson AS. A novel Staphylococcus aureus vaccine: iron surface determinant B induces rapid antibody responses in rhesus macaques and specific increased survival in a murine S. aureus sepsis model. Infect Immun 2006; 74:2215-23. [PMID: 16552052 PMCID: PMC1418914 DOI: 10.1128/iai.74.4.2215-2223.2006] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Revised: 12/05/2005] [Accepted: 12/17/2005] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a major cause of nosocomial infections worldwide, and the rate of resistance to clinically relevant antibiotics, such as methicillin, is increasing; furthermore, there has been an increase in the number of methicillin-resistant S. aureus community-acquired infections. Effective treatment and prevention strategies are urgently needed. We investigated the potential of the S. aureus surface protein iron surface determinant B (IsdB) as a prophylactic vaccine against S. aureus infection. IsdB is an iron-sequestering protein that is conserved in diverse S. aureus clinical isolates, both methicillin resistant and methicillin sensitive, and it is expressed on the surface of all isolates tested. The vaccine was highly immunogenic in mice when it was formulated with amorphous aluminum hydroxyphosphate sulfate adjuvant, and the resulting antibody responses were associated with reproducible and significant protection in animal models of infection. The specificity of the protective immune responses in mice was demonstrated by using an S. aureus strain deficient for IsdB and HarA, a protein with a high level of identity to IsdB. We also demonstrated that IsdB is highly immunogenic in rhesus macaques, inducing a more-than-fivefold increase in antibody titers after a single immunization. Based on the data presented here, IsdB has excellent prospects for use as a vaccine against S. aureus disease in humans.
Collapse
Affiliation(s)
- Nelly A Kuklin
- Merck and Co. Inc., 440 Sumneytown Pike, WP16 100, West Point, PA 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zuercher AW, Horn MP, Wu H, Song Z, Bundgaard CJ, Johansen HK, Høiby N, Marcus P, Lang AB. Intranasal immunisation with conjugate vaccine protects mice from systemic and respiratory tract infection with Pseudomonas aeruginosa. Vaccine 2006; 24:4333-42. [PMID: 16600444 DOI: 10.1016/j.vaccine.2006.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 02/14/2006] [Accepted: 03/02/2006] [Indexed: 10/24/2022]
Abstract
We tested intranasal application of anti-Pseudomonas conjugate vaccine in mice. Comparison of immunisation via the intra-muscular versus intranasal routes showed the induction of equivalent levels of specific serum IgG and IgG subclasses antibodies if cholera toxin was used as an adjuvant. In contrast, secretion of specific mucosal IgA antibodies in the upper respiratory tract was only observed after intranasal immunisation together with adjuvant. Systemic and mucosal immunity was also established via the intranasal route when CpG-containing oligonucleotides were used as adjuvant. The functionality of intranasally induced antibodies was proven in vitro by opsonophagocytosis and in vivo using the burn-wound sepsis and intra-tracheal lung infection models. These results demonstrate the feasibility of intranasal immunisation against P. aeruginosa with conjugate vaccine.
Collapse
|
37
|
Khan AQ, Sen G, Guo S, Witte ON, Snapper CM. Induction of in vivo antipolysaccharide immunoglobulin responses to intact Streptococcus pneumoniae is more heavily dependent on Btk-mediated B-cell receptor signaling than antiprotein responses. Infect Immun 2006; 74:1419-24. [PMID: 16428797 PMCID: PMC1360338 DOI: 10.1128/iai.74.2.1419-1424.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relative role of Btk-dependent B-cell receptor (BCR) signaling in the induction of antipolysaccharide (anti-PS) and antiprotein immunoglobulin (Ig) responses to an intact extracellular bacterium in vivo is unknown. Btklow mice exhibit reduced BCR signaling but largely restore B-cell development. Btklow mice immunized with intact Streptococcus pneumoniae elicit reduced anti-PS but normal antiprotein Ig responses. Immunization of Btklow mice with PS-protein conjugate in saline results in an even more profound defect in the anti-PS but not antiprotein response, which is largely restored by use of a CpG-containing oligodeoxynucleotide as an adjuvant. These data demonstrate a greater dependence on Btk-mediated BCR signaling for physiologic anti-PS relative to antiprotein responses, as well as the existence of a compensatory Toll-like-receptor-mediated signaling pathway naturally triggered in response to intact bacterial pathogens.
Collapse
Affiliation(s)
- Abdul Q Khan
- Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA
| | | | | | | | | |
Collapse
|
38
|
Kumar D, Singh A. Salmonella typhimurium grown in iron-rich media, inactivated with ferric chloride and adjuvanted with homologous bacterial DNA is potent and efficacious vaccine in mice. Vaccine 2005; 23:5590-8. [PMID: 16098639 DOI: 10.1016/j.vaccine.2005.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Accepted: 06/20/2005] [Indexed: 11/23/2022]
Abstract
The present study describes our attempt to construct a novel vaccine formulation that affords full protection against murine typhoid under experimental conditions. Ferric chloride, 100mM, as inactivating agent, bacterial growth under iron-rich conditions and homologous bacterial DNA as adjuvant were used for construction of the experimental Salmonella typhimurium vaccine. The vaccine inoculated twice at 2 weeks interval in Swiss albino mice elicited statistically significant IgG levels when compared with non-adjuvanted and other control groups. All the mice inoculated with the novel vaccine withstood challenge with 50 LD(50) dose of S. typhimurium strain St 585. No significant safety problems were found in mice.
Collapse
Affiliation(s)
- Devender Kumar
- Immunology Section, Department of Veterinary Microbiology, College of Veterinary Sciences, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India.
| | | |
Collapse
|
39
|
Johansen P, Senti G, Martinez Gomez JM, Storni T, von Beust BR, Wüthrich B, Bot A, Kündig TM. Toll-like receptor ligands as adjuvants in allergen-specific immunotherapy. Clin Exp Allergy 2005; 35:1591-8. [PMID: 16393325 DOI: 10.1111/j.1365-2222.2005.02384.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (SIT) leads to long-term amelioration of T-helper type 2 (Th2)-mediated allergic symptoms and is therefore recommended as a first line therapy for allergies. The major disadvantage of SIT is its low efficiency, requiring treatment over years. OBJECTIVE In this study, we evaluated the potential of Toll-like receptor (TLR) ligands to facilitate Th1-type immune responses. METHODS The immunogenicity and therapeutic potential of the major bee venom allergen phospholipase A2 (PLA2) combined with various TLR ligands were tested in mice and compared with immune responses induced by conventional aluminium-based preparations. RESULTS Regarding total IgG against PLA2, TLR2/4-binding lipopolysaccharide and TLR3-binding polyriboinosinic polyribocytidylic (PolyI:C) were the superior adjuvants for prophylactic vaccination. However, TLR9-binding phosphorothioate-modified cytosine-guanosine-rich oligonucleotide (CpG), TLR-3-binding PolyI:C, and TLR2/6-binding peptidoglycan skewed the immune responses more towards IgG2a isotype and Th1 cytokines. Furthermore, in a therapeutic approach, CpG, PolyI:C and TLR7/8-binding 3M003 had immune modulating properties as they suppressed established IgE titres. CONCLUSION The potential of TLR ligands to adjuvate the immunogenicity of bee venom PLA2 and to skew the Th1-Th2 balance proved very heterogeneous. With respect to SIT, CpG, PolyI:C, and 3M003 were very promising. Hence, TLR ligands should be considered as adjuvants or immune modulators in SIT in human as to improve its efficiency regarding the Th1-Th2 balance of the immune response with a likely effect on therapy duration.
Collapse
Affiliation(s)
- P Johansen
- Unit for Experimental Immunotherapy, University Hospital of Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sen G, Flora M, Chattopadhyay G, Klinman DM, Lees A, Mond JJ, Snapper CM. The critical DNA flanking sequences of a CpG oligodeoxynucleotide, but not the 6 base CpG motif, can be replaced with RNA without quantitative or qualitative changes in Toll-like receptor 9-mediated activity. Cell Immunol 2005; 232:64-74. [PMID: 15922717 DOI: 10.1016/j.cellimm.2005.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/26/2004] [Accepted: 01/31/2005] [Indexed: 11/27/2022]
Abstract
Double- and single-stranded oligodeoxynucleotides containing unmethylated cytosine-guanosine (CpG) dinucleotides (CpG-ODN) activate immune cells via TLR9. In this report we synthesized hybrid DNA-RNA molecules (HDR) in order to further explore the structure-immune function relationship of CpG-ODN in TLR9 signaling and the potential immunomodulatory properties of RNA. We demonstrate that replacement of the deoxyadenosine flanking sequences, critical for the immune activating properties of CpG-ODN, with a similar number of adenosines, although not guanosines, cytosines, or uracils, maintains complete immunostimulatory activity of the hybrid oligonucleotide in vitro, whereas a similar RNA replacement of even 1 base of the required unmethylated 6 base DNA motif (purine-purine-CpG-pyrimidine-pyrimidine) results in a complete loss of activity. Regardless of whether the critical flanking sequence was RNA or DNA there was no significant change in the quantitative or qualitative immune-stimulating activity, or TLR-specificity of the resulting sequences, thus underscoring the relatively permissive functional role of the flanking sequence, and the more specific role of the motif in mediating TLR9 signaling. These data further support a potential role for RNA in immunomodulation.
Collapse
Affiliation(s)
- Goutam Sen
- Institute for Vaccine Research, Department of Pathology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Rao M, Matyas GR, Vancott TC, Birx DL, Alving CR. Immunostimulatory CpG motifs induce CTL responses to HIV type I oligomeric gp140 envelope protein. Immunol Cell Biol 2005; 82:523-30. [PMID: 15479438 DOI: 10.1111/j.0818-9641.2004.01283.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study we investigated the immunomodulatory effects of two adjuvants, liposomal lipid A [L(LA)] and CpG-containing oligodeoxynucleotides (CpG ODN), to the HIV-1 ogp140 envelope protein. Administration of each of these adjuvants separately with unencapsulated ogp140 resulted in low antibody titres. Encapsulation of ogp140 in liposomes containing lipid A resulted in a sixfold increase in anti-ogp140 antibodies. The antibody titres were further enhanced threefold by the addition of CpG ODN. Priming and boosting BALB/c mice with unencapsulated ogp140 with L(LA) or encapsulation in liposomes containing lipid A induced a mixed Th1/Th2 type of immune response. In contrast, immunization with L(ogp140 + LA) plus CpG ODN switched the immune response to a Th-1 response with elevated anti-ogp140 IgG2a antibodies and IFN-gamma levels. Both adjuvants induced excellent ogp140-specific proliferative and CTL responses. Therefore, for the induction of high titre antibodies, but not for cellular responses, the antigen and lipid A have to be present in the same liposomes. These results can have significant implications in directing the Th1 or Th2 differentiation of antigen-specific immune responses in the context of vaccine development.
Collapse
Affiliation(s)
- Mangala Rao
- Department of Membrane Biochemistry, Walter Reed Army Institute of Research, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | |
Collapse
|
42
|
Test ST, Mitsuyoshi JK, Hu Y. Depletion of complement has distinct effects on the primary and secondary antibody responses to a conjugate of pneumococcal serotype 14 capsular polysaccharide and a T-cell-dependent protein carrier. Infect Immun 2005; 73:277-86. [PMID: 15618164 PMCID: PMC538989 DOI: 10.1128/iai.73.1.277-286.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Complement activation plays a critical role in the immune response to T-cell-dependent and T-cell-independent antigens. However, the effect of conjugation of T-cell-dependent protein carriers to T-cell-independent type 2 antigens on the requirement for complement in the humoral immune response to such antigens remains unknown. We studied the role of complement activation on the antibody response of BALB/c mice immunized with the T-cell-independent type 2 antigen serotype 14 pneumococcal capsular polysaccharide (PPS14), either in unmodified form or conjugated to ovalbumin (OVA). In mice immunized with either PPS14 or PPS14-OVA, depletion of endogenous complement at the time of primary immunization by treatment with cobra venom factor (CVF) diminished serum anti-PPS14 concentrations after primary immunization but enhanced antibody responses after secondary immunization. The secondary immunoglobulin G (IgG) anti-PPS14 antibody response after immunization with PPS14-OVA was especially enhanced by complement depletion, was observed at doses as low as 0.2 mug of antigen, and was maximal when CVF was administered within 2 days of immunization. The avidity and opsonophagocytic functions of IgG anti-PPS14 antibodies were comparable in mice immunized with PPS14-OVA with or without complement depletion. Serum anti-PPS14 antibody concentrations were near normal, and the enhancing effects of CVF treatment on the secondary anti-PPS14 antibody response were also apparent in splenectomized mice immunized with PPS14-OVA. These results demonstrate that complement activation can have distinct effects on the primary and secondary antibody responses to a T-cell-independent type 2 antigen, either unmodified or conjugated to a T-cell-dependent protein carrier. These differences should be taken into consideration when using complement to modulate the immune response to vaccines.
Collapse
Affiliation(s)
- Samuel T Test
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King, Jr. Way, Oakland, CA 94609-1673, USA.
| | | | | |
Collapse
|
43
|
Buchwald UK, Lees A, Steinitz M, Pirofski LA. A peptide mimotope of type 8 pneumococcal capsular polysaccharide induces a protective immune response in mice. Infect Immun 2005; 73:325-33. [PMID: 15618169 PMCID: PMC538987 DOI: 10.1128/iai.73.1.325-333.2005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Increasing antibiotic resistance and a rising patient population at risk for infection due to impaired immunity underscore the importance of vaccination against pneumococci. However, available capsular polysaccharide vaccines are often poorly immunogenic in patients at risk for pneumococcal disease. The goal of this study was to explore the potential of peptide mimotopes to function as alternative vaccine antigens to elicit a type-specific antibody response to pneumococci. We used a human monoclonal immunoglobulin A (IgA) antibody (NAD) to type 8 Streptococcus pneumoniae capsular polysaccharide (type 8 PS) to screen a phage display library, and the phage PUB1 displaying the peptide FHLPYNHNWFAL was selected after three rounds of biopanning. Inhibition studies with phage-displayed peptide or the peptide PUB1 and type 8 PS showed that PUB1 is a mimetic of type 8 PS. PUB1 conjugated to tetanus toxoid (PUB1-TT) induced a type 8 PS-specific antibody response in BALB/c mice, further defining it as a mimotope of type 8 PS. The administration of immune sera obtained from PUB1-TT-immunized mice earlier (days 14 and 21) and later (days 87 and 100) after primary and reimmunization resulted in a highly significant prolongation of the survival of naive mice after pneumococcal challenge compared to controls. The survival of PUB1-TT-immunized mice was also prolonged after pneumococcal challenge nearly 4 months after primary immunization. The efficacy of PUB1-TT-induced immune sera provides proof of principle that a mimotope-induced antibody response can protect against pneumococci and suggests that peptide mimotopes selected by type-specific human antibodies could hold promise as immunogens for pneumococci.
Collapse
Affiliation(s)
- Ulrike K Buchwald
- Albert Einstein College of Medicine, Division of Infectious Diseases, Room 709 Forchheimer Bldg., 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
44
|
Krieg AM. CpG Oligodeoxynucleotides for Mucosal Vaccines. Mucosal Immunol 2005. [DOI: 10.1016/b978-012491543-5/50057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Neonatal immunity to polysaccharide antigens: role of B cells versus macrophages. Nat Rev Immunol 2004. [DOI: 10.1038/nri1394-c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
46
|
Coeshott CM, Smithson SL, Verderber E, Samaniego A, Blonder JM, Rosenthal GJ, Westerink MAJ. Pluronic® F127-based systemic vaccine delivery systems. Vaccine 2004; 22:2396-405. [PMID: 15193401 DOI: 10.1016/j.vaccine.2003.11.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/13/2003] [Indexed: 10/26/2022]
Abstract
We have developed a vaccine delivery system based on the non-ionic block copolymer, Pluronic F127 (F127), combined with selected immunomodulators. F127-based matrices are characterized by a phenomenon known as reverse thermogelation, whereby the formulation undergoes a phase transition from liquid to gel upon reaching physiological temperatures. Protein antigens (tetanus toxoid (TT), diphtheria toxoid (DT) and anthrax recombinant protective antigen (rPA)) were formulated with F127 in combination with CpG motifs or chitosan, as examples of immunomodulators, and were compared to more traditional adjuvants in mice. IgG antibody responses were significantly enhanced by the F127/CpG and F127/chitosan combinations compared to antigens mixed with CpGs or chitosan alone. In addition, the responses were significantly greater than those elicited by aluminum salts. Furthermore, the functional activity of these antibodies was demonstrated using either in vivo tetanus toxin challenge or an anthrax lethal toxin neutralization assay. These studies suggest that a block-copolymer approach could enhance the delivery of a variety of clinically useful antigens in vaccination schemes.
Collapse
Affiliation(s)
- Claire M Coeshott
- RxKinetix Inc., 1172 Century Drive Suite 260, Louisville, CO 80027, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wernette CM, Frasch CE, Madore D, Carlone G, Goldblatt D, Plikaytis B, Benjamin W, Quataert SA, Hildreth S, Sikkema DJ, Käyhty H, Jonsdottir I, Nahm MH. Enzyme-linked immunosorbent assay for quantitation of human antibodies to pneumococcal polysaccharides. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2003; 10:514-9. [PMID: 12853378 PMCID: PMC164258 DOI: 10.1128/cdli.10.4.514-519.2003] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Catherine M Wernette
- Department of Pathology and Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35249-7331, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Harris SL, Dagtas AS, Diamond B. Regulating the isotypic and idiotypic profile of an anti-PC antibody response: lessons from peptide mimics. Mol Immunol 2002; 39:263-72. [PMID: 12220885 DOI: 10.1016/s0161-5890(02)00116-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Protection against microbial invasion depends not only on the host's ability to mount an immune response, but on its ability to mount the correct immune response. Whether an antibody response is protective or not depends on both the fine antigenic specificity, that may be associated with particular idiotypes and epitope binding characteristics, and the isotype, determining antibody effector function. Thus, both the variable and the constant region of the antibodies induced by a peptide mimotope must be considered when assessing the success of any immunization. Phosphorylcholine (PC), an epitope present on the cell-wall C-polysaccharide of all pneumococcal serotypes, is capable of eliciting a protective antibody response to pneumococcal infection in mice and provides an attractive model system for understanding the immune response generated by peptide mimics. In this system, both the idiotype and isotype of protective antibodies have been determined and the characteristics of the in vivo response are well described and highly reproducible. We describe here the immune response generated by two peptide mimics of PC. Mice immunized with the peptides developed antibodies binding PC and C-polysaccharide. The idiotypic profile of the response differed depending on the peptide, but never included canonical T15(+) antibodies. The isotype of the response to peptide mimics differed depending on a combination of peptide and adjuvant, and included both IgG2a and IgG2b antibodies which are not typically seen in the response to PC. Thus, peptide mimotopes may elicit anti-polysaccharide responses, but fail to elicit the idiotypes and isotypes observed in the protective response to the microbial antigen.
Collapse
Affiliation(s)
- Shannon L Harris
- Department of Microbiology & Immunology and Medicine, Albert Einstein College of Medicine, Room 405 Forchheimer, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
49
|
Libon C, Haeuw JF, Crouzet F, Mugnier C, Bonnefoy JY, Beck A, Corvaïa N. Streptococcus pneumoniae polysaccharides conjugated to the outer membrane protein A from Klebsiella pneumoniae elicit protective antibodies. Vaccine 2002; 20:2174-80. [PMID: 12009270 DOI: 10.1016/s0264-410x(02)00149-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polysaccharides (PSs) derived from Streptococcus pneumoniae include more than 90 serotypes and differ greatly in their immunogenicity. In addition, immunization with PSs does not induce high affinity antibody production and no memory B-cells are generated. Coupling PSs to carrier proteins has been reported to induce B-cell maturation and to install a B-cell memory. As an alternative carrier protein, the outer membrane protein A (OmpA) derived from Klebsiella pneumoniae has been coupled to various PSs. We evaluated the immunogenicity of two PS conjugates, using PS derived from S. pneumoniae types 14 and 19. In this report, we show that anti-PS IgG responses are generated after the conjugation of PSs to P40. In addition, the humoral response generated is able to protect mice from a bacterial challenge. Our results indicate that P40 could be included in the development of new PS conjugate vaccines.
Collapse
Affiliation(s)
- Christine Libon
- Centre d'Immunologie Pierre Fabre, 5 Avenue Napoléon III, St. Julien en Genevois, France.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The observation that oligodeoxynucleotides containing CpG dinucleotides (CpG DNA) exhibit several immunological effects has led to their use as therapeutic agents and adjuvants for various diseases. Several CpG DNA drug candidates are currently being evaluated, either as monotherapies or as adjuvants (with vaccines, antibodies, antigens and allergens), in preclinical and clinical trials against cancers, viral and bacterial infections, allergies and asthma. Knowledge gained from studies of the medicinal chemistry of CpG DNA has provided a basis for designing a second generation of CpG DNA agents with desirable cytokine-inducing and potent immunomodulatory activity. This article reviews recent progress in understanding the effects of CpG DNA, the medicinal chemistry of CpG DNA, and its possible therapeutic applications.
Collapse
Affiliation(s)
- Sudhir Agrawal
- Hybridon, Inc., 345 Vassar Street, Cambridge, MA 02137, USA.
| | | |
Collapse
|