1
|
Oulton T, Obiero J, Rodriguez I, Ssewanyana I, Dabbs RA, Bachman CM, Greenhouse B, Drakeley C, Felgner PL, Stone W, Tetteh KKA. Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray. PLoS One 2022; 17:e0273106. [PMID: 36037183 PMCID: PMC9423672 DOI: 10.1371/journal.pone.0273106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.
Collapse
Affiliation(s)
- Tate Oulton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joshua Obiero
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Rebecca A. Dabbs
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
2
|
Addy JW, Bediako Y, Ndungu FM, Valetta JJ, Reid AJ, Mwacharo J, Ngoi JM, Wambua J, Otieno E, Musyoki J, Said K, Berriman M, Marsh K, Bejon P, Recker M, Langhorne J. 10-year longitudinal study of malaria in children: Insights into acquisition and maintenance of naturally acquired immunity. Wellcome Open Res 2022; 6:79. [PMID: 35141425 PMCID: PMC8822141 DOI: 10.12688/wellcomeopenres.16562.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 01/26/2023] Open
Abstract
Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.
Collapse
Affiliation(s)
- John W.G. Addy
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Yaw Bediako
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | - John Joseph Valetta
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Adam J. Reid
- Parasite Genomics, Wellcome Sanger Institute, Hixton, UK
| | | | | | - Joshua Wambua
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Khadija Said
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Jean Langhorne
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
3
|
Addy JW, Bediako Y, Ndungu FM, Valetta JJ, Reid AJ, Mwacharo J, Ngoi JM, Wambua J, Otieno E, Musyoki J, Said K, Berriman M, Marsh K, Bejon P, Recker M, Langhorne J. 10-year longitudinal study of malaria in children: Insights into acquisition and maintenance of naturally acquired immunity. Wellcome Open Res 2021; 6:79. [PMID: 35141425 PMCID: PMC8822141 DOI: 10.12688/wellcomeopenres.16562.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.
Collapse
Affiliation(s)
- John W.G. Addy
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Yaw Bediako
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | - John Joseph Valetta
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Adam J. Reid
- Parasite Genomics, Wellcome Sanger Institute, Hixton, UK
| | | | | | - Joshua Wambua
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Khadija Said
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Jean Langhorne
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
4
|
Addy JW, Bediako Y, Ndungu FM, Valetta JJ, Reid AJ, Mwacharo J, Ngoi JM, Wambua J, Otieno E, Musyoki J, Said K, Berriman M, Marsh K, Bejon P, Recker M, Langhorne J. 10-year longitudinal study of malaria in children: Insights into acquisition and maintenance of naturally acquired immunity. Wellcome Open Res 2021; 6:79. [PMID: 35141425 PMCID: PMC8822141 DOI: 10.12688/wellcomeopenres.16562.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 01/26/2023] Open
Abstract
Background: Studies of long-term malaria cohorts have provided essential insights into how Plasmodium falciparum interacts with humans, and influences the development of antimalarial immunity. Immunity to malaria is acquired gradually after multiple infections, some of which present with clinical symptoms. However, there is considerable variation in the number of clinical episodes experienced by children of the same age within the same cohort. Understanding this variation in clinical symptoms and how it relates to the development of naturally acquired immunity is crucial in identifying how and when some children stop experiencing further malaria episodes. Where variability in clinical episodes may result from different rates of acquisition of immunity, or from variable exposure to the parasite. Methods: Using data from a longitudinal cohort of children residing in an area of moderate P. falciparum transmission in Kilifi district, Kenya, we fitted cumulative episode curves as monotonic-increasing splines, to 56 children under surveillance for malaria from the age of 5 to 15. Results: There was large variability in the accumulation of numbers of clinical malaria episodes experienced by the children, despite being of similar age and living in the same general location. One group of children from a particular sub-region of the cohort stopped accumulating clinical malaria episodes earlier than other children in the study. Despite lack of further clinical episodes of malaria, these children had higher asymptomatic parasite densities and higher antibody titres to a panel of P. falciparum blood-stage antigens. Conclusions: This suggests development of clinical immunity rather than lack of exposure to the parasite, and supports the view that this immunity to malaria disease is maintained by a greater exposure to P. falciparum, and thus higher parasite burdens. Our study illustrates the complexity of anti-malaria immunity and underscores the need for analyses which can sufficiently reflect the heterogeneity within endemic populations.
Collapse
Affiliation(s)
- John W.G. Addy
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| | - Yaw Bediako
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | | | - John Joseph Valetta
- School of Mathematics and Statistics, University of St Andrews, St Andrews, UK
| | - Adam J. Reid
- Parasite Genomics, Wellcome Sanger Institute, Hixton, UK
| | | | | | - Joshua Wambua
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Edward Otieno
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Khadija Said
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Philip Bejon
- KEMRI/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mario Recker
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, UK
| | - Jean Langhorne
- Malaria Immunology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
5
|
Wu L, Mwesigwa J, Affara M, Bah M, Correa S, Hall T, Singh SK, Beeson JG, Tetteh KKA, Kleinschmidt I, D'Alessandro U, Drakeley C. Antibody responses to a suite of novel serological markers for malaria surveillance demonstrate strong correlation with clinical and parasitological infection across seasons and transmission settings in The Gambia. BMC Med 2020; 18:304. [PMID: 32972398 PMCID: PMC7517687 DOI: 10.1186/s12916-020-01724-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND As malaria transmission declines, sensitive diagnostics are needed to evaluate interventions and monitor transmission. Serological assays measuring malaria antibody responses offer a cost-effective detection method to supplement existing surveillance tools. METHODS A prospective cohort study was conducted from 2013 to 2015 in 12 villages across five administrative regions in The Gambia. Serological analysis included samples from the West Coast Region at the start and end of the season (July and December 2013) and from the Upper River Region in July and December 2013 and April and December 2014. Antigen-specific antibody responses to eight Plasmodium falciparum (P. falciparum) antigens-Etramp5.Ag1, GEXP18, HSP40.Ag1, Rh2.2030, EBA175 RIII-V, PfMSP119, PfAMA1, and PfGLURP.R2-were quantified using a multiplexed bead-based assay. The association between antibody responses and clinical and parasitological endpoints was estimated at the individual, household, and population level. RESULTS Strong associations were observed between clinical malaria and concurrent sero-positivity to Etramp5.Ag1 (aOR 4.60 95% CI 2.98-7.12), PfMSP119 (aOR 4.09 95% CI 2.60-6.44), PfAMA1 (aOR 2.32 95% CI 1.40-3.85), and PfGLURP.R2 (aOR 3.12, 95% CI 2.92-4.95), while asymptomatic infection was associated with sero-positivity to all antigens. Village-level sero-prevalence amongst children 2-10 years against Etramp5.Ag1, HSP40.Ag1, and PfMSP119 showed the highest correlations with clinical and P. falciparum infection incidence rates. For all antigens, there were increased odds of asymptomatic P. falciparum infection in subjects residing in a compound with greater than 50% sero-prevalence, with a 2- to 3-fold increase in odds of infection associated with Etramp5.Ag1, GEXP18, Rh2.2030, PfMSP119, and PfAMA1. For individuals residing in sero-positive compounds, the odds of clinical malaria were reduced, suggesting a protective effect. CONCLUSIONS At low transmission, long-lived antibody responses could indicate foci of malaria transmission that have been ongoing for several seasons or years. In settings where sub-patent infections are prevalent and fluctuate below the detection limit of polymerase chain reaction (PCR), the presence of short-lived antibodies may indicate recent infectivity, particularly in the dry season when clinical cases are rare. Serological responses may reflect a persistent reservoir of infection, warranting community-targeted interventions if individuals are not clinically apparent but have the potential to transmit. Therefore, serological surveillance at the individual and household level may be used to target interventions where there are foci of asymptomatically infected individuals, such as by measuring the magnitude of age-stratified antibody levels or identifying areas with clustering of above-average antibody responses across a diverse range of serological markers.
Collapse
Affiliation(s)
- Lindsey Wu
- Faculty of Infectious Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
| | - Julia Mwesigwa
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Muna Affara
- Bernhard Nocht Institute for Tropical Medicine (BNITM), Arusha, Tanzania
| | - Mamadou Bah
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Simon Correa
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Tom Hall
- St. George's University of London (SGUL), London, UK
| | - Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - James G Beeson
- Burnet Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin K A Tetteh
- Faculty of Infectious Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Immo Kleinschmidt
- Faculty of Epidemiology and Population Health, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.,School of Pathology, Wits Institute for Malaria Research, Faculty of Health Science, University of Witwatersrand, Johannesburg, South Africa
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Chris Drakeley
- Faculty of Infectious Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| |
Collapse
|
6
|
Monteiro EF, Fernandez-Becerra C, Araujo MDS, Messias MR, Ozaki LS, Duarte AMRDC, Bueno MG, Catao-Dias JL, Chagas CRF, Mathias BDS, dos Santos MG, Santos SV, Holcman MM, de Souza JC, Kirchgatter K. Naturally Acquired Humoral Immunity against Malaria Parasites in Non-Human Primates from the Brazilian Amazon, Cerrado and Atlantic Forest. Pathogens 2020; 9:pathogens9070525. [PMID: 32610598 PMCID: PMC7399928 DOI: 10.3390/pathogens9070525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022] Open
Abstract
Non-human primates (NHPs) have been shown to be infected by parasites of the genus Plasmodium, the etiological agent of malaria in humans, creating potential risks of zoonotic transmission. Plasmodium brasilianum, a parasite species similar to P. malariae of humans, have been described in NHPs from Central and South America, including Brazil. The merozoite surface protein 1 (MSP1), besides being a malaria vaccine candidate, is highly immunogenic. Due to such properties, we tested this protein for the diagnosis of parasite infection. We used recombinant proteins of P. malariae MSP1, as well as of P. falciparum and P. vivax, for the detection of antibodies anti-MSP1 of these parasite species, in the sera of NHPs collected in different regions of Brazil. About 40% of the NHP sera were confirmed as reactive to the proteins of one or more parasite species. A relatively higher number of reactive sera was found in animals from the Atlantic Forest than those from the Amazon region, possibly reflecting the former more intense parasite circulation among NHPs due to their proximity to humans at a higher populational density. The presence of Plasmodium positive NHPs in the surveyed areas, being therefore potential parasite reservoirs, needs to be considered in any malaria surveillance program.
Collapse
Affiliation(s)
- Eliana Ferreira Monteiro
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Carmen Fernandez-Becerra
- ISGlobal, Hospital Clínic—Universitat de Barcelona, 08036 Barcelona, Spain;
- Germans Trias i Pujol Health Science Research Institute (IGTP), 08916 Badalona, Spain
| | - Maisa da Silva Araujo
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rondônia, Porto Velho, RO 76812-245, Brazil;
| | | | - Luiz Shozo Ozaki
- Life Sciences, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Marina Galvão Bueno
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Fiocruz Rio de Janeiro, Rio de Janeiro, RJ 21040-900, Brazil;
| | - Jose Luiz Catao-Dias
- Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP 05508-270, Brazil;
| | - Carolina Romeiro Fernandes Chagas
- Departamento de Pesquisas Aplicadas, Fundação Parque Zoológico de São Paulo, São Paulo, SP 04301-905, Brazil;
- Institute of Ecology, Nature Research Centre, Vilnius 08412, Lithuania
| | - Bruno da Silva Mathias
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
| | - Mayra Gomes dos Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
| | - Stéfanie Vanessa Santos
- Departamento de Patologia, Universidade Cruzeiro do Sul, São Paulo, SP 01311-925, Brazil; (M.G.d.S.); (S.V.S.)
- Departamento de Anatomia Patológica, AC Camargo Cancer Center, São Paulo, SP 01525-001, Brazil
| | - Marcia Moreira Holcman
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
| | - Julio Cesar de Souza
- Departamento de Medicina Veterinária, Fundação Universidade Regional de Blumenau, Blumenau, SC 89012-900, Brazil;
- Projeto Bugio, Centro de Pesquisas Biológicas, Indaial, SC 89130-000, Brazil
| | - Karin Kirchgatter
- Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP 05403-000, Brazil; (E.F.M.); (A.M.R.d.C.D.); (B.d.S.M.)
- Departamento de Laboratórios Especializados, Superintendência de Controle de Endemias, São Paulo, SP 01027-000, Brazil;
- Correspondence:
| |
Collapse
|
7
|
Wu L, Hall T, Ssewanyana I, Oulton T, Patterson C, Vasileva H, Singh S, Affara M, Mwesigwa J, Correa S, Bah M, D'Alessandro U, Sepúlveda N, Drakeley C, Tetteh KKA. Optimisation and standardisation of a multiplex immunoassay of diverse Plasmodium falciparum antigens to assess changes in malaria transmission using sero-epidemiology. Wellcome Open Res 2020; 4:26. [PMID: 32518839 PMCID: PMC7255915 DOI: 10.12688/wellcomeopenres.14950.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 09/12/2023] Open
Abstract
Background: Antibody responses have been used to characterise transmission and exposure history in malaria-endemic settings for over a decade. Such studies have typically been conducted on well-standardised enzyme-linked immunosorbent assays (ELISAs). However, recently developed quantitative suspension array technologies (qSAT) are now capable of high-throughput and multiplexed screening of up to hundreds of analytes at a time. This study presents a customised protocol for the Luminex MAGPIX © qSAT using a diverse set of malaria antigens. The aim is to develop a standardised assay for routine serological surveillance that is implementable across laboratories and epidemiological settings. Methods: A panel of eight Plasmodium falciparum recombinant antigens, associated with long- and short-lived antibody responses, was designed for the Luminex MAGPIX © platform. The assay was optimised for key steps in the protocol: antigen-bead coupling concentration, buffer composition, serum sample dilution, and bead storage conditions. Quality control procedures and data normalisation methods were developed to address high-throughput assay processing. Antigen-specific limits of quantification (LOQs) were also estimated using both in-house and WHO reference serum as positive controls. Results: Antigen-specific bead coupling was optimised across five serum dilutions and two positive controls, resulting in concentrations operational within stable analytical ranges. Coupled beads were stable after storage at room temperature (22⁰C) for up to eight weeks. High sensitivity and specificity for distinguishing positive and negative controls at serum sample dilutions of 1:500 (AUC 0.94 95%CI 0.91-0.96) and 1:1000 (AUC 0.96 95%CI 0.94-0.98) were observed. LOQs were also successfully estimated for all analytes but varied by antigen and positive control. Conclusions: This study demonstrates that developing a standardised malaria-specific qSAT protocol for a diverse set of antigens is achievable, though further optimisations may be required. Quality control and data standardisation methods may also be useful for future analysis of large sero-epidemiological surveys.
Collapse
Affiliation(s)
- Lindsey Wu
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Tom Hall
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Isaac Ssewanyana
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
- Infectious Diseases Research Collaboration (IDRC), Kampala, P O. Box 7475, Uganda
| | - Tate Oulton
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Catriona Patterson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Hristina Vasileva
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Susheel Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of International Health, University of Copenhagen, Copenhagen, Denmark
| | - Muna Affara
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20359, Germany
| | - Julia Mwesigwa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Simon Correa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mamadou Bah
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
8
|
Wu L, Hall T, Ssewanyana I, Oulton T, Patterson C, Vasileva H, Singh S, Affara M, Mwesigwa J, Correa S, Bah M, D'Alessandro U, Sepúlveda N, Drakeley C, Tetteh KKA. Optimisation and standardisation of a multiplex immunoassay of diverse Plasmodium falciparum antigens to assess changes in malaria transmission using sero-epidemiology. Wellcome Open Res 2020; 4:26. [PMID: 32518839 PMCID: PMC7255915 DOI: 10.12688/wellcomeopenres.14950.2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 11/30/2022] Open
Abstract
Background: Antibody responses have been used to characterise transmission and exposure history in malaria-endemic settings for over a decade. Such studies have typically been conducted on well-standardised enzyme-linked immunosorbent assays (ELISAs). However, recently developed quantitative suspension array technologies (qSAT) are now capable of high-throughput and multiplexed screening of up to hundreds of analytes at a time. This study presents a customised protocol for the Luminex MAGPIX
© qSAT using a diverse set of malaria antigens. The aim is to develop a standardised assay for routine serological surveillance that is implementable across laboratories and epidemiological settings. Methods: A panel of eight
Plasmodium falciparum recombinant antigens, associated with long- and short-lived antibody responses, was designed for the Luminex MAGPIX
© platform. The assay was optimised for key steps in the protocol: antigen-bead coupling concentration, buffer composition, serum sample dilution, and bead storage conditions. Quality control procedures and data normalisation methods were developed to address high-throughput assay processing. Antigen-specific limits of quantification (LOQs) were also estimated using both in-house and WHO reference serum as positive controls. Results: Antigen-specific bead coupling was optimised across five serum dilutions and two positive controls, resulting in concentrations operational within stable analytical ranges. Coupled beads were stable after storage at room temperature (22⁰C) for up to eight weeks. High sensitivity and specificity for distinguishing positive and negative controls at serum sample dilutions of 1:500 (AUC 0.94 95%CI 0.91-0.96) and 1:1000 (AUC 0.96 95%CI 0.94-0.98) were observed. LOQs were also successfully estimated for all analytes but varied by antigen and positive control. Conclusions: This study demonstrates that developing a standardised malaria-specific qSAT protocol for a diverse set of antigens is achievable, though further optimisations may be required. Quality control and data standardisation methods may also be useful for future analysis of large sero-epidemiological surveys.
Collapse
Affiliation(s)
- Lindsey Wu
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Tom Hall
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Isaac Ssewanyana
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.,Infectious Diseases Research Collaboration (IDRC), Kampala, P O. Box 7475, Uganda
| | - Tate Oulton
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Catriona Patterson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Hristina Vasileva
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Susheel Singh
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.,Centre for Medical Parasitology at Department of International Health, University of Copenhagen, Copenhagen, Denmark
| | - Muna Affara
- Infectious Disease Epidemiology Department, Bernhard Nocht Institute for Tropical Medicine, Hamburg, 20359, Germany
| | - Julia Mwesigwa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Simon Correa
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mamadou Bah
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Umberto D'Alessandro
- MRC Unit at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Nuno Sepúlveda
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
9
|
Mensah-Brown HE, Aspeling-Jones H, Delimini RK, Asante KP, Amlabu E, Bah SY, Beeson JG, Wright GJ, Conway DJ, Awandare GA. Antibody Reactivity to Merozoite Antigens in Ghanaian Adults Correlates With Growth Inhibitory Activity Against Plasmodium falciparum in Culture. Open Forum Infect Dis 2019; 6:ofz254. [PMID: 31294045 PMCID: PMC6611546 DOI: 10.1093/ofid/ofz254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
Background Plasmodium falciparum uses a repertoire of merozoite-stage proteins for invasion of erythrocytes. Antibodies against some of these proteins halt the replication cycle of the parasite by preventing erythrocyte invasion and are implicated as contributors to protective immunity against malaria. Methods We assayed antibody reactivity against a panel of 9 recombinant antigens based on erythrocyte-binding antigen (EBA) and reticulocyte-like homolog (Rh) proteins in plasma from children with malaria and healthy adults residing in 3 endemic areas in Ghana using enzyme-linked immunosorbent assay. Purified immunoglobulin (Ig)G from adult plasma samples was also tested for invasion inhibition against 7 different P falciparum culture lines, including clinical isolates. Results Antibodies against the antigens increased in an age-dependent manner in children. Breadth of reactivity to the different antigens was strongly associated with in vitro parasite growth inhibitory activity of IgG purified from the adults. The strongest predictors of breadth of antibody reactivity were age and transmission intensity, and a combination of reactivities to Rh2, Rh4, and Rh5 correlated strongly with invasion inhibition. Conclusions Growth inhibitory activity was significantly associated with breadth of antibody reactivity to merozoite antigens, encouraging the prospect of a multicomponent blood-stage vaccine.
Collapse
Affiliation(s)
- Henrietta E Mensah-Brown
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | | | - Rupert K Delimini
- Department of Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | | | - Emmanuel Amlabu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Kogi State University, Anyigba, Nigeria
| | - Saikou Y Bah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - James G Beeson
- The Burnet Institute for Medical Research and Public Health, Melbourne, Australia.,Department of Microbiology, Monash University, Clayton, Australia
| | - Gavin J Wright
- Pathogens and Microbes Programme, Wellcome Trust Sanger Institute, United Kingdom
| | - David J Conway
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana.,Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
10
|
Kamuyu G, Tuju J, Kimathi R, Mwai K, Mburu J, Kibinge N, Chong Kwan M, Hawkings S, Yaa R, Chepsat E, Njunge JM, Chege T, Guleid F, Rosenkranz M, Kariuki CK, Frank R, Kinyanjui SM, Murungi LM, Bejon P, Färnert A, Tetteh KKA, Beeson JG, Conway DJ, Marsh K, Rayner JC, Osier FHA. KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization. Front Immunol 2018; 9:2866. [PMID: 30619257 PMCID: PMC6298441 DOI: 10.3389/fimmu.2018.02866] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022] Open
Abstract
Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal–Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65–0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines.
Collapse
Affiliation(s)
- Gathoni Kamuyu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya
| | - Rinter Kimathi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James Mburu
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Nelson Kibinge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Marisa Chong Kwan
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Sam Hawkings
- Arrayjet, Innovative Microarray Solutions, Edinburgh, United Kingdom
| | - Reuben Yaa
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Emily Chepsat
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - James M Njunge
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Timothy Chege
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Fatuma Guleid
- Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Micha Rosenkranz
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christopher K Kariuki
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya.,Cellular and Molecular Immunology, Vrije Universiteit Brussels, Brussels, Belgium
| | - Roland Frank
- Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany
| | - Samson M Kinyanjui
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Linda M Murungi
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.,Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Kevin K A Tetteh
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.,African Academy of Sciences, Nairobi, Kenya
| | - Julian C Rayner
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Faith H A Osier
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya.,Centre for Infectious Diseases, Parasitology, Heidelberg University Hospital, Heidelberg, Germany.,Department of Biochemistry, Pwani University, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Ghoshal S, Gajendra P, Datta Kanjilal S, Mitra M, Sengupta S. Diversity analysis of MSP1 identifies conserved epitope organization in block 2 amidst high sequence variability in Indian Plasmodium falciparum isolates. Malar J 2018; 17:447. [PMID: 30509263 PMCID: PMC6276175 DOI: 10.1186/s12936-018-2592-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/23/2018] [Indexed: 02/02/2023] Open
Abstract
Background Despite its immunogenicity, the polymorphic nature of merozoite surface protein 1, an important vaccine candidate for Plasmodium falciparum malaria, remains a concern. This study analyses the impact of genetic variability and parasite population structure on epitope organization of different MSP1 segments. Methods Altogether 98 blood samples collected from P. falciparum infected mild and severe malaria patients of Chhattisgarh and West Bengal were used to sequence regions encoding block 2 and MSP1-19 of msp1. Sequences were analysed using MEGA7, DnaSPv5, Arlequin3.5 and BepiPred. Results All three major MSP1 block 2 allele families namely K1, MAD20 and RO33 were detected in the samples and they together resulted in 41 indel variants. Chhattisgarh samples displayed an average MOI of 2.07 ± 1.59 which was higher in mild malaria and in age group < 18 years. Ultra-structure of block 2 alleles revealed that mutation and repeat expansion were two major mechanisms responsible for allelic variability of K1 and MAD20. Regions flanking block 2 were highly variable in Chhattisgarh with average mismatch differences (k) ranging from 1.198 to 5.156 for three families. In contrast, region encompassing MSP1-19 exhibited limited heterogeneity (kChhattisgarh = 1.45, kWest Bengal = 1.363). Of the 50 possible B cell linear epitopes predicted from block 2 variants, 94.9% (131 of 138) of the parasites could be represented by three conserved antigens. Conclusions Present data indicates that natural selection and transmission intensity jointly play a role in controlling allelic diversity of MSP1 in Indian parasite isolates. Despite remarkable genetic variability, a limited number of predominant and conserved epitopes are present in Indian parasite isolates reinstating the importance of MSP1 as a promising malaria vaccine candidate. Electronic supplementary material The online version of this article (10.1186/s12936-018-2592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sharmistha Ghoshal
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India
| | - Pragya Gajendra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Sumana Datta Kanjilal
- Department of Pediatric Medicine, Institute of Post Graduate Medical Education & Research, Kolkata, West Bengal, India
| | - Mitashree Mitra
- School of Studies in Anthropology, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Sanghamitra Sengupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700 019, India.
| |
Collapse
|
12
|
Aspeling-Jones H, Conway DJ. An expanded global inventory of allelic variation in the most extremely polymorphic region of Plasmodium falciparum merozoite surface protein 1 provided by short read sequence data. Malar J 2018; 17:345. [PMID: 30285849 PMCID: PMC6167803 DOI: 10.1186/s12936-018-2475-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Background Within Plasmodium falciparum merozoite surface protein 1 (MSP1), the N-terminal block 2 region is a highly polymorphic target of naturally acquired antibody responses. The antigenic diversity is determined by complex repeat sequences as well as non-repeat sequences, grouping into three major allelic types that appear to be maintained within populations by natural selection. Within these major types, many distinct allelic sequences have been described in different studies, but the extent and significance of the diversity remains unresolved. Methods To survey the diversity more extensively, block 2 allelic sequences in the msp1 gene were characterized in 2400 P. falciparum infection isolates with whole genome short read sequence data available from the Pf3K project, and compared with the data from previous studies. Results Mapping the short read sequence data in the 2400 isolates to a reference library of msp1 block 2 allelic sequences yielded 3815 allele scores at the level of major allelic family types, with 46% of isolates containing two or more of these major types. Overall frequencies were similar to those previously reported in other samples with different methods, the K1-like allelic type being most common in Africa, MAD20-like most common in Southeast Asia, and RO33-like being the third most abundant type in each continent. The rare MR type, formed by recombination between MAD20-like and RO33-like alleles, was only seen in Africa and very rarely in the Indian subcontinent but not in Southeast Asia. A combination of mapped short read assembly approaches enabled 1522 complete msp1 block 2 sequences to be determined, among which there were 363 different allele sequences, of which 246 have not been described previously. In these data, the K1-like msp1 block 2 alleles are most diverse and encode 225 distinct amino acid sequences, compared with 123 different MAD20-like, 9 RO33-like and 6 MR type sequences. Within each of the major types, the different allelic sequences show highly skewed geographical distributions, with most of the more common sequences being detected in either Africa or Asia, but not in both. Conclusions Allelic sequences of this extremely polymorphic locus have been derived from whole genome short read sequence data by mapping to a reference library followed by assembly of mapped reads. The catalogue of sequence variation has been greatly expanded, so that there are now more than 500 different msp1 block 2 allelic sequences described. This provides an extensive reference for molecular epidemiological genotyping and sequencing studies, and potentially for design of a multi-allelic vaccine. Electronic supplementary material The online version of this article (10.1186/s12936-018-2475-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harvey Aspeling-Jones
- Pathogen Molecular Biology Department, School of Hygiene and Tropical Medicine London, Keppel St, London, WC1E 7HT, UK.
| | - David J Conway
- Pathogen Molecular Biology Department, School of Hygiene and Tropical Medicine London, Keppel St, London, WC1E 7HT, UK.
| |
Collapse
|
13
|
Herman LS, Fornace K, Phelan J, Grigg MJ, Anstey NM, William T, Moon RW, Blackman MJ, Drakeley CJ, Tetteh KKA. Identification and validation of a novel panel of Plasmodium knowlesi biomarkers of serological exposure. PLoS Negl Trop Dis 2018; 12:e0006457. [PMID: 29902183 PMCID: PMC6001954 DOI: 10.1371/journal.pntd.0006457] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/17/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plasmodium knowlesi is the most common cause of malaria in Malaysian Borneo, with reporting limited to clinical cases presenting to health facilities and scarce data on the true extent of transmission. Serological estimations of transmission have been used with other malaria species to garner information about epidemiological patterns. However, there are a distinct lack of suitable serosurveillance tools for this neglected disease. METHODOLOGY/PRINCIPAL FINDINGS Using in silico tools, we designed and expressed four novel P. knowlesi protein products to address the distinct lack of suitable serosurveillance tools: PkSERA3 antigens 1 and 2, PkSSP2/TRAP and PkTSERA2 antigen 1. Antibody prevalence to these antigens was determined by ELISA for three time-points post-treatment from a hospital-based clinical treatment trial in Sabah, East Malaysia (n = 97 individuals; 241 total samples for all time points). Higher responses were observed for the PkSERA3 antigen 2 (67%, 65/97) across all time-points (day 0: 36.9% 34/92; day 7: 63.8% 46/72; day 28: 58.4% 45/77) with significant differences between the clinical cases and controls (n = 55, mean plus 3 SD) (day 0 p<0.0001; day 7 p<0.0001; day 28 p<0.0001). Using boosted regression trees, we developed models to classify P. knowlesi exposure (cross-validated AUC 88.9%; IQR 86.1-91.3%) and identified the most predictive antibody responses. CONCLUSIONS/SIGNIFICANCE The PkSERA3 antigen 2 had the highest relative variable importance in all models. Further validation of these antigens is underway to determine the specificity of these tools in the context of multi-species infections at the population level.
Collapse
Affiliation(s)
- Lou S. Herman
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jody Phelan
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew J. Grigg
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Nicholas M. Anstey
- Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit, Kota Kinabalu, Sabah, Malaysia
- Clinical Research Centre, Queen Elizabeth Hospital, Kota Kinabalu, Sabah, Malaysia
- Jesselton Medical Centre, Kota Kinabalu, Sabah, Malaysia
| | - Robert W. Moon
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Michael J. Blackman
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Chris J. Drakeley
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
14
|
Cassiano GC, Furini AAC, Capobianco MP, Storti-Melo LM, Almeida ME, Barbosa DRL, Póvoa MM, Nogueira PA, Machado RLD. Immunogenetic markers associated with a naturally acquired humoral immune response against an N-terminal antigen of Plasmodium vivax merozoite surface protein 1 (PvMSP-1). Malar J 2016; 15:306. [PMID: 27255376 PMCID: PMC4891883 DOI: 10.1186/s12936-016-1350-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/17/2016] [Indexed: 01/13/2023] Open
Abstract
Background Humoral immune responses against proteins of asexual blood-stage malaria parasites have been associated with clinical immunity. However, variations in the antibody-driven responses may be associated with a genetic component of the human host. The objective of the present study was to evaluate the influence of co-stimulatory molecule gene polymorphisms of the immune system on the magnitude of the humoral immune response against a Plasmodium vivax vaccine candidate antigen. Methods Polymorphisms in the CD28, CTLA4, ICOS, CD40, CD86 and BLYS genes of 178 subjects infected with P. vivax in an endemic area of the Brazilian Amazon were genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The levels of IgM, total IgG and IgG subclasses specific for ICB2-5, i.e., the N-terminal portion of P. vivax merozoite surface protein 1 (PvMSP-1), were determined by enzyme-linked immuno assay. The associations between the polymorphisms and the antibody response were assessed by means of logistic regression models. Results After correcting for multiple testing, the IgG1 levels were significantly higher in individuals recessive for the single nucleotide polymorphism rs3116496 in CD28 (p = 0.00004). Furthermore, the interaction between CD28 rs35593994 and BLYS rs9514828 had an influence on the IgM levels (p = 0.0009). Conclusions The results of the present study support the hypothesis that polymorphisms in the genes of co-stimulatory components of the immune system can contribute to a natural antibody-driven response against P. vivax antigens. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1350-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Capatti Cassiano
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil. .,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil.
| | - Adriana A C Furini
- Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil
| | - Marcela P Capobianco
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil.,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil
| | - Luciane M Storti-Melo
- Department of Biology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Maria E Almeida
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | - Danielle R L Barbosa
- Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| | - Marinete M Póvoa
- Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| | - Paulo A Nogueira
- Leônidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Amazonas, Brazil
| | - Ricardo L D Machado
- Department of Biology, São Paulo State University, São José Do Rio Preto, São Paulo, Brazil.,Department of Skin, Infectious and Parasitic Diseases, São José do Rio Preto Medical School, São José Do Rio Preto, São Paulo, Brazil.,Laboratory of Malaria Basic Research, Division of Parasitology, Evandro Chagas Institute, Belém, Pará, Brazil
| |
Collapse
|
15
|
Adu B, Cherif MK, Bosomprah S, Diarra A, Arthur FKN, Dickson EK, Corradin G, Cavanagh DR, Theisen M, Sirima SB, Nebie I, Dodoo D. Antibody levels against GLURP R2, MSP1 block 2 hybrid and AS202.11 and the risk of malaria in children living in hyperendemic (Burkina Faso) and hypo-endemic (Ghana) areas. Malar J 2016; 15:123. [PMID: 26921176 PMCID: PMC4769494 DOI: 10.1186/s12936-016-1146-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
Background
Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. Methods The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6–72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. Results There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74–0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25–0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73–0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01–1.65, p = 0.04). Conclusion These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1146-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bright Adu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | - Mariama K Cherif
- Polytechnic University of BoboDioulasso, Bobo-Dioulasso, Burkina Faso. .,Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | | | - Amidou Diarra
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | - Fareed K N Arthur
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Emmanuel K Dickson
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| | | | - David R Cavanagh
- Institute of Cell, Animal and Population Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark.
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | - Issa Nebie
- Centre National de Recherche et de Formation sur le paludisme, Ouagadougou, Burkina Faso.
| | - Daniel Dodoo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| |
Collapse
|
16
|
Sondén K, Doumbo S, Hammar U, Vafa Homann M, Ongoiba A, Traoré B, Bottai M, Crompton PD, Färnert A. Asymptomatic Multiclonal Plasmodium falciparum Infections Carried Through the Dry Season Predict Protection Against Subsequent Clinical Malaria. J Infect Dis 2015; 212:608-16. [PMID: 25712968 DOI: 10.1093/infdis/jiv088] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/06/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Immunity to the antigenically diverse parasite Plasmodium falciparum is acquired gradually after repeated exposure. Studies in areas of high malaria transmission have shown that asymptomatic individuals infected with multiclonal infections are at reduced risk of febrile malaria during follow-up. METHODS We assessed the relationship between the genetic diversity of clones in P. falciparum infections that persist through the dry season and the subsequent risk of febrile malaria in 225 individuals aged 2-25 years in Mali, where the 6-month malaria and dry seasons are sharply demarcated. Polymerase chain reaction-based genotyping of the highly polymorphic merozoite surface protein 2 gene was performed on blood samples collected at 5 cross-sectional surveys. RESULTS In an age-adjusted analysis, individuals with multiclonal P. falciparum infections before the rainy season were at reduced risk of febrile malaria, compared with individuals who were uninfected (hazard ratio [HR], 0.28; 95% confidence interval [CI], .11-.69). In contrast, there was no significant association between risk of malaria and having 1 clone at baseline (HR, 0.71; 95% CI, .36-1.40). CONCLUSIONS The results suggest that persistent multiclonal infections carried through the dry season contribute to protection against subsequent febrile malaria, possibly by maintaining protective immune responses that depend on ongoing parasite infection.
Collapse
Affiliation(s)
- Klara Sondén
- Unit of Infectious Diseases, Department of Medicine Solna
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako
| | - Ulf Hammar
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Aissata Ongoiba
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden Mali International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako
| | - Boubacar Traoré
- Mali International Center of Excellence in Research, University of Sciences, Technique, and Technology of Bamako
| | - Matteo Bottai
- Unit of Biostatistics, Department of Epidemiology, Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Peter D Crompton
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Anna Färnert
- Unit of Infectious Diseases, Department of Medicine Solna
| |
Collapse
|
17
|
Rouhani M, Zakeri S, Mehrizi AA, Djadid ND. Comparative analysis of the profiles of IgG subclass-specific responses to Plasmodium falciparum apical membrane antigen-1 and merozoite surface protein-1 in naturally exposed individuals living in malaria hypoendemic settings, Iran. Malar J 2015; 14:58. [PMID: 25652589 PMCID: PMC4365771 DOI: 10.1186/s12936-015-0547-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/06/2015] [Indexed: 01/27/2023] Open
Abstract
Background Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) and the 19-kDa C-terminal region of merozoite surface protein-1 (PfMSP-119) are candidate malaria vaccine antigens expressed on merozoites and sporozoites. This investigation was performed to evaluate simultaneously the naturally-acquired antibodies to PfAMA-1 and PfMSP-119 and to compare IgG subclass profiles to both antigens in naturally exposed individuals living in malaria hypoendemic areas in Iran to determine which antigen has better ability to detect sero-positive individuals infected with P. falciparum. Methods In this investigation, 101 individuals from the malaria-endemic areas in Iran were examined. PfAMA-1 and PfMSP-119 were expressed in Escherichia coli, and IgG isotype composition of naturally acquired antibodies to the antigens (as single or in combination) was measured by ELISA assay. Results The result showed that 87.1% and 84.2% of the studied individuals had positive anti-PfAMA-1 and -PfMSP-119 IgG antibody responses, respectively, and the prevalence of responders did not differ significantly (P > 0.05). Moreover, IgG1 and IgG3 were predominant over IgG2 and IgG4 antibodies and the prevalence of IgG and its subclasses to two tested antigens had no significant correlation with age and exposure (P > 0.05). The present data confirmed that when recombinant PfAMA-1 and recombinant PfMSP-119 antigens were combined in ELISA at equal ratios of 200 ng (100 ng each antigen/well) and 400 ng (200 ng each antigen/well), 86.1% and 87.1% of positives sera were detected among the examined samples, respectively. Conclusions The two tested recombinant antigens are immunogenic molecules, and individuals in low transmission areas in Iran could develop and maintain equal immune responses to PfAMA-1 and PfMSP-119. Therefore, these results could support the design of a universal PfAMA-1- and PfMSP-119-based vaccine. Also, both recombinant antigens could be used in combination as reliable serology markers to perform immuno-epidemiological studies in malaria-endemic areas of Iran during elimination strategy. The present information could be of use in control and elimination programmes in Iran and other similar malaria settings.
Collapse
Affiliation(s)
- Maryam Rouhani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. BOX 1316943551, Tehran, Iran.
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. BOX 1316943551, Tehran, Iran.
| | - Akram A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. BOX 1316943551, Tehran, Iran.
| | - Navid D Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Pasteur Avenue, P.O. BOX 1316943551, Tehran, Iran.
| |
Collapse
|
18
|
Diversity and population structure of Plasmodium falciparum in Thailand based on the spatial and temporal haplotype patterns of the C-terminal 19-kDa domain of merozoite surface protein-1. Malar J 2014; 13:54. [PMID: 24521474 PMCID: PMC3931489 DOI: 10.1186/1475-2875-13-54] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/27/2014] [Indexed: 11/21/2022] Open
Abstract
Background The 19-kDa C-terminal region of the merozoite surface protein-1 of the human malaria parasite Plasmodium falciparum (PfMSP-119) constitutes the major component on the surface of merozoites and is considered as one of the leading candidates for asexual blood stage vaccines. Because the protein exhibits a level of sequence variation that may compromise the effectiveness of a vaccine, the global sequence diversity of PfMSP-119 has been subjected to extensive research, especially in malaria endemic areas. In Thailand, PfMSP-119 sequences have been derived from a single parasite population in Tak province, located along the Thailand-Myanmar border, since 1995. However, the extent of sequence variation and the spatiotemporal patterns of the MSP-119 haplotypes along the Thai borders with Laos and Cambodia are unknown. Methods Sixty-three isolates of P. falciparum from five geographically isolated populations along the Thai borders with Myanmar, Laos and Cambodia in three transmission seasons between 2002 and 2008 were collected and culture-adapted. The msp-1 gene block 17 was sequenced and analysed for the allelic diversity, frequency and distribution patterns of PfMSP-119 haplotypes in individual populations. The PfMSP-119 haplotype patterns were then compared between parasite populations to infer the population structure and genetic differentiation of the malaria parasite. Results Five conserved polymorphic positions, which accounted for five distinct haplotypes, of PfMSP-119 were identified. Differences in the prevalence of PfMSP-119 haplotypes were detected in different geographical regions, with the highest levels of genetic diversity being found in the Kanchanaburi and Ranong provinces along the Thailand-Myanmar border and Trat province located at the Thailand-Cambodia border. Despite this variability, the distribution patterns of individual PfMSP-119 haplotypes seemed to be very similar across the country and over the three malarial transmission seasons, suggesting that gene flow may operate between parasite populations circulating in Thailand and the three neighboring countries. Conclusion The major MSP-119 haplotypes of P. falciparum populations in all endemic populations during three transmission seasons in Thailand were identified, providing basic information on the common haplotypes of MSP-119 that is of use for malaria vaccine development and inferring the population structure of P. falciparum populations in Thailand.
Collapse
|
19
|
Cowan GJM, Bockau U, Eleni-Muus J, Aldag I, Samuel K, Creasey AM, Hartmann MWW, Cavanagh DR. A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila. PLoS One 2014; 9:e87198. [PMID: 24489871 PMCID: PMC3906136 DOI: 10.1371/journal.pone.0087198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/20/2013] [Indexed: 01/15/2023] Open
Abstract
Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens.
Collapse
Affiliation(s)
- Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | - Kay Samuel
- Cell Therapy Group, Scottish National Blood Transfusion Service, Edinburgh, United Kingdom
| | - Alison M. Creasey
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | | | - David R. Cavanagh
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Cavanagh DR, Kocken CHM, White JH, Cowan GJM, Samuel K, Dubbeld MA, der Wel AVV, Thomas AW, McBride JS, Arnot DE. Antibody responses to a novel Plasmodium falciparum merozoite surface protein vaccine correlate with protection against experimental malaria infection in Aotus monkeys. PLoS One 2014; 9:e83704. [PMID: 24421900 PMCID: PMC3885447 DOI: 10.1371/journal.pone.0083704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022] Open
Abstract
The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.
Collapse
Affiliation(s)
- David R. Cavanagh
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Clemens H. M. Kocken
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - John H. White
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Kay Samuel
- Scottish National Blood Transfusion Service, Cell Therapy Group, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. Dubbeld
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | | | - Alan W. Thomas
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - Jana S. McBride
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - David E. Arnot
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Medeiros MM, Fotoran WL, dalla Martha RC, Katsuragawa TH, Pereira da Silva LH, Wunderlich G. Natural antibody response to Plasmodium falciparum merozoite antigens MSP5, MSP9 and EBA175 is associated to clinical protection in the Brazilian Amazon. BMC Infect Dis 2013; 13:608. [PMID: 24373342 PMCID: PMC3880555 DOI: 10.1186/1471-2334-13-608] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/23/2013] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Antibodies have an essential role in the acquired immune response against blood stage P. falciparum infection. Although several antigens have been identified as important antibody targets, it is still elusive which antigens have to be recognized for clinical protection. Herein, we analyzed antibodies from plasmas from symptomatic or asymptomatic individuals living in the same geographic area in the Western Amazon, measuring their recognition of multiple merozoite antigens. METHODS Specific fragments of genes encoding merozoite proteins AMA1 and members of MSP and EBL families from circulating P. falciparum field isolates present in asymptomatic and symptomatic patients were amplified by PCR. After cloning and expression of different versions of the antigens as recombinant GST-fusion peptides, we tested the reactivity of patients' plasmas by ELISA and the presence of IgG subclasses in the most reactive plasmas. RESULTS 11 out of 24 recombinant antigens were recognized by plasmas from either symptomatic or asymptomatic infections. Antibodies to MSP9 (X2(DF=1) = 9.26/p = 0.0047) and MSP5 (X2(DF=1) = 8.29/p = 0.0069) were more prevalent in asymptomatic individuals whereas the opposite was observed for MSP1 block 2-MAD20 (X2(DF=1) = 6.41/p = 0.0206, Fisher's exact test). Plasmas from asymptomatic individuals reacted more intensely against MSP4 (U = 210.5, p < 0.03), MSP5 (U = 212, p < 0.004), MSP9 (U = 189.5, p < 0.002) and EBA175 (U = 197, p < 0.014, Mann-Whitney's U test). IgG1 and IgG3 were predominant for all antigens, but some patients also presented with IgG2 and IgG4. The recognition of MSP5 (OR = 0.112, IC95% = 0.021-0.585) and MSP9 (OR = 0.125, IC95% = 0.030-0.529, cross tab analysis) predicted 8.9 and 8 times less chances, respectively, to present symptoms. Higher antibody levels against MSP5 and EBA175 were associated by odds ratios of 9.4 (IC95% = 1.29-69.25) and 5.7 (IC95% = 1.12-29.62, logistic regression), respectively, with an asymptomatic status. CONCLUSIONS Merozoite antigens were targets of cytophilic antibodies and antibodies against MSP5, MSP9 and EBA175 were independently associated with decreased symptoms.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerhard Wunderlich
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Analysis of antibodies to newly described Plasmodium falciparum merozoite antigens supports MSPDBL2 as a predicted target of naturally acquired immunity. Infect Immun 2013; 81:3835-42. [PMID: 23897617 PMCID: PMC3811751 DOI: 10.1128/iai.00301-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prospective studies continue to identify malaria parasite genes with particular patterns of polymorphism which indicate they may be under immune selection, and the encoded proteins require investigation. Sixteen new recombinant protein reagents were designed to characterize three such polymorphic proteins expressed in Plasmodium falciparum schizonts and merozoites: MSPDBL1 (also termed MSP3.4) and MSPDBL2 (MSP3.8), which possess Duffy binding-like (DBL) domains, and SURFIN4.2, encoded by a member of the surface-associated interspersed (surf) multigene family. After testing the antigenicities of these reagents by murine immunization and parasite immunofluorescence, we analyzed naturally acquired antibody responses to the antigens in two cohorts in coastal Kenya in which the parasite was endemic (Chonyi [n = 497] and Ngerenya [n = 461]). As expected, the prevalence and levels of serum antibodies increased with age. We then investigated correlations with subsequent risk of clinical malaria among children <11 years of age during 6 months follow-up surveillance. Antibodies to the polymorphic central region of MSPDBL2 were associated with reduced risk of malaria in both cohorts, with statistical significance remaining for the 3D7 allelic type after adjustment for individuals' ages in years and antibody reactivity to whole-schizont extract (Chonyi, risk ratio, 0.51, and 95% confidence interval [CI], 0.28 to 0.93; Ngerenya, risk ratio, 0.38, and 95% CI, 0.18 to 0.82). For the MSPDBL1 Palo Alto allelic-type antigen, there was a protective association in one cohort (Ngerenya, risk ratio, 0.53, and 95% CI, 0.32 to 0.89), whereas the other antigens showed no protective associations after adjustment. These findings support the prediction that antibodies to the polymorphic region of MSPDBL2 contribute to protective immunity.
Collapse
|
23
|
How Should Antibodies against P. falciparum Merozoite Antigens Be Measured? J Trop Med 2013; 2013:493834. [PMID: 23690791 PMCID: PMC3652195 DOI: 10.1155/2013/493834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 11/18/2022] Open
Abstract
Immunity against malaria develops slowly and only after repeated exposure to the parasite. Many of those that die of the disease are children under five years of age. Antibodies are an important part of immunity, but which antibodies that are protective and how these should be measured are still unclear. We discuss the pros and cons of ELISA, invasion inhibition assays/ADCI, and measurement of affinity of antibodies and what can be done to improve these assays, thereby increasing the knowledge about the immune status of an individual, and to perform better evaluation of vaccine trials.
Collapse
|
24
|
Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, Cheeseman IH, Newbold CI, Holder AA, Knuepfer E, Janha O, Jallow M, Campino S, MacInnis B, Kwiatkowski DP, Conway DJ. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet 2012; 8:e1002992. [PMID: 23133397 PMCID: PMC3486833 DOI: 10.1371/journal.pgen.1002992] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study.
Collapse
Affiliation(s)
| | - Kevin K. A. Tetteh
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Lindsay B. Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - M. Elizabeth Deerhake
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ian H. Cheeseman
- Medical Research Council Unit, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher I. Newbold
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Omar Janha
- Medical Research Council Unit, Fajara, Banjul, The Gambia
| | | | - Susana Campino
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David J. Conway
- Medical Research Council Unit, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Bharti PK, Shukla MM, Sharma YD, Singh N. Genetic diversity in the block 2 region of the merozoite surface protein-1 of Plasmodium falciparum in central India. Malar J 2012; 11:78. [PMID: 22439658 PMCID: PMC3324372 DOI: 10.1186/1475-2875-11-78] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 03/22/2012] [Indexed: 12/04/2022] Open
Abstract
Background Malaria continues to be a significant health problem in India. Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic. The genetic diversity of P. falciparum merozoite surface protein-1 (MSP-1) has been extensively studied from various parts of the world. However, limited data are available from India. The aim of the present study was a molecular characterization of block 2 region of MSP-1 gene from the tribal-dominated, forested region of Madhya Pradesh. Methods DNA sequencing analysis was carried out in 71 field isolates collected between July 2005 to November 2005 and in 98 field isolates collected from July 2009 to December 2009. Alleles identified by DNA sequencing were aligned with the strain 3D7 and polymorphism analysis was done by using Edit Sequence tool (DNASTAR). Results The malaria positivity was 26% in 2005, which rose to 29% in 2009 and P. falciparum prevalence was also increased from 72% in 2005 to 81% in 2009. The overall allelic prevalence was higher in K1 (51%) followed by MAD20 (28%) and RO33 (21%) in 2005 while in 2009, RO33 was highest (40%) followed by K1 (36%) and MAD20 (24%). Conclusions The present study reports extensive genetic variations and dynamic evolution of block 2 region of MSP-1 in central India. Characterization of antigenic diversity in vaccine candidate antigens are valuable for future vaccine trials as well as understanding the population dynamics of P. falciparum parasites in this area.
Collapse
Affiliation(s)
- Praveen K Bharti
- Regional Medical Research Centre for Tribals, Garha, Jabalpur 482003, Madhya Pradesh, India
| | | | | | | |
Collapse
|
26
|
Cowan GJM, Creasey AM, Dhanasarnsombut K, Thomas AW, Remarque EJ, Cavanagh DR. A malaria vaccine based on the polymorphic block 2 region of MSP-1 that elicits a broad serotype-spanning immune response. PLoS One 2011; 6:e26616. [PMID: 22073118 PMCID: PMC3202563 DOI: 10.1371/journal.pone.0026616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 09/29/2011] [Indexed: 12/28/2022] Open
Abstract
Polymorphic parasite antigens are known targets of protective immunity to malaria, but this antigenic variation poses challenges to vaccine development. A synthetic MSP-1 Block 2 construct, based on all polymorphic variants found in natural Plasmodium falciparum isolates has been designed, combined with the relatively conserved Block 1 sequence of MSP-1 and expressed in E.coli. The MSP-1 Hybrid antigen has been produced with high yield by fed-batch fermentation and purified without the aid of affinity tags resulting in a pure and extremely thermostable antigen preparation. MSP-1 hybrid is immunogenic in experimental animals using adjuvants suitable for human use, eliciting antibodies against epitopes from all three Block 2 serotypes. Human serum antibodies from Africans naturally exposed to malaria reacted to the MSP-1 hybrid as strongly as, or better than the same serum reactivities to individual MSP-1 Block 2 antigens, and these antibody responses showed clear associations with reduced incidence of malaria episodes. The MSP-1 hybrid is designed to induce a protective antibody response to the highly polymorphic Block 2 region of MSP-1, enhancing the repertoire of MSP-1 Block 2 antibody responses found among immune and semi-immune individuals in malaria endemic areas. The target population for such a vaccine is young children and vulnerable adults, to accelerate the acquisition of a full range of malaria protective antibodies against this polymorphic parasite antigen.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Protozoan/blood
- Antibodies, Protozoan/immunology
- Case-Control Studies
- Child
- Child, Preschool
- Cross-Sectional Studies
- Enzyme-Linked Immunosorbent Assay
- Female
- Fluorescent Antibody Technique, Indirect
- Humans
- Immunization
- Immunoblotting
- Immunoglobulin G/immunology
- Macaca mulatta
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Merozoite Surface Protein 1/immunology
- Mice
- Mice, Inbred DBA
- Plasmodium falciparum/growth & development
- Plasmodium falciparum/immunology
- Rabbits
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Graeme J. M. Cowan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison M. Creasey
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Kelwalin Dhanasarnsombut
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan W. Thomas
- Biomedical Primate Research Center, Rijswijk, The Netherlands
| | | | - David R. Cavanagh
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Tetteh KKA, Conway DJ. A polyvalent hybrid protein elicits antibodies against the diverse allelic types of block 2 in Plasmodium falciparum merozoite surface protein 1. Vaccine 2011; 29:7811-7. [PMID: 21820475 PMCID: PMC3195258 DOI: 10.1016/j.vaccine.2011.07.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 07/18/2011] [Accepted: 07/23/2011] [Indexed: 01/20/2023]
Abstract
Merozoite surface protein 1 (MSP1) of Plasmodium falciparum has been implicated as an important target of acquired immunity, and candidate components for a vaccine include polymorphic epitopes in the N-terminal polymorphic block 2 region. We designed a polyvalent hybrid recombinant protein incorporating sequences of the three major allelic types of block 2 together with a composite repeat sequence of one of the types and N-terminal flanking T cell epitopes, and compared this with a series of recombinant proteins containing modular sub-components and similarly expressed in Escherichia coli. Immunogenicity of the full polyvalent hybrid protein was tested in both mice and rabbits, and comparative immunogenicity studies of the sub-component modules were performed in mice. The full hybrid protein induced high titre antibodies against each of the major block 2 allelic types expressed as separate recombinant proteins and against a wide range of allelic types naturally expressed by a panel of diverse P. falciparum isolates, while the sub-component modules had partial antigenic coverage as expected. This encourages further development and evaluation of the full MSP1 block 2 polyvalent hybrid protein as a candidate blood-stage component of a malaria vaccine.
Collapse
Affiliation(s)
- Kevin K A Tetteh
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
28
|
Exposure, infection, systemic cytokine levels and antibody responses in young children concurrently exposed to schistosomiasis and malaria. Parasitology 2011; 138:1519-33. [PMID: 21813042 PMCID: PMC3178872 DOI: 10.1017/s0031182011001181] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite the overlapping distribution of Schistosoma haematobium and Plasmodium falciparum infections, few studies have investigated early immune responses to both parasites in young children resident in areas co-endemic for the parasites. This study measures infection levels of both parasites and relates them to exposure and immune responses in young children. Levels of IgM, IgE, IgG4 directed against schistosome cercariae, egg and adult worm and IgM, IgG directed against P. falciparum schizonts and the merozoite surface proteins 1 and 2 together with the cytokines IFN-γ, IL-4, IL-5, IL-10 and TNF-α were measured by ELISA in 95 Zimbabwean children aged 1–5 years. Schistosome infection prevalence was 14·7% and that of Plasmodium infection was 0% in the children. 43. 4% of the children showed immunological evidence of exposure to schistosome parasites and 13% showed immunological evidence of exposure to Plasmodium parasites. Schistosome–specific responses, indicative of exposure to parasite antigens, were positively associated with cercariae-specific IgE responses, while Plasmodium-specific responses, indicative of exposure to parasite antigens, were negatively associated with responses associated with protective immunity against Plasmodium. There was no significant association between schistosome-specific and Plasmodium-specific responses. Systemic cytokine levels rose with age as well as with schistosome infection and exposure. Overall the results show that (1) significantly more children are exposed to schistosome and Plasmodium infection than those currently infected and; (2) the development of protective acquired immunity commences in early childhood, although its effects on infection levels and pathology may take many years to become apparent.
Collapse
|
29
|
Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc Natl Acad Sci U S A 2010; 107:14378-83. [PMID: 20660744 DOI: 10.1073/pnas.1009198107] [Citation(s) in RCA: 232] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During blood-stage infection by Plasmodium falciparum, merozoites invade RBCs. Currently there is limited knowledge of cellular and molecular invasion events, and no established assays are available to readily measure and quantify invasion-inhibitory antibodies or compounds for vaccine and drug studies. We report the isolation of viable merozoites that retain their invasive capacity, at high purity and yield, purified by filtration of highly synchronous populations of schizonts. We show that the half-life of merozoite invasive capacity after rupture is 5 min at 37 degrees C, and 15 min at room temperature. Studying the kinetics of invasion revealed that 80% of invasion events occur within 10 min of mixing merozoites and RBCs. Invasion efficiency was maximum at low merozoite-to-RBC ratios and occurred efficiently in the absence of serum and with high concentrations of dialyzed nonimmune serum. We developed and optimized an invasion assay by using purified merozoites that enabled invasion-inhibitory activity of antibodies and compounds to be measured separately from other mechanisms of growth inhibition; the assay was more sensitive for detecting inhibitory activity than established growth-inhibition assays. Furthermore, with the use of purified merozoites it was possible to capture and fix merozoites at different stages of invasion for visualization by immunofluorescence microscopy and EM. We thereby demonstrate that processing of the major merozoite antigen merozoite surface protein-1 occurs at the time of RBC invasion. These findings have important implications for defining invasion events and molecular interactions, understanding immune interactions, and identifying and evaluating inhibitors to advance vaccine and drug development.
Collapse
|
30
|
Fowkes FJI, Richards JS, Simpson JA, Beeson JG. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: A systematic review and meta-analysis. PLoS Med 2010; 7:e1000218. [PMID: 20098724 PMCID: PMC2808214 DOI: 10.1371/journal.pmed.1000218] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 12/11/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND One of the criteria to objectively prioritize merozoite antigens for malaria vaccine development is the demonstration that naturally acquired antibodies are associated with protection from malaria. However, published evidence of the protective effect of these antibodies is conflicting. METHODS AND FINDINGS We performed a systematic review with meta-analysis of prospective cohort studies examining the association between anti-merozoite immunoglobin (Ig) G responses and incidence of Plasmodium falciparum malaria. Two independent researchers searched six databases and identified 33 studies that met predefined inclusion and quality criteria, including a rigorous definition of symptomatic malaria. We found that only five studies were performed outside sub-Saharan Africa and that there was a deficiency in studies investigating antibodies to leading vaccine candidates merozoite surface protein (MSP)-1(42) and erythrocyte binding antigen (EBA)-175. Meta-analyses of most-studied antigens were conducted to obtain summary estimates of the association between antibodies and incidence of P. falciparum malaria. The largest effect was observed with IgG to MSP-3 C terminus and MSP-1(19) (responders versus nonresponders, 54%, 95% confidence interval [CI] [33%-68%] and 18% [4%-30%] relative reduction in risk, respectively) and there was evidence of a dose-response relationship. A tendency towards protective risk ratios (RR<1) was also observed for individual study estimates for apical membrane antigen (AMA)-1 and glutamate-rich protein (GLURP)-R0. Pooled estimates showed limited evidence of a protective effect for antibodies to MSP-1 N-terminal regions or MSP-1-EGF (epidermal growth factor-like modules). There was no significant evidence for the protective effect for MSP-2 (responders versus nonresponders pooled RR, MSP-2(FC27) 0.82, 95% CI 0.62-1.08, p = 0.16 and MSP-2(3D7) 0.92, 95% CI 0.75-1.13, p = 0.43). Heterogeneity, in terms of clinical and methodological diversity between studies, was an important issue in the meta-analysis of IgG responses to merozoite antigens. CONCLUSIONS These findings are valuable for advancing vaccine development by providing evidence supporting merozoite antigens as targets of protective immunity in humans, and to help identify antigens that confer protection from malaria. Further prospective cohort studies that include a larger number of lead antigens and populations outside Africa are greatly needed to ensure generalizability of results. The reporting of results needs to be standardized to maximize comparability of studies. We therefore propose a set of guidelines to facilitate the uniform reporting of malaria immuno-epidemiology observational studies. Please see later in the article for the Editors' Summary.
Collapse
Affiliation(s)
- Freya J. I. Fowkes
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail: (FJIF); (JGB)
| | - Jack S. Richards
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Julie A. Simpson
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, University of Melbourne, Victoria, Australia
| | - James G. Beeson
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- * E-mail: (FJIF); (JGB)
| |
Collapse
|
31
|
Sutton PL, Neyra V, Hernandez JN, Branch OH. Plasmodium falciparum and Plasmodium vivax infections in the Peruvian Amazon: propagation of complex, multiple allele-type infections without super-infection. Am J Trop Med Hyg 2010; 81:950-60. [PMID: 19996422 DOI: 10.4269/ajtmh.2009.09-0132] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Outcrossing potential between Plasmodium parasites is defined by the population-level diversity (PLD) and complexity of infection (COI). There have been few studies of PLD and COI in low transmission regions. Since the 1995-1998 Peruvian Amazon epidemic, there has been sustained transmission with < 0.5 P. falciparum and < 1.6 P. vivax infections/person/year. Using weekly active case detection, we described PLD by heterozygosity (H(e)) and COI using P. falciparum Pfmsp1-B2 and P. vivax Pvmsp3alpha. Not being homologous genes, we limited comparisons to within species. P. falciparum (N = 293) had low (H(e) = 0.581) and P. vivax (N = 186) had high (H(e) = 0.845) PLD. A total of 9.5% P. falciparum infections and 26.3% P. vivax infections had COI > 1. Certain allele types were in more mixed infections than expected by chance. The few appearances of new alleles could be explained by stochastic polymerase chain reaction detection or synchronization/sequestration. The results suggest propagation of mixed infections by multiple inocula, not super-infection, implying decade-long opportunity for outcrossing in these mixed infections.
Collapse
Affiliation(s)
- Patrick L Sutton
- Department of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
32
|
Noranate N, Prugnolle F, Jouin H, Tall A, Marrama L, Sokhna C, Ekala MT, Guillotte M, Bischoff E, Bouchier C, Patarapotikul J, Ohashi J, Trape JF, Rogier C, Mercereau-Puijalon O. Population diversity and antibody selective pressure to Plasmodium falciparum MSP1 block2 locus in an African malaria-endemic setting. BMC Microbiol 2009; 9:219. [PMID: 19832989 PMCID: PMC2770483 DOI: 10.1186/1471-2180-9-219] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 10/15/2009] [Indexed: 11/17/2022] Open
Abstract
Background Genetic evidence for diversifying selection identified the Merozoite Surface Protein1 block2 (PfMSP1 block2) as a putative target of protective immunity against Plasmodium falciparum. The locus displays three family types and one recombinant type, each with multiple allelic forms differing by single nucleotide polymorphism as well as sequence, copy number and arrangement variation of three amino acid repeats. The family-specific antibody responses observed in endemic settings support immune selection operating at the family level. However, the factors contributing to the large intra-family allelic diversity remain unclear. To address this question, population allelic polymorphism and sequence variant-specific antibody responses were studied in a single Senegalese rural community where malaria transmission is intense and perennial. Results Family distribution showed no significant temporal fluctuation over the 10 y period surveyed. Sequencing of 358 PCR fragments identified 126 distinct alleles, including numerous novel alleles in each family and multiple novel alleles of recombinant types. The parasite population consisted in a large number of low frequency alleles, alongside one high-frequency and three intermediate frequency alleles. Population diversity tests supported positive selection at the family level, but showed no significant departure from neutrality when considering intra-family allelic sequence diversity and all families combined. Seroprevalence, analysed using biotinylated peptides displaying numerous sequence variants, was moderate and increased with age. Reactivity profiles were individual-specific, mapped to the family-specific flanking regions and to repeat sequences shared by numerous allelic forms within a family type. Seroreactivity to K1-, Mad20- and R033 families correlated with the relative family genotype distribution within the village. Antibody specificity remained unchanged with cumulated exposure to an increasingly large number of alleles. Conclusion The Pfmsp1 block2 locus presents a very large population sequence diversity. The lack of stable acquisition of novel antibody specificities despite exposure to novel allelic forms is reminiscent of clonal imprinting. The locus appears under antibody-mediated diversifying selection in a variable environment that maintains a balance between the various family types without selecting for sequence variant allelic forms. There is no evidence of positive selection for intra-family sequence diversity, consistent with the observed characteristics of the antibody response.
Collapse
Affiliation(s)
- Nitchakarn Noranate
- Institut Pasteur, Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, 28 rue du Dr ROUX, 75724 Paris Cedex 15, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Antibody-mediated growth inhibition of Plasmodium falciparum: relationship to age and protection from parasitemia in Kenyan children and adults. PLoS One 2008; 3:e3557. [PMID: 18958285 PMCID: PMC2570335 DOI: 10.1371/journal.pone.0003557] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/09/2008] [Indexed: 12/01/2022] Open
Abstract
Background Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. Methods A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. Results Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children <4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012–2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. Conclusion Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age.
Collapse
|
35
|
Osier FHA, Fegan G, Polley SD, Murungi L, Verra F, Tetteh KKA, Lowe B, Mwangi T, Bull PC, Thomas AW, Cavanagh DR, McBride JS, Lanar DE, Mackinnon MJ, Conway DJ, Marsh K. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun 2008; 76:2240-8. [PMID: 18316390 PMCID: PMC2346713 DOI: 10.1128/iai.01585-07] [Citation(s) in RCA: 308] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 02/09/2008] [Accepted: 02/23/2008] [Indexed: 11/20/2022] Open
Abstract
Individuals living in areas where malaria is endemic are repeatedly exposed to many different malaria parasite antigens. Studies on naturally acquired antibody-mediated immunity to clinical malaria have largely focused on the presence of responses to individual antigens and their associations with decreased morbidity. We hypothesized that the breadth (number of important targets to which antibodies were made) and magnitude (antibody level measured in a random serum sample) of the antibody response were important predictors of protection from clinical malaria. We analyzed naturally acquired antibodies to five leading Plasmodium falciparum merozoite-stage vaccine candidate antigens, and schizont extract, in Kenyan children monitored for uncomplicated malaria for 6 months (n = 119). Serum antibody levels to apical membrane antigen 1 (AMA1) and merozoite surface protein antigens (MSP-1 block 2, MSP-2, and MSP-3) were inversely related to the probability of developing malaria, but levels to MSP-1(19) and erythrocyte binding antigen (EBA-175) were not. The risk of malaria was also inversely associated with increasing breadth of antibody specificities, with none of the children who simultaneously had high antibody levels to five or more antigens experiencing a clinical episode (17/119; 15%; P = 0.0006). Particular combinations of antibodies (AMA1, MSP-2, and MSP-3) were more strongly predictive of protection than others. The results were validated in a larger, separate case-control study whose end point was malaria severe enough to warrant hospital admission (n = 387). These findings suggest that under natural exposure, immunity to malaria may result from high titers antibodies to multiple antigenic targets and support the idea of testing combination blood-stage vaccines optimized to induce similar antibody profiles.
Collapse
Affiliation(s)
- Faith H A Osier
- KEMRI Centre for Geographic Medicine Research, Coast, P.O. Box 230-80108, Kilifi, Kenya.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Pattaradilokrat S, Cheesman SJ, Carter R. Linkage group selection: towards identifying genes controlling strain specific protective immunity in malaria. PLoS One 2007; 2:e857. [PMID: 17848988 PMCID: PMC1959240 DOI: 10.1371/journal.pone.0000857] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/10/2007] [Indexed: 12/03/2022] Open
Abstract
Protective immunity against blood infections of malaria is partly specific to the genotype, or strain, of the parasites. The target antigens of Strain Specific Protective Immunity are expected, therefore, to be antigenically and genetically distinct in different lines of parasite. Here we describe the use of a genetic approach, Linkage Group Selection, to locate the target(s) of Strain Specific Protective Immunity in the rodent malaria parasite Plasmodium chabaudi chabaudi. In a previous such analysis using the progeny of a genetic cross between P. c. chabaudi lines AS-pyr1 and CB, a location on P. c. chabaudi chromosome 8 containing the gene for merozoite surface protein-1, a known candidate antigen for Strain Specific Protective Immunity, was strongly selected. P. c. chabaudi apical membrane antigen-1, another candidate for Strain Specific Protective Immunity, could not have been evaluated in this cross as AS-pyr1 and CB are identical within the cell surface domain of this protein. Here we use Linkage Group Selection analysis of Strain Specific Protective Immunity in a cross between P. c. chabaudi lines CB-pyr10 and AJ, in which merozoite surface protein-1 and apical membrane antigen-1 are both genetically distinct. In this analysis strain specific immune selection acted strongly on the region of P. c. chabaudi chromosome 8 encoding merozoite surface protein-1 and, less strongly, on the P. c. chabaudi chromosome 9 region encoding apical membrane antigen-1. The evidence from these two independent studies indicates that Strain Specific Protective Immunity in P. c. chabaudi in mice is mainly determined by a narrow region of the P. c. chabaudi genome containing the gene for the P. c. chabaudi merozoite surface protein-1 protein. Other regions, including that containing the gene for P. c. chabaudi apical membrane antigen-1, may be more weakly associated with Strain Specific Protective Immunity in these parasites.
Collapse
Affiliation(s)
- Sittiporn Pattaradilokrat
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sandra J. Cheesman
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard Carter
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Gray JC, Corran PH, Mangia E, Gaunt MW, Li Q, Tetteh KKA, Polley SD, Conway DJ, Holder AA, Bacarese-Hamilton T, Riley EM, Crisanti A. Profiling the antibody immune response against blood stage malaria vaccine candidates. Clin Chem 2007; 53:1244-53. [PMID: 17510307 DOI: 10.1373/clinchem.2006.081695] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND The complexity and diversity of the antibody immune response to the antigen repertoire of a pathogen has long been appreciated. Although it has been recognized that the detection of antibodies against multiple antigens dramatically improves the clinical sensitivity and specificity of diagnostic assays, the prognostic value of serum reactivity profiles against multiple microbial antigens in protection has not been investigated. METHODS Using malaria as a model we investigated whether antigen reactivity profiles in serum of children with different levels of clinical immunity to Plasmodium falciparum malaria correlated with protection. We developed a microarray immunoassay of 18 recombinant antigens derived from 4 leading blood-stage vaccine candidates for P. falciparum [merozoite surface protein 1 (MSP1), MSP2, MSP3, and apical membrane antigen (AMA)-1]. Associations between observed reactivity profiles and clinical status were sought using k-means clustering and phylogenetic networks. RESULTS The antibody immune response was unexpectedly complex, with different combinations of antigens recognized in different children. Serum reactivity to individual antigens did not correlate with immune status. By contrast, combined recognition of AMA-1 and allelic variants of MSP2 was significantly associated with protection against clinical malaria. This finding was confirmed independently by k-means clustering and phylogenetic networking. CONCLUSIONS The analysis of reactivity profiles provides a wealth of novel information about the immune response against microbial organisms that would pass unnoticed in analysis of reactivity to antigens individually. Extension of this approach to a large fraction of the proteome may expedite the identification of correlates of protection and vaccine development against microbial diseases.
Collapse
Affiliation(s)
- Julian C Gray
- Faulty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Scopel KKG, Fontes CJF, Ferreira MU, Braga EM. Factors associated with immunoglobulin G subclass polarization in naturally acquired antibodies to Plasmodium falciparum merozoite surface proteins: a cross-sectional survey in Brazilian Amazonia. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:810-3. [PMID: 16829621 PMCID: PMC1489569 DOI: 10.1128/cvi.00095-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated immunoglobulin G (IgG) subclass antibody responses to Plasmodium falciparum merozoite surface protein 1 (MSP-1) and MSP-2 in 112 malaria-exposed subjects in Brazil. IgG3 polarization was primarily epitope driven, being little affected by cumulative or current exposure to malaria and not affected by a subject's age and Fcgamma receptor IIA genotype.
Collapse
Affiliation(s)
- Kézia K G Scopel
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte (MG), Brazil
| | | | | | | |
Collapse
|
39
|
Nogueira PA, Alves FP, Fernandez-Becerra C, Pein O, Santos NR, Pereira da Silva LH, Camargo EP, del Portillo HA. A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infect Immun 2006; 74:2726-33. [PMID: 16622209 PMCID: PMC1459730 DOI: 10.1128/iai.74.5.2726-2733.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progress towards the development of a malaria vaccine against Plasmodium vivax, the most widely distributed human malaria parasite, will require a better understanding of the immune responses that confer clinical protection to patients in regions where malaria is endemic. The occurrence of clinical protection in P. vivax malaria in Brazil was first reported among residents of the riverine community of Portuchuelo, in Rondônia, western Amazon. We thus analyzed immune sera from this same human population to determine if naturally acquired humoral immune responses against the merozoite surface protein 1 of P. vivax, PvMSP1, could be associated with reduced risk of infection and/or clinical protection. Our results demonstrated that this association could be established with anti-PvMSP1 antibodies predominantly of the immunoglobulin G3 subclass directed against the N terminus but not against the C terminus, in spite of the latter being more immunogenic and capable of natural boosting. This is the first report of a prospective study of P. vivax malaria demonstrating an association of reduced risk of infection and clinical protection with antibodies against an antigen of this parasite.
Collapse
|
40
|
Takala SL, Escalante AA, Branch OH, Kariuki S, Biswas S, Chaiyaroj SC, Lal AA. Genetic diversity in the Block 2 region of the merozoite surface protein 1 (MSP-1) of Plasmodium falciparum: additional complexity and selection and convergence in fragment size polymorphism. INFECTION GENETICS AND EVOLUTION 2006; 6:417-24. [PMID: 16517218 PMCID: PMC1853307 DOI: 10.1016/j.meegid.2006.01.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Accepted: 01/31/2006] [Indexed: 10/24/2022]
Abstract
Fragment size in the Block 2 repetitive region of merozoite surface protein 1 (MSP1) has commonly been used as a molecular marker in studies of malaria transmission dynamics and host immunity in Plasmodium falciparum malaria. In this study, we further explore the genetic variation in MSP-1 Block 2 underlying potential problems faced while studying the immune responses elicited by this vaccine target and while using it as a molecular marker in epidemiologic investigations. We describe the distribution of a new Block 2 recombinant allele family in samples collected from western Kenya and other malarious regions of the world and provide evidence that this allele family is found worldwide and that all MR alleles most likely originated from a single recombination event. We test whether the number of tandem repeats (i.e. fragment size) can be considered neutral in an area of high transmission in western Kenya. In addition, we investigate the validity of the assumption that Block 2 alleles of the same size and allele family are identical by examining MSP1 Block 2 amino acid sequences obtained from full-length MSP-1 clones generated from infected Kenyan children and find that this assumption does not hold. We conclude that the worldwide presence of a new allele family, the effect of positive natural selection, and the lack of conserved amino acid motifs within alleles of the same size suggest a higher level of complexity that may hamper our ability to elucidate allele family specific immune responses elicited by this vaccine target and its overall use as genetic marker in other types of epidemiologic investigations.
Collapse
Affiliation(s)
- S L Takala
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, GA, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Tongren JE, Drakeley CJ, McDonald SLR, Reyburn HG, Manjurano A, Nkya WMM, Lemnge MM, Gowda CD, Todd JE, Corran PH, Riley EM. Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun 2006; 74:257-64. [PMID: 16368979 PMCID: PMC1346665 DOI: 10.1128/iai.74.1.257-264.2006] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The isotype/subclass of immunoglobulin determines antibody function, but rather little is known about factors that direct class switching in vivo. To evaluate factors that might influence the maturation of the antibody response during infection, we conducted a seroepidemiological study of the immunoglobulin G (IgG) subclass response to four merozoite-associated antigens of Plasmodium falciparum in a mountainous region of northeastern Tanzania, where malaria endemicity declines with increasing altitudes. We found that IgG1/IgG3 class switching is independently affected by the nature of the antigen, cumulative exposure to the antigen, and the maturity of the immune system (i.e., the age of the individual). These observations provide insights into the effects of immune system maturity, the duration and intensity of antigen exposure, and inherent characteristics of individual antigens on the process of class switching in human B cells. Our data also throw light on the consequences of class switch decisions on the gradual acquisition of antimalarial immunity.
Collapse
Affiliation(s)
- J Eric Tongren
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tetteh KKA, Cavanagh DR, Corran P, Musonda R, McBride JS, Conway DJ. Extensive antigenic polymorphism within the repeat sequence of the Plasmodium falciparum merozoite surface protein 1 block 2 is incorporated in a minimal polyvalent immunogen. Infect Immun 2005; 73:5928-35. [PMID: 16113313 PMCID: PMC1231057 DOI: 10.1128/iai.73.9.5928-5935.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polymorphism in pathogen antigens presents a complex challenge for vaccine design. A prime example is the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP1), to which allele-specific antibodies have been associated with protection from malaria. In a Zambian population studied here, 49 of 91 alleles sampled were of the K1-like type (the most common of three block 2 types in all African populations), and most of these had unique sequences due to variation in tri- and hexapeptide repetitive motifs. There were significant negative correlations between allelic sequence lengths of different regions of the repeats, so the complete repeat sequence had less length variation than its component parts, suggesting a constraint on overall length. Diverse epitopes recognized by three murine monoclonal antibodies and 24 individual human sera were then mapped by using a comprehensive panel of synthetic peptides, revealing epitopes in all regions of the repeats. To incorporate these different epitopes in a single molecule, a composite sequence of minimal overall length (78 amino acids) was then designed and expressed as a recombinant antigen. More human immune sera reacted with this "K1-like Super Repeat" antigen than with proteins consisting of single natural allelic sequences, and immunization of mice elicited antibodies that recognized a range of five cultured parasite lines with diverse K1-like MSP1 block 2 repeat sequences. Thus, complex allelic polymorphism was deconstructed and a minimal composite polyvalent antigen was engineered, delivering a designed candidate sequence for inclusion in a malaria vaccine.
Collapse
Affiliation(s)
- Kevin K A Tetteh
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel St., London WC1E 7HT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
43
|
Jouin H, Garraud O, Longacre S, Baleux F, Mercereau-Puijalon O, Milon G. Human antibodies to the polymorphic block 2 domain of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) exhibit a highly skewed, peptide-specific light chain distribution. Immunol Cell Biol 2005; 83:392-5. [PMID: 16033534 DOI: 10.1111/j.1440-1711.2005.01343.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antibodies to polymorphic block 2 of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) present a paradoxical association with acquired protection against clinical malaria, while showing restricted and fixed specificity, reminiscent of antigenic sin. We report here that these antibodies present a highly imbalanced, peptide-specific light chain distribution. This was not observed with several other parasite-derived peptides or antigens. These data point to a skewed immune response to MSP-1 block 2 that is constrained both in specificity and chain usage. This is the first report of a biased response to polymorphic epitopes of a surface antigen in malaria parasites.
Collapse
Affiliation(s)
- Hélène Jouin
- Parasite Molecular Immunology Unit, CNRS URA 2581, Pasteur Institute, Paris, France.
| | | | | | | | | | | |
Collapse
|
44
|
Ferreira MU, da Silva Nunes M, Wunderlich G. Antigenic diversity and immune evasion by malaria parasites. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 11:987-95. [PMID: 15539495 PMCID: PMC524792 DOI: 10.1128/cdli.11.6.987-995.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Marcelo U Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1374, 05508-900 São Paulo (SP), Brazil.
| | | | | |
Collapse
|
45
|
Scopel KKG, Fontes CJF, Ferreira MU, Braga EM. Plasmodium falciparum: IgG subclass antibody response to merozoite surface protein-1 among Amazonian gold miners, in relation to infection status and disease expression. Exp Parasitol 2005; 109:124-34. [PMID: 15687019 DOI: 10.1016/j.exppara.2004.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/18/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
The merozoite surface protein-1 (MSP-1) of Plasmodium falciparum comprises two major targets of antibody-mediated immunity: the polymorphic block 2 and the 19-kDa C-terminal domain MSP-1(19). Here, we measured antibodies to three block 2 variants and MSP-1(19) among Amazonian gold miners and examined the repertoire of block 2 variants in local parasites. Main findings were as follows: (1) Only seven different block 2 variants were found in 18 DNA sequences analyzed. (2) No major difference was observed in IgG subclass distribution of antibodies from symptomatic P. falciparum-infected patients, asymptomatic parasite carriers, and non-infected subjects. (3) Antibodies to all block 2 antigens, but not to MSP-1(19), were biased towards IgG3 across different strata of cumulative malaria exposure. (4) Similar proportions of symptomatic and asymptomatic subjects failed to recognize the block 2 variant expressed by infecting parasites. These negative results underscore the limits of conventional antibody assays to evaluate clinical immunity to malaria.
Collapse
Affiliation(s)
- Kézia K G Scopel
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte (MG), Brazil
| | | | | | | |
Collapse
|
46
|
Cavanagh DR, Dodoo D, Hviid L, Kurtzhals JAL, Theander TG, Akanmori BD, Polley S, Conway DJ, Koram K, McBride JS. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria. Infect Immun 2004; 72:6492-502. [PMID: 15501780 PMCID: PMC522997 DOI: 10.1128/iai.72.11.6492-6502.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This longitudinal prospective study shows that antibodies to the N-terminal block 2 region of the Plasmodium falciparum merozoite surface protein 1 (MSP-1) are associated with protection against clinical malaria in an area of stable but seasonal malaria transmission of Ghana. Antibodies to the block 2 region of MSP-1 were measured in a cohort of 280 children before the beginning of the major malaria transmission season. The cohort was then actively monitored for malaria, clinically and parasitologically, over a period of 17 months. Evidence is presented for an association between antibody responses to block 2 and a significantly reduced risk of subsequent clinical malaria. Furthermore, statistical survival analysis provides new information on the duration of the effect over time. The results support a conclusion that the block 2 region of MSP-1 is a target of protective immunity against P. falciparum and, thus, a promising new candidate for the development of a malaria vaccine.
Collapse
Affiliation(s)
- David R Cavanagh
- Institute of Cell, Animal and Population Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, West Mains Rd., EH9 3JT, Scotland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kimbi HK, Tetteh KKA, Polley SD, Conway DJ. Cross-sectional study of specific antibodies to a polymorphic Plasmodium falciparum antigen and of parasite antigen genotypes in school children on the slope of Mount Cameroon. Trans R Soc Trop Med Hyg 2004; 98:284-9. [PMID: 15109551 DOI: 10.1016/s0035-9203(03)00068-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 09/29/2003] [Accepted: 10/01/2003] [Indexed: 10/26/2022] Open
Abstract
To investigate relationships between Plasmodium falciparum parasitaemia, parasite genotypes, and specific anti-parasite antibodies, 244 school children (aged 4 to 16 years) were studied in April/May 2002, the peak malaria transmission season in Buea, Cameroon. Antibody reactivities were analysed by ELISA using an array of recombinant antigens representing different sequences from the polymorphic block 2 region of the merozoite surface protein 1 (MSP1), and the blood samples that were slide-positive for P. falciparum were genotyped for msp1 block 2 alleles. The prevalence of antibodies to the specific MSP1 block 2 antigens was significantly higher in children at one particular school (situated at the lowest altitude) compared to the others, although the prevalence of infection or particular parasite genotypes did not differ. Thus, at a population level, the prevalence of these antibodies does not simply reflect prevalence of parasites, but rather may be due to differences in the incidence of past infections. However, there were weak positive associations between specific antibody reactivity and the presence of the corresponding allele in the blood of individuals (statistically significant for the MAD20-type allele of block 2), indicating that antibody specificities are to some extent determined by current parasite infections.
Collapse
Affiliation(s)
- Helen K Kimbi
- Department of Life Sciences, University of Buea, P.O. Box 63 Buea, S.W.P., Cameroon.
| | | | | | | |
Collapse
|
48
|
Reece WHH, Pinder M, Gothard PK, Milligan P, Bojang K, Doherty T, Plebanski M, Akinwunmi P, Everaere S, Watkins KR, Voss G, Tornieporth N, Alloueche A, Greenwood BM, Kester KE, McAdam KPWJ, Cohen J, Hill AVS. A CD4(+) T-cell immune response to a conserved epitope in the circumsporozoite protein correlates with protection from natural Plasmodium falciparum infection and disease. Nat Med 2004; 10:406-10. [PMID: 15034567 DOI: 10.1038/nm1009] [Citation(s) in RCA: 211] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 02/26/2004] [Indexed: 11/08/2022]
Abstract
Many human T-cell responses specific for epitopes in Plasmodium falciparum have been described, but none has yet been shown to be predictive of protection against natural malaria infection. Here we report a peptide-specific T-cell assay that is strongly associated with protection of humans in The Gambia, West Africa, from both malaria infection and disease. The assay detects interferon-gamma-secreting CD4(+) T cells specific for a conserved sequence from the circumsporozoite protein, which binds to many human leukocyte antigen (HLA)-DR types. The correlation was observed using a cultured, rather than an ex vivo, ELISPOT assay that measures central memory-'type T cells rather than activated effector T cells. These findings provide direct evidence for a protective role for CD4(+) T cells in humans, and a precise target for the design of improved vaccines against P. falciparum.
Collapse
Affiliation(s)
- William H H Reece
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|