1
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
2
|
Nikzad-Chaleshtori M, Asgari M, Rezaeizadeh G, Aali F, Doosti A. The urease E subunit vaccine stimulate the immune response versus Helicobacter pylori in animal model. Immunol Res 2025; 73:74. [PMID: 40259189 DOI: 10.1007/s12026-025-09625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/29/2025] [Indexed: 04/23/2025]
Abstract
There is a strong association between Helicobacter pylori (H. pylori) and the occurrence of gastritis and gastric mucosal lymphoma in the human population. Vaccination is a viable preventive measure in light of the escalating issue of antibiotic resistance. The use of DNA vaccines presents a potentially effective approach. This study used the utilization of antigenic H. pylori urease E subunit (UreE) for the development of a DNA vaccine. The UreE gene was chemically cloned into pIRES2-DsRed-Express (pDNA), and PCR and restriction enzyme digestion verified the cloning. The immunogenicity and immune-protective efficacy of the vaccination were assessed in BALB/c mice. In contrast, blood samples from BALB/c mice inoculated with pDNA-UreE showed higher levels of IgG, IFN-γ, IL- 4, and IL- 17. Furthermore, stomach damage and bacterial loads were reduced, and BALB/c mice inoculated with pDNA-UreE exhibited a significant protection rate (87.5%) against the H. pylori challenge. pDNA-UreE generated a combination of Th1-Th2-Th17 immune responses, perhaps contributing to adequate protection. Based on our findings, using this DNA immunization as a preventive measure against H. pylori infection is a viable approach.
Collapse
Affiliation(s)
| | - Mohsen Asgari
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Golnoosh Rezaeizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Faranak Aali
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
3
|
Tan R, Zhou S, Sun M, Liu Y, Ni X, He J, Guo G, Liu K. Modeling and optimization of culture media for recombinant Helicobacter pylori vaccine antigen HpaA. Front Bioeng Biotechnol 2024; 12:1499940. [PMID: 39698188 PMCID: PMC11652157 DOI: 10.3389/fbioe.2024.1499940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Introduction H. pylori (Helicobacter pylori) infection represents a significant global health concern, exacerbated by the emergence of drug-resistant strains resulting from conventional antibiotic treatments. Consequently, the development of vaccines with both preventive and therapeutic properties has become crucial in addressing H. pylori infections. The H. pylori adhesin protein HpaA has demonstrated strong immunogenicity across various adjuvants and dosage forms, positioning it as a key candidate antigen for recombinant subunit vaccines against H. pylori. Optimizing fermentation culture conditions is an effective strategy to enhance product yield and lower production costs. However, to date, there has been no systematic investigation into methods for improving the fermentation yield of HpaA. Enhancing the fermentation medium to increase HpaA yield holds significant potential for application and economic benefits in the prevention and detection of H. pylori infection. Methods To achieve a stable and high-yielding H. pylori vaccine antigen HpaA, this study constructed recombinant Escherichia coli expressing HpaA. The impact of fermentation medium components on the rHpaA yield was assessed using a one-factor-at-a-time approach alongside Plackett-Burman factorial experiments. Optimal conditions were effectively identified through response surface methodology (RSM) and artificial neural network (ANN) statistical computational models. The antigenicity and immunogenicity of the purified rHpaA were validated through immunization of mice, followed by Western Blot analysis and serum IgG ELISA quantification. Results Glucose, yeast extract, yeast peptone, NH4Cl and CaCl2 all contributed to the production of rHpaA, with glucose, yeast extract, and NH4Cl demonstrating particularly significant effects. The artificial neural network linked genetic algorithm (ANN-GA) model exhibited superior predictive accuracy, achieving a rHpaA yield of 0.61 g/L, which represents a 93.2% increase compared to the initial medium. Animal immunization experiments confirmed that rHpaA possesses good antigenicity and immunogenicity. Discussion This study pioneers the statistical optimization of culture media to enhance rHpaA production, thereby supporting its large-scale application in H. pylori vaccines. Additionally, it highlights the advantages of the ANN-GA approach in bioprocess optimization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gang Guo
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Kaiyun Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Strnad M, Koizumi N, Nakamura S, Vancová M, Rego ROM. It's not all about flagella - sticky invasion by pathogenic spirochetes. Trends Parasitol 2024; 40:378-385. [PMID: 38523038 DOI: 10.1016/j.pt.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
Pathogenic spirochetes cause a range of serious human diseases such as Lyme disease (LD), syphilis, leptospirosis, relapsing fever (RF), and periodontal disease. Motility is a critical virulence factor for spirochetes. From the mechanical perspective of the infection, it has been widely believed that flagella are the sole key players governing the migration and dissemination of these pathogens in the host. Here, we highlight the important contribution of spirochetal surface-exposed adhesive molecules and their dynamic interactions with host molecules in the process of infection, specifically in spirochetal swimming and crawling migration. We believe that these recent findings overturn the prevailing view depicting the spirochetal body to be just an inert elastic bag, which does not affect spirochetal cell locomotion.
Collapse
Affiliation(s)
- Martin Strnad
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic.
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Marie Vancová
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 37005, České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| |
Collapse
|
5
|
Martini C, Araba V, Beniani M, Armoa Ortiz P, Simmons M, Chalbi M, Mellouk A, El Bakkouri M, Calmettes C. Unraveling the crystal structure of the HpaA adhesin: insights into cell adhesion function and epitope localization of a Helicobacter pylori vaccine candidate. mBio 2024; 15:e0295223. [PMID: 38376163 PMCID: PMC10936181 DOI: 10.1128/mbio.02952-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Helicobacter pylori is a bacterium that exhibits strict host restriction to humans and non-human primates, and the bacterium is widely acknowledged as a significant etiological factor in the development of chronic gastritis, peptic ulcers, and gastric cancers. The pathogenic potential of this organism lies in its adeptness at colonizing the gastric mucosa, which is facilitated by a diverse repertoire of virulence factors, including adhesins that promote the attachment of the bacteria to the gastric epithelium. Among these adhesins, HpaA stands out due to its conserved nature and pivotal role in establishing H. pylori colonization. Moreover, this lipoprotein holds promise as an antigen for the development of effective H. pylori vaccines, thus attracting considerable attention for in-depth investigations into its molecular function and identification of binding determinants. Here, we present the elucidation of the crystallographic structure of HpaA at 2.9 Å resolution. The folding adopts an elongated protein shape, which is distinctive to the Helicobacteraceae family, and features an apical domain extension that plays a critical role in the cell-adhesion activity on gastric epithelial cells. Our study also demonstrates the ability of HpaA to induce TNF-α expression in macrophages, highlighting a novel role as an immunoregulatory effector promoting the pro-inflammatory response in vitro. These findings not only contribute to a deeper comprehension of the multifaceted role of HpaA in H. pylori pathogenesis but also establish a fundamental basis for the design and development of structure-based derivatives, aimed at enhancing the efficacy of H. pylori vaccines. IMPORTANCE Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and gastric cancers. The bacterium adheres to the lining of the stomach using proteins called adhesins. One of these proteins, HpaA, is particularly important for H. pylori colonization and is considered a promising vaccine candidate against H. pylori infections. In this work, we determined the atomic structure of HpaA, identifying a characteristic protein fold to the Helicobacter family and delineating specific amino acids that are crucial to support the attachment to the gastric cells. Additionally, we discovered that HpaA can trigger the production of TNF-α, a proinflammatory molecule, in macrophages. These findings provide valuable insights into how H. pylori causes disease and suggest that HpaA has a dual role in both attachment and immune activation. This knowledge could contribute to the development of improved vaccine strategies for preventing H. pylori infections.
Collapse
Affiliation(s)
- Cyrielle Martini
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Victoria Araba
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Meriem Beniani
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Paula Armoa Ortiz
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mimi Simmons
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Mariem Chalbi
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Abdelkader Mellouk
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Majida El Bakkouri
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Charles Calmettes
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, Québec city, Québec, Canada
| |
Collapse
|
6
|
Zhang F, Shi T, Zhang Z, Wang S, Liu J, Li Y, Wang X, Liu K, Guo L. An M cell-targeting recombinant L. lactis vaccine against four H. pylori adhesins. Appl Microbiol Biotechnol 2024; 108:231. [PMID: 38396242 PMCID: PMC10891252 DOI: 10.1007/s00253-024-13070-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
The acidic environment and enzyme degradation lead to oral vaccines often having little immune effect. Therefore, it is an attractive strategy to study an effective and safe oral vaccine delivery system that can promote gastrointestinal mucosal immune responses and inhibit antigen degradation. Moreover, the antigens uptake by microfold cells (M cells) is the determining step in initiating efficient immune responses. Therefore, M cell-targeting is one promising approach for enhancing oral vaccine potency. In the present study, an M cell-targeting L. lactis surface display system (plSAM) was built to favor the multivalent epitope vaccine antigen (FAdE) to achieve effective gastrointestinal mucosal immunity against Helicobacter pylori. Therefore, a recombinant Lactococcus lactic acid vaccine (LL-plSAM-FAdE) was successfully prepared, and its immunological properties and protective efficacy were analyzed. The results showed that LL-plSAM-FAdE can secretively express the recombinant proteins SAM-FAdE and display the SAM-FAdE on the bacterial cell surface. More importantly, LL-plSAM-FAdE effectively promoted the phagocytosis and transport of vaccine antigen by M cells in the gastrointestinal tract of mice, and simulated high levels of cellular and humoral immune responses against four key H. pylori adhesins (Urease, CagL, HpaA, and Lpp20) in the gastrointestinal tract, thus enabling effective prevention of H. pylori infection and to some extent eliminating H. pylori already present in the gastrointestinal tract. KEY POINTS: • M-cell-targeting L. lactis surface display system LL- plSAM was designed • This system displays H. pylori vaccine-promoted phagocytosis and transport of M cell • A promising vaccine candidate for controlling H. pylori infection was verified.
Collapse
Affiliation(s)
- Furui Zhang
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China
| | - Tianyi Shi
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhen Zhang
- Department of Geriatrics and Special Needs Medicine, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Shue Wang
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China
| | - Jing Liu
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China
| | - Yonghong Li
- School of Public Health and Management, Ningxia Medical University, Yinchuan, 750004, China
| | - Xuequan Wang
- Key Laboratory of Radiation Oncology of Taizhou, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China.
| | - Kunmei Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical University, Yinchuan, 750004, China.
| | - Le Guo
- School of Laboratory, Ningxia Medical University, Yinchuan, 750004, China.
- Key Laboratory of Radiation Oncology of Taizhou, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China.
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
7
|
Li ZX, Bronny K, Formichella L, Mejías-Luque R, Burrell T, Macke L, Lang U, Vasapolli R, Hysenaj O, Stallforth I, Vieth M, You WC, Zhang Y, Suerbaum S, Schulz C, Pan KF, Gerhard M. A multiserological line assay to potentially discriminate current from past Helicobacter pylori infection. Clin Microbiol Infect 2024; 30:114-121. [PMID: 37827383 DOI: 10.1016/j.cmi.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
OBJECTIVES Early diagnosis is important in controlling Helicobacter pylori-induced gastritis and progression to gastric malignancy. Serological testing is an efficient non-invasive diagnostic method, but currently does not allow differentiation between active and past infections. To fill this diagnostic gap we investigated the diagnostic value of a panel of ten H. pylori-specific antibodies in individuals with different H. pylori infection status within a German population. METHODS We used the recomLine Helicobacter IgG 2.0 immunoblotting assay to analyse ten H. pylori-specific antibodies in serum samples collected from 1108 volunteers. From these, 788 samples were used to build exposure and infection status models and 320 samples for model validation. H. pylori infection status was verified by histological examination. We applied logistic regression to select antibodies correlated to infection status and developed, with independent validation, discriminating models and risk scores. Receiving operating characteristic analysis was performed to assess the accuracy of the discriminating models. RESULTS Antibody reactivity against cytotoxin-associated gene A (CagA), H. pylori chaperone (GroEL), and hook-associated protein 2 homologue (FliD) was independently associated with the risk of H. pylori exposure with ORs and 95% CIs of 99.24 (46.50-211.80), 46.17 (17.45-122.17), and 22.16 (8.46-55.04), respectively. A risk score comprising these three selected antibodies differentiated currently H. pylori infected or eradicated participants from negatives with an area under the curve of 0.976 (95% CI: 0.965-0.987) (Model 1). Seropositivity for vacuolating cytotoxin A (VacA), GroEL, FliD, H. pylori adhesin A (HpaA), and γ-glutamyl transpeptidase (gGT) was associated with a current infection with an area under the curve of 0.870 (95% CI: 0.837-0.903), which may help discriminate currently infected patients from eradicated ones (Model 2). DISCUSSION The recomLine assay is sensitive and specific in determining H. pylori infection and eradication status and thus represents a valuable tool in the management of H. pylori infection.
Collapse
Affiliation(s)
- Zhe-Xuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China; PYLOTUM Key Joint Laboratory for Upper GI Cancer, Technische Universität München, Munich, Germany, Peking University Cancer Hospital & Institute, Beijing, China; Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Department of Clinical Research, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Kathrin Bronny
- Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Luca Formichella
- Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- PYLOTUM Key Joint Laboratory for Upper GI Cancer, Technische Universität München, Munich, Germany, Peking University Cancer Hospital & Institute, Beijing, China; Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Teresa Burrell
- Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Lukas Macke
- Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany; Medical Department II, University Hospital, LMU, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Ulrich Lang
- Medical Department II, University Hospital, LMU, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Riccardo Vasapolli
- Medical Department II, University Hospital, LMU, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Olsi Hysenaj
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Ingrid Stallforth
- Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Michael Vieth
- PYLOTUM Key Joint Laboratory for Upper GI Cancer, Technische Universität München, Munich, Germany, Peking University Cancer Hospital & Institute, Beijing, China; Institute of Pathology, Klinikum Bayreuth, Bayreuth, Germany
| | - Wei-Cheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China; PYLOTUM Key Joint Laboratory for Upper GI Cancer, Technische Universität München, Munich, Germany, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China; PYLOTUM Key Joint Laboratory for Upper GI Cancer, Technische Universität München, Munich, Germany, Peking University Cancer Hospital & Institute, Beijing, China
| | - Sebastian Suerbaum
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany; Max von Pettenkofer Institute, Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany; National Reference Center for Helicobacter Pylori, Munich, Germany
| | - Christian Schulz
- Medical Department II, University Hospital, LMU, Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Kai-Feng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing, China; PYLOTUM Key Joint Laboratory for Upper GI Cancer, Technische Universität München, Munich, Germany, Peking University Cancer Hospital & Institute, Beijing, China
| | - Markus Gerhard
- PYLOTUM Key Joint Laboratory for Upper GI Cancer, Technische Universität München, Munich, Germany, Peking University Cancer Hospital & Institute, Beijing, China; Institute of Medical Microbiology, Immunology and Hygiene, School of Medicine, Technical University of Munich (TUM), Munich, Germany; German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
8
|
Gao Y, Wang R, Liu L, Feng S, Xi X, Yu W, Gu Y, Wang Y. Identification and characterization of shark VNARs targeting the Helicobacter pylori adhesin HpaA. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:509-519. [PMID: 37695066 DOI: 10.1080/21691401.2023.2255635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Helicobacter pylori (H. pylori) is recognized as a pathogen associated with several gastrointestinal diseases. The current treatments exhibit numerous drawbacks, including antibiotic resistance. H. pylori can adhere to and colonize the gastric mucosa through H. pylori adhesin A (HpaA), and antibodies against HpaA may be an effective therapeutic approach. The variable domain of immunoglobulin new antigen receptor (VNAR) is a novel type of single-domain antibody with a small size, good stability, and easy manufacturability. This study isolated VNARs against HpaA from an immune shark VNAR phage display library. The VNARs can bind both recombinant and native HpaA proteins. The VNARs, 2A2 and 3D6, showed high binding affinities to HpaA with different epitopes. Furthermore, homodimeric bivalent VNARs, biNb-2A2 and biNb-3D6, were constructed to enhance the binding affinity. The biNb-2A2 and biNb-3D6 had excellent stability at gastrointestinal pH conditions. Finally, a sandwich ELISA assay was developed to quantify the HpaA protein using BiNb-2A2 as the capture antibody and BiNb-3D6 as the detection antibody. This study provides a potential foundation for novel alternative approaches to treatment or diagnostics applications of H. pylori infection.
Collapse
Affiliation(s)
- Yanchun Gao
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Ruihong Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, P.R. China
| | - Lin Liu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Shitao Feng
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Xiaozhi Xi
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Wengong Yu
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Yuchao Gu
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, P.R. China
- Key Laboratory of Marine Drugs, the Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P.R. China
| | - Ye Wang
- The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
9
|
Friedrich V, Gerhard M. Vaccination against Helicobacter pylori - An approach for cancer prevention? Mol Aspects Med 2023; 92:101183. [PMID: 37018869 DOI: 10.1016/j.mam.2023.101183] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023]
Abstract
The gram-negative bacterium Helicobacter pylori is the most common chronic bacterial infection and the main cause of gastric cancer. Due to the increasing antimicrobial resistance of H. pylori, the development of an efficacious vaccine is a valid option to protect from disease or infection and ultimately prevent gastric cancer. However, despite more than 30 years of research, no vaccine has entered the market yet. This review highlights the most relevant previous preclinical and clinical studies to allow conclusions to be drawn on which parameters need special attention in the future to develop an efficacious vaccine against H. pylori and thus prevent gastric cancer.
Collapse
Affiliation(s)
- Verena Friedrich
- Technical University of Munich (TUM), School of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, Munich 81675, Germany
| | - Markus Gerhard
- Technical University of Munich (TUM), School of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, Trogerstrasse 30, Munich 81675, Germany.
| |
Collapse
|
10
|
Zhang Y, Li X, Shan B, Zhang H, Zhao L. Perspectives from recent advances of Helicobacter pylori vaccines research. Helicobacter 2022; 27:e12926. [PMID: 36134470 DOI: 10.1111/hel.12926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 08/17/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is the main factor leading to some gastric diseases. Currently, H. pylori infection is primarily treated with antibiotics. However, with the widespread application of antibiotics, H. pylori resistance to antibiotics has also gradually increased year by year. Vaccines may be an alternative solution to clear H. pylori. AIMS By reviewing the recent progress on H. pylori vaccines, we expected it to lead to more research efforts to accelerate breakthroughs in this field. MATERIALS & METHODS We searched the research on H. pylori vaccine in recent years through PubMed®, and then classified and summarized these studies. RESULTS The study of the pathogenic mechanism of H. pylori has led to the development of vaccines using some antigens, such as urease, catalase, and heat shock protein (Hsp). Based on these antigens, whole-cell, subunit, nucleic acid, vector, and H. pylori exosome vaccines have been tested. DISCUSSION At present, researchers have developed many types of vaccines, such as whole cell vaccines, subunit vaccines, vector vaccines, etc. However, although some of these vaccines induced protective immunity in mouse models, only a few were able to move into human trials. We propose that mRNA vaccine may play an important role in preventing or treating H. pylori infection. The current study shows that we have developed various types of vaccines based on the virulence factors of H. pylori. However, only a few vaccines have entered human clinical trials. In order to improve the efficacy of vaccines, it is necessary to enhance T-cell immunity. CONCLUSION We should fully understand the pathogenic mechanism of H. pylori and find its core antigen as a vaccine target.
Collapse
Affiliation(s)
- Ying Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoya Li
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Baoen Shan
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongtao Zhang
- University of Pennsylvania School of Medicine Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lianmei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Ghasemi A, Wang S, Sahay B, Abbott JR, Curtiss R. Protective immunity enhanced Salmonella vaccine vectors delivering Helicobacter pylori antigens reduce H. pylori stomach colonization in mice. Front Immunol 2022; 13:1034683. [PMID: 36466847 PMCID: PMC9716130 DOI: 10.3389/fimmu.2022.1034683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2024] Open
Abstract
Helicobacter pylori is a major cause of gastric mucosal inflammation, peptic ulcers, and gastric cancer. Emerging antimicrobial-resistant H. pylori has hampered the effective eradication of frequent chronic infections. Moreover, a safe vaccine is highly demanded due to the absence of effective vaccines against H. pylori. In this study, we employed a new innovative Protective Immunity Enhanced Salmonella Vaccine (PIESV) vector strain to deliver and express multiple H. pylori antigen genes. Immunization of mice with our vaccine delivering the HpaA, Hp-NAP, UreA and UreB antigens, provided sterile protection against H. pylori SS1 infection in 7 out of 10 tested mice. In comparison to the control groups that had received PBS or a PIESV carrying an empty vector, immunized mice exhibited specific and significant cellular recall responses and antigen-specific serum IgG1, IgG2c, total IgG and gastric IgA antibody titers. In conclusion, an improved S. Typhimurium-based live vaccine delivering four antigens shows promise as a safe and effective vaccine against H. pylori infection.
Collapse
Affiliation(s)
- Amir Ghasemi
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Shifeng Wang
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Bikash Sahay
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| | - Jeffrey R. Abbott
- Department of Comparative, Diagnostic and Population Medicine, University of Florida, Gainesville, FL, United States
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, FL, United States
| |
Collapse
|
12
|
Wang XY, Wang LL, Liang SZ, Yang C, Xu L, Yu MC, Wang YX, Dong QJ. Prediction of gastric cancer risk by a polygenic risk score of Helicobacter pylori. World J Gastrointest Oncol 2022; 14:1844-1855. [PMID: 36187384 PMCID: PMC9516638 DOI: 10.4251/wjgo.v14.i9.1844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/29/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Genetic variants of Helicobacter pylori (H. pylori) are involved in gastric cancer occurrence. Single nucleotide polymorphisms (SNPs) of H. pylori that are associated with gastric cancer have been reported. The combined effect of H. pylori SNPs on the risk of gastric cancer remains unclear. AIM To assess the performance of a polygenic risk score (PRS) based on H. pylori SNPs in predicting the risk of gastric cancer. METHODS A total of 15 gastric cancer-associated H. pylori SNPs were selected. The associations between these SNPs and gastric cancer were further validated in 1022 global strains with publicly available genome sequences. The PRS model was established based on the validated SNPs. The performance of the PRS for predicting the risk of gastric cancer was assessed in global strains using quintiles and random forest (RF) methods. The variation in the performance of the PRS among different populations of H. pylori was further examined. RESULTS Analyses of the association between selected SNPs and gastric cancer in the global dataset revealed that the risk allele frequencies of six SNPs were significantly higher in gastric cancer cases than non-gastric cancer cases. The PRS model constructed subsequently with these validated SNPs produced significantly higher scores in gastric cancer. The odds ratio (OR) value for gastric cancer gradually increased from the first to the fifth quintile of PRS, with the fifth quintile having an OR value as high as 9.76 (95% confidence interval: 5.84-16.29). The results of RF analyses indicated that the area under the curve (AUC) value for classifying gastric cancer and non-gastric cancer was 0.75, suggesting that the PRS based on H. pylori SNPs was capable of predicting the risk of gastric cancer. Assessing the performance of the PRS among different H. pylori populations demonstrated that it had good predictive power for cancer risk for hpEurope strains, with an AUC value of 0.78. CONCLUSION The PRS model based on H. pylori SNPs had a good performance for assessment of gastric cancer risk. It would be useful in the prediction of final consequences of the H. pylori infection and beneficial for the management of the infection in clinical settings.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Li-Li Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Shu-Zhen Liang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Chao Yang
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200000, China
| | - Lin Xu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Meng-Chao Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Yi-Xuan Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Quan-Jiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
13
|
Kurniyati K, Chang Y, Liu J, Li C. Transcriptional and functional characterizations of multiple flagellin genes in spirochetes. Mol Microbiol 2022; 118:175-190. [PMID: 35776658 PMCID: PMC9481697 DOI: 10.1111/mmi.14959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 11/28/2022]
Abstract
The flagellar filament is a helical propeller for bacterial locomotion. In external flagellates, the filaments are mostly homopolymers of a single flagellin protein. By contrast, the flagellar filaments of spirochetes are mostly heteropolymers of multiple flagellin proteins. This report seeks to investigate the role of multiple flagellin proteins using the oral spirochete Treponema denticola as a model. First, biochemical and genetic studies uncover that the flagellar filaments of T. denticola mainly comprise four proteins, FlaA, FlaB1, FlaB2, and FlaB3, in a defined stoichiometry. Second, transcriptional analyses reveal that the genes encoding these four proteins are regulated by two different transcriptional factors, sigma28 and sigma70 . Third, loss-of-function studies demonstrate that each individual flagellin protein contributes to spirochete motility, but none of them is absolutely required. Last, we provide genetic and structural evidence that FlaA forms a "seam"-like structure around the core and that deletion of individual flagellin protein alters the flagellar homeostasis. Collectively, these results demonstrate that T. denticola has evolved a unique mechanism to finely regulate its flagellar filament gene expression and assembly which renders the organelle with the right number, shape, strength, and structure for its distinct motility.
Collapse
Affiliation(s)
- Kurni Kurniyati
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Yunjie Chang
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Jun Liu
- Microbial Sciences InstituteYale UniversityWest HavenConnecticutUSA
- Department of Microbial PathogenesisYale School of MedicineNew HavenConnecticutUSA
| | - Chunhao Li
- Department of Oral Craniofacial Molecular Biology, School of DentistryVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Microbiology and Immunology, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
14
|
Kim HW, Woo HJ, Yang JY, Kim JB, Kim SH. Hesperetin Inhibits Expression of Virulence Factors and Growth of Helicobacter pylori. Int J Mol Sci 2021; 22:ijms221810035. [PMID: 34576198 PMCID: PMC8472136 DOI: 10.3390/ijms221810035] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterium known to infect the human stomach. It can cause various gastrointestinal diseases including gastritis and gastric cancer. Hesperetin is a major flavanone component contained in citrus fruits. It has been reported to possess antibacterial, antioxidant, and anticancer effects. However, the antibacterial mechanism of hesperetin against H. pylori has not been reported yet. Therefore, the objective of this study was to determine the inhibitory effects of hesperetin on H. pylori growth and its inhibitory mechanisms. The results of this study showed that hesperetin inhibits the growth of H. pylori reference strains and clinical isolates. Hesperetin inhibits the expression of genes in replication (dnaE, dnaN, dnaQ, and holB) and transcription (rpoA, rpoB, rpoD, and rpoN) machineries of H. pylori. Hesperetin also inhibits the expression of genes related to H. pylori motility (flhA, flaA, and flgE) and adhesion (sabA, alpA, alpB, hpaA, and hopZ). It also inhibits the expression of urease. Hespereti n downregulates major virulence factors such as cytotoxin-associated antigen A (CagA) and vacuolating cytotoxin A (VacA) and decreases the translocation of CagA and VacA proteins into gastric adenocarcinoma (AGS) cells. These results might be due to decreased expression of the type IV secretion system (T4SS) and type V secretion system (T5SS) involved in translocation of CagA and VacA, respectively. The results of this study indicate that hesperetin has antibacterial effects against H. pylori. Thus, hesperetin might be an effective natural product for the eradication of H. pylori.
Collapse
Affiliation(s)
- Hyun Woo Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.W.K.); (J.-B.K.)
| | - Hyun Jun Woo
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea;
| | - Ji Yeong Yang
- Division of Crop Foundation, National Institute of Crop Science (NICS), Rural Development Administration (RDA), Wanju 55365, Korea;
| | - Jong-Bae Kim
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University, Wonju 26493, Korea; (H.W.K.); (J.-B.K.)
| | - Sa-Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea;
- Correspondence:
| |
Collapse
|
15
|
Burzyńska P, Sobala ŁF, Mikołajczyk K, Jodłowska M, Jaśkiewicz E. Sialic Acids as Receptors for Pathogens. Biomolecules 2021; 11:831. [PMID: 34199560 PMCID: PMC8227644 DOI: 10.3390/biom11060831] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022] Open
Abstract
Carbohydrates have long been known to mediate intracellular interactions, whether within one organism or between different organisms. Sialic acids (Sias) are carbohydrates that usually occupy the terminal positions in longer carbohydrate chains, which makes them common recognition targets mediating these interactions. In this review, we summarize the knowledge about animal disease-causing agents such as viruses, bacteria and protozoa (including the malaria parasite Plasmodium falciparum) in which Sias play a role in infection biology. While Sias may promote binding of, e.g., influenza viruses and SV40, they act as decoys for betacoronaviruses. The presence of two common forms of Sias, Neu5Ac and Neu5Gc, is species-specific, and in humans, the enzyme converting Neu5Ac to Neu5Gc (CMAH, CMP-Neu5Ac hydroxylase) is lost, most likely due to adaptation to pathogen regimes; we discuss the research about the influence of malaria on this trait. In addition, we present data suggesting the CMAH gene was probably present in the ancestor of animals, shedding light on its glycobiology. We predict that a better understanding of the role of Sias in disease vectors would lead to more effective clinical interventions.
Collapse
Affiliation(s)
| | | | | | | | - Ewa Jaśkiewicz
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland; (P.B.); (Ł.F.S.); (K.M.); (M.J.)
| |
Collapse
|
16
|
Xie W, Zhao W, Zou Z, Kong L, Yang L. Oral multivalent epitope vaccine, based on UreB, HpaA, CAT, and LTB, for prevention and treatment of Helicobacter pylori infection in C57BL / 6 mice. Helicobacter 2021; 26:e12807. [PMID: 33847026 DOI: 10.1111/hel.12807] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND As the resistance of Helicobacter pylori to traditional triple therapy is gradually revealed, an increasing number of people are focusing on vaccine treatments for H. pylori infection. Epitope vaccines are a promising strategy for the treatment of H. pylori infection, and multivalent vaccines will be more effective than monovalent vaccines. MATERIALS AND METHODS In this study, we designed a multivalent vaccine named LHUC, which consists of the adjuvant LTB as well as three Th cell epitopes (HpaA154-171 , UreB237-251, and UreB546-561 ) and five B-cell epitopes (UreB349-363 , UreB327-334 , CAT394-405 , CAT387-397, and HpaA132-141 ) from UreB, HpaA, and catalase. In BALB/c mice, the specificity and immunogenicity of the fusion peptide LHUC and the neutralization of H. pylori urease and catalase by the specific IgG elicited by LHUC were evaluated. The preventive and therapeutic effects of LHUC were evaluated in C57BL/6 mice infected with H. pylori. RESULTS The results showed that compared with LTB and PBS, LHUC induced specific IgG and IgA antibody production in mice, and IgG antibodies significantly inhibited the H. pylori urease and catalase activities in vitro. Additionally, by detecting the levels of IFN-γ, IL-4, and IL-17 in lymphocyte supernatants, we proved that LHUC could activate Th1, Th2, and Th17 mixed T-cell immune responses in vivo. Finally, a C57BL/6 mouse model of gastric infection with H. pylori was established. The results showed that compared with the effects of LTB and PBS, the prevention and treatment effects of oral inoculation with LHUC significantly inhibited bacterial colonization. CONCLUSIONS In conclusion, LHUC, a multivalent vaccine based on multiple H. pylori antigens, is a promising and safe vaccine that can effectively reduce the colonization of H. pylori in the stomach.
Collapse
Affiliation(s)
- Wenwei Xie
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Wenfeng Zhao
- Department of Biochemistry, China Pharmaceutical university, Nanjing, China
| | - Ziling Zou
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lingyi Kong
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Lei Yang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
17
|
Banga Ndzouboukou JL, Lei Q, Ullah N, Zhang Y, Hao L, Fan X. Helicobacter pylori adhesins: HpaA a potential antigen in experimental vaccines for H. pylori. Helicobacter 2021; 26:e12758. [PMID: 33259676 DOI: 10.1111/hel.12758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Helicobacter pylori is a gram-negative bacterium involved in many gastric pathologies such as ulcers and cancers. Although the treatment for this infection has existed for several years, the development of a vaccine is nevertheless necessary to reduce the severe forms of the disease. For more than three decades, many advances have been made particularly in the understanding of virulence factors as well as the pathogenesis of gastric diseases caused by H. pylori. Among these key virulence factors, specific antigens have been identified: Urease, Vacuolating cytotoxin A (VacA), Cytotoxin-associated gene A (CagA), Blood group antigen-binding adhesin (BabA), H. pylori adhesin A (HpaA), and others. OBJECTIVES This review will focus on H. pylori adhesins, in particular, on HpaA and on the current knowledge of H. pylori vaccines. METHODS All of the information included in this review was retrieved from published studies on H. pylori adhesins in H. pylori infections. RESULTS These proteins, used in their native or recombinant forms, induce protection against H. pylori in experimental animal models. CONCLUSION H. pylori adhesins are known to be promising candidate vaccines against H. pylori. Future research should be carried out on adhesins, in particular, on HpaA.
Collapse
Affiliation(s)
- Jo-Lewis Banga Ndzouboukou
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lei
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nadeem Ullah
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yandi Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Hao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xionglin Fan
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Ghosh P, Bhakta S, Bhattacharya M, Sharma AR, Sharma G, Lee SS, Chakraborty C. A Novel Multi-Epitopic Peptide Vaccine Candidate Against Helicobacter pylori: In-Silico Identification, Design, Cloning and Validation Through Molecular Dynamics. Int J Pept Res Ther 2021; 27:1149-1166. [PMID: 33495694 PMCID: PMC7816556 DOI: 10.1007/s10989-020-10157-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
Helicobacter pylori is a highly potential pathogen to colonize in the human stomach. This bacterial strain is now alarming serious health concern all over the world. Combating through available drugs is a difficult task due to lack of appropriate common targets against genetically diverse strains. Therefore, the developments of effective targets vaccines require alternative strategies to eliminate the H. pylori infection. In this study, we developed a novel vaccine construct using B-cell derived T-cell epitopes from four target antigenic proteins (HpaA, FlaA, FlaB and Omp18), and found the induction of possible immune response using advanced immunoinformatics approaches. In order to boost immune system, we tagged adjuvant (50S ribosomal protein L7/L12) with a suitable linker at the N-terminus side of vaccine sequence. Protein–protein docking between human Toll like receptor 5 (TLR5) and vaccine construct help to predict the way of inductive signaling that leads to immune-response. The calculated negative score (− 151.4, + / − 8.7) of molecular docking complex signify the best binding interface. Molecular dynamics simulation studies confirmed the proper docking between TLR5 and vaccine candidate. Moreover, Normal mode analysis (NMA) calculates the molecular motion of the docking complex. The low eigenvalue (2.935e−05) indicates the stable and flexible molecular motion in the binding interaction side. Finally, in-silico cloning of vaccine candidate was performed using expression vector pET28b (+) with the optimized restriction sites.
Collapse
Affiliation(s)
- Pratik Ghosh
- Department of Zoology, Vidyasagar University, Midnapore, West Bengal 721102 India
| | - Swarnav Bhakta
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon-si, 24341 Gangwon Do Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Kolkata, West Bengal 700126 India.,Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
19
|
Lu Y, Pang J, Wang G, Hu X, Li X, Li G, Wang X, Yang X, Li C, You X. Quantitative proteomics approach to investigate the antibacterial response of Helicobacter pylori to daphnetin, a traditional Chinese medicine monomer. RSC Adv 2021; 11:2185-2193. [PMID: 35424199 PMCID: PMC8693750 DOI: 10.1039/d0ra06677j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium related to the development of peptic ulcers and stomach cancer. An increasing number of infected individuals are found to harbor antibiotic-resistant H. pylori, which results in treatment failure. Daphnetin, a traditional Chinese medicine, has a broad spectrum of antibacterial activity without the development of bacterial resistance. However, the antibacterial mechanisms of daphnetin have not been elucidated entirely. To better understand the mechanisms of daphnetin's effect on H. pylori, a label-free quantitative proteomics approach based on an EASY-nLC 1200 system coupled with an Orbitrap Fusion Lumos mass spectrometer was established to investigate the key protein differences between daphnetin- and non-daphnetin-treated H. pylori. Using the criteria of greater than 1.5-fold changes and adjusted p value <0.05, proteins related to metabolism, membrane structure, nucleic acid and protein synthesis, ion binding, H. pylori colonization and infection, stress reaction, flagellar assembly and so on were found to be changed under daphnetin pressure. And the changes of selected proteins in expression level were confirmed by targeted proteomics. These new data provide us a more comprehensive horizon of the proteome changes in H. pylori that occur in response to daphnetin.
Collapse
Affiliation(s)
- Yun Lu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Jing Pang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Genzhu Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinxin Hu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xiukun Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Congran Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College Beijing 100050 China
| |
Collapse
|
20
|
Identification of Functional Interactome of Gastric Cancer Cells with Helicobacter pylori Outer Membrane Protein HpaA by HPLC-MS/MS. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1052926. [PMID: 32566649 PMCID: PMC7293730 DOI: 10.1155/2020/1052926] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/02/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022]
Abstract
HpaA as an outer membrane protein of Helicobacter pylori (H. pylori) plays a significant role in the adhesion to the human stomach, but the functional relation between HpaA and gastric epithelial cells is still not clear. To screen the interaction between HpaA and cellular proteins in gastric epithelial cells, the HpaA protein from H. pylori 26695 fused with a tag (6× His) was expressed and purified successfully, the secondary structure was estimated by the Circular Dichroism (CD) spectrum, and the purified recombinant protein was used to perform the pull-down assays with gastric cancer cell lines (AGS and SGC-7901) lysates, respectively. The pull-down proteins were identified by high-performance liquid chromatography tandem mass spectrometry system (HPLC-MS/MS). A total of 9 and 13 proteins related were analyzed from AGS and SGC-7901 cell lysates, respectively. ANXA2 was considered as putative HpaA functional partner discovered from lysates of both cell lines with high score and coverage. It is hypothesized that HpaA may be involved in the biological process of regulation of transcription and nucleic acid metabolism during the adhesion of H. pylori to human gastric epithelial cells, and HpaA-binding proteins also be used as targets for the development of antiadhesion drugs against H. pylori.
Collapse
|
21
|
Chu J, Liu J, Hoover TR. Phylogenetic Distribution, Ultrastructure, and Function of Bacterial Flagellar Sheaths. Biomolecules 2020; 10:biom10030363. [PMID: 32120823 PMCID: PMC7175336 DOI: 10.3390/biom10030363] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
A number of Gram-negative bacteria have a membrane surrounding their flagella, referred to as the flagellar sheath, which is continuous with the outer membrane. The flagellar sheath was initially described in Vibrio metschnikovii in the early 1950s as an extension of the outer cell wall layer that completely surrounded the flagellar filament. Subsequent studies identified other bacteria that possess flagellar sheaths, most of which are restricted to a few genera of the phylum Proteobacteria. Biochemical analysis of the flagellar sheaths from a few bacterial species revealed the presence of lipopolysaccharide, phospholipids, and outer membrane proteins in the sheath. Some proteins localize preferentially to the flagellar sheath, indicating mechanisms exist for protein partitioning to the sheath. Recent cryo-electron tomography studies have yielded high resolution images of the flagellar sheath and other structures closely associated with the sheath, which has generated insights and new hypotheses for how the flagellar sheath is synthesized. Various functions have been proposed for the flagellar sheath, including preventing disassociation of the flagellin subunits in the presence of gastric acid, avoiding activation of the host innate immune response by flagellin, activating the host immune response, adherence to host cells, and protecting the bacterium from bacteriophages.
Collapse
Affiliation(s)
- Joshua Chu
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA;
| | - Jun Liu
- Microbial Sciences Institute, Department of Microbial Pathogenesis, Yale University, West Haven, CT 06516, USA;
| | - Timothy R. Hoover
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-2675
| |
Collapse
|
22
|
Moghaddam AS, Ghazvini K, Bahador A, Derakhshan M, Khaledi A. Cloning, expression, and purification of HpaA-CagA fusion recombinant protein of Helicobacter pylori in E. coli BL 21 strain. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Gupta N, Maurya S, Verma H, Verma VK. Unraveling the factors and mechanism involved in persistence: Host-pathogen interactions in Helicobacter pylori. J Cell Biochem 2019; 120:18572-18587. [PMID: 31237031 DOI: 10.1002/jcb.29201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori and humans have one of the most complex relationships in nature. How a bacterium manages to live in one of the harshest and hostile environments is a topic of unraveling mysteries. H. pylori is a prevalent species and it colonizes the human gut of more than 50% of the world population. It infects the epithelial region of antrum and persists there for a long period. Over the time of evolution, H. pylori has developed complex strategies to extend the degree of inflammation in gastric mucosa. H. pylori needs specific adaptations for initial colonization into the host environment like helical shape, flagellar movement, chemotaxis, and the production of urease enzyme that neutralizes acidic environment of the stomach. There are several factors from the bacterium as well as from the host that participate in these complex interactions. On the other hand, to establish the persistent infection, H. pylori escapes the immune system by mimicking the host antigens. This pathogen has the ability to dodge the immune system and then persist there in the form of host cell, which leads to immune tolerance. H. pylori has an ability to manipulate its own pathogen-associated molecular patterns, which leads to an inhibition in the binding with specific pattern recognition receptors of the host to avoid immune cell detection. Also, it manipulates the host metabolic homeostasis in the gastric epithelium. Besides, it has several genes, which may get involved in the acquisition of nutrition from the host to survive longer in the host. Due to the persistence of H. pylori, it causes chronic inflammation and raises the chances of gastric cancer. This review highlights the important elements, which are certainly responsible for the persistence of H. pylori in the human host.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Shweta Maurya
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Harshvardhan Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| | - Vijay K Verma
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Kishangarh, India
| |
Collapse
|
24
|
Xue RY, Guo MF, Guo L, Liu C, Li S, Luo J, Nie L, Ji L, Ma CJ, Chen DQ, Sun S, Jin Z, Zou QM, Li HB. Synthetic Lipopeptide Enhances Protective Immunity Against Helicobacter pylori Infection. Front Immunol 2019; 10:1372. [PMID: 31258538 PMCID: PMC6587705 DOI: 10.3389/fimmu.2019.01372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
Over fifty percent of the people around the world is infected with Helicobacter pylori (H. pylori), which is the main cause of gastric diseases such as chronic gastritis and stomach cancer. H. pylori adhesin A (HpaA), which is a surface-located lipoprotein, is essential for bacterial colonization in the gastric mucosa. HpaA had been proposed to be a promising vaccine candidate against H. pylori infection. However, the effect of non-lipidated recombinant HpaA (rHpaA) to stimulate immune response was not very ideal, and the protective effect against H. pylori infection was also limited. Here, we hypothesized that low immunogenicity of rHpaA may attribute to lacking the immunostimulatory properties endowed by the lipid moiety. In this study, two novel lipopeptides, LP1 and LP2, which mimic the terminal structure of the native HpaA (nHpaA), were synthesized and TLR2 activation activity was confirmed in vitro. To investigate whether two novel lipopeptides could improve the protective effect of rHpaA against the infection of H. pylori, groups of mice were immunized either intramuscularly or intranasally with rHpaA together with LP1 or LP2. Compared with rHpaA alone, the bacterial colonization of the mice immunized with rHpaA plus LP2 via intranasal route was significantly decreased and the expression levels of serum IgG2a, IFN-γ, and IL-17 cytokines in spleen lymphocyte culture supernatant increased obviously, indicating that the enhanced protection of LP2 may be associated with elevated specific Th1 and Th17 responses. In conclusion, LP2 has been shown to improve the protective effect of rHpaA against H. pylori infection, which may be closely related to its ability in activating TLR2 by mimicking the terminal structure of nHpaA.
Collapse
Affiliation(s)
- Ruo-Yi Xue
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Mu-Fei Guo
- Chongqing Nankai Secondary School, Chongqing, China
| | - Ling Guo
- Chongqing Technical Center for Drug Evaluation and Certification, Chongqing, China
| | - Chang Liu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Sun Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jiao Luo
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Nie
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Lu Ji
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Cong-Jia Ma
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Da-Qun Chen
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Si Sun
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Zhe Jin
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Quan-Ming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hai-Bo Li
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Yang Y, Chen L, Sun HW, Guo H, Song Z, You Y, Yang LY, Tong YN, Gao JN, Zeng H, Yang WC, Zou QM. Epitope-loaded nanoemulsion delivery system with ability of extending antigen release elicits potent Th1 response for intranasal vaccine against Helicobacter pylori. J Nanobiotechnology 2019; 17:6. [PMID: 30660182 PMCID: PMC6339695 DOI: 10.1186/s12951-019-0441-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection remains a global public health issue, especially in Asia. Due to the emergence of antibiotic-resistant strains and the complexity of H. pylori infection, conventional vaccination is the best way to control the disease. Our previous study found that the N-acetyl-neuroaminyllactose-binding hemagglutinin protein (HpaA) is an effective protective antigen for vaccination against H. pylori infection, and intranasal immunization with the immunodominant HpaA epitope peptide (HpaA 154-171, P22, MEGVLIPAGFIKVTILEP) in conjunction with a CpG adjuvant decreased bacterial colonization in H. pylori-infected mice. However, to confer more robust and effective protection against H. pylori infection, an optimized delivery system is needed to enhance the P22-specific memory T cell response. RESULTS In this study, an intranasal nanoemulsion (NE) delivery system offering high vaccine efficacy without obvious cytotoxicity was designed and produced. We found that this highly stable system significantly prolonged the nasal residence time and enhanced the cellular uptake of the epitope peptide, which powerfully boosted the specific Th1 responses of the NE-P22 vaccine, thus reducing bacterial colonization without CpG. Furthermore, the protection efficacy was further enhanced by combining the NE-P22 vaccine with CpG. CONCLUSION This epitope-loaded nanoemulsion delivery system was shown to extend antigen release and elicit potent Th1 response, it is an applicable delivery system for intranasal vaccine against H. pylori.
Collapse
Affiliation(s)
- Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Hong-wu Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhen Song
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ying You
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Liu-yang Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ya-nan Tong
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Ji-ning Gao
- Institute of Combined Injury of PLA, College of Military Preventive Medicine, Third Military Medical University of Chinese PLA, Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wu-chen Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
- Department of Hematology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Quan-ming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
26
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
27
|
Pozdeev ОК, Pozdeeva АО, Valeeva YV, Gulyaev PE. MECHANISMS OF INTERRACTION OF HELICOBACTER PYLORI WITH EPITHELIUM OF GASTRIC MUCOSA. I. PATHOGENIC FACTORS PROMOTING SUCCESSFUL COLONIZATION. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2018; 8:273-283. [DOI: 10.15789/2220-7619-2018-3-273-283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
H. pylori is a Gram-negative, crimp and motile bacterium that colonizes the hostile microniche of the human stomach roughly one half of the human population. Then persists for the host’s entire life, but only causes overt gastric disease in a subset of infected hosts. To the reasons contributing to the development of diseases, usually include: concomitant infections of the gastrointestinal tract, improper sterilization of medical instruments, usually endoscopes, nonobservance of personal hygiene rules, prolonged contact with infected or carriers, including family members and a number of other factors. Clinically, H. pylori plays a causative role in the development of a wide spectrum of diseases including chronic active gastritis, peptic and duodenal ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Due to the global distribution of H. pylori, we are able to conclude that smart strategies are contributing to adaptation of the bacterium in an aggressive environment of a stomach and lifelong permanent circulation in its host. Thirty-four years after the discovery of this bacterium, there are still many unanswered questions. For example, which strategies help the bacterium to survive in this inhospitable conditions? Understanding the mechanisms governing H. pylori persistence will improve identification of the increased risk of different gastric diseases in persons infected with this bacterium. A well-defined and long-term equilibrium between the human host and H. pylori allows bacterial persistence in the gastric microniche; although this coexistence leads to a high risk of severe diseases the diseases which are listed above. In this review, we discuss the pathogenesis of this bacterium and the mechanisms it uses to promote persistent colonization of the gastric mucosa, with a focus on recent insights into the role of some virulence factors like urease, LPS, outer membrane proteins, cytotoxins, factors, promoting invasion. Information on the mechanisms related to H. pylori persistence can also provide the direction for future research concerning effective therapy and management of gastroduodenal disorders. The topics presented in the current review are important for elucidating the strategies used by H. pylori to help the bacterium persist in relation to the many unfavorable features of living in the gastric microniche.
Collapse
|
28
|
Yang WC, Sun HW, Sun HQ, Yuan HM, Li B, Li HB, Hu J, Yang Y, Zou QM, Guo H, Wu C, Chen L. Intranasal immunization with immunodominant epitope peptides derived from HpaA conjugated with CpG adjuvant protected mice against Helicobacter pylori infection. Vaccine 2018; 36:6301-6306. [DOI: 10.1016/j.vaccine.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/15/2018] [Accepted: 09/01/2018] [Indexed: 01/07/2023]
|
29
|
Berthenet E, Yahara K, Thorell K, Pascoe B, Meric G, Mikhail JM, Engstrand L, Enroth H, Burette A, Megraud F, Varon C, Atherton JC, Smith S, Wilkinson TS, Hitchings MD, Falush D, Sheppard SK. A GWAS on Helicobacter pylori strains points to genetic variants associated with gastric cancer risk. BMC Biol 2018; 16:84. [PMID: 30071832 PMCID: PMC6090961 DOI: 10.1186/s12915-018-0550-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Helicobacter pylori are stomach-dwelling bacteria that are present in about 50% of the global population. Infection is asymptomatic in most cases, but it has been associated with gastritis, gastric ulcers and gastric cancer. Epidemiological evidence shows that progression to cancer depends upon the host and pathogen factors, but questions remain about why cancer phenotypes develop in a minority of infected people. Here, we use comparative genomics approaches to understand how genetic variation amongst bacterial strains influences disease progression. RESULTS We performed a genome-wide association study (GWAS) on 173 H. pylori isolates from the European population (hpEurope) with known disease aetiology, including 49 from individuals with gastric cancer. We identified SNPs and genes that differed in frequency between isolates from patients with gastric cancer and those with gastritis. The gastric cancer phenotype was associated with the presence of babA and genes in the cag pathogenicity island, one of the major virulence determinants of H. pylori, as well as non-synonymous variations in several less well-studied genes. We devised a simple risk score based on the risk level of associated elements present, which has the potential to identify strains that are likely to cause cancer but will require refinement and validation. CONCLUSION There are a number of challenges to applying GWAS to bacterial infections, including the difficulty of obtaining matched controls, multiple strain colonization and the possibility that causative strains may not be present when disease is detected. Our results demonstrate that bacterial factors have a sufficiently strong influence on disease progression that even a small-scale GWAS can identify them. Therefore, H. pylori GWAS can elucidate mechanistic pathways to disease and guide clinical treatment options, including for asymptomatic carriers.
Collapse
Affiliation(s)
- Elvire Berthenet
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Koji Yahara
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Toyama, Japan
| | - Kaisa Thorell
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Guillaume Meric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Jane M Mikhail
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Lars Engstrand
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helena Enroth
- Systems Biology Research Group, School of Biosciences, University of Skövde, Skövde, Sweden
| | - Alain Burette
- Department of Gastroenterology, Centre Hospitalier Interrégional Edith Cavell/Site de la Basilique, Brussels, USA
| | - Francis Megraud
- Laboratoire de Bactériologie, Centre National de Référence des Campylobacters et des Hélicobacters, Place Amélie Raba Léon, 33076, Bordeaux, France
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France
| | - Christine Varon
- INSERM, University Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France
| | - John C Atherton
- Nottingham Digestive Diseases Centre and National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Sinead Smith
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Thomas S Wilkinson
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Matthew D Hitchings
- Microbiology and Infectious Disease Group, Swansea University Medical School, Swansea University, Swansea, UK
| | - Daniel Falush
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
30
|
Pan X, Ke H, Niu X, Li S, Lv J, Pan L. Protection Against Helicobacter pylori Infection in BALB/c Mouse Model by Oral Administration of Multivalent Epitope-Based Vaccine of Cholera Toxin B Subunit-HUUC. Front Immunol 2018; 9:1003. [PMID: 29867978 PMCID: PMC5951970 DOI: 10.3389/fimmu.2018.01003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Vaccination is an increasingly important alternative approach to control Helicobacter pylori infection, since H. pylori resistance to previously efficacious antibiotic regimens is increased, and H. pylori eradication treatment for upper gastrointestinal diseases is becoming less successful. Fortunately, an efficient oral monovalent H. pylori vaccine has been developed. However, compared with monovalent vaccines, multivalent vaccines have the potential to induce more effective and comprehensive protection against H. pylori infection. In this study, we designed and produced a multivalent epitope-based vaccine cholera toxin B subunit (CTB)-HUUC with the intramucosal adjuvant CTB and tandem copies of B-cell epitopes (HpaA132-141, UreA183-203, and UreB321-339) and T-cell epitopes (HpaA88-100, UreA27-53, UreB229-251, UreB317-329, UreB373-385, UreB438-452, UreB546-561, CagA149-164, and CagA196-217) from H. pylori adhesion A subunit (HpaA), urease A subunit (UreA), urease B subunit (UreB), and cytotoxin-associated antigen (CagA). Serum IgG, stomach, and intestine mucosal sIgA from mice after CTB-HUUC vaccination neutralized H. pylori urease activity in vitro. CTB-HUUC vaccination promoted H. pylori-specific lymphocyte responses and a mixed CD4+ T cell immune response as indicated by IFN-γ, interleukin-4, and interleukin-17 production in mice. Both oral prophylactic and therapeutic CTB-HUUC vaccinations reduced gastric urease activity and H. pylori infection and protected stomachs in mice. Taken together, CTB-HUUC is a promising potent and safe multivalent vaccine in controlling H. pylori infection in BALB/c mouse model.
Collapse
Affiliation(s)
- Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Hong Ke
- Department of Hemotology, People's Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaojuan Niu
- Department of Pharmacology, Hubei University of Medicine, Shiyan, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jun Lv
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Longrui Pan
- Department of Pharmacology, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
31
|
Hu J, Chen L, Yang W, Li B, Sun H, Wei S, He Y, Zhao Z, Yang S, Zou Q, Chen W, Guo H, Wu C. Systematic identification of immunodominant CD4+ T cell responses to HpaA in Helicobacter pylori infected individuals. Oncotarget 2018; 7:54380-54391. [PMID: 27509059 PMCID: PMC5342349 DOI: 10.18632/oncotarget.11092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/29/2016] [Indexed: 12/20/2022] Open
Abstract
In mice, antigen-specific CD4+ T cell response is indispensible for the protective immunity against Helicobacter pylori (H. pylori). It has been demonstrated that neuraminyllactose-binding hemagglutinin (HpaA) immunization protected mice from H. pylori infection in a CD4+ T cell dependent manner. However, much remains unclear concerning the human CD4+ T cell responses to HpaA. We conducted a systematic study here to explore the immunodominant, HpaA-specific CD4+ T cell responses in H. pylori infected individuals. We found that HpaA-specific CD4+ T cell responses varied remarkably in their magnitude and had broad epitope-specificity. Importantly, the main responses focused on two regions: HpaA76-105 and HpaA130-159. The HLA-DRB1*0901 restricted HpaA142-159 specific CD4+ T cell response was the most immunodominant response at a population level. The immunodominant epitope HpaA142-159 was naturally presented and highly conserved. We also demonstrated that it was not the broad peptide specificity, but the strength of HpaA specific CD4+ T cell responses associated with gastric diseases potentially caused by H. pylori infection. Such investigation will aid development of novel vaccines against H. pylori infection.
Collapse
Affiliation(s)
- Jian Hu
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China.,Department of Intensive Care Unit, Chengdu Military General Hospital, Chengdu, PR China
| | - Li Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China.,Department of Blood Transfusion, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Wuchen Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China.,Department of Hematology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Bin Li
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Heqiang Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Shanshan Wei
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Yafei He
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Zhuo Zhao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Shiming Yang
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| | - Weisan Chen
- T Cell Laboratory, La Trobe Institute for Molecular Science, School of Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | - Hong Guo
- Department of Gastroenterology, The Second Affiliated Hospital, Third Military Medical University, Chongqing, PR China
| | - Chao Wu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing, PR China
| |
Collapse
|
32
|
Performance of a Multiplex Serological Helicobacter pylori Assay on a Novel Microfluidic Assay Platform. Proteomes 2017; 5:proteomes5040024. [PMID: 28972560 PMCID: PMC5748559 DOI: 10.3390/proteomes5040024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 01/25/2023] Open
Abstract
Infection with Helicobacter pylori (H. pylori) occurs in 50% of the world population, and is associated with the development of ulcer and gastric cancer. Serological diagnostic tests indicate an H. pylori infection by detecting antibodies directed against H. pylori proteins. In addition to line blots, multiplex assay platforms provide smart solutions for the simultaneous analysis of antibody responses towards several H. pylori proteins. We used seven H. pylori proteins (FliD, gGT, GroEL, HpaA, CagA, VacA, and HP0231) and an H. pylori lysate for the development of a multiplex serological assay on a novel microfluidic platform. The reaction limited binding regime in the microfluidic channels allows for a short incubation time of 35 min. The developed assay showed very high sensitivity (99%) and specificity (100%). Besides sensitivity and specificity, the technical validation (intra-assay CV = 3.7 ± 1.2% and inter-assay CV = 5.5 ± 1.2%) demonstrates that our assay is also a robust tool for the analysis of the H. pylori-specific antibody response. The integration of the virulence factors CagA and VacA allow for the assessment of the risk for gastric cancer development. The short assay time and the performance of the platform shows the potential for implementation of such assays in a clinical setting.
Collapse
|
33
|
Gu H. Role of Flagella in the Pathogenesis of Helicobacter pylori. Curr Microbiol 2017; 74:863-869. [PMID: 28444418 PMCID: PMC5447363 DOI: 10.1007/s00284-017-1256-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 04/18/2017] [Indexed: 12/15/2022]
Abstract
This review aimed to investigate the role of Helicobacter pylori flagella on the pathogenicity of this bacterium in humans. Helicobacter pylori is a flagellated pathogen that colonizes the human gastroduodenal mucosa and produces inflammation, and is responsible for gastrointestinal disease. Its pathogenesis is attributed to colonization and virulence factors. The primary function of H. pylori flagella is to provide motility. We believe that H. pylori flagella play an important role in the colonization of the gastrointestinal mucosa. Therefore, we reviewed previous studies on flagellar morphology and motility in order to explore the relationship between H. pylori flagella and pathogenicity. Further investigation is required to confirm the association between flagella and pathogenicity in H. pylori.
Collapse
Affiliation(s)
- Haiying Gu
- Medical School, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
34
|
Guo L, Zhang J, Cui L, Liu D, Ma B, Wang S, Li H, Wu Y, Liu W. Crystallization and X-ray analysis of the extracellular adhesion domain of Helicobacter pylori adhesin A: the significance of the cation composition in the crystallization precipitant. Acta Crystallogr F Struct Biol Commun 2017; 73:202-208. [PMID: 28368278 PMCID: PMC5379169 DOI: 10.1107/s2053230x17003004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/22/2017] [Indexed: 12/31/2022] Open
Abstract
Adherence to host cells is a crucial step in the process of bacterial infection, which is usually mediated by a number of outer membrane proteins identified as adhesins. Helicobacter pylori adhesin A (HpaA) is a member of the adhesin family that mediates the adherence of Helicobacter pylori to gastric epithelial cells, and consequently assists the bacteria in becoming a life-long colonizer of the human stomach. In this study, two constructs were made for the production of truncated HpaA proteins comprising residues 31-260 and 53-260, respectively. The products of both constructs were crystallized, but only the protein from the shorter construct (residues 53-260) formed crystals that were capable of diffraction. In the subsequent optimization trials, crystals in different forms were unexpectedly obtained by using lithium sulfate and ammonium sulfate as the precipitant. An X-ray data set was collected to 1.95 Å resolution on beamline BL18U1 at SSRF using a crystal grown with 1.92 M lithium sulfate, which belonged to space group P65 with unit-cell parameters a = b = 95.42, c = 54.72 Å, γ = 120°, while another crystal grown with 1.9 M ammonium sulfate diffracted to 2.60 Å resolution and the collected data set was indexed in space group P21212, with unit-cell parameters a = 121.01, b = 190.56, c = 106.31 Å. The collection of diffraction data has established a solid basis for structure determination.
Collapse
Affiliation(s)
- Ling Guo
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Jinyong Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Liwei Cui
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Dong Liu
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Bo Ma
- Department of Anatomy and Embryology, Medical Division, Peking University, Beijing 100191, People’s Republic of China
| | - Shufeng Wang
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Haibo Li
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Yuzhang Wu
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| | - Wei Liu
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, People’s Republic of China
| |
Collapse
|
35
|
Draper JL, Hansen LM, Bernick DL, Abedrabbo S, Underwood JG, Kong N, Huang BC, Weis AM, Weimer BC, van Vliet AHM, Pourmand N, Solnick JV, Karplus K, Ottemann KM. Fallacy of the Unique Genome: Sequence Diversity within Single Helicobacter pylori Strains. mBio 2017; 8:e02321-16. [PMID: 28223462 PMCID: PMC5358919 DOI: 10.1128/mbio.02321-16] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
Many bacterial genomes are highly variable but nonetheless are typically published as a single assembled genome. Experiments tracking bacterial genome evolution have not looked at the variation present at a given point in time. Here, we analyzed the mouse-passaged Helicobacter pylori strain SS1 and its parent PMSS1 to assess intra- and intergenomic variability. Using high sequence coverage depth and experimental validation, we detected extensive genome plasticity within these H. pylori isolates, including movement of the transposable element IS607, large and small inversions, multiple single nucleotide polymorphisms, and variation in cagA copy number. The cagA gene was found as 1 to 4 tandem copies located off the cag island in both SS1 and PMSS1; this copy number variation correlated with protein expression. To gain insight into the changes that occurred during mouse adaptation, we also compared SS1 and PMSS1 and observed 46 differences that were distinct from the within-genome variation. The most substantial was an insertion in cagY, which encodes a protein required for a type IV secretion system function. We detected modifications in genes coding for two proteins known to affect mouse colonization, the HpaA neuraminyllactose-binding protein and the FutB α-1,3 lipopolysaccharide (LPS) fucosyltransferase, as well as genes predicted to modulate diverse properties. In sum, our work suggests that data from consensus genome assemblies from single colonies may be misleading by failing to represent the variability present. Furthermore, we show that high-depth genomic sequencing data of a population can be analyzed to gain insight into the normal variation within bacterial strains.IMPORTANCE Although it is well known that many bacterial genomes are highly variable, it is nonetheless traditional to refer to, analyze, and publish "the genome" of a bacterial strain. Variability is usually reduced ("only sequence from a single colony"), ignored ("just publish the consensus"), or placed in the "too-hard" basket ("analysis of raw read data is more robust"). Now that whole-genome sequences are regularly used to assess virulence and track outbreaks, a better understanding of the baseline genomic variation present within single strains is needed. Here, we describe the variability seen in typical working stocks and colonies of pathogen Helicobacter pylori model strains SS1 and PMSS1 as revealed by use of high-coverage mate pair next-generation sequencing (NGS) and confirmed by traditional laboratory techniques. This work demonstrates that reliance on a consensus assembly as "the genome" of a bacterial strain may be misleading.
Collapse
Affiliation(s)
- Jenny L Draper
- Institute of Environmental Science and Research, Porirua, New Zealand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | - Lori M Hansen
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - David L Bernick
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Samar Abedrabbo
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| | | | - Nguyet Kong
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bihua C Huang
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Allison M Weis
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, UC Davis, Davis, California, USA
| | - Arnoud H M van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Nader Pourmand
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Jay V Solnick
- Departments of Medicine and Microbiology & Immunology, Center for Comparative Medicine, UC Davis, California, USA
| | - Kevin Karplus
- Department of Biomolecular Engineering, UC Santa Cruz, Santa Cruz, California, USA
| | - Karen M Ottemann
- Department of Microbiology & Environmental Toxicology, UC Santa Cruz, Santa Cruz, California, USA
| |
Collapse
|
36
|
Surface expression of Helicobacter pylori HpaA adhesion antigen on Vibrio cholerae, enhanced by co-expressed enterotoxigenic Escherichia coli fimbrial antigens. Microb Pathog 2017; 105:177-184. [PMID: 28215587 DOI: 10.1016/j.micpath.2017.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/11/2017] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
Abstract
Helicobacter pylori infection can cause peptic ulceration and is associated with gastric adenocarcinoma. This study aimed to construct and characterize a non-virulent Vibrio cholerae O1 strain, which grows more rapidly than H. pylori, as vector for H. pylori antigens for possible use as a vaccine strain against H. pylori. This was done by recombinant expression of the H. pylori adhesion antigen HpaA alone or, as a proof of principle, together with different colonization factor (CF) antigens of enterotoxigenic Escherichia coli (ETEC) which may enhance immune responses against HpaA. A recombinant V. cholerae strain co-expressing HpaA and a fimbrial CF antigens CFA/I or CS5, but not the non-fimbrial CF protein CS6, was shown to express larger amounts of HpaA on the surface when compared with the same V. cholerae strain expressing HpaA alone. Mutations in the CFA/I operon showed that the chaperon, possibly together with the usher, was involved in enhancing the surface expression of HpaA. Oral immunization of mice with formaldehyde-inactivated recombinant V. cholerae expressing HpaA alone or together with CFA/I induced significantly higher serum antibody responses against HpaA than mice similarly immunized with inactivated HpaA-expressing H. pylori bacteria. Our results demonstrate that a non-virulent V. cholerae strain can be engineered to allow strong surface expression of HpaA, and that the expression can be further increased by co-expressing it with ETEC fimbrial antigens. Such recombinant V. cholerae strains expressing HpaA, and possibly also other H. pylori antigens, may have the potential as oral inactivated vaccine candidates against H. pylori.
Collapse
|
37
|
Wang T, Zhang Y, Su H, Li Z, Zhang L, Ma J, Liu W, Zhou T, You W, Pan K. Helicobacter pylori antibody responses in association with eradication outcome and recurrence: a population-based intervention trial with 7.3-year follow-up in China. Chin J Cancer Res 2017; 29:127-136. [PMID: 28536491 PMCID: PMC5422414 DOI: 10.21147/j.issn.1000-9604.2017.02.05] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To identify serum biomarkers that may predict the short or long term outcomes of anti-Helicobacter pylori (H. pylori) treatment, a follow-up study was performed based on an intervention trial in Linqu County, China. METHODS A total of 529 subjects were selected randomly from 1,803 participants to evaluate total anti-H. pylori immunoglobulin G (IgG) and 10 specific antibody levels before and after treatment at 1-, 2- and 7.3-year. The outcomes of anti-H. pylori treatment were also parallelly assessed by13C-urea breath test at 45-d after treatment and 7.3-year at the end of follow-up. RESULTS We found the medians of anti-H. pylori IgG titers were consistently below cut-off value through 7.3 years in eradicated group, however, the medians declined in recurrence group to 1.2 at 1-year after treatment and slightly increased to 2.0 at 7.3-year. While the medians were significantly higher (>3.0 at 2- and 7.3-year) among subjects who failed the eradication or received placebo. For specific antibody responses, baseline seropositivities of FliD and HpaA were reversely associated with eradication failure [for FliD, odds ratio (OR)=0.44, 95% confidence interval (95% CI): 0.27-0.73; for HpaA, OR=0.32, 95% CI: 0.17-0.60]. The subjects with multiple positive specific antibodies at baseline were more likely to be successfully eradicated in a linear fashion (Ptrend=0.006). CONCLUSIONS Our study suggested that total anti-H. pylori IgG level may serve as a potential monitor of long-term impact on anti-H. pylori treatment, and priority forH. pylori treatment may be endowed to the subjects with multiple seropositive antibodies at baseline, especially for FliD and HapA.
Collapse
Affiliation(s)
- Tianyi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yang Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Huijuan Su
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhexuan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lian Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Junling Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weidong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Tong Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Weicheng You
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Kaifeng Pan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Cancer Epidemiology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
38
|
Evaluation of nitric oxide production and proliferation activity of recombinant Bacterioferritin of Helicobacter pylori on macrophages. Microb Pathog 2016; 100:149-153. [DOI: 10.1016/j.micpath.2016.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023]
|
39
|
Soleimani N, Mohabati Mobarez A, Farhangi B. Cloning, expression and purification flagellar sheath adhesion of Helicobacter pylori in Escherichia coli host as a vaccination target. Clin Exp Vaccine Res 2016; 5:19-25. [PMID: 26866020 PMCID: PMC4742594 DOI: 10.7774/cevr.2016.5.1.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/25/2015] [Accepted: 07/05/2015] [Indexed: 12/30/2022] Open
Abstract
Purpose Helicobacter pylori is a widely distributed gram-negative bacterium that infects the human stomach and duodenum. HpaA is a H. pylori–specific lipoprotein that has been shown to be an effective protective antigen against H. pylori infection. HpaA of H. pylori as a vaccine antigen is fully competent for stimulation of immune responses. The aim of this project is cloning, expression, and purification flagellar sheath adhesion of H. pylori in Escherichia coli host by fast protein liquid chromatography (FPLC) as a vaccination target. Materials and Methods The hpaA gene was inserted into pET28a (+) as cloning and expression vectors respectively. The recombinant plasmid (pET-hpaA) was subjected to sequencing other than polymerase chain reaction (PCR) and digestion analysis. Protein expression was induced by adding 1 mM isopropyl-β-D-thiogalactoside to cultures of E. coli strain BL21 transformed with pET-hpaA. Protein expression assessed with sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Protein purification of flagellar sheath adhesion was by FPLC. Results The restriction endonuclease digestion, PCR amplification analysis showed that the hpaA gene of 730 bp was amplified from H. pylori DNA and sequencing analysis of the pET-hpaA confirmed the cloning accuracy and in frame insertion of hpaA fragment. SDS-PAGE analysis showed the expression of an approximately 29,000 Da protein. Conclusion Sequencing results along with SDS-PAGE analysis confirms the expression of recombinant hpaA in the heterologous E. coli BL21. Conclusion A prokaryotic expression system for hpaA gene was successfully constructed. These results indicate that production of a specific recombinant protein is an alternative and potentially more expeditious strategy for development of H. pylori vaccine.
Collapse
Affiliation(s)
- Neda Soleimani
- Department of Microbiology, Faculty of Biological Sciences, Shahid Beheshti University, Tehran, Iran
| | - Ashraf Mohabati Mobarez
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Baharak Farhangi
- Molecular Genetics, Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
|
41
|
Rhee KH, Park JS, Cho MJ. Helicobacter pylori: bacterial strategy for incipient stage and persistent colonization in human gastric niches. Yonsei Med J 2014; 55:1453-66. [PMID: 25323880 PMCID: PMC4205683 DOI: 10.3349/ymj.2014.55.6.1453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori (H. pylori) undergoes decades long colonization of the gastric mucosa of half the population in the world to produce acute and chronic gastritis at the beginning of infection, progressing to more severe disorders, including peptic ulcer disease and gastric cancer. Prolonged carriage of H. pylori is the most crucial factor for the pathogenesis of gastric maladies. Bacterial persistence in the gastric mucosa depends on bacterial factors as well as host factors. Herein, the host and bacterial components responsible for the incipient stages of H. pylori infection are reviewed and discussed. Bacterial adhesion and adaptation is presented to explain the persistence of H. pylori colonization in the gastric mucosa, in which bacterial evasion of host defense systems and genomic diversity are included.
Collapse
Affiliation(s)
- Kwang-Ho Rhee
- Department of Microbiology, Gyeongsang National University College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Jin-Sik Park
- Department of Microbiology, Gyeongsang National University College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea
| | - Myung-Je Cho
- Department of Microbiology, Gyeongsang National University College of Medicine, Research Institute of Life Science, Gyeongsang National University, Jinju, Korea.
| |
Collapse
|
42
|
Oral immunization with recombinant Lactobacillus acidophilus expressing the adhesin Hp0410 of Helicobacter pylori induces mucosal and systemic immune responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 21:126-32. [PMID: 24285819 DOI: 10.1128/cvi.00434-13] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori infection is relatively common worldwide and is closely related to gastric mucosa-associated lymphoid tissue (MALT) lymphoma, chronic gastritis, and stomach ulcers. Therefore, a safe and effective method for preventing H. pylori infection is urgently needed. Given that developing an effective vaccine against H. pylori is one of the best alternatives, H. pylori adhesin Hp0410 was expressed in the food-grade bacterium Lactobacillus acidophilus. The recombinant live bacterial vaccine was then used to orally vaccinate mice, and the immunoprotective effects of Hp0410-producing strains were investigated. H. pylori colonization in the stomach of mice immunized with the recombinant L. acidophilus was significantly reduced, in comparison with that in control groups. Furthermore, mucosal secretory IgA antibodies were elicited in the mucosal tissue of mice immunized with the recombinant bacteria, and specific anti-Hp0410 IgG responses were also detected in mouse serum. There was a significant increase in the level of protection against gastric Helicobacter infection following a challenge with H. pylori Sydney strain 1 (SS1). Our results collectively indicate that adhesin Hp0410 is a promising candidate vaccine antigen, and recombinant L. acidophilus expressing Hp0410 is likely to constitute an effective, low-cost, live bacterial vaccine against H. pylori.
Collapse
|
43
|
Chen L, Li B, Yang WC, He JL, Li NY, Hu J, He YF, Yu S, Zhao Z, Luo P, Zhang JY, Li HB, Zeng M, Lu DS, Li BS, Guo H, Yang SM, Guo G, Mao XH, Chen W, Wu C, Zou QM. A dominant CD4(+) T-cell response to Helicobacter pylori reduces risk for gastric disease in humans. Gastroenterology 2013; 144:591-600. [PMID: 23232294 DOI: 10.1053/j.gastro.2012.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 11/10/2012] [Accepted: 12/03/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Immunodominance is an important feature of antiviral, antitumor, and antibacterial cellular immune responses, but it is not well demonstrated in the immune responses against Helicobacter pylori. Antigen-specific CD4(+) T cells protect mice against infection with H pylori. We investigated the immunodominant CD4(+) T-cell response to neuraminyllactose-binding hemagglutinin (HpaA), which is a conserved, H pylori-specific colonization factor that is being investigated as an antigen for vaccination strategies. METHODS HpaA-specific CD4(+) T cells were expanded with autologous peripheral blood mononuclear cells that had been incubated with recombinant HpaA and characterized using overlapping synthetic peptides. We compared the percentage of CD4(+) T cells with specificity for HpaA(88-100), restricted to HLA-DRB1*1501, among 59 H pylori-infected subjects with different gastric diseases. RESULTS We identified and characterized several immunodominant CD4(+) T-cell epitopes derived from HpaA. The immunodominant CD4(+) T-cell responses specific to HpaA(88-100) were observed in most H pylori-infected individuals who expressed HLA-DRB1*1501 and were significantly more abundant in patients with less severe diseases (P < .05). CONCLUSIONS The HLA-DRB1*1501-restricted immunodominant CD4(+) T-cell response to HpaA(88-100) is associated with reduced risk of severe gastric diseases. Further study of these and other immunodominant CD4(+) T-cell responses to H pylori will provide insight into mechanisms of protective immunity and aid in vaccine design.
Collapse
Affiliation(s)
- Li Chen
- Department of Clinical Microbiology and Immunology, College of Medical Laboratory Science, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Kawai M, Furuta Y, Yahara K, Tsuru T, Oshima K, Handa N, Takahashi N, Yoshida M, Azuma T, Hattori M, Uchiyama I, Kobayashi I. Evolution in an oncogenic bacterial species with extreme genome plasticity: Helicobacter pylori East Asian genomes. BMC Microbiol 2011; 11:104. [PMID: 21575176 PMCID: PMC3120642 DOI: 10.1186/1471-2180-11-104] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 05/16/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genome of Helicobacter pylori, an oncogenic bacterium in the human stomach, rapidly evolves and shows wide geographical divergence. The high incidence of stomach cancer in East Asia might be related to bacterial genotype. We used newly developed comparative methods to follow the evolution of East Asian H. pylori genomes using 20 complete genome sequences from Japanese, Korean, Amerind, European, and West African strains. RESULTS A phylogenetic tree of concatenated well-defined core genes supported divergence of the East Asian lineage (hspEAsia; Japanese and Korean) from the European lineage ancestor, and then from the Amerind lineage ancestor. Phylogenetic profiling revealed a large difference in the repertoire of outer membrane proteins (including oipA, hopMN, babABC, sabAB and vacA-2) through gene loss, gain, and mutation. All known functions associated with molybdenum, a rare element essential to nearly all organisms that catalyzes two-electron-transfer oxidation-reduction reactions, appeared to be inactivated. Two pathways linking acetyl~CoA and acetate appeared intact in some Japanese strains. Phylogenetic analysis revealed greater divergence between the East Asian (hspEAsia) and the European (hpEurope) genomes in proteins in host interaction, specifically virulence factors (tipα), outer membrane proteins, and lipopolysaccharide synthesis (human Lewis antigen mimicry) enzymes. Divergence was also seen in proteins in electron transfer and translation fidelity (miaA, tilS), a DNA recombinase/exonuclease that recognizes genome identity (addA), and DNA/RNA hybrid nucleases (rnhAB). Positively selected amino acid changes between hspEAsia and hpEurope were mapped to products of cagA, vacA, homC (outer membrane protein), sotB (sugar transport), and a translation fidelity factor (miaA). Large divergence was seen in genes related to antibiotics: frxA (metronidazole resistance), def (peptide deformylase, drug target), and ftsA (actin-like, drug target). CONCLUSIONS These results demonstrate dramatic genome evolution within a species, especially in likely host interaction genes. The East Asian strains appear to differ greatly from the European strains in electron transfer and redox reactions. These findings also suggest a model of adaptive evolution through proteome diversification and selection through modulation of translational fidelity. The results define H. pylori East Asian lineages and provide essential information for understanding their pathogenesis and designing drugs and therapies that target them.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Helicobacter pylori AlpA and AlpB bind host laminin and influence gastric inflammation in gerbils. Infect Immun 2011; 79:3106-16. [PMID: 21576328 DOI: 10.1128/iai.01275-10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori persistently colonizes humans, causing gastritis, ulcers, and gastric cancer. Adherence to the gastric epithelium has been shown to enhance inflammation, yet only a few H. pylori adhesins have been paired with targets in host tissue. The alpAB locus has been reported to encode adhesins involved in adherence to human gastric tissue. We report that abrogation of H. pylori AlpA and AlpB reduces binding of H. pylori to laminin while expression of plasmid-borne alpA or alpB confers laminin-binding ability to Escherichia coli. An H. pylori strain lacking only AlpB is also deficient in laminin binding. Thus, we conclude that both AlpA and AlpB contribute to H. pylori laminin binding. Contrary to expectations, the H. pylori SS1 mutant deficient in AlpA and AlpB causes more severe inflammation than the isogenic wild-type strain in gerbils. Identification of laminin as the target of AlpA and AlpB will facilitate future investigations of host-pathogen interactions occurring during H. pylori infection.
Collapse
|
46
|
Vermoote M, Vandekerckhove TTM, Flahou B, Pasmans F, Smet A, De Groote D, Van Criekinge W, Ducatelle R, Haesebrouck F. Genome sequence of Helicobacter suis supports its role in gastric pathology. Vet Res 2011; 42:51. [PMID: 21414191 PMCID: PMC3065412 DOI: 10.1186/1297-9716-42-51] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 03/17/2011] [Indexed: 01/14/2023] Open
Abstract
Helicobacter (H.) suis has been associated with chronic gastritis and ulcers of the pars oesophagea in pigs, and with gastritis, peptic ulcer disease and gastric mucosa-associated lymphoid tissue lymphoma in humans. In order to obtain better insight into the genes involved in pathogenicity and in the specific adaptation to the gastric environment of H. suis, a genome analysis was performed of two H. suis strains isolated from the gastric mucosa of swine. Homologs of the vast majority of genes shown to be important for gastric colonization of the human pathogen H. pylori were detected in the H. suis genome. H. suis encodes several putative outer membrane proteins, of which two similar to the H. pylori adhesins HpaA and HorB. H. suis harbours an almost complete comB type IV secretion system and members of the type IV secretion system 3, but lacks most of the genes present in the cag pathogenicity island of H. pylori. Homologs of genes encoding the H. pylori neutrophil-activating protein and γ-glutamyl transpeptidase were identified in H. suis. H. suis also possesses several other presumptive virulence-associated genes, including homologs for mviN, the H. pylori flavodoxin gene, and a homolog of the H. pylori vacuolating cytotoxin A gene. It was concluded that although genes coding for some important virulence factors in H. pylori, such as the cytotoxin-associated protein (CagA), are not detected in the H. suis genome, homologs of other genes associated with colonization and virulence of H. pylori and other bacteria are present.
Collapse
Affiliation(s)
- Miet Vermoote
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tom Theo Marie Vandekerckhove
- Laboratory for Bioinformatics and Computational Genomics, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bram Flahou
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Annemieke Smet
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Dominic De Groote
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Wim Van Criekinge
- Laboratory for Bioinformatics and Computational Genomics, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Richard Ducatelle
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
47
|
Abstract
Bacteria exhibit a wide variety of morphologies. This could simply be a consequence of an elaboration of bacterial cellular architecture akin to the famous decorative but not structurally essential Spandrels in the Basilica di San Marco in Venice that are a side-effect of an adaptation, rather than a direct product of natural selection. However, it is more likely that particular morphologies facilitate a specific function in cellular physiology. Two recent publications including one in this issue of Molecular Microbiology and another in Cell provide new insights into the molecular basis for the helical shape of the bacterium Helicobacter pylori and the role of this shape in pathogenesis. They identify a novel endopeptidase that is necessary to generate the helical shape by processing the peptidoglycan and report that catalytically inactive mutants lead to defects in colonization that appear to be independent of an effect on cellular motility. Here, we put these findings in the context of some of what is known about peptidoglycan and cell shape and suggest that the role of this endopeptidase in forming coccoid morphology may be critical for pathogenesis.
Collapse
Affiliation(s)
- Jonathan Dworkin
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, NewYork, NY 10032, USA.
| |
Collapse
|
48
|
Flach CF, Svensson N, Blomquist M, Ekman A, Raghavan S, Holmgren J. A truncated form of HpaA is a promising antigen for use in a vaccine against Helicobacter pylori. Vaccine 2011; 29:1235-41. [DOI: 10.1016/j.vaccine.2010.11.088] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 11/11/2010] [Accepted: 11/29/2010] [Indexed: 02/08/2023]
|
49
|
Protection against Helicobacter pylori infection by a trivalent fusion vaccine based on a fragment of urease B-UreB414. J Microbiol 2010; 48:223-8. [PMID: 20437155 DOI: 10.1007/s12275-009-0233-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 09/27/2009] [Indexed: 12/26/2022]
Abstract
A multivalent fusion vaccine is a promising option for protection against Helicobacter pylori infection. In this study, UreB414 was identified as an antigenic fragment of urease B subunit (UreB) and it induced an antibody inhibiting urease activity. Immunization with UreB414 partially protected mice from H. pylori infection. Furthermore, a trivalent fusion vaccine was constructed by genetically linking heat shock protein A (HspA), H. pylori adhesin A (HpaA), and UreB414, resulting in recombinant HspA-HpaA-UreB414 (rHHU). Its protective effect against H. pylori infection was tested in BALB/c mice. Oral administration of rHHU significantly protected mice from H. pylori infection, which was associated with H. pylori-specific antibody production and Th1/Th2-type immune responses. The results show that a trivalent fusion vaccine efficiently combats H. pylori infection, and that an antigenic fragment of the protein can be used instead of the whole protein to construct a multivalent vaccine.
Collapse
|
50
|
Lindgren A, Pavlovic V, Flach CF, Sjöling A, Lundin S. Interferon-gamma secretion is induced in IL-12 stimulated human NK cells by recognition of Helicobacter pylori or TLR2 ligands. Innate Immun 2010; 17:191-203. [PMID: 20130107 DOI: 10.1177/1753425909357970] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori induce a chronic inflammation in the human gastric mucosa characterized by increased production of interferon-gamma (IFN-γ). The presence of natural killer (NK) cells in the human gastric mucosa and the ability of NK cells to produce IFN-γ suggest an important role of NK cells in the immune response directed towards H. pylori infection. Since NK cells previously have been shown to respond to bacterial components with IFN-γ production, we investigated the mechanisms for the recognition of H. pylori. We found that inhibition of MyD88 homodimerization resulted in decreased production of IFN-γ and that inhibition of the p38 MAPK decreased the production as well as the secretion of IFN-γ. Further studies indicated an involvement of Toll-like receptors (TLRs), in particular TLR2. Finally, we showed that the H. pylori specific membrane bound lipoprotein HpaA induced IFN-γ production from NK cells through recognition by TLR2. In conclusion, we suggest an involvement of TLR2 in the recognition of H. pylori by human NK cells and that HpaA is a TLR2 ligand important for recognition.
Collapse
Affiliation(s)
- Asa Lindgren
- Department of Microbiology and Immunology, Institute of Biomedicine, and Mucosal Immunobiology and Vaccine Center, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|