1
|
Oladeinde A, Chung T, Mou C, Rothrock MJ, Li G, Adeli A, Looft T, Woyda R, Abdo Z, Lawrence JP, Cudnik D, Zock G, Teran J, Li X. Broiler litter moisture and trace metals contribute to the persistence of Salmonella strains that harbor large plasmids carrying siderophores. Appl Environ Microbiol 2025; 91:e0138824. [PMID: 40079597 PMCID: PMC12016502 DOI: 10.1128/aem.01388-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 02/18/2025] [Indexed: 03/15/2025] Open
Abstract
Broiler litter sampling has proven to be an effective method for determining the Salmonella status of a broiler chicken flock and understanding the ecology of Salmonella prior to harvest. In this study, we investigated the ecology of Salmonella within the litter (n = 224) from two commercial broiler houses in the United States. We employed culture enrichment methods and quantitative polymerase chain reaction to determine the prevalence and load of Salmonella and utilized antimicrobial susceptibility testing and whole-genome sequencing (WGS) to characterize select isolates. Additionally, we applied machine learning algorithms and in vitro experiments to identify environmental selective pressures that may contribute to the persistence of Salmonella in litter. Our findings indicate that the prevalence and abundance of Salmonella in broiler litter are influenced by the downtime between flocks as well as by the flock raised on the litter. A Decision Tree Classifier model developed demonstrated that the moisture in the caked part of litter was the most influential environmental parameter for predicting the prevalence of viable Salmonella. WGS analysis revealed that Typhimurium, Infantis, and Kentucky strains that harbored large self-conjugative plasmids encoding fitness factors for iron siderophore production were the dominant Salmonella population found in litter, and exposure to iron-limiting and copper-enriched culture media affected Salmonella growth. Our results suggest that trace metals may select for siderophores harbored on plasmids, and interventions that reduce litter moisture can potentially curtail the persistence of Salmonella in pre-harvest environments.IMPORTANCEBroiler chicken meat is the most consumed protein worldwide, and global poultry imports are projected to reach 17.5 million tons by 2031. To raise billions of chickens, litter is reused multiple times by the top global producers and exporters of chicken (Brazil and the United States). Chickens are in continuous contact with litter and depend on it for warmth and coprophagy. Consequently, litter serves as a major route for pathogens such as Salmonella to infect chickens, making it crucial to understand the environmental and genetic selective pressures that might explain why certain Salmonella strains persist on broiler farms more than others. In this study, we demonstrated that Salmonella strains that harbored siderophores on large conjugative plasmids persisted in litter and suggested that reducing litter moisture would significantly control Salmonella prevalence. However, a complete eradication of persisting Salmonella strains will require novel, innovative, and multifaceted approaches.
Collapse
Affiliation(s)
| | - Taejung Chung
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
- SCINet Program, ARS AI Center of Excellence, Office of National Programs, USDA Agricultural Research Service, Beltsville, Maryland, USA
| | - Connie Mou
- Danisco Animal Nutrition & Health (IFF), Cedar Rapids, Iowa, USA
| | | | - Guoming Li
- Department of Poultry Science, University of Georgia, Athens, Georgia, USA
| | - Ardeshir Adeli
- Genetics and Sustainable Agriculture Research, USDA-ARS, Mississippi State, Mississippi, USA
| | - Torey Looft
- National Animal Disease Center, USDA-ARS, Ames, Iowa, USA
| | - Reed Woyda
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Zaid Abdo
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Program of Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Denice Cudnik
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Gregory Zock
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| | - Jose Teran
- College of Civil Engineering, University of Georgia, Athens, Georgia, USA
| | - Xiang Li
- U.S. National Poultry Research Center, USDA-ARS, Athens, Georgia, USA
| |
Collapse
|
2
|
Zhao J, Yang W, Gao B, Wang H, Chen L, Shan C, Zhang B, Cha J, Shen J, Xiao J, Wang S, Liu G, Zhao R, Xin A, Xiao P, Gao H. Escherichia coli HPI-induced duodenitis through ubiquitin regulation of the TLR4/NF-κB pathway. BMC Vet Res 2025; 21:66. [PMID: 39953596 PMCID: PMC11829554 DOI: 10.1186/s12917-025-04515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/23/2025] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND The Highly Pathogenic Island (HPI) found in Yersinia pestis can be horizontally transferred to E. coli, enhancing its virulence and pathogenicity. Ubiquitin (Ub) acts as an activator of the NF-κB pathway and plays a critical role in the inflammatory response. However, the precise mechanism by which Ub and the regulated TLR4/NF-κB pathway contribute to HPI-induced intestinal inflammation in E. coli remains unclear. RESULTS In this study, we established Ub overexpression models of small intestinal epithelial cells (in vitro) and BALB/c mice (in vivo) and infected these models with HPI-rich E. coli. We investigated the role of the Ub-regulated TLR4/NF-κB pathway in E. coli HPI-induced intestinal inflammation through qPCR, ELISA, immunofluorescence, immunohistochemistry, and H&E staining. Our findings confirmed that E. coli HPI promoted the expression of Ub, TLR4, and NF-κB in IPEC-J2 cells and induced the translocation of NF-κB p65 protein to the nucleus. Further investigations revealed that Ub overexpression enhanced epithelial cell damage induced by E. coli HPI. This was accompanied by up-regulation of mRNA levels of TLR4, MyD88, NF-κB, IL-1β, and TNF-α, as well as increased release of the inflammatory factors IL-1β and TNF-α. In a mouse model with Ub overexpression infected with E. coli HPI, we observed that Ub overexpression promoted E. coli HPI-induced intestinal inflammation. Mechanistically, E. coli HPI induced intestinal epithelial cell damage by inducing Ub overexpression and modulating the TLR4/NF-κB pathway. CONCLUSIONS In conclusion, this study sheds light on the significant role of the Ub-regulated TLR4/NF-κB pathway in E. coli HPI-induced duodenitis, offering novel insights into the pathogenesis of E. coli infections.
Collapse
Affiliation(s)
- Jingang Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Wei Yang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Bin Gao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Hao Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Liping Chen
- College of Foreign Languages, Yunnan Agricultural University, Kunming, 650201, China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Bo Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinlong Cha
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Jue Shen
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Jinlong Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Shuai Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Gen Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China
| | - Aiguo Xin
- Department of Poultry Husbandry and Disease Research, Yunnan Animal Science and Veterinary, Kunming, 650224, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
3
|
Elmassry MM, Sugihara K, Chankhamjon P, Kim Y, Camacho FR, Wang S, Sugimoto Y, Chatterjee S, Chen LA, Kamada N, Donia MS. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. Cell Host Microbe 2025; 33:218-234.e12. [PMID: 39947133 DOI: 10.1016/j.chom.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/14/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025]
Abstract
Gut microbiome changes have been associated with several human diseases, but the molecular and functional details underlying these associations remain largely unknown. Here, we performed a meta-analysis of small molecule biosynthetic gene clusters (BGCs) in metagenomic samples of the gut microbiome from inflammatory bowel disease (IBD) patients and matched healthy subjects and identified two Clostridia-derived BGCs that are significantly associated with Crohn's disease (CD), a main IBD type. Using synthetic biology, we discovered and solved the structures of six fatty acid amides as the products of the CD-enriched BGCs, which we subsequently detected in fecal samples from IBD patients. Finally, we show that the discovered molecules disrupt gut permeability and exacerbate disease in chemically or genetically susceptible mouse models of colitis. These findings suggest that microbiome-derived small molecules may play a role in the etiology of IBD and represent a generalizable approach for discovering molecular mediators of disease-relevant microbiome-host interactions.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Yeji Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francine R Camacho
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuki Sugimoto
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Seema Chatterjee
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lea Ann Chen
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Walker GK, Suyemoto MM, Jacob ME, Thakur S, Borst LB. Canine uropathogenic and avian pathogenic Escherichia coli harboring conjugative plasmids exhibit augmented growth and exopolysaccharide production in response to Enterococcus faecalis. PLoS One 2024; 19:e0312732. [PMID: 39602363 PMCID: PMC11602052 DOI: 10.1371/journal.pone.0312732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) and avian pathogenic Escherichia coli (APEC) are extraintestinal pathogenic Escherichia coli (ExPEC) that infect dogs and poultry. These agents occur both as single-species infections and, commonly, in co-infection with Enterococcus faecalis (EF); however, it is unclear how EF co-infections modulate ExPEC virulence. Genetic drivers of interspecies interactions affecting virulence were identified using macrocolony co-culture, chicken embryo co-infection experiments, and whole-genome sequence analysis of ExPEC and EF clinical isolates. Ten of 11 UPEC strains originally co-isolated with EF exhibited a growth advantage when co-cultured with EF on iron-limited, semi-solid media in contrast to growing alone (P < 0.01). Phylogenetic analyses of these UPEC and 18 previously screened APEC indicated the growth-response phenotype was conserved in ExPEC despite strain diversity. When genomes of EF-responsive ExPEC were compared to non-responsive ExPEC genomes, EF-induced growth was associated with siderophore, exopolysaccharide (EPS), and plasmid conjugative transfer genes. Two matched pairs of EF-responsive and non-responsive ExPEC were selected for further characterization by macrocolony proximity and chicken embryo lethality assays. EF-responsive ExPEC produced 5 to 16 times more EPS in proximity to EF and were more lethal to embryos alone and during co-infection with EF compared to non-responsive ExPEC (P < 0.05). A responsive APEC strain cured of its conjugative plasmid lost the enhanced growth and EPS production response to EF. These data demonstrate that ExPEC growth augmentation by EF occurs in UPEC and APEC strains and is linked to conjugative virulence plasmids and EPS production, which are widely conserved ExPEC virulence determinants.
Collapse
Affiliation(s)
- Grayson K. Walker
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - M. Mitsu Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Luke B. Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
5
|
Yu Q, Li H, Du L, Shen L, Zhang J, Yuan L, Yao H, Xiao H, Bai Q, Jia Y, Qiu J, Li Y. Transcriptional regulation of the yersiniabactin receptor fyuA gene by the ferric uptake regulator in Klebsiella pneumoniae NTUH-K2044. J Basic Microbiol 2024; 64:e2400001. [PMID: 38679904 DOI: 10.1002/jobm.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The ferric uptake regulator (Fur) is a global regulator that influences the expression of virulence genes in Klebsiella pneumoniae. Bioinformatics analysis suggests Fur may involve in iron acquisition via the identified regulatory box upstream of the yersiniabactin receptor gene fyuA. To observe the impact of the gene fyuA on the virulence of K. pneumoniae, the gene fyuA knockout strain and complementation strain were constructed and then conducted a series of phenotypic experiments including chrome azurol S (CAS) detection, crystal violet staining, and wax moth virulence experiment. To examine the regulatory relationship between Fur and the gene fyuA, green fluorescent protein (GFP) reporter gene fusion assay, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), gel migration assay (EMSA), and DNase I footprinting assay were used to clarify the regulatory mechanism of Fur on fyuA. CAS detection revealed that the gene fyuA could affect the generation of iron carriers in K. pneumoniae. Crystal violet staining experiment showed that fyuA could positively influence biofilm formation. Wax moth virulence experiment indicated that the deletion of the fyuA could weaken bacterial virulence. GFP reporter gene fusion experiment and RT-qPCR analysis revealed that Fur negatively regulated the expression of fyuA in iron-sufficient environment. EMSA experiment demonstrated that Fur could directly bind to the promoter region of fyuA, and DNase I footprinting assay further identified the specific binding site sequences. The study showed that Fur negatively regulated the transcriptional expression of fyuA by binding to upstream of the gene promoter region, and then affected the virulence of K. pneumoniae.
Collapse
Affiliation(s)
- Qian Yu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hailin Li
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Ling Du
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Lifei Shen
- Jiangbei District Center for Disease Control and Prevention, Jiangbei, Chongqing, China
| | - Jiaxue Zhang
- Jiangbei District Center for Disease Control and Prevention, Jiangbei, Chongqing, China
| | - Lingyue Yuan
- Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Huang Yao
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Hong Xiao
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Qunhua Bai
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Wyrsch ER, Hoye BJ, Sanderson-Smith M, Gorman J, Maute K, Cummins ML, Jarocki VM, Marenda MS, Dolejska M, Djordjevic SP. The faecal microbiome of the Australian silver gull contains phylogenetically diverse ExPEC, aEPEC and Escherichia coli carrying the transmissible locus of stress tolerance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170815. [PMID: 38336047 DOI: 10.1016/j.scitotenv.2024.170815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Wildlife are implicated in the dissemination of antimicrobial resistance, but their roles as hosts for Escherichia coli that pose a threat to human and animal health is limited. Gulls (family Laridae) in particular, are known to carry diverse lineages of multiple-antibiotic resistant E. coli, including extra-intestinal pathogenic E. coli (ExPEC). Whole genome sequencing of 431 E. coli isolates from 69 healthy Australian silver gulls (Chroicocephalus novaehollandiae) sampled during the 2019 breeding season, and without antibiotic selection, was undertaken to assess carriage in an urban wildlife population. Phylogenetic analysis and genotyping resolved 123 sequence types (STs) representing most phylogroups, and identified diverse ExPEC, including an expansive phylogroup B2 cluster comprising 103 isolates (24 %; 31 STs). Analysis of the mobilome identified: i) widespread carriage of the Yersinia High Pathogenicity Island (HPI), a key ExPEC virulence determinant; ii) broad distribution of two novel phage elements, each carrying sitABCD and iii) carriage of the transmissible locus of stress tolerance (tLST), an element linked to sanitation resistance. Of the 169 HPI carrying isolates, 49 (48 %) represented diverse B2 isolates hosting FII-64 ColV-like plasmids that lacked iutABC and sitABC operons typical of ColV plasmids, but carried the serine protease autotransporter gene, sha. Diverse E. coli also carried archetypal ColV plasmids (52 isolates; 12 %). Clusters of closely related E. coli (<50 SNVs) from ST58, ST457 and ST746, sourced from healthy gulls, humans, and companion animals, were frequently identified. In summary, anthropogenically impacted gulls host an expansive E. coli population, including: i) putative ExPEC that carry ColV virulence gene cargo (101 isolates; 23.4 %) and HPI (169 isolates; 39 %); ii) atypical enteropathogenic E. coli (EPEC) (17 isolates; 3.9 %), and iii) E. coli that carry the tLST (20 isolates; 4.6 %). Gulls play an important role in the evolution and transmission of E. coli that impact human health.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bethany J Hoye
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Jody Gorman
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Kimberly Maute
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Max L Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia
| | - Marc S Marenda
- Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC 3030, Australia
| | - Monika Dolejska
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Czech Republic; CEITEC VETUNI, University of Veterinary Sciences Brno, Czech Republic; Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Czech Republic; Department of Microbiology, Faculty of Medicine and University Hospital in Plzen, Charles University, Pilsen, Czech Republic
| | - Steven P Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Ultimo, NSW, Australia.
| |
Collapse
|
7
|
Payne M, Williamson S, Wang Q, Zhang X, Sintchenko V, Pavic A, Lan R. Emergence of Poultry-Associated Human Salmonella enterica Serovar Abortusovis Infections, New South Wales, Australia. Emerg Infect Dis 2024; 30:691-700. [PMID: 38526124 PMCID: PMC10977856 DOI: 10.3201/eid3004.230958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Salmonella enterica serovar Abortusovis is a ovine-adapted pathogen that causes spontaneous abortion. Salmonella Abortusovis was reported in poultry in 2009 and has since been reported in human infections in New South Wales, Australia. Phylogenomic analysis revealed a clade of 51 closely related isolates from Australia originating in 2004. That clade was genetically distinct from ovine-associated isolates. The clade was widespread in New South Wales poultry production facilities but was only responsible for sporadic human infections. Some known virulence factors associated with human infections were only found in the poultry-associated clade, some of which were acquired through prophages and plasmids. Furthermore, the ovine-associated clade showed signs of genome decay, but the poultry-associated clade did not. Those genomic changes most likely led to differences in host range and disease type. Surveillance using the newly identified genetic markers will be vital for tracking Salmonella Abortusovis transmission in animals and to humans and preventing future outbreaks.
Collapse
|
8
|
Elmassry MM, Sugihara K, Chankhamjon P, Camacho FR, Wang S, Sugimoto Y, Chatterjee S, Chen LA, Kamada N, Donia MS. A meta-analysis of the gut microbiome in inflammatory bowel disease patients identifies disease-associated small molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579278. [PMID: 38370680 PMCID: PMC10871352 DOI: 10.1101/2024.02.07.579278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Changes in the gut microbiome have been associated with several human diseases, but the molecular and functional details underlying these associations remain largely unknown. Here, we performed a multi-cohort analysis of small molecule biosynthetic gene clusters (BGCs) in 5,306 metagenomic samples of the gut microbiome from 2,033 Inflammatory Bowel Disease (IBD) patients and 833 matched healthy subjects and identified a group of Clostridia-derived BGCs that are significantly associated with IBD. Using synthetic biology, we discovered and solved the structures of six fatty acid amides as the products of the IBD-enriched BGCs. Using two mouse models of colitis, we show that the discovered small molecules disrupt gut permeability and exacerbate inflammation in chemically and genetically susceptible mice. These findings suggest that microbiome-derived small molecules may play a role in the etiology of IBD and represent a generalizable approach for discovering molecular mediators of microbiome-host interactions in the context of microbiome-associated diseases.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
| | - Kohei Sugihara
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Francine R Camacho
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, 08544, USA
| | - Shuo Wang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, USA
| | - Yuki Sugimoto
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
| | - Seema Chatterjee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
| | - Lea Ann Chen
- Department of Medicine, Division of Gastroenterology and Hepatology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, 08901, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, 08544, USA
- Lead Contact
| |
Collapse
|
9
|
Zuffa S, Schmid R, Bauermeister A, P Gomes PW, Caraballo-Rodriguez AM, El Abiead Y, Aron AT, Gentry EC, Zemlin J, Meehan MJ, Avalon NE, Cichewicz RH, Buzun E, Terrazas MC, Hsu CY, Oles R, Ayala AV, Zhao J, Chu H, Kuijpers MCM, Jackrel SL, Tugizimana F, Nephali LP, Dubery IA, Madala NE, Moreira EA, Costa-Lotufo LV, Lopes NP, Rezende-Teixeira P, Jimenez PC, Rimal B, Patterson AD, Traxler MF, Pessotti RDC, Alvarado-Villalobos D, Tamayo-Castillo G, Chaverri P, Escudero-Leyva E, Quiros-Guerrero LM, Bory AJ, Joubert J, Rutz A, Wolfender JL, Allard PM, Sichert A, Pontrelli S, Pullman BS, Bandeira N, Gerwick WH, Gindro K, Massana-Codina J, Wagner BC, Forchhammer K, Petras D, Aiosa N, Garg N, Liebeke M, Bourceau P, Kang KB, Gadhavi H, de Carvalho LPS, Silva Dos Santos M, Pérez-Lorente AI, Molina-Santiago C, Romero D, Franke R, Brönstrup M, Vera Ponce de León A, Pope PB, La Rosa SL, La Barbera G, Roager HM, Laursen MF, Hammerle F, Siewert B, Peintner U, Licona-Cassani C, Rodriguez-Orduña L, Rampler E, Hildebrand F, Koellensperger G, Schoeny H, Hohenwallner K, Panzenboeck L, Gregor R, O'Neill EC, Roxborough ET, Odoi J, Bale NJ, Ding S, Sinninghe Damsté JS, Guan XL, Cui JJ, Ju KS, Silva DB, Silva FMR, da Silva GF, Koolen HHF, Grundmann C, Clement JA, et alZuffa S, Schmid R, Bauermeister A, P Gomes PW, Caraballo-Rodriguez AM, El Abiead Y, Aron AT, Gentry EC, Zemlin J, Meehan MJ, Avalon NE, Cichewicz RH, Buzun E, Terrazas MC, Hsu CY, Oles R, Ayala AV, Zhao J, Chu H, Kuijpers MCM, Jackrel SL, Tugizimana F, Nephali LP, Dubery IA, Madala NE, Moreira EA, Costa-Lotufo LV, Lopes NP, Rezende-Teixeira P, Jimenez PC, Rimal B, Patterson AD, Traxler MF, Pessotti RDC, Alvarado-Villalobos D, Tamayo-Castillo G, Chaverri P, Escudero-Leyva E, Quiros-Guerrero LM, Bory AJ, Joubert J, Rutz A, Wolfender JL, Allard PM, Sichert A, Pontrelli S, Pullman BS, Bandeira N, Gerwick WH, Gindro K, Massana-Codina J, Wagner BC, Forchhammer K, Petras D, Aiosa N, Garg N, Liebeke M, Bourceau P, Kang KB, Gadhavi H, de Carvalho LPS, Silva Dos Santos M, Pérez-Lorente AI, Molina-Santiago C, Romero D, Franke R, Brönstrup M, Vera Ponce de León A, Pope PB, La Rosa SL, La Barbera G, Roager HM, Laursen MF, Hammerle F, Siewert B, Peintner U, Licona-Cassani C, Rodriguez-Orduña L, Rampler E, Hildebrand F, Koellensperger G, Schoeny H, Hohenwallner K, Panzenboeck L, Gregor R, O'Neill EC, Roxborough ET, Odoi J, Bale NJ, Ding S, Sinninghe Damsté JS, Guan XL, Cui JJ, Ju KS, Silva DB, Silva FMR, da Silva GF, Koolen HHF, Grundmann C, Clement JA, Mohimani H, Broders K, McPhail KL, Ober-Singleton SE, Rath CM, McDonald D, Knight R, Wang M, Dorrestein PC. microbeMASST: a taxonomically informed mass spectrometry search tool for microbial metabolomics data. Nat Microbiol 2024; 9:336-345. [PMID: 38316926 PMCID: PMC10847041 DOI: 10.1038/s41564-023-01575-9] [Show More Authors] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/29/2023] [Indexed: 02/07/2024]
Abstract
microbeMASST, a taxonomically informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbe-derived metabolites and relative producers without a priori knowledge will vastly enhance the understanding of microorganisms' role in ecology and human health.
Collapse
Affiliation(s)
- Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Robin Schmid
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Anelize Bauermeister
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paulo Wender P Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Andres M Caraballo-Rodriguez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Emily C Gentry
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Jasmine Zemlin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Michael J Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Nicole E Avalon
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of Oklahoma, Norman, OK, USA
| | - Ekaterina Buzun
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Marvic Carrillo Terrazas
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Chia-Yun Hsu
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Renee Oles
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Adriana Vasquez Ayala
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Jiaqi Zhao
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hiutung Chu
- Department of Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
- Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Chiba University-University of California San Diego, San Diego, CA, USA
| | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Sara L Jackrel
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, San Diego, CA, USA
| | - Fidele Tugizimana
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- International Research and Development, Omnia Nutriology, Omnia Group (Pty) Ltd, Johannesburg, South Africa
| | - Lerato Pertunia Nephali
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Ian A Dubery
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, Faculty of Sciences, Agriculture and Engineering, University of Venda, Thohoyandou, South Africa
| | - Eduarda Antunes Moreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Norberto Peporine Lopes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula C Jimenez
- Department of Marine Science, Institute of Marine Science, Federal University of São Paulo, Santos, Brazil
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Matthew F Traxler
- Plant and Microbial Biology, College of Natural Resources, University of California Berkeley, Berkeley, CA, USA
| | - Rita de Cassia Pessotti
- Plant and Microbial Biology, College of Natural Resources, University of California Berkeley, Berkeley, CA, USA
| | - Daniel Alvarado-Villalobos
- Metabolomics and Chemical Profiling, Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Giselle Tamayo-Castillo
- Metabolomics and Chemical Profiling, Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San José, Costa Rica
| | - Priscila Chaverri
- Microbial Biotechnology, Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Efrain Escudero-Leyva
- Microbial Biotechnology, Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, Costa Rica
| | - Luis-Manuel Quiros-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Alexandre Jean Bory
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Juliette Joubert
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Andreas Sichert
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Benjamin S Pullman
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - Nuno Bandeira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
| | - William H Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Katia Gindro
- Plant Protection, Mycology group, Agroscope, Nyon, Switzerland
| | | | - Berenike C Wagner
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Karl Forchhammer
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Tuebingen, Germany
| | - Daniel Petras
- Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI), University of Tuebingen, Tuebingen, Germany
| | - Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Manuel Liebeke
- Department of Symbiosis, Metabolic Interactions, Max Planck Institute for Marine Microbiology, Bremen, Germany
- Department for Metabolomics, Kiel University, Kiel, Germany
| | - Patric Bourceau
- Department of Symbiosis, Metabolic Interactions, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| | - Henna Gadhavi
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
- King's College London, London, UK
| | - Luiz Pedro Sorio de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
- Chemistry Department, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA
| | | | - Alicia Isabel Pérez-Lorente
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Bulevar Louis Pasteur (Campus Universitario de Teatinos), Malaga, Spain
| | - Carlos Molina-Santiago
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Bulevar Louis Pasteur (Campus Universitario de Teatinos), Malaga, Spain
| | - Diego Romero
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Bulevar Louis Pasteur (Campus Universitario de Teatinos), Malaga, Spain
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig, Germany
| | - Arturo Vera Ponce de León
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Phillip Byron Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik M Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | | - Fabian Hammerle
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Bianka Siewert
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Ursula Peintner
- Department of Microbiology, University of Innsbruck, Innsbruck, Austria
| | - Cuauhtemoc Licona-Cassani
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Tecnologico de Monterrey, Monterrey, Mexico
| | - Lorena Rodriguez-Orduña
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Tecnologico de Monterrey, Monterrey, Mexico
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Felina Hildebrand
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| | - Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Katharina Hohenwallner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Lisa Panzenboeck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Rachel Gregor
- Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Jane Odoi
- Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, Netherlands Institute for Sea Research (NIOZ), t Horntje (Texel), the Netherlands
| | - Su Ding
- Department of Marine Microbiology and Biogeochemistry, Netherlands Institute for Sea Research (NIOZ), t Horntje (Texel), the Netherlands
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, Netherlands Institute for Sea Research (NIOZ), t Horntje (Texel), the Netherlands
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jerry J Cui
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Kou-San Ju
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Denise Brentan Silva
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fernanda Motta Ribeiro Silva
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | | | - Hector H F Koolen
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Carlismari Grundmann
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kirk Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, Peoria, IL, USA
| | - Kerry L McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - Sidnee E Ober-Singleton
- Department of Physics, Study of Heavy-Element-Biomaterials, University of Oregon, Eugene, OR, USA
| | | | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Computer Science and Engineering, University of California San Diego, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
| | - Mingxun Wang
- Department of Computer Science and Engineering, University of California Riverside, Riverside, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
10
|
Ba X, Guo Y, Moran RA, Doughty EL, Liu B, Yao L, Li J, He N, Shen S, Li Y, van Schaik W, McNally A, Holmes MA, Zhuo C. Global emergence of a hypervirulent carbapenem-resistant Escherichia coli ST410 clone. Nat Commun 2024; 15:494. [PMID: 38216585 PMCID: PMC10786849 DOI: 10.1038/s41467-023-43854-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/22/2023] [Indexed: 01/14/2024] Open
Abstract
Carbapenem-resistant Escherichia coli (CREC) ST410 has recently emerged as a major global health problem. Here, we report a shift in CREC prevalence in Chinese hospitals between 2017 and 2021 with ST410 becoming the most commonly isolated sequence type. Genomic analysis identifies a hypervirulent CREC ST410 clone, B5/H24RxC, which caused two separate outbreaks in a children's hospital. It may have emerged from the previously characterised B4/H24RxC in 2006 and has been isolated in ten other countries from 2015 to 2021. Compared with B4/H24RxC, B5/H24RxC lacks the blaOXA-181-bearing X3 plasmid, but carries a F-type plasmid containing blaNDM-5. Most of B5/H24RxC also carry a high pathogenicity island and a novel O-antigen gene cluster. We find that B5/H24RxC grew faster in vitro and is more virulent in vivo. The identification of this newly emerged but already globally disseminated hypervirulent CREC clone, highlights the ongoing evolution of ST410 towards increased resistance and virulence.
Collapse
Affiliation(s)
- Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Yingyi Guo
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Robert A Moran
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Emma L Doughty
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Baomo Liu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Likang Yao
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiahui Li
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Nanhao He
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Siquan Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, Shanghai, China
| | - Yang Li
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Willem van Schaik
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - Chao Zhuo
- State Key Laboratory of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
11
|
Diamant I, Adani B, Sylman M, Rahav G, Gal-Mor O. The transcriptional regulation of the horizontally acquired iron uptake system, yersiniabactin and its contribution to oxidative stress tolerance and pathogenicity of globally emerging salmonella strains. Gut Microbes 2024; 16:2369339. [PMID: 38962965 PMCID: PMC11225919 DOI: 10.1080/19490976.2024.2369339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
Collapse
Affiliation(s)
- Imbar Diamant
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Boaz Adani
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Meir Sylman
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Alotaibi K, Khan AA. Prevalence and Molecular Characterization of Shiga Toxin-Producing Escherichia coli from Food and Clinical Samples. Pathogens 2023; 12:1302. [PMID: 38003767 PMCID: PMC10675443 DOI: 10.3390/pathogens12111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is one of the most prominent food-borne pathogens in humans. The current study aims to detect and to analyze the virulence factors, antibiotic resistance, and plasmid profiles for forty-six STEC strains, isolated from clinical and food strains. Pulsed-field gel electrophoresis (PFGE) was used to determine the genetic relatedness between different serotypes and sources of samples. The clinical samples were found to be resistant to Nb (100%), Tet (100%), Amp (20%), SXT (15%), and Kan (15%) antibiotics. In contrast, the food strains were found to be resistant to Nb (100%), Tet (33%), Amp (16.6%), and SXT (16.6%) antibiotics. The PFGE typing of the forty-six isolates was grouped into more than ten clusters, each with a similarity between 30% and 70%. Most of the isolates were found positive for more than five virulence genes (eae, hlyA, stx1, stx2, stx2f, stx2c, stx2e, stx2, nelB, pagC, sen, toxB, irp, efa, and efa1). All the isolates carried different sizes of the plasmids. The isolates were analyzed for plasmid replicon type by PCR, and 72.5% of the clinical isolates were found to contain X replicon-type plasmid, 50% of the clinical isolates contained FIB replicon-type plasmid, and 17.5% of the clinical isolates contained Y replicon-type plasmid. Three clinical isolates contained both I1 and Hi1 replicon-type plasmid. Only two food isolates contained B/O and W replicon-type plasmid. These results indicate that STEC strains have diverse clonal populations among food and clinical strains that are resistant to several antimicrobials. In conclusion, our findings indicate that food isolates of STEC strains harbor virulence, antimicrobial resistance, plasmid replicon typing determinants like those of other STEC strains from clinical strains. These results suggest that these strains are unique and may contribute to the virulence of the isolates. Therefore, surveillance and characterization of STEC strains can provide useful information about the prevalence of STEC in food and clinical sources. Furthermore, it will help to identify STEC serotypes that are highly pathogenic to humans and may emerge as a threat to public health.
Collapse
Affiliation(s)
- Khulud Alotaibi
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72205, USA
| | - Ashraf A. Khan
- Division of Microbiology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
| |
Collapse
|
13
|
Roy Chowdhury P, Hastak P, DeMaere M, Wyrsch E, Li D, Elankumaran P, Dolejska M, Browning GF, Marenda MS, Gottlieb T, Cheong E, Merlino J, Myers GSA, Djordjevic SP. Phylogenomic analysis of a global collection of Escherichia coli ST38: evidence of interspecies and environmental transmission? mSystems 2023; 8:e0123622. [PMID: 37675998 PMCID: PMC10654095 DOI: 10.1128/msystems.01236-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
IMPORTANCE Extraintestinal pathogenic Escherichia coli (ExPEC) sequence type (ST) 38 is one of the top 10 human pandemic lineages. Although a major cause of urinary tract and blood stream infections, ST38 has been poorly characterized from a global phylogenomic perspective. A comprehensive genome-scale analysis of 925 ST38 isolate genomes identified two broad ancestral clades and linkage of discrete ST38 clusters with specific bla CTX-M variants. In addition, the clades and clusters carry important virulence genes, with diverse but poorly characterized plasmids. Numerous putative interhost and environment transmission events were identified here by the presence of ST38 clones (defined as isolates with ≤35 SNPs) within humans, companion animals, food sources, urban birds, wildlife, and the environment. A small cluster of international ST38 clones from diverse sources, likely representing progenitors of a hospital outbreak that occurred in Brisbane, Australia, in 2017, was also identified. Our study emphasizes the importance of characterizing isolate genomes derived from nonhuman sources and geographical locations, without any selection bias.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Priyanka Hastak
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Matthew DeMaere
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Ethan Wyrsch
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Dmitriy Li
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Paarthiphan Elankumaran
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Monika Dolejska
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
- Central European Institute of Technology (CEITEC), University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Department of Biology and Wildlife Disease, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
- Biomedical Center, Charles University, Brno, Czech Republic
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital, Brno, Czech Republic
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Mark S. Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, University of Melbourne, Parkville, Melbourne, Victoria, Australia
| | - Thomas Gottlieb
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Elaine Cheong
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - John Merlino
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord, New South Wales, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Paniagua-Contreras GL, Bautista-Cerón A, Morales-Espinosa R, Delgado G, Vaca-Paniagua F, Díaz-Velásquez CE, de la Cruz-Montoya AH, García-Cortés LR, Sánchez-Yáñez MP, Monroy-Pérez E. Extensive Expression of the Virulome Related to Antibiotic Genotyping in Nosocomial Strains of Klebsiella pneumoniae. Int J Mol Sci 2023; 24:14754. [PMID: 37834205 PMCID: PMC10573248 DOI: 10.3390/ijms241914754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The emergence of hyper-virulent and multidrug-resistant (MDR) strains of Klebsiella pneumoniae isolated from patients with hospital- and community-acquired infections is a serious health problem that increases mortality. The molecular analysis of virulome expression related to antimicrobial-resistant genotype and infection type in K. pneumoniae strains isolated from patients with hospital- and community-acquired infections has been poorly studied. In this study, we analyzed the overall expression of the virulence genotype associated with the antimicrobial resistance genotype and pulse field gel electrophoresis (PFGE) type (PFtype) in K. pneumoniae. We studied 25 strains of K. pneumoniae isolated from patients who developed bacteremia and pneumonia during their hospital stay and 125 strains from outpatients who acquired community-acquired infections. Susceptibility to 12 antimicrobials was determined by Kirby-Bauer. The identification of K. pneumoniae and antibiotic-resistance genes was performed using polymerase chain reaction (PCR). To promote the expression of the virulence genes of K. pneumoniae, an in vitro infection model was used in human epithelial cell lines A549 and A431. Bacterial RNA was extracted with the QIAcube robotic workstation, and reverse transcription to cDNA was performed with the Reverse Transcription QuantiTect kit (Qiagen). The determination of the expression of the virulence genes was performed by real-time PCR. In addition, 57.3% (n = 86) of the strains isolated from patients with hospital- and community-acquired infections were multidrug-resistant (MDR), mainly to beta-lactam antibiotics (CB, AM, CFX, and CF), aminoglycosides (GE), quinolones (CPF and NOF), nitrofurantoin (NF), and sulfamethoxazole/trimethoprim (SXT). The most frequently expressed genes among strains isolated from hospital- and community-acquired infections were adhesion-type, ycfm (80%), mrkD (51.3%), and fimH (30.7%); iron uptake, irp2 (84%), fyuA (68.7%), entB (64.7%), and irp1 (56.7%); and protectins, rpmA (26%), which were related to antibiotic-resistance genes, blaTEM (96%), blaSHV (64%), blaCITM (52.6%), blaCTXM-1 (44.7%), tetA (74%), sul1 (57.3%), aac(3)-IV (40.7%), and aadA1 (36%). The results showed the existence of different patterns of expression of virulome related to the genotype of resistance to antimicrobials and to the PFtypes in the strains of K. pneumoniae that cause hospital- and community-acquired infections. These findings are important and may contribute to improving medical treatment strategies against infections caused by K. pneumoniae.
Collapse
Affiliation(s)
- Gloria Luz Paniagua-Contreras
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (A.B.-C.); (M.P.S.-Y.)
| | - Areli Bautista-Cerón
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (A.B.-C.); (M.P.S.-Y.)
| | - Rosario Morales-Espinosa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico; (R.M.-E.); (G.D.)
| | - Gabriela Delgado
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico; (R.M.-E.); (G.D.)
| | - Felipe Vaca-Paniagua
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (F.V.-P.); (C.E.D.-V.); (A.H.d.l.C.-M.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14160, Mexico
| | - Clara Estela Díaz-Velásquez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (F.V.-P.); (C.E.D.-V.); (A.H.d.l.C.-M.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Aldo Hugo de la Cruz-Montoya
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (F.V.-P.); (C.E.D.-V.); (A.H.d.l.C.-M.)
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-Degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | | | - María Patricia Sánchez-Yáñez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (A.B.-C.); (M.P.S.-Y.)
| | - Eric Monroy-Pérez
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico; (A.B.-C.); (M.P.S.-Y.)
| |
Collapse
|
15
|
Borges KA, Furian TQ, de Brito BG, de Brito KCT, da Rocha DT, Salle CTP, Moraes HLDS, do Nascimento VP. Characterization of avian pathogenic Escherichia coli isolates based on biofilm formation, ESBL production, virulence-associated genes, and phylogenetic groups. Braz J Microbiol 2023; 54:2413-2425. [PMID: 37344657 PMCID: PMC10485228 DOI: 10.1007/s42770-023-01026-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Escherichia coli is a part of both animal and human commensal microbiota. Avian pathogenic E. coli (APEC) is responsible for colibacillosis in poultry, an economically important disease. However, the close similarities among APEC isolates make it difficult to differentiate between pathogenic and commensal bacteria. The aim of this study was to determine phenotypic and molecular characteristics of APEC isolates and to compare them with their in vivo pathogenicity indices. A total of 198 APEC isolates were evaluated for their biofilm-producing ability and extended-spectrum β-lactamase (ESBL) production phenotypes. In addition, 36 virulence-associated genes were detected, and the isolates were classified into seven phylogenetic groups using polymerase chain reaction. The sources of the isolates were not associated with biofilms, ESBL, genes, or phylogroups. Biofilm and ESBL production were not associated with pathogenicity. Group B2 had the highest pathogenicity index. Groups B2 and E were positively associated with high-pathogenicity isolates and negatively associated with low-pathogenicity isolates. In contrast, groups A and C were positively associated with apathogenic isolates, and group B1 was positively associated with low-pathogenicity isolates. Some virulence-associated genes showed positive or negative associations with specific phylogenetic groups. None of the individual techniques produced results that correlated with the in vivo pathogenicity index. However, the combination of two techniques, namely, detection of virulence-associated genes and the phylogenetic groups, could help the classification of the isolates as pathogenic or commensal.
Collapse
Affiliation(s)
- Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Benito Guimarães de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | - Kelly Cristina Tagliari de Brito
- Departamento de Diagnóstico E Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor, Secretaria da Agricultura, Pecuária e Desenvolvimento Rural, Estrada Do Conde 6000, Eldorado Do Sul, RS, Brazil
| | | | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, 91540-000, Brazil
| |
Collapse
|
16
|
Kyung SM, Lee J, Lee ES, Hwang CY, Yoo HS. Genomic molecular epidemiology of carbapenemase-producing Escherichia coli ST410 isolates by complete genome analysis. Vet Res 2023; 54:72. [PMID: 37658425 PMCID: PMC10472685 DOI: 10.1186/s13567-023-01205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/04/2023] [Indexed: 09/03/2023] Open
Abstract
The circulation of carbapenemase-producing Escherichia coli (CPEC) in our society is a serious concern for vulnerable patients in nosocomial environments. However, the genomic epidemiology of the circulation of CPEC bacteria among companion animals remains largely unknown. In this study, epidemiological analysis was conducted using complete genome identification of CPEC ST410 isolates obtained from companion animals. To estimate the genomic distance and relatedness of the isolates, a total of 37 whole-genome datasets of E. coli ST410 strains were downloaded and comparatively analysed. As a result of the analysis, the genomic structure of the chromosomes and plasmids was identified, revealing the genomic positions of multiple resistance and virulence genes. The isolates in this study were grouped into the subclade H24/RxC, with fimH24, and substituted quinolone resistance-determining regions (QRDRs) and multiple beta-lactamases, including extended-spectrum β-lactamase (ESBL) and carbapenemase. In addition, the in silico comparison of the whole-genome datasets revealed unidentified ST410 H24/Rx subgroups, including either high pathogenicity islands (HPIs) or H21 serotypes. Considering the genetic variations and resistance gene dissemination of the isolates carried by companion animals, future approaches for preventive measurement must include the "One Health" perspective for public health in our society.
Collapse
Affiliation(s)
- Su Min Kyung
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Junho Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun-Seo Lee
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Yong Hwang
- Department of Veterinary Dermatology, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Zuffa S, Schmid R, Bauermeister A, Gomes PWP, Caraballo-Rodriguez AM, Abiead YE, Aron AT, Gentry EC, Zemlin J, Meehan MJ, Avalon NE, Cichewicz RH, Buzun E, Terrazas MC, Hsu CY, Oles R, Ayala AV, Zhao J, Chu H, Kuijpers MCM, Jackrel SL, Tugizimana F, Nephali LP, Dubery IA, Madala NE, Moreira EA, Costa-Lotufo LV, Lopes NP, Rezende-Teixeira P, Jimenez PC, Rimal B, Patterson AD, Traxler MF, de Cassia Pessotti R, Alvarado-Villalobos D, Tamayo-Castillo G, Chaverri P, Escudero-Leyva E, Quiros-Guerrero LM, Bory AJ, Joubert J, Rutz A, Wolfender JL, Allard PM, Sichert A, Pontrelli S, Pullman BS, Bandeira N, Gerwick WH, Gindro K, Massana-Codina J, Wagner BC, Forchhammer K, Petras D, Aiosa N, Garg N, Liebeke M, Bourceau P, Kang KB, Gadhavi H, de Carvalho LPS, dos Santos MS, Pérez-Lorente AI, Molina-Santiago C, Romero D, Franke R, Brönstrup M, de León AVP, Pope PB, Rosa SLL, Barbera GL, Roager HM, Laursen MF, Hammerle F, Siewert B, Peintner U, Licona-Cassani C, Rodriguez-Orduña L, Rampler E, Hildebrand F, Koellensperger G, Schoeny H, Hohenwallner K, Panzenboeck L, Gregor R, O’Neill EC, Roxborough ET, Odoi J, Bale NJ, Ding S, Sinninghe Damsté JS, Guan XL, Cui JJ, Ju KS, Silva DB, Silva FMR, da Silva GF, Koolen HHF, Grundmann C, Clement JA, et alZuffa S, Schmid R, Bauermeister A, Gomes PWP, Caraballo-Rodriguez AM, Abiead YE, Aron AT, Gentry EC, Zemlin J, Meehan MJ, Avalon NE, Cichewicz RH, Buzun E, Terrazas MC, Hsu CY, Oles R, Ayala AV, Zhao J, Chu H, Kuijpers MCM, Jackrel SL, Tugizimana F, Nephali LP, Dubery IA, Madala NE, Moreira EA, Costa-Lotufo LV, Lopes NP, Rezende-Teixeira P, Jimenez PC, Rimal B, Patterson AD, Traxler MF, de Cassia Pessotti R, Alvarado-Villalobos D, Tamayo-Castillo G, Chaverri P, Escudero-Leyva E, Quiros-Guerrero LM, Bory AJ, Joubert J, Rutz A, Wolfender JL, Allard PM, Sichert A, Pontrelli S, Pullman BS, Bandeira N, Gerwick WH, Gindro K, Massana-Codina J, Wagner BC, Forchhammer K, Petras D, Aiosa N, Garg N, Liebeke M, Bourceau P, Kang KB, Gadhavi H, de Carvalho LPS, dos Santos MS, Pérez-Lorente AI, Molina-Santiago C, Romero D, Franke R, Brönstrup M, de León AVP, Pope PB, Rosa SLL, Barbera GL, Roager HM, Laursen MF, Hammerle F, Siewert B, Peintner U, Licona-Cassani C, Rodriguez-Orduña L, Rampler E, Hildebrand F, Koellensperger G, Schoeny H, Hohenwallner K, Panzenboeck L, Gregor R, O’Neill EC, Roxborough ET, Odoi J, Bale NJ, Ding S, Sinninghe Damsté JS, Guan XL, Cui JJ, Ju KS, Silva DB, Silva FMR, da Silva GF, Koolen HHF, Grundmann C, Clement JA, Mohimani H, Broders K, McPhail KL, Ober-Singleton SE, Rath CM, McDonald D, Knight R, Wang M, Dorrestein PC. A Taxonomically-informed Mass Spectrometry Search Tool for Microbial Metabolomics Data. RESEARCH SQUARE 2023:rs.3.rs-3189768. [PMID: 37577622 PMCID: PMC10418563 DOI: 10.21203/rs.3.rs-3189768/v1] [Show More Authors] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
MicrobeMASST, a taxonomically-informed mass spectrometry (MS) search tool, tackles limited microbial metabolite annotation in untargeted metabolomics experiments. Leveraging a curated database of >60,000 microbial monocultures, users can search known and unknown MS/MS spectra and link them to their respective microbial producers via MS/MS fragmentation patterns. Identification of microbial-derived metabolites and relative producers, without a priori knowledge, will vastly enhance the understanding of microorganisms' role in ecology and human health.
Collapse
Affiliation(s)
- Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Robin Schmid
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Anelize Bauermeister
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes 1524, São Paulo, SP, 05508-000, Brazil
| | - Paulo Wender P. Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Andres M. Caraballo-Rodriguez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Allegra T. Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, United States
| | - Emily C. Gentry
- Department of Chemistry, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Jasmine Zemlin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Center for Microbiome Innovation, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Michael J. Meehan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Nicole E. Avalon
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, College of Arts and Sciences, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Ekaterina Buzun
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Marvic Carrillo Terrazas
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Chia-Yun Hsu
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Renee Oles
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Adriana Vasquez Ayala
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Jiaqi Zhao
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Hiutung Chu
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Center for Mucosal Immunology, Allergy, and Vaccines (cMAV), Chiba University-University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Mirte C. M. Kuijpers
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Sara L. Jackrel
- Department of Ecology, Behavior and Evolution, School of Biological Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Fidele Tugizimana
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
- International Research and Development, Omnia Nutriology, Omnia Group (Pty) Ltd, 178 Montecasino Boulevard, Fourways, Johannesburg, Gauteng, 2191, South Africa
| | - Lerato Pertunia Nephali
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park, Johannesburg, Gauteng, 2006, South Africa
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, Faculty of Sciences, Agriculture and Engineering, University of Venda, Private Bag X5050, Thohoyandou, Limpopo, 950, South Africa
| | - Eduarda Antunes Moreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP, 14040-903, Brazil
| | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes 1524, São Paulo, SP, 05508-000, Brazil
| | - Norberto Peporine Lopes
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP, 14040-903, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes 1524, São Paulo, SP, 05508-000, Brazil
| | - Paula C. Jimenez
- Department of Marine Science, Institute of Marine Science, Federal University of São Paulo, Rua Carvalho de Mendonça, 144, Santos, SP, 11070-100, Brazil
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 319 Life Sciences Building, University Park, PA, 16802, United States
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, 320 Life Sciences Building, University Park, PA, 16802, United States
| | - Matthew F. Traxler
- Plant and Microbial Biology, College of Natural Resources, University of California Berkeley, 311 Koshland Hall, Berkeley, CA, 94270, United States
| | - Rita de Cassia Pessotti
- Plant and Microbial Biology, College of Natural Resources, University of California Berkeley, 311 Koshland Hall, Berkeley, CA, 94270, United States
| | - Daniel Alvarado-Villalobos
- Metabolomics & Chemical Profiling, Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 2061, Costa Rica
| | - Giselle Tamayo-Castillo
- Metabolomics & Chemical Profiling, Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 2061, Costa Rica
- Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 2061, Costa Rica
| | - Priscila Chaverri
- Microbial Biotechnology, Centro de Investigaciones en Productos Naturales (CIPRONA) & Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 2061, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 2061, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, 20715, United States
| | - Efrain Escudero-Leyva
- Microbial Biotechnology, Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San Pedro de Montes de Oca, San José, 2061, Costa Rica
| | - Luis-Manuel Quiros-Guerrero
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
| | - Alexandre Jean Bory
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
| | - Juliette Joubert
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
| | - Pierre-Marie Allard
- School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Rue Michel-Servet 1, Genève, GE, 1206, Switzerland
- Department of Biology, University of Fribourg, Chemin du Musée, 10, Fribourg, FR, 1700, Switzerland
| | - Andreas Sichert
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, ETH Zurich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Benjamin S Pullman
- Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Nuno Bandeira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - William H. Gerwick
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Katia Gindro
- Plant Protection, Mycology group, Agroscope, Rte de Duillier, 50, Nyon, VD, 1260, Switzerland
| | - Josep Massana-Codina
- Plant Protection, Mycology group, Agroscope, Rte de Duillier, 50, Nyon, VD, 1260, Switzerland
| | - Berenike C. Wagner
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, Tuebingen, 72076, Germany
| | - Karl Forchhammer
- Department of Microbiology and Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, Tuebingen, 72076, Germany
| | - Daniel Petras
- Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI), University of Tuebingen, Auf der Morgenstelle 24, Tuebingen, 72076, Germany
| | - Nicole Aiosa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332, United States
| | - Neha Garg
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332, United States
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, United States
| | - Manuel Liebeke
- Department of Symbiosis, Metabolic Interactions, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, 28359, Germany
| | - Patric Bourceau
- Department of Symbiosis, Metabolic Interactions, Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, 28359, Germany
| | - Kyo Bin Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women’s University, Cheongpa-ro 47 gil 100, Seoul, 04310, Korea
| | - Henna Gadhavi
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- King’s College London, Strand, London, WC2R 2LS, UK
| | - Luiz Pedro Sorio de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Chemistry Department, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 110 Scripps Way, Jupiter, FL, 33458, United States
| | - Mariana Silva dos Santos
- Metabolomics Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Alicia Isabel Pérez-Lorente
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea ‘‘La Mayora’’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Bulevar Louis Pasteur (Campus Universitario de Teatinos), Málaga, Málaga, 29071, Spain
| | - Carlos Molina-Santiago
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea ‘‘La Mayora’’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Bulevar Louis Pasteur (Campus Universitario de Teatinos), Málaga, Málaga, 29071, Spain
| | - Diego Romero
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea ‘‘La Mayora’’, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Bulevar Louis Pasteur (Campus Universitario de Teatinos), Málaga, Málaga, 29071, Spain
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstraße 7, Braunschweig, 38124, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Braunschweig, 38124, Germany
| | - Arturo Vera Ponce de León
- Faculty of Chemistry, BIotechnology and Food Science, Norwegian University of Life Sciences, Postboks 5003, Ås, 1433, Norway
| | - Phillip Byron Pope
- Faculty of Chemistry, BIotechnology and Food Science, Norwegian University of Life Sciences, Postboks 5003, Ås, 1433, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Postboks 5003, Ås, 1433, Norway
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, BIotechnology and Food Science, Norwegian University of Life Sciences, Postboks 5003, Ås, 1433, Norway
| | - Giorgia La Barbera
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, Frederiksberg, 1958, Denmark
| | - Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Rolighedsvej 26, Frederiksberg, 1958, Denmark
| | - Martin Frederik Laursen
- National Food Institute, Technical University of Denmark, Kemitorvet B202, Lyngby, 2800, Denmark
| | - Fabian Hammerle
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Bianka Siewert
- Department of Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria
| | - Ursula Peintner
- Department of Microbiology, University of Innsbruck, Technikerstr. 25, Innsbruck, 6020, Austria
| | - Cuauhtemoc Licona-Cassani
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon, 64849, Mexico
| | - Lorena Rodriguez-Orduña
- Escuela de Ingeniería y Ciencias, Centro de Biotecnología FEMSA, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, Nuevo Leon, 64849, Mexico
| | - Evelyn Rampler
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, Vienna, 1090, Austria
| | - Felina Hildebrand
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, Vienna, 1090, Austria
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Waehringer Str. 42, Vienna, 1090, Austria
| | - Gunda Koellensperger
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, Vienna, 1090, Austria
- Vienna Metabolomics Center (VIME), University of Vienna, Althanstr. 14,, Vienna, 1090, Austria
| | - Harald Schoeny
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, Vienna, 1090, Austria
| | - Katharina Hohenwallner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, Vienna, 1090, Austria
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Waehringer Str. 42, Vienna, 1090, Austria
| | - Lisa Panzenboeck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Str. 38, Vienna, 1090, Austria
- Vienna Doctoral School in Chemistry (DoSChem), Faculty of Chemistry, University of Vienna, Waehringer Str. 42, Vienna, 1090, Austria
| | - Rachel Gregor
- Department of Civil and Environmental Engineering, School of Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02142, United States
| | - Ellis Charles O’Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG72RD, UK
| | | | - Jane Odoi
- Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG72RD, UK
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, Netherlands Institute for Sea Research (NIOZ), Landsdiep 4, t Horntje (Texel), 1797 SZ, Netherlands
| | - Su Ding
- Department of Marine Microbiology and Biogeochemistry, Netherlands Institute for Sea Research (NIOZ), Landsdiep 4, t Horntje (Texel), 1797 SZ, Netherlands
| | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, Netherlands Institute for Sea Research (NIOZ), Landsdiep 4, t Horntje (Texel), 1797 SZ, Netherlands
| | - Xueli Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, Singapore, 636921, Singapore
| | - Jerry J. Cui
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, United States
| | - Kou-San Ju
- Department of Microbiology, College of Arts and Sciences, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, United States
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, United States
- Center for Applied Plant Sciences, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, United States
- Infectious Diseases Institute, The Ohio State University, 484 W. 12th Ave, Columbus, OH, 43210, United States
| | - Denise Brentan Silva
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Av. Costa e Silva, s/n, Campo Grande, MS, 79070-900, Brazil
| | - Fernanda Motta Ribeiro Silva
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Av. Costa e Silva, s/n, Campo Grande, MS, 79070-900, Brazil
| | | | - Hector H. F. Koolen
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, 1777 Carvalho Leal Avenue, Manaus, AM, 69065-001, Brazil
| | - Carlismari Grundmann
- Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP, 14040-903, Brazil
| | - Jason A. Clement
- Baruch S. Blumberg Institute, 3805 Old Easton Rd., Doylestown, PA, 18902, United States
| | - Hosein Mohimani
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, United States
| | - Kirk Broders
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University, Peoria, IL, 61604, United States
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Weniger Hall, room 341, Corvallis, OR, 97331, United States
| | - Sidnee E. Ober-Singleton
- Department of Physics, Study of Heavy-Element-Biomaterials, University of Oregon, 1255 E 13th Ave, Basement, Eugene, OR, 97402, United States
| | | | - Daniel McDonald
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Rob Knight
- Department of Computer Science and Engineering, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Department of Pediatrics, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| | - Mingxun Wang
- Department of Computer Science and Engineering, University of California Riverside, 900 University Ave., Riverside, CA, 92521, United States
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Dr., San Diego, CA, 92093, United States
| |
Collapse
|
18
|
Royer G, Clermont O, Marin J, Condamine B, Dion S, Blanquart F, Galardini M, Denamur E. Epistatic interactions between the high pathogenicity island and other iron uptake systems shape Escherichia coli extra-intestinal virulence. Nat Commun 2023; 14:3667. [PMID: 37339949 DOI: 10.1038/s41467-023-39428-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
The intrinsic virulence of extra-intestinal pathogenic Escherichia coli is associated with numerous chromosomal and/or plasmid-borne genes, encoding diverse functions such as adhesins, toxins, and iron capture systems. However, the respective contribution to virulence of those genes seems to depend on the genetic background and is poorly understood. Here, we analyze genomes of 232 strains of sequence type complex STc58 and show that virulence (quantified in a mouse model of sepsis) emerged in a sub-group of STc58 due to the presence of the siderophore-encoding high-pathogenicity island (HPI). When extending our genome-wide association study to 370 Escherichia strains, we show that full virulence is associated with the presence of the aer or sit operons, in addition to the HPI. The prevalence of these operons, their co-occurrence and their genomic location depend on strain phylogeny. Thus, selection of lineage-dependent specific associations of virulence-associated genes argues for strong epistatic interactions shaping the emergence of virulence in E. coli.
Collapse
Affiliation(s)
- Guilhem Royer
- Université Paris Cité, IAME, INSERM, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
- EERA Unit "Ecology and Evolution of Antibiotics Resistance," Institut Pasteur-Assistance Publique/Hôpitaux de Paris-Université Paris-Saclay, Paris, France
- UMR CNRS, 3525, Paris, France
| | | | - Julie Marin
- Université Paris Cité, IAME, INSERM, Paris, France
- Université Sorbonne Paris Nord, IAME, INSERM, Bobigny, France
| | | | - Sara Dion
- Université Paris Cité, IAME, INSERM, Paris, France
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, CNRS, Collège de France, PSL Research University, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Erick Denamur
- Université Paris Cité, IAME, INSERM, Paris, France.
- AP-HP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, Paris, France.
| |
Collapse
|
19
|
Morales G, Abelson B, Reasoner S, Miller J, Earl AM, Hadjifrangiskou M, Schmitz J. The Role of Mobile Genetic Elements in Virulence Factor Carriage from Symptomatic and Asymptomatic Cases of Escherichia coli Bacteriuria. Microbiol Spectr 2023; 11:e0471022. [PMID: 37195213 PMCID: PMC10269530 DOI: 10.1128/spectrum.04710-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is extremely diverse genotypically and phenotypically. Individual strains can variably carry diverse virulence factors, making it challenging to define a molecular signature for this pathotype. For many bacterial pathogens, mobile genetic elements (MGEs) constitute a major mechanism of virulence factor acquisition. For urinary E. coli, the total distribution of MGEs and their role in the acquisition of virulence factors is not well defined, including in the context of symptomatic infection versus asymptomatic bacteriuria (ASB). In this work, we characterized 151 isolates of E. coli, derived from patients with either urinary tract infection (UTI) or ASB. For both sets of E. coli, we catalogued the presence of plasmids, prophage, and transposons. We analyzed MGE sequences for the presence of virulence factors and antimicrobial resistance genes. These MGEs were associated with only ~4% of total virulence associated genes, while plasmids contributed to ~15% of antimicrobial resistance genes under consideration. Our analyses suggests that, across strains of E. coli, MGEs are not a prominent driver of urinary tract pathogenesis and symptomatic infection. IMPORTANCE Escherichia coli is the most common etiological agent of urinary tract infections (UTIs), with UTI-associated strains designated "uropathogenic" E. coli or UPEC. Across urinary strains of E. coli, the global landscape of MGEs and its relationship to virulence factor carriage and clinical symptomatology require greater clarity. Here, we demonstrate that many of the putative virulence factors of UPEC are not associated with acquisition due to MGEs. The current work enhances our understanding of the strain-to-strain variability and pathogenic potential of urine-associated E. coli and points toward more subtle genomic differences distinguishing ASB from UTI isolates.
Collapse
Affiliation(s)
- Grace Morales
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Benjamin Abelson
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Seth Reasoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jordan Miller
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | - Ashlee M. Earl
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Schmitz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Urology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
20
|
Han R, Niu M, Liu S, Mao J, Yu Y, Du Y. The effect of siderophore virulence genes entB and ybtS on the virulence of Carbapenem-resistant Klebsiella pneumoniae. Microb Pathog 2022; 171:105746. [PMID: 36064103 DOI: 10.1016/j.micpath.2022.105746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/27/2022] [Accepted: 08/29/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE With the detection rate increasing each year, highly resistant and virulent CRKP has been a serious challenge to clinical treatment because of the high morbidity and mortality. Considering the virulence of CRKP is closely related to over-expression of siderophore, the high detection rate of entB and ybtS genes in highly virulent CRKP may be an important reason for the high virulence phenotype of CRKP. Therefore, in this study, single/double knockout and complemented strains of siderophore virulence genes entB and ybtS were constructed to clarify the effect of siderophore virulence genes on the virulence of CRKP. METHODS 1.The wire drawing experiment, mucus phenotype screening experiment, and PCR amplification were used to screen the target strain WT. the entB gene deletion strain △entB and the complementation strain C-△entB, ybtS gene deletion strain ΔybtS and complementation strain C-ΔybtS, entB and ybtS double gene deletion strain ΔentB + ybtS and complementation strain C-ΔentB + ybtS,were constructed by CrispR-Cas9 gene editing technology. PCR method was used to test whether the knockout and complementation were successful. 2. The colony morphology and mucus phenotype of the experimental strains were observed and the siderophore ability of the experimental strains was tested. Then the growth curves, biofilm-forming ability, and anti-serum killing ability of the strains were determined. 3. In order to understand the virulence of the experimental strain, the mouse intraperitoneal infection model was established to draw the survival curves and determine LD50 of experiment strains. Then to clarify the colonization ability of the experimental strains in the lung and liver of mice, the pathological biopsies were used to observe histopathological changes and ELISA method was used to determine the inflammatory factors IL-1β, LI-3 and TNF-α. RESULTS 1 CRKP-27 was screened as the target strain WT, which is characterized by positive wire drawing test, strong mucus, strong virulence and carrying both entB and ybtS genes. The single/double knockout and complemented strains of siderophore virulence genes entB and ybtS were successfully constructed. 2 Siderophore virulence genes entB and ybtS had no significant effect on the colony morphology, mucus phenotype (drawing test) and biofilm formation ability of CRKP strains. The CRKP strains with entB and ybtS genes could significantly increase siderophore production. Although both the entB and ybtS genes could impair the growth rate of the CRKP strain, the role of ybtS gene was relatively slow. entB and ybtS genes enhanced the antiserum killing ability of CRKP strains. 3 The presence of entB and ybtS genes reduced the survival rate of mice infected with CRKP strains. Histopathological changes and inflammatory factor levels in the lungs and livers of infected mice were enhanced by the presence of entB and ybtS genes. Mice infected with the same strain had higher histopathological changes and levels of inflammatory factors in the lungs than in the livers. CONCLUSIONS 1.The siderophore virulence genes entB and ybtS have no significant effect on the colony morphology, mucus phenotype and biofilm formation ability of CRKP strains.2.The siderophore virulence genes entB and ybtS can significantly enhance the virulence of the CRKP strain, but weaken its growth ability.
Collapse
Affiliation(s)
- Ruihui Han
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China; Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Min Niu
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China; Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Shumin Liu
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China; Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Jian Mao
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China; Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Yu
- YAN'AN Hospital of Kunming City, China
| | - Yan Du
- Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, 650032, China; Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
21
|
Baier-Grabner S, Equiluz-Bruck S, Endress D, Blaschitz M, Schubert S, Indra A, Fudel M, Frischer T, Götzinger F. A Yersiniabactin-producing Klebsiella aerogenes Strain Causing an Outbreak in an Austrian Neonatal Intensive Care Unit. Pediatr Infect Dis J 2022; 41:593-599. [PMID: 35421055 DOI: 10.1097/inf.0000000000003553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Yersiniabactin, a siderophore with a high affinity to iron, has been described as a potential virulence factor in Enterobacteriaceae. Klebsiella aerogenes is a Gram-negative rod known to cause invasive infection in very low birth weight infants but is an unusual pathogen to cause outbreaks in neonatal intensive care units (NICU). METHODS We performed a retrospective analysis of all patients colonized with K. aerogenes in our NICU from September to December 2018. Each infant with an occurrence of K. aerogenes in any microbiological culture was defined as a case. Clinical data were taken from medical charts. K. aerogenes isolates were genotyped using whole-genome sequencing combined with core genome multilocus sequencing type analysis. Yersiniabactin production was evaluated by luciferase assay. RESULTS In total 16 patients were colonized with K. aerogenes over the 3-month period and 13 patients remained asymptomatic or developed late-onset neonatal sepsis from another pathogen. Three patients developed necrotizing enterocolitis, 2 complicated by sepsis and 1 of them died. All symptomatic patients were premature infants with low birth weight. Genetic sequencing confirmed an outbreak with the same strain, all samples expressed the high-pathogenicity island, necessary for the production of yersiniabactin. Six exemplary cases were proven to produce yersiniabactin in vitro. CONCLUSION This is the first report of an outbreak of a yersiniabactin-producing K. aerogenes strain causing invasive infection in preterm infants. We hypothesize that, due to improved iron uptake, this strain was associated with higher virulence than non-yersiniabactin-producing strains. Extended search for virulence factors and genetic sequencing could be pivotal in the management of NICU outbreaks in the future.
Collapse
Affiliation(s)
| | | | - David Endress
- From the Department of Pediatrics and Adolescent Medicine
| | | | - Sören Schubert
- Max von Pettenkofer-Institute, Faculty of Medicine, LMU Munich, Germany
| | - Alexander Indra
- Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Marta Fudel
- Department of Hospital Hygiene, Klinik Ottakring, Vienna, Austria
| | - Thomas Frischer
- Sigmund Freud Private University, Sigmund Freud Platz 3, Vienna, Austria
| | | |
Collapse
|
22
|
Yang Y, Wang S, Geng Y, Liu H, Qin Z, Feng Y, Yang Z, Lai W. Genetic diversity and virulence gene profiles of Escherichia coli from diarrhoeal rabbits in Sichuan Province, China. WORLD RABBIT SCIENCE 2022. [DOI: 10.4995/wrs.2022.15273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Escherichia coli (E. coli) can cause diarrhoea in a wide range of hosts. Moreover, some trains with high virulence and drug resistance pose a serious threat to public health and livestock products. Diarrhoea caused by E. coli outbreaks in rabbitries result in serious economic losses. The aim of this study was to investigate the distribution of virulence genes and molecular genetic characteristics of E. coli from diarrhoeal rabbits in the main rearing areas of Sichuan province, China in 2015-2017. In total, 39 E. coli isolates were identified and undivided divided into 17 sequence types by multilocus sequence typing (MLST) and grouped in 22 clusters by pulsed-field gel electrophoresis. Polymerase chain reaction tests detected 6 virulence genes: eae (41.0%), ler (41.0%), ral (33.3%), afr2 (10.3%), irp2 (15.4%) and astA (7.7%) of the tested 17 virulence genes identifying 16 enteropathogenic E. coli (EPEC) isolates. The main sequence types U328, ST328 and ST20 carried rabbit EPEC associated virulence genes (eae, ler, ral and afr2). The results showed that the distribution of virulence genes varied by year and area; genotype had major types in local rearing areas but was of high diversity in Sichuan province.
Collapse
|
23
|
Denamur E, Condamine B, Esposito-Farèse M, Royer G, Clermont O, Laouenan C, Lefort A, de Lastours V, Galardini M, the COLIBAFI, SEPTICOLI groups. Genome wide association study of Escherichia coli bloodstream infection isolates identifies genetic determinants for the portal of entry but not fatal outcome. PLoS Genet 2022; 18:e1010112. [PMID: 35324915 PMCID: PMC8946752 DOI: 10.1371/journal.pgen.1010112] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Escherichia coli is an important cause of bloodstream infections (BSI), which is of concern given its high mortality and increasing worldwide prevalence. Finding bacterial genetic variants that might contribute to patient death is of interest to better understand infection progression and implement diagnostic methods that specifically look for those factors. E. coli samples isolated from patients with BSI are an ideal dataset to systematically search for those variants, as long as the influence of host factors such as comorbidities are taken into account. Here we performed a genome-wide association study (GWAS) using data from 912 patients with E. coli BSI from hospitals in Paris, France. We looked for associations between bacterial genetic variants and three patient outcomes (death at 28 days, septic shock and admission to intensive care unit), as well as two portals of entry (urinary and digestive tract), using various clinical variables from each patient to account for host factors. We did not find any association between genetic variants and patient outcomes, potentially confirming the strong influence of host factors in influencing the course of BSI; we however found a strong association between the papGII operon and entrance of E. coli through the urinary tract, which demonstrates the power of bacterial GWAS when applied to actual clinical data. Despite the lack of associations between E. coli genetic variants and patient outcomes, we estimate that increasing the sample size by one order of magnitude could lead to the discovery of some putative causal variants. Given the wide adoption of bacterial genome sequencing of clinical isolates, such sample sizes may be soon available.
Collapse
Affiliation(s)
- Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | | | - Marina Esposito-Farèse
- Département d’épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, Paris, France
| | - Guilhem Royer
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, Evry, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
| | | | - Cédric Laouenan
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Département d’épidémiologie, biostatistiques et recherche clinique, Hôpital Bichat, AP-HP, Paris, France
| | - Agnès Lefort
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Victoire de Lastours
- Université de Paris, IAME, UMR 1137, INSERM, Paris, France
- Service de Médecine Interne, Hôpital Beaujon, AP-HP, Clichy, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | | | | |
Collapse
|
24
|
Bonissi DA, Salle FO, Rocha DT, Borges KA, Furian TQ, Rocha SLS, Moraes HLS, Nascimento VP, Salle CTP. Identification of Virulence-Associated Markers in Escherichia Coli Isolated from Captive Red-Browed Amazon Parrot (Amazona Rhodocorytha). BRAZILIAN JOURNAL OF POULTRY SCIENCE 2022. [DOI: 10.1590/1806-9061-2021-1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Affiliation(s)
- DA Bonissi
- Centro Universitário do Espírito Santo, Brazil
| | - FO Salle
- Centro Universitário do Espírito Santo, Brazil
| | - DT Rocha
- Universidade Feevale, Brazil; Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
25
|
Diversity and Adaptations of Escherichia coli Strains: Exploring the Intestinal Community in Crohn's Disease Patients and Healthy Individuals. Microorganisms 2021; 9:microorganisms9061299. [PMID: 34203637 PMCID: PMC8232093 DOI: 10.3390/microorganisms9061299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022] Open
Abstract
Crohn's disease (CD) is characterized by a chronic, progressive inflammation across the gastrointestinal tract with a series of exacerbations and remissions. A significant factor in the CD pathogenesis is an imbalance in gut microbiota composition, particularly the prevalence of Escherichia coli. In the present study, the genomes of sixty-three E. coli strains from the gut of patients with CD and healthy subjects were sequenced. In addition, eighteen E. coli-like metagenome-assembled genomes (MAGs) were reconstructed from the shotgun-metagenome sequencing data of fecal samples. The comparative analysis revealed the similarity of E. coli genomes regardless of the origin of the strain. The strains exhibited similar genetic patterns of virulence, antibiotic resistance, and bacteriocin-producing systems. The study showed antagonistic activity of E. coli strains and the metabolic features needed for their successful competition in the human gut environment. These observations suggest complex bacterial interactions within the gut which may affect the host and cause intestinal damage.
Collapse
|
26
|
Two Polyketides Intertwined in Complex Regulation: Posttranscriptional CsrA-Mediated Control of Colibactin and Yersiniabactin Synthesis in Escherichia coli. mBio 2021; 13:e0381421. [PMID: 35100864 PMCID: PMC8805033 DOI: 10.1128/mbio.03814-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Bacteria have to process several levels of gene regulation and coordination of interconnected regulatory networks to ensure the most adequate cellular response to specific growth conditions. Especially, expression of complex and costly fitness and pathogenicity-associated traits is coordinated and tightly regulated at multiple levels. We studied the interconnected regulation of the expression of the colibactin and yersiniabactin polyketide biosynthesis machineries, which are encoded by two pathogenicity islands found in many phylogroup B2 Escherichia coli isolates. Comparative phenotypic and genotypic analyses identified the BarA-UvrY two-component system as an important regulatory element involved in colibactin and yersiniabactin expression. The carbon storage regulator (Csr) system controls the expression of a wide range of central metabolic and virulence-associated traits. The availability of CsrA, the key translational regulator of the Csr system, depends on BarA-UvrY activity. We employed reporter gene fusions to demonstrate UvrY- and CsrA-dependent expression of the colibactin and yersiniabactin determinants and confirmed a direct interaction of CsrA with the 5' untranslated leader transcripts of representative genes of the colibactin and yersiniabactin operons by RNA electrophoretic mobility shift assays. This posttranscriptional regulation adds an additional level of complexity to control mechanisms of polyketide expression, which is also orchestrated at the level of ferric uptake regulator (Fur)-dependent regulation of transcription and phosphopantetheinyl transferase-dependent activation of polyketide biosynthesis. Our results emphasize the interconnection of iron- and primary metabolism-responsive regulation of colibactin and yersiniabactin expression by the fine-tuned action of different regulatory mechanisms in response to variable environmental signals as a prerequisite for bacterial adaptability, fitness, and pathogenicity in different habitats. IMPORTANCE Secondary metabolite expression is a widespread strategy among bacteria to improve their fitness in habitats where they constantly compete for resources with other bacteria. The production of secondary metabolites is associated with a metabolic and energetic burden. Colibactin and yersiniabactin are two polyketides, which are expressed in concert and promote the virulence of different enterobacterial pathogens. To maximize fitness, they should be expressed only in microenvironments in which they are required. Accordingly, precise regulation of colibactin and yersiniabactin expression is crucial. We show that the expression of these two polyketides is also interconnected via primary metabolism-responsive regulation at the posttranscriptional level by the CsrA RNA-binding protein. Our findings may help to optimize (over-)expression and further functional characterization of the polyketide colibactin. Additionally, this new aspect of concerted colibactin and yersiniabactin expression extends our knowledge of conditions that favor the expression of these virulence- and fitness-associated factors in different Enterobacterales members.
Collapse
|
27
|
Zhao W, Gao B, Liu C, Zhang B, Shan C, Deng J, Wan Q, Wang X, Zhao R, Gao L, Ao P, Xiao P, Gao H. High pathogenicity island is associated with enhanced autophagy in pathogenic Escherichia coli HPI - infected macrophages. Res Vet Sci 2021; 135:113-120. [PMID: 33465603 DOI: 10.1016/j.rvsc.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
High pathogenicity island (HPI), which is widely distributed in Escherichia coli (E. coli), can enhance the pathogenicity of E. coli. Thus the HPI positive E. coli could pose a threat to human and animal health. It remains to be elucidated how HPI affects the virulence of pathogenic E. coli. Autophagy is an important mechanism to maintain cellular homeostasis and an innate immunity responses of organisms against pathogens. The interaction between pathogenic E. coli possessing HPI (E. coli HPI) and host autophagy system has not been reported. In this study, it was demonstrated that pathogenic E. coli induced autophagy in 3D4/21 macrophages and HPI was associated with enhanced autophagy through transmission electron microscopy, immunofluorescence and real-time PCR. The PI3K/Akt/mTOR pathway is an important negative regulatory pathway for autophagy. Through detecting the expression of key genes of PI3K/Akt/mTOR pathway, it was speculated that HPI enhanced the inhibition of the signaling pathway stimulated by pathogenic E. coli. Furthermore, HPI inhibited the secretion of IFN-γ, while the presence of HPI did not significantly affect the secretion of IL-1β. This work is the first attempt to explore the interplay between HPI carried by pathogenic E. coli and host cell autophagy. The findings might enable better understanding of the contribution of HPI to pathogenicity.
Collapse
Affiliation(s)
- Weiwei Zhao
- College of food science and technology, Yunnan Agricultural University, Kunming 650201, China
| | - Bin Gao
- College of food science and technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chang Liu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Bo Zhang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunlan Shan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Deng
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Quan Wan
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Xi Wang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Ru Zhao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Libo Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Pingxing Ao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China
| | - Peng Xiao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| | - Hong Gao
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
28
|
Galardini M, Clermont O, Baron A, Busby B, Dion S, Schubert S, Beltrao P, Denamur E. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet 2020; 16:e1009065. [PMID: 33112851 PMCID: PMC7592755 DOI: 10.1371/journal.pgen.1009065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Escherichia is composed of several species and cryptic clades, including E. coli, which behaves as a vertebrate gut commensal, but also as an opportunistic pathogen involved in both diarrheic and extra-intestinal diseases. To characterize the genetic determinants of extra-intestinal virulence within the genus, we carried out an unbiased genome-wide association study (GWAS) on 370 commensal, pathogenic and environmental strains representative of the Escherichia genus phylogenetic diversity and including E. albertii (n = 7), E. fergusonii (n = 5), Escherichia clades (n = 32) and E. coli (n = 326), tested in a mouse model of sepsis. We found that the presence of the high-pathogenicity island (HPI), a ~35 kbp gene island encoding the yersiniabactin siderophore, is highly associated with death in mice, surpassing other associated genetic factors also related to iron uptake, such as the aerobactin and the sitABCD operons. We confirmed the association in vivo by deleting key genes of the HPI in E. coli strains in two phylogenetic backgrounds. We then searched for correlations between virulence, iron capture systems and in vitro growth in a subset of E. coli strains (N = 186) previously phenotyped across growth conditions, including antibiotics and other chemical and physical stressors. We found that virulence and iron capture systems are positively correlated with growth in the presence of numerous antibiotics, probably due to co-selection of virulence and resistance. We also found negative correlations between virulence, iron uptake systems and growth in the presence of specific antibiotics (i.e. cefsulodin and tobramycin), which hints at potential “collateral sensitivities” associated with intrinsic virulence. This study points to the major role of iron capture systems in the extra-intestinal virulence of the genus Escherichia. Bacterial isolates belonging to the genus Escherichia can be human commensals but also opportunistic pathogens, with the ability to cause extra-intestinal infection. There is therefore the need to identify the genetic elements that favour extra-intestinal virulence, so that virulent bacterial isolates can be identified through genome analysis and potential treatment strategies be developed. To reduce the influence of host variability on virulence, we have used a mouse model of sepsis to characterize the virulence of 370 strains belonging to the genus Escherichia, for which whole genome sequences were also available. We have used a statistical approach called Genome-Wide Association Study (GWAS) to show how the presence of genes that encode for iron scavenging are significantly associated with the propensity of a bacterial isolate to cause extra-intestinal infections. Taking advantage of previously generated growth data on a subset of the strains and its correlation to virulence we generated hypothesis on the relationship between iron scavenging and growth in the presence of various antimicrobials, which could have implications for developing new treatment strategies.
Collapse
Affiliation(s)
- Marco Galardini
- EMBL-EBI, Wellcome Genome Campus, Cambridge, United Kingdom
- * E-mail: (MG); (ED)
| | | | | | - Bede Busby
- Genome Biology Unit, EMBL, Heidelberg, Germany
| | - Sara Dion
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
| | - Sören Schubert
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany
| | - Pedro Beltrao
- EMBL-EBI, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Erick Denamur
- Université de Paris, IAME, UMR1137, INSERM, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
- * E-mail: (MG); (ED)
| |
Collapse
|
29
|
Al-Farsi HM, Camporeale A, Ininbergs K, Al-Azri S, Al-Muharrmi Z, Al-Jardani A, Giske CG. Clinical and molecular characteristics of carbapenem non-susceptible Escherichia coli: A nationwide survey from Oman. PLoS One 2020; 15:e0239924. [PMID: 33036018 PMCID: PMC7546912 DOI: 10.1371/journal.pone.0239924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023] Open
Abstract
The prevalence of carbapenem-resistant Enterobacterales (CRE) in the Arabian Peninsula is predicted to be high, as suggested from published case reports. Of particular concern, is carbapenem-resistant E. coli (CR-EC), due to the importance of this species as a community pathogen. Herein, we conducted a comprehensive molecular characterization of putative CR-EC strains from Oman. We aim to establish a baseline for future molecular monitoring. We performed whole-genome sequencing (WGS) for 35 putative CR-EC. Isolates were obtained from patients at multiple centers in 2015. Genetic relatedness was investigated using several typing approaches such as MLST, SNP calling, phylogroup and CRISPR typing. Maxiuium likelihood SNP-tree was performed by RAxML after variant calling and removal of recombination regions with Snippy and Gubbins, respectively. Resistance genes, plasmid replicon types, virulence genes, and prophage were also characterised. The online databases CGE, CRISPRcasFinder, Phaster and EnteroBase were used for the in silico analyses. Screening for mutations in genes regulating the expression of porins and efflux pump as well as mutations lead to fluoroquinolones resistance were performed with CLC Genomics Workbench. The genetic diversity suggests a polyclonal population structure with 21 sequence types (ST), of which ST38 being the most prevalent (11%). SNPs analysis revealed possible transmission episodes. Whereas, CRISPR typing helped to spot outlier strains belonged to phylogroups other than B2 which was CRISPR-free. The virulent phylogroups B2 and D were detected in 4 and 9 isolates, respectively. In some strains bacteriophages acted as vectors for virulence genes. Regarding resistance to β-lactam, 22 were carbapenemase producers, 3 carbapenem non-susceptible but carbapenemase-negative, 9 resistant to expanded-spectrum cephalosporins, and one isolate with susceptibility to cephalosporins and carbapenems. Thirteen out of the 22 (59%) carbapenemase-producing isolates were NDM and 7 (23%) were OXA-48-like which mirrors the situation in Indian subcontinent. Two isolates co-produced NDM and OXA-48-like enzymes. In total, 80% (28/35) were CTX-M-15 producers and 23% (8/35) featured AmpC. The high-risk subclones ST131-H30Rx/C2, ST410-H24RxC and ST1193-H64RxC were detected, the latter associated with NDM. To our knowledge, this is the first report of ST1193-H64Rx subclone with NDM. In conclusion, strains showed polyclonal population structure with OXA-48 and NDM as the only carbapenemases in CR-EC from Oman. We detected the high-risk subclone ST131-H30Rx/C2, ST410-H24RxC and ST1193-H64RxC. The latter was reported with carbapenemase gene for the first time here.
Collapse
Affiliation(s)
- Hissa M. Al-Farsi
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Angela Camporeale
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karolina Ininbergs
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Saleh Al-Azri
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Zakariya Al-Muharrmi
- Department of Clinical Microbiology, Sultan Qaboos University Hospital, Muscat, Oman
| | - Amina Al-Jardani
- Central Public Health Laboratories, Ministry of Health, Muscat, Oman
| | - Christian G. Giske
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
30
|
Desvaux M, Dalmasso G, Beyrouthy R, Barnich N, Delmas J, Bonnet R. Pathogenicity Factors of Genomic Islands in Intestinal and Extraintestinal Escherichia coli. Front Microbiol 2020; 11:2065. [PMID: 33101219 PMCID: PMC7545054 DOI: 10.3389/fmicb.2020.02065] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/05/2020] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli is a versatile bacterial species that includes both harmless commensal strains and pathogenic strains found in the gastrointestinal tract in humans and warm-blooded animals. The growing amount of DNA sequence information generated in the era of "genomics" has helped to increase our understanding of the factors and mechanisms involved in the diversification of this bacterial species. The pathogenic side of E. coli that is afforded through horizontal transfers of genes encoding virulence factors enables this bacterium to become a highly diverse and adapted pathogen that is responsible for intestinal or extraintestinal diseases in humans and animals. Many of the accessory genes acquired by horizontal transfers form syntenic blocks and are recognized as genomic islands (GIs). These genomic regions contribute to the rapid evolution, diversification and adaptation of E. coli variants because they are frequently subject to rearrangements, excision and transfer, as well as to further acquisition of additional DNA. Here, we review a subgroup of GIs from E. coli termed pathogenicity islands (PAIs), a concept defined in the late 1980s by Jörg Hacker and colleagues in Werner Goebel's group at the University of Würzburg, Würzburg, Germany. As with other GIs, the PAIs comprise large genomic regions that differ from the rest of the genome by their G + C content, by their typical insertion within transfer RNA genes, and by their harboring of direct repeats (at their ends), integrase determinants, or other mobility loci. The hallmark of PAIs is their contribution to the emergence of virulent bacteria and to the development of intestinal and extraintestinal diseases. This review summarizes the current knowledge on the structure and functional features of PAIs, on PAI-encoded E. coli pathogenicity factors and on the role of PAIs in host-pathogen interactions.
Collapse
Affiliation(s)
- Mickaël Desvaux
- Université Clermont Auvergne, INRAE, MEDiS, Clermont-Ferrand, France
| | - Guillaume Dalmasso
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Racha Beyrouthy
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Delmas
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Richard Bonnet
- UMR Inserm 1071, USC-INRAE 2018, M2iSH, Université Clermont Auvergne, Clermont-Ferrand, France
- Laboratoire de Bactériologie, CHU Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
31
|
Abstract
Beneficial mutations are rare and deleterious mutations are purged by natural selection. As a result, the vast majority of mutations that accumulate in genomes belong to the class of neutral mutations. Over the last two decades, neutral mutations, despite their null effect on fitness, have been shown to affect evolvability by providing access to new phenotypes through subsequent mutations that would not have been available otherwise. Here we propose that in addition, many mutations - independent of their selective effects - can affect the mutability of neighboring DNA sequences and modulate the efficacy of homologous recombination. Such mutations do not change the spectrum of accessible phenotypes, but rather the rate at which new phenotypes will be produced. Therefore, neutral mutations that accumulate in genomes have an important long-term impact on the evolutionary fate of genomes.
Collapse
|
32
|
Bozcal E. A general view on virulence determinants and infection strategies of Yersinia enterocolitica. MINERVA BIOTECNOL 2020. [DOI: 10.23736/s1120-4826.19.02582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
The role of major virulence factors and pathogenicity of adherent-invasive Escherichia coli in patients with Crohn's disease. GASTROENTEROLOGY REVIEW 2020; 15:279-288. [PMID: 33777266 PMCID: PMC7988836 DOI: 10.5114/pg.2020.93235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a term that describes Crohn's disease (CD) and ulcerative colitis (UC), and these two conditions are characterised by chronic inflammation of the gastrointestinal tract. Dysbiosis of intestinal microbiota has been consistently linked to patients with IBD. In the last two decades, the progressive implication of adherent-invasive Escherichia coli (AIEC) pathogenesis in patients with CD has been increasing. Here we discuss recent findings that indicate the role and mechanisms of AIEC in IBD. We also highlight AIEC virulence factor genes and mechanisms that suggest an important role in the severity of inflammation in CD patients. Finally, we emphasise data on the prevalence of AIEC in CD patients.
Collapse
|
34
|
Identification of Host Adaptation Genes in Extraintestinal Pathogenic Escherichia coli during Infection in Different Hosts. Infect Immun 2019; 87:IAI.00666-19. [PMID: 31501251 DOI: 10.1128/iai.00666-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 01/11/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is an important human and animal pathogen. Despite the apparent similarities in their known virulence attributes, some ExPEC strains can cross the host species barrier and present a zoonotic potential, whereas other strains exhibit host specificity, suggesting the existence of unknown mechanisms that remain to be identified. We applied a transposon-directed insertion site sequencing (TraDIS) strategy to investigate the ExPEC XM strain, which is capable of crossing the host species barrier, and to screen for virulence-essential genes in both mammalian (mouse) and avian (duck) models of E. coli-related septicemia. We identified 151 genes essential for systemic infection in both mammalian and avian models, 97 required only in the mammalian model, and 280 required only in the avian model. Ten genes/gene clusters were selected for further validation, and their contributions to ExPEC virulence in both mammalian and avian models or mammalian- or avian-only models were confirmed by animal tests. This represents the first comprehensive genome-wide analysis of virulence-essential genes required for systemic infections in two different host species and provides a further comprehensive understanding of ExPEC-related virulence, host specificity, and adaptation.
Collapse
|
35
|
Royer G, Decousser JW, Branger C, Dubois M, Médigue C, Denamur E, Vallenet D. PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microb Genom 2019; 4. [PMID: 30265232 PMCID: PMC6202455 DOI: 10.1099/mgen.0.000211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plasmid prediction may be of great interest when studying bacteria of medical importance such as Enterobacteriaceae as well as Staphylococcus aureus or Enterococcus. Indeed, many resistance and virulence genes are located on such replicons with major impact in terms of pathogenicity and spreading capacities. Beyond strain outbreak, plasmid outbreaks have been reported in particular for some extended-spectrum beta-lactamase- or carbapenemase-producing Enterobacteriaceae. Several tools are now available to explore the ‘plasmidome’ from whole-genome sequences with various approaches, but none of them are able to combine high sensitivity and specificity. With this in mind, we developed PlaScope, a targeted approach to recover plasmidic sequences in genome assemblies at the species or genus level. Based on Centrifuge, a metagenomic classifier, and a custom database containing complete sequences of chromosomes and plasmids from various curated databases, PlaScope classifies contigs from an assembly according to their predicted location. Compared to other plasmid classifiers, PlasFlow and cBar, it achieves better recall (0.87), specificity (0.99), precision (0.96) and accuracy (0.98) on a dataset of 70 genomes of Escherichia coli containing plasmids. In a second part, we identified 20 of the 21 chromosomal integrations of the extended-spectrum beta-lactamase coding gene in a clinical dataset of E. coli strains. In addition, we predicted virulence gene and operon locations in agreement with the literature. We also built a database for Klebsiella and correctly assigned the location for the majority of resistance genes from a collection of 12 Klebsiella pneumoniae strains. Similar approaches could also be developed for other well-characterized bacteria.
Collapse
Affiliation(s)
- G Royer
- 2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France.,3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France.,1Département de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Université Paris Est Créteil, F-94000 Créteil, France
| | - J W Decousser
- 2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France.,1Département de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Université Paris Est Créteil, F-94000 Créteil, France
| | - C Branger
- 2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France
| | - M Dubois
- 3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - C Médigue
- 3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - E Denamur
- 4Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire de Génétique Moléculaire, F-75018 Paris, France.,2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France
| | - D Vallenet
- 3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
36
|
Magistro G, Magistro C, Stief CG, Schubert S. A simple and highly efficient method for gene silencing in Escherichia coli. J Microbiol Methods 2018; 154:25-32. [PMID: 30296471 DOI: 10.1016/j.mimet.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 10/28/2022]
Abstract
Here we present a simple and rapidly achievable protocol for gene silencing in Escherichia coli (E. coli). In this procedure, antisense RNA (asRNA) of 400-nucleotides (nt) length and absolute complementarity to the target is produced by an expression plasmid. The designed asRNA should ideally cover at least the -10 site of the promoter and the Shine-Dalgarno sequence, and additional 300-bp of the following open reading frame of the target gene. We show that the transcription process of the target is not affected at all, whereas the translation process is impaired. Based on high constitutive expression of asRNA we were able to extend the silencing effect to knock-out levels. By inducible expression, we show that also the modulation is possible. This technique should be widely useful to study gene function in E. coli and other bacteria.
Collapse
Affiliation(s)
- Giuseppe Magistro
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany.
| | - Christiane Magistro
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| | - Christian G Stief
- Department of Urology, Ludwig-Maximilians-University, Munich, Germany
| | - Sören Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| |
Collapse
|
37
|
Johnson JR, Magistro G, Clabots C, Porter S, Manges A, Thuras P, Schubert S. Contribution of yersiniabactin to the virulence of an Escherichia coli sequence type 69 ("clonal group A") cystitis isolate in murine models of urinary tract infection and sepsis. Microb Pathog 2018; 120:128-131. [PMID: 29702209 DOI: 10.1016/j.micpath.2018.04.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/30/2018] [Accepted: 04/23/2018] [Indexed: 11/15/2022]
Abstract
Escherichia coli sequence type 69 (ST69; "clonal group A") is an important extraintestinal pathogen. To clarify the yersiniabactin siderophore system's role in ST69's extraintestinal virulence we compared a wild-type ST69 cystitis isolate, isogenic irp2 (yersiniabactin) mutants, and irp2-complemented mutants in murine models of sepsis and urinary tract infection (UTI). irp2 mutants were attenuated mildly in the UTI model and profoundly in the sepsis model. In both models, complementation with a functional copy of irp2 restored full parental virulence. These findings suggest that in ST69 the yersiniabactin system has a minor role in urovirulence and a major role in sepsis causation.
Collapse
Affiliation(s)
- James R Johnson
- Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN, USA; University of Minnesota, 420 Delaware St. SE, MMC 250, Minneapolis, MN 55455, USA.
| | - Giuseppe Magistro
- Department of Urology, Ludwig-Maximilians-University of Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Connie Clabots
- Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN, USA
| | - Stephen Porter
- Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN, USA; University of Minnesota, 420 Delaware St. SE, MMC 250, Minneapolis, MN 55455, USA
| | - Amee Manges
- University of British Columbia, School of Population and Public Health, 137-2206 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Paul Thuras
- Veterans Affairs Medical Center, 1 Veterans Drive, Minneapolis, MN, USA; University of Minnesota, 420 Delaware St. SE, MMC 250, Minneapolis, MN 55455, USA
| | - Sören Schubert
- Max von Pettenkofer-Institut, Ludwig-Maximilians-University of Munich, Marchioninistrasse 17, 81377 Munich, Germany
| |
Collapse
|
38
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) are important pathogens in humans and certain animals. Molecular epidemiological analyses of ExPEC are based on structured observations of E. coli strains as they occur in the wild. By assessing real-world phenomena as they occur in authentic contexts and hosts, they provide an important complement to experimental assessment. Fundamental to the success of molecular epidemiological studies are the careful selection of subjects and the use of appropriate typing methods and statistical analysis. To date, molecular epidemiological studies have yielded numerous important insights into putative virulence factors, host-pathogen relationships, phylogenetic background, reservoirs, antimicrobial-resistant strains, clinical diagnostics, and transmission pathways of ExPEC, and have delineated areas in which further study is needed. The rapid pace of discovery of new putative virulence factors and the increasing awareness of the importance of virulence factor regulation, expression, and molecular variation should stimulate many future molecular epidemiological investigations. The growing sophistication and availability of molecular typing methodologies, and of the new computational and statistical approaches that are being developed to address the huge amounts of data that whole genome sequencing generates, provide improved tools for such studies and allow new questions to be addressed.
Collapse
Affiliation(s)
| | - Thomas A Russo
- VA Western New York Healthcare System, Department of Medicine, Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, University of Buffalo, Buffalo, NY 14214
| |
Collapse
|
39
|
Magistro G, Magistro C, Stief CG, Schubert S. The high-pathogenicity island (HPI) promotes flagellum-mediated motility in extraintestinal pathogenic Escherichia coli. PLoS One 2017; 12:e0183950. [PMID: 29016611 PMCID: PMC5634559 DOI: 10.1371/journal.pone.0183950] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
The key of success of extraintestinal pathogenic Escherichia coli (ExPEC) to colonize niches outside the intestinal tract and to establish infection is the coordinated action of numerous virulence and fitness factors. The so-called high-pathogenicity island (HPI), responsible for synthesis, secretion and uptake of the siderophore yersiniabactin, proved to be an important virulence determinant. In this study we investigated the interaction of the flagellum-mediated motility and the HPI. The impairment of yersiniabactin production by deletion of irp2 or ybtA affected significantly motility. The gain of yersiniabactin production improved motility in both pathogenic and non-pathogenic E. coli strains. The loss of flagella expression had no adverse effect on the HPI. Strikingly, external iron abundance was not able to suppress activation of the HPI during motility. The HPI activity of swarming bacteria was comparable to iron deplete conditions, and could even be maximized by supplementing excessive iron. This fact is the first description of a regulatory mechanism, which does not follow the known hierarchical regulation of siderophore systems. Transcriptional reporter fusions of the ybtA promoter demonstrated that the entire promoter region with all YbtA binding sites is necessary for complete induction in both HPI-positive and HPI-negative strains. Altogether, these results suggest that the HPI is part of a complex regulatory network, which orchestrates various virulence mechanisms to optimize the overall fitness of ExPEC.
Collapse
Affiliation(s)
- Giuseppe Magistro
- Department of Urology, Ludwig-Maximilians-Universität, Munich, Germany
- * E-mail:
| | - Christiane Magistro
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| | | | - Sören Schubert
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Munich, Germany
| |
Collapse
|
40
|
Martinez-Gil M, Goh KGK, Rackaityte E, Sakamoto C, Audrain B, Moriel DG, Totsika M, Ghigo JM, Schembri MA, Beloin C. YeeJ is an inverse autotransporter from Escherichia coli that binds to peptidoglycan and promotes biofilm formation. Sci Rep 2017; 7:11326. [PMID: 28900103 PMCID: PMC5595812 DOI: 10.1038/s41598-017-10902-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Escherichia coli is a commensal or pathogenic bacterium that can survive in diverse environments. Adhesion to surfaces is essential for E. coli colonization, and thus it is important to understand the molecular mechanisms that promote this process in different niches. Autotransporter proteins are a class of cell-surface factor used by E. coli for adherence. Here we characterized the regulation and function of YeeJ, a poorly studied but widespread representative from an emerging class of autotransporter proteins, the inverse autotransporters (IAT). We showed that the yeeJ gene is present in ~40% of 96 completely sequenced E. coli genomes and that YeeJ exists as two length variants, albeit with no detectable functional differences. We demonstrated that YeeJ promotes biofilm formation in different settings through exposition at the cell-surface. We also showed that YeeJ contains a LysM domain that interacts with peptidoglycan and thus assists its localization into the outer membrane. Additionally, we identified the Polynucleotide Phosphorylase PNPase as a repressor of yeeJ transcription. Overall, our work provides new insight into YeeJ as a member of the recently defined IAT class, and contributes to our understanding of how commensal and pathogenic E. coli colonise their environments.
Collapse
Affiliation(s)
- Marta Martinez-Gil
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- Departamento de Biología Celular, Genética y Fisiología, Facultad de Ciencias. Universidad de Málaga, Málaga, Spain
| | - Kelvin G K Goh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Elze Rackaityte
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
- University of California San Francisco, Department of Medicine, San Francisco, CA, USA
| | - Chizuko Sakamoto
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Bianca Audrain
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Danilo G Moriel
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- GSK Vaccines Institute for Global Health S.r.l., 53100, Siena, Italy
| | - Makrina Totsika
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, QLD, 4059, Australia
| | - Jean-Marc Ghigo
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christophe Beloin
- Institut Pasteur, Unité de Génétique des Biofilms, 28 rue du Dr. Roux, 75724, Paris, CEDEX 15, France.
| |
Collapse
|
41
|
Martin P, Tronnet S, Garcie C, Oswald E. Interplay between siderophores and colibactin genotoxin in
Escherichia coli. IUBMB Life 2017; 69:435-441. [DOI: 10.1002/iub.1612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 02/05/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Patricia Martin
- IRSD, Université de Toulouse III Paul Sabatier, INSERM, INRA, ENVTToulouse France
- Service de Bactériologie‐HygièneCHU ToulouseToulouse France
| | - Sophie Tronnet
- IRSD, Université de Toulouse III Paul Sabatier, INSERM, INRA, ENVTToulouse France
| | - Christophe Garcie
- IRSD, Université de Toulouse III Paul Sabatier, INSERM, INRA, ENVTToulouse France
- Service de Bactériologie‐HygièneCHU ToulouseToulouse France
| | - Eric Oswald
- IRSD, Université de Toulouse III Paul Sabatier, INSERM, INRA, ENVTToulouse France
- Service de Bactériologie‐HygièneCHU ToulouseToulouse France
| |
Collapse
|
42
|
Abstract
The emergence of genomics over the last 10 years has provided new insights into the evolution and virulence of extraintestinal Escherichia coli. By combining population genetics and phylogenetic approaches to analyze whole-genome sequences, it became possible to link genomic features to specific phenotypes, such as the ability to cause urinary tract infections. An E. coli chromosome can vary extensively in length, ranging from 4.3 to 6.2 Mb, encoding 4,084 to 6,453 proteins. This huge diversity is structured as a set of less than 2,000 genes (core genome) that are conserved between all the strains and a set of variable genes. Based on the core genome, the history of the species can be reliably reconstructed, revealing the recent emergence of phylogenetic groups A and B1 and the more ancient groups B2, F, and D. Urovirulence is most often observed in B2/F/D group strains and is a multigenic process involving numerous combinations of genes and specific alleles with epistatic interactions, all leading down multiple evolutionary paths. The genes involved mainly code for adhesins, toxins, iron capture systems, and protectins, as well as metabolic pathways and mutation-rate-control systems. However, the barrier between commensal and uropathogenic E. coli strains is difficult to draw as the factors that are responsible for virulence have probably also been selected to allow survival of E. coli as a commensal in the intestinal tract. Genomic studies have also demonstrated that infections are not the result of a unique and stable isolate, but rather often involve several isolates with variable levels of diversity that dynamically changes over time.
Collapse
|
43
|
Strain-specific impact of the high-pathogenicity island on virulence in extra-intestinal pathogenic Escherichia coli. Int J Med Microbiol 2016; 307:44-56. [PMID: 27923724 DOI: 10.1016/j.ijmm.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/16/2016] [Accepted: 11/20/2016] [Indexed: 02/04/2023] Open
Abstract
In order to clarify the role of the high-pathogenicity island (HPI) in the experimental virulence of Escherichia coli, we constructed different deletion mutants of the entire HPI and of three individual genes (irp2, fyuA and ybtA), encoding for three main functions within the HPI. Those mutants were constructed for three phylogroup B2 strains (536-STc127, CFT073-STc73, and NU14-STc95), representative of the main B2 subgroups causing extra-intestinal infections. Transcriptional profiles obtained for the selected HPI genes irp2, fyuA and ybtA revealed similar patterns for all strains, both under selective iron-deplete conditions and in intracellular bacterial communities in vitro, with a high expression of irp2. Deletion of irp2 and ybtA abrogated yersiniabactin production, whereas the fyuA knockout was only slightly impaired for siderophore synthesis. The experimental virulence of the strains was then tested in amoeba Dictyostelium discoideum and mouse septicaemia models. No effect of any HPI mutant was observed for the two more virulent strains 536 and CFT073. In contrast, the virulence of the less virulent NU14 strain was dramatically diminished by the complete deletion of the HPI and irp2 gene whereas a lesser reduction in virulence was observed for the fyuA and ybtA deletion mutants. The two experimental virulence models gave similar results. It appears that the role of the HPI in experimental virulence is depending on the genetic background of the strains despite similar inter-strain transcriptional patterns of HPI genes, as well as of the functional class of the studied gene. Altogether, these data indicate that the intrinsic extra-intestinal virulence in the E. coli species is multigenic, with epistatic interactions between the genes.
Collapse
|
44
|
McNally A, Thomson NR, Reuter S, Wren BW. 'Add, stir and reduce': Yersinia spp. as model bacteria for pathogen evolution. Nat Rev Microbiol 2016; 14:177-90. [PMID: 26876035 DOI: 10.1038/nrmicro.2015.29] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pathogenic species in the Yersinia genus have historically been targets for research aimed at understanding how bacteria evolve into mammalian pathogens. The advent of large-scale population genomic studies has greatly accelerated the progress in this field, and Yersinia pestis, Yersinia pseudotuberculosis and Yersinia enterocolitica have once again acted as model organisms to help shape our understanding of the evolutionary processes involved in pathogenesis. In this Review, we highlight the gene gain, gene loss and genome rearrangement events that have been identified by genomic studies in pathogenic Yersinia species, and we discuss how these findings are changing our understanding of pathogen evolution. Finally, as these traits are also found in the genomes of other species in the Enterobacteriaceae, we suggest that they provide a blueprint for the evolution of enteropathogenic bacteria.
Collapse
Affiliation(s)
- Alan McNally
- Pathogen Research Group, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nicholas R Thomson
- Pathogen Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sandra Reuter
- Department of Medicine, University of Cambridge, Box 157 Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Brendan W Wren
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
45
|
Taieb F, Petit C, Nougayrède JP, Oswald E. The Enterobacterial Genotoxins: Cytolethal Distending Toxin and Colibactin. EcoSal Plus 2016; 7. [PMID: 27419387 PMCID: PMC11575708 DOI: 10.1128/ecosalplus.esp-0008-2016] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
While the DNA damage induced by ionizing radiation and by many chemical compounds and drugs is well characterized, the genotoxic insults inflicted by bacteria are only scarcely documented. However, accumulating evidence indicates that we are exposed to bacterial genotoxins. The prototypes of such bacterial genotoxins are the Cytolethal Distending Toxins (CDTs) produced by Escherichia coli and Salmonella enterica serovar Typhi. CDTs display the DNase structure fold and activity, and induce DNA strand breaks in the intoxicated host cell nuclei. E. coli and certain other Enterobacteriaceae species synthesize another genotoxin, colibactin. Colibactin is a secondary metabolite, a hybrid polyketide/nonribosomal peptide compound synthesized by a complex biosynthetic machinery. In this review, we summarize the current knowledge on CDT and colibactin produced by E. coli and/or Salmonella Typhi. We describe their prevalence, genetic determinants, modes of action, and impact in infectious diseases or gut colonization, and discuss the possible involvement of these genotoxigenic bacteria in cancer.
Collapse
Affiliation(s)
- Frederic Taieb
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Claude Petit
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Jean-Philippe Nougayrède
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| | - Eric Oswald
- Institut de Recherche en Santé Digestive (IRSD), INRA UMR1416, INSERM U1220, Université de Toulouse, CHU Purpan, Toulouse, FRANCE
| |
Collapse
|
46
|
Baranzoni GM, Fratamico PM, Gangiredla J, Patel I, Bagi LK, Delannoy S, Fach P, Boccia F, Anastasio A, Pepe T. Characterization of Shiga Toxin Subtypes and Virulence Genes in Porcine Shiga Toxin-Producing Escherichia coli. Front Microbiol 2016; 7:574. [PMID: 27148249 PMCID: PMC4838603 DOI: 10.3389/fmicb.2016.00574] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Similar to ruminants, swine have been shown to be a reservoir for Shiga toxin-producing Escherichia coli (STEC), and pork products have been linked with outbreaks associated with STEC O157 and O111:H-. STEC strains, isolated in a previous study from fecal samples of late-finisher pigs, belonged to a total of 56 serotypes, including O15:H27, O91:H14, and other serogroups previously associated with human illness. The isolates were tested by polymerase chain reaction (PCR) and a high-throughput real-time PCR system to determine the Shiga toxin (Stx) subtype and virulence-associated and putative virulence-associated genes they carried. Select STEC strains were further analyzed using a Minimal Signature E. coli Array Strip. As expected, stx2e (81%) was the most common Stx variant, followed by stx1a (14%), stx2d (3%), and stx1c (1%). The STEC serogroups that carried stx2d were O15:H27, O159:H16 and O159:H-. Similar to stx2a and stx2c, the stx2d variant is associated with development of hemorrhagic colitis and hemolytic uremic syndrome, and reports on the presence of this variant in STEC strains isolated from swine are lacking. Moreover, the genes encoding heat stable toxin (estIa) and enteroaggregative E. coli heat stable enterotoxin-1 (astA) were commonly found in 50 and 44% of isolates, respectively. The hemolysin genes, hlyA and ehxA, were both detected in 7% of the swine STEC strains. Although the eae gene was not found, other genes involved in host cell adhesion, including lpfAO113 and paa were detected in more than 50% of swine STEC strains, and a number of strains also carried iha, lpfAO26, lpfAO157, fedA, orfA, and orfB. The present work provides new insights on the distribution of virulence factors among swine STEC strains and shows that swine may carry Stx1a-, Stx2e-, or Stx2d-producing E. coli with virulence gene profiles associated with human infections.
Collapse
Affiliation(s)
- Gian Marco Baranzoni
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Pina M Fratamico
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Jayanthi Gangiredla
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Isha Patel
- Center of Food Safety and Applied Nutrition, U.S. Food and Drug Administration Laurel, MD, USA
| | - Lori K Bagi
- Eastern Regional Research Center, United States Department of Agriculture - Agricultural Research Service Wyndmoor, PA, USA
| | - Sabine Delannoy
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Patrick Fach
- Food Safety Laboratory, University of Paris-Est, Anses, Maisons-Alfort France
| | - Federica Boccia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Aniello Anastasio
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples Italy
| |
Collapse
|
47
|
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC), the specialized E. coli strains that possess the ability to overcome or subvert host defenses and cause extraintestinal disease, are important pathogens in humans and certain animals. Molecular epidemiological analysis has led to an appreciation of ExPEC as being distinct from other E. coli (including intestinal pathogenic and commensal variants) and has offered insights into the ecology, evolution, reservoirs, transmission pathways, host-pathogen interactions, and pathogenetic mechanisms of ExPEC. Molecular epidemiological analysis also provides an essential complement to experimental assessment of virulence mechanisms. This chapter first reviews the basic conceptual and methodological underpinnings of the molecular epidemiological approach and then summarizes the main aspects of ExPEC that have been investigated using this approach.
Collapse
|
48
|
Abstract
Escherichia colicauses three types of illnesses in humans: diarrhea, urinary tract infections, and meningitis in newborns. The acquisition of virulence-associated genes and the ability to properly regulate these, often horizontally transferred, loci distinguishes pathogens from the normally harmless commensal E. coli found within the human intestine. This review addresses our current understanding of virulence gene regulation in several important diarrhea-causing pathotypes, including enteropathogenic, enterohemorrhagic,enterotoxigenic, and enteroaggregativeE. coli-EPEC, EHEC, ETEC and EAEC, respectively. The intensely studied regulatory circuitry controlling virulence of uropathogenicE. coli, or UPEC, is also reviewed, as is that of MNEC, a common cause of meningitis in neonates. Specific topics covered include the regulation of initial attachment events necessary for infection, environmental cues affecting virulence gene expression, control of attaching and effacing lesionformation, and control of effector molecule expression and secretion via the type III secretion systems by EPEC and EHEC. How phage control virulence and the expression of the Stx toxins of EHEC, phase variation, quorum sensing, and posttranscriptional regulation of virulence determinants are also addressed. A number of important virulence regulators are described, including the AraC-like molecules PerA of EPEC, CfaR and Rns of ETEC, and AggR of EAEC;the Ler protein of EPEC and EHEC;RfaH of UPEC;and the H-NS molecule that acts to silence gene expression. The regulatory circuitry controlling virulence of these greatly varied E. colipathotypes is complex, but common themes offerinsight into the signals and regulators necessary forE. coli disease progression.
Collapse
|
49
|
Calhau V, Mendes C, Pena A, Mendonça N, Da Silva GJ. Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants. JOURNAL OF WATER AND HEALTH 2015; 13:311-318. [PMID: 26042965 DOI: 10.2166/wh.2014.327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk.
Collapse
Affiliation(s)
- Vera Calhau
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal E-mail: ; Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Catarina Mendes
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal E-mail:
| | - Angelina Pena
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal E-mail:
| | - Nuno Mendonça
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal E-mail: ; Center of Neurosciences and Cell Biology, University of Coimbra, Coimbra, Portugal
| | | |
Collapse
|
50
|
Abstract
Here we present an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78 that represent the major cause of avian colisepticemia, an invasive infection caused by avian pathogenic Escherichia coli (APEC) strains. It is associated with high mortality and morbidity, resulting in significant economic consequences for the poultry industry. To understand the genetic basis of the virulence of avian septicemic E. coli, we sequenced the entire genome of a clinical isolate of serotype O78—O78:H19 ST88 isolate 789 (O78-9)—and compared it with three publicly available APEC O78 sequences and one complete genome of APEC serotype O1 strain. Although there was a large variability in genome content between the APEC strains, several genes were conserved, which are potentially critical for colisepticemia. Some of these genes are present in multiple copies per genome or code for gene products with overlapping function, signifying their importance. A systematic deletion of each of these virulence-related genes identified three systems that are conserved in all septicemic strains examined and are critical for serum survival, a prerequisite for septicemia. These are the plasmid-encoded protein, the defective ETT2 (E. coli type 3 secretion system 2) type 3 secretion system ETT2sepsis, and iron uptake systems. Strain O78-9 is the only APEC O78 strain that also carried the regulon coding for yersiniabactin, the iron binding system of the Yersinia high-pathogenicity island. Interestingly, this system is the only one that cannot be complemented by other iron uptake systems under iron limitation and in serum. Avian colisepticemia is a severe systemic disease of birds causing high morbidity and mortality and resulting in severe economic losses. The bacteria associated with avian colisepticemia are highly antibiotic resistant, making antibiotic treatment ineffective, and there is no effective vaccine due to the multitude of serotypes involved. To understand the disease and work out strategies to combat it, we performed an extensive genomic and genetic analysis of Escherichia coli strains of serotype O78, the major cause of the disease. We identified several potential virulence factors, conserved in all the colisepticemic strains examined, and determined their contribution to growth in serum, an absolute requirement for septicemia. These findings raise the possibility that specific vaccines or drugs can be developed against these critical virulence factors to help combat this economically important disease.
Collapse
|