1
|
Hoang J, Stoebel DM. The transcriptional response to low temperature is weakly conserved across the Enterobacteriaceae. mSystems 2024; 9:e0078524. [PMID: 39589147 DOI: 10.1128/msystems.00785-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024] Open
Abstract
Bacteria respond to changes in their external environment, such as temperature, by changing the transcription of their genes. We know little about how these regulatory patterns evolve. We used RNA-seq to study the transcriptional response to a shift from 37°C to 15°C in wild-type Escherichia coli, Salmonella enterica, Citrobacter rodentium, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens, as well as ∆rpoS strains of E. coli and S. enterica. We found that these species change the transcription of between 626 and 1057 genes in response to the temperature shift, but there were only 16 differentially expressed genes in common among the six species. Species-specific transcriptional patterns of shared genes were a prominent cause of this lack of conservation. Gene ontology enrichment of regulated genes suggested many species-specific phenotypic responses to temperature changes, but enriched terms associated with iron metabolism, central metabolism, and biofilm formation were implicated in at least half of the species. The alternative sigma factor RpoS regulated about 200 genes between 37°C and 15°C in both E. coli and S. enterica, with only 83 genes in common between the two species. Overall, there was limited conservation of the response to low temperature generally, or the RpoS-regulated part of the response specifically. This study suggests that species-specific patterns of transcription of shared genes, rather than horizontal acquisition of unique genes, are the major reason for the lack of conservation of the transcriptomic response to low temperature. IMPORTANCE We studied how different species of bacteria from the same Family (Enterobacteriaceae) change the expression of their genes in response to a decrease in temperature. Using de novo-generated parallel RNA-seq data sets, we found that the six species in this study change the level of expression of many of their genes in response to a shift from human body temperature (37°C) to a temperature that might be found out of doors (15°C). Surprisingly, there were very few genes that change expression in all six species. This was due in part to differences in gene content, and in part due to shared genes with distinct expression profiles between the species. This study is important to the field because it illustrates that closely related species can share many genes but not use those genes in the same way in response to the same environmental change.
Collapse
Affiliation(s)
- Johnson Hoang
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | - Daniel M Stoebel
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
2
|
Kuang Z, Yan X, Yuan Y, Wang R, Zhu H, Wang Y, Li J, Ye J, Yue H, Yang X. Advances in stress-tolerance elements for microbial cell factories. Synth Syst Biotechnol 2024; 9:793-808. [PMID: 39072145 PMCID: PMC11277822 DOI: 10.1016/j.synbio.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Microorganisms, particularly extremophiles, have evolved multiple adaptation mechanisms to address diverse stress conditions during survival in unique environments. Their responses to environmental coercion decide not only survival in severe conditions but are also an essential factor determining bioproduction performance. The design of robust cell factories should take the balance of their growing and bioproduction into account. Thus, mining and redesigning stress-tolerance elements to optimize the performance of cell factories under various extreme conditions is necessary. Here, we reviewed several stress-tolerance elements, including acid-tolerant elements, saline-alkali-resistant elements, thermotolerant elements, antioxidant elements, and so on, providing potential materials for the construction of cell factories and the development of synthetic biology. Strategies for mining and redesigning stress-tolerance elements were also discussed. Moreover, several applications of stress-tolerance elements were provided, and perspectives and discussions for potential strategies for screening stress-tolerance elements were made.
Collapse
Affiliation(s)
- Zheyi Kuang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanfei Yuan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ruiqi Wang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Haifan Zhu
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Youyang Wang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jianfeng Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jianwen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Haitao Yue
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
3
|
Hwang D, Kim HJ. Increased antimicrobial resistance of acid-adapted pathogenic Escherichia coli, and transcriptomic analysis of polymyxin-resistant strain. Microb Pathog 2024; 196:106974. [PMID: 39307200 DOI: 10.1016/j.micpath.2024.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
This study investigated the acid adaptation and antimicrobial resistance of seven pathogenic Escherichia coli strains and one commensal strain under nutrient-rich acidic conditions. After acid adaptation, three pathogenic E. coli survived during 100 h incubation in tryptic soy broth at pH 3.25. Acid-adapted (AA) strains showed increased resistance to antimicrobials including ampicillin, ciprofloxacin and especially polymyxins (colistin and polymyxin B), the last resort antimicrobial for multidrug-resistant Gram-negative bacteria. Enterotoxigenic E. coli strain (NCCP 13717) showed significantly increased resistance to acids and polymyxins. Transcriptome analysis of the AA NCCP 13717 revealed upregulation of genes related to the acid fitness island and the arn operon, which reduces lipopolysaccharide binding affinity at the polymyxin site of action. Genes such as eptA, tolC, and ompCF were also upregulated to alter the structure of the cell membrane, reducing the outer membrane permeability compared to the control, which is likely to be another mechanism for polymyxin resistance. This study highlights the emergence of antimicrobial resistance in AA pathogenic E. coli strains, particularly polymyxin resistance, and the mechanisms behind the increased antimicrobial resistance, providing important insights for the development of risk management strategies to effectively control the antimicrobial resistant foodborne pathogens.
Collapse
Affiliation(s)
- Daekeun Hwang
- Korea Food Research Institute, Wanju, Jeolla-buk, 55365, South Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea
| | - Hyun Jung Kim
- Korea Food Research Institute, Wanju, Jeolla-buk, 55365, South Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
4
|
Li Z, Zhu Y, Zhang W, Mu W. Rcs signal transduction system in Escherichia coli: Composition, related functions, regulatory mechanism, and applications. Microbiol Res 2024; 285:127783. [PMID: 38795407 DOI: 10.1016/j.micres.2024.127783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
The regulator of capsule synthesis (Rcs) system, an atypical two-component system prevalent in numerous gram-negative bacteria, serves as a sophisticated regulatory phosphorylation cascade mechanism. It plays a pivotal role in perceiving environmental stress and regulating the expression of downstream genes to ensure host survival. During the signaling transduction process, various proteins participate in phosphorylation to further modulate signal inputs and outputs. Although the structure of core proteins related to the Rcs system has been partially well-defined, and two models have been proposed to elucidate the intricate molecular mechanisms underlying signal sensing, a systematic characterization of the signal transduction process of the Rcs system remains challenging. Furthermore, exploring its corresponding regulator outputs is also unremitting. This review aimed to shed light on the regulation of bacterial virulence by the Rcs system. Moreover, with the assistance of the Rcs system, biosynthesis technology has developed high-value target production. Additionally, via this review, we propose designing chimeric Rcs biosensor systems to expand their application as synthesis tools. Finally, unsolved challenges are highlighted to provide the basic direction for future development of the Rcs system.
Collapse
Affiliation(s)
- Zeyu Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Bouillet S, Bauer TS, Gottesman S. RpoS and the bacterial general stress response. Microbiol Mol Biol Rev 2024; 88:e0015122. [PMID: 38411096 PMCID: PMC10966952 DOI: 10.1128/mmbr.00151-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
SUMMARYThe general stress response (GSR) is a widespread strategy developed by bacteria to adapt and respond to their changing environments. The GSR is induced by one or multiple simultaneous stresses, as well as during entry into stationary phase and leads to a global response that protects cells against multiple stresses. The alternative sigma factor RpoS is the central GSR regulator in E. coli and conserved in most γ-proteobacteria. In E. coli, RpoS is induced under conditions of nutrient deprivation and other stresses, primarily via the activation of RpoS translation and inhibition of RpoS proteolysis. This review includes recent advances in our understanding of how stresses lead to RpoS induction and a summary of the recent studies attempting to define RpoS-dependent genes and pathways.
Collapse
Affiliation(s)
- Sophie Bouillet
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Taran S. Bauer
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, Bethesda, Maryland, USA
| |
Collapse
|
6
|
Liu Y, Van Horn AM, Pham MTN, Dinh BNN, Chen R, Raphael SDR, Paulino A, Thaker K, Somadder A, Frost DJ, Menke CC, Slimak ZC, Slonczewski JL. Fitness trade-offs of multidrug efflux pumps in Escherichia coli K-12 in acid or base, and with aromatic phytochemicals. Appl Environ Microbiol 2024; 90:e0209623. [PMID: 38289137 PMCID: PMC10880634 DOI: 10.1128/aem.02096-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Multidrug efflux pumps are the frontline defense mechanisms of Gram-negative bacteria, yet little is known of their relative fitness trade-offs under gut conditions such as low pH and the presence of antimicrobial food molecules. Low pH contributes to the proton-motive force (PMF) that drives most efflux pumps. We show how the PMF-dependent pumps AcrAB-TolC, MdtEF-TolC, and EmrAB-TolC undergo selection at low pH and in the presence of membrane-permeant phytochemicals. Competition assays were performed by flow cytometry of co-cultured Escherichia coli K-12 strains possessing or lacking a given pump complex. All three pumps showed negative selection under conditions that deplete PMF (pH 5.5 with carbonyl cyanide 3-chlorophenylhydrazone or at pH 8.0). At pH 5.5, selection against AcrAB-TolC was increased by aromatic acids, alcohols, and related phytochemicals such as methyl salicylate. The degree of fitness cost for AcrA was correlated with the phytochemical's lipophilicity (logP). Methyl salicylate and salicylamide selected strongly against AcrA, without genetic induction of drug resistance regulons. MdtEF-TolC and EmrAB-TolC each had a fitness cost at pH 5.5, but salicylate or benzoate made the fitness contribution positive. Pump fitness effects were not explained by gene expression (measured by digital PCR). Between pH 5.5 and 8.0, acrA and emrA were upregulated in the log phase, whereas mdtE expression was upregulated in the transition-to-stationary phase and at pH 5.5 in the log phase. Methyl salicylate did not affect pump gene expression. Our results suggest that lipophilic non-acidic molecules select against a major efflux pump without inducing antibiotic resistance regulons.IMPORTANCEFor drugs that are administered orally, we need to understand how ingested phytochemicals modulate drug resistance in our gut microbiome. Bacteria maintain low-level resistance by proton-motive force (PMF)-driven pumps that efflux many different antibiotics and cell waste products. These pumps play a key role in bacterial defense by conferring resistance to antimicrobial agents at first exposure while providing time for a pathogen to evolve resistance to higher levels of the antibiotic exposed. Nevertheless, efflux pumps confer energetic costs due to gene expression and pump energy expense. The bacterial PMF includes the transmembrane pH difference (ΔpH), which may be depleted by permeant acids and membrane disruptors. Understanding the fitness costs of efflux pumps may enable us to develop resistance breakers, that is, molecules that work together with antibiotics to potentiate their effect. Non-acidic aromatic molecules have the advantage that they avoid the Mar-dependent induction of regulons conferring other forms of drug resistance. We show that different pumps have distinct selection criteria, and we identified non-acidic aromatic molecules as promising candidates for drug resistance breakers.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Rachel Chen
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Kavya Thaker
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
7
|
Liu L, Tang S, Liu T, Zhang Z, Wang X, Bilal M, Liu S, Luo H, Zhao Y, Duan X. Transcriptomic analysis approach towards an improved tolerance of Escherichia coli to gallic acid stress. Arch Microbiol 2023; 205:372. [PMID: 37934297 DOI: 10.1007/s00203-023-03708-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/01/2023] [Accepted: 10/13/2023] [Indexed: 11/08/2023]
Abstract
As a natural green additive, gallic acid has been widely used in food production. However, it can inhibit the physiological metabolism of Escherichia coli, which severely limits the ability and efficiency of gallic acid production. To explore the adaptation mechanism of E. coli under gallic acid stress and further explore the target of genetic modification, the effects of gallic acid stress on the fermentation characteristics of E. coli W3110 ATCC (82057) were investigated by cell biomass and cell morphometry. Moreover, transcriptome analysis was used to analyze the gene transcription level of E. coli W3110 ATCC (82057) to explore effects of gallic acid stress on important essential physiological processes. The results showed that under high concentration of gallic acid, the biomass of E. coli W3110 ATCC (82057) decreased significantly and the cells showed irregular morphology. Transcriptome analysis showed that E. coli W3110 ATCC (82057) improved its adaptive capacity through three strategies. First, genes of bamD, ompC, and ompF encoding outer membrane protein BamD, OmpC, and OmpC were decreased 5-, 31.1- and 8.1-fold, respectively, under gallic acid stress compared to the control, leading to the reduction of gallic acid absorption. Moreover, genes (mdtA, mdtB, mdtC, mdtD, mdtE, and mdtF) related to MdtABC multidrug efflux system and multidrug efflux pump MdtEF were up-regulated by1.0-53.0 folds, respectively, and genes (aaeA, aaeB, and aaeX) related to AaeAB efflux system were up-regulated by 8.0-13.3 folds, respectively, which contributed to the excretion of gallic acid. In addition, genes of acid fitness island also were up-regulated by different degrees under the stress of an acidic environment to maintain the stability of the intracellular environment. In conclusion, E. coli W3110 ATCC (82057) would enhance its tolerance to gallic acid by reducing absorption, increasing excretion, and maintaining intracellular environment stability. This study provides research ideas for the construction of engineered strains with high gallic acid yield.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Shijie Tang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Tingting Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Zihao Zhang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xuefeng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Shuai Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hongzhen Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
8
|
Yao T, Huang Y, Huai Z, Liu X, Liu X, Liu Y, Sun H, Pang Y. Response mechanisms to acid stress promote LF82 replication in macrophages. Front Cell Infect Microbiol 2023; 13:1255083. [PMID: 37881369 PMCID: PMC10595154 DOI: 10.3389/fcimb.2023.1255083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Background Adherent-invasive E. coli (AIEC) LF82 is capable of adhering to and invading intestinal epithelial cells, as well as replicating within macrophages without inducing host cell death. Methods We compared the transcriptomics of LF82 at pH=7.5 and pH=5.8 by RNA-sequencing, and qRT-PCR verified differentially expressed genes (DEGs). The deletion mutants of DEGs in the treatment group (pH=5.8) compared to the control group (pH=7.5) were constructed by λ recombinant. The replication differences between the mutants and WT infected Raw 264.7 at 24 h.p.i were analyzed by combining LB solid plate count and confocal observation. NH4Cl and chloroquine diphosphate (CQ) were used for acid neutralization to study the effect of pH on the replication of LF82 in macrophages. Na2NO3 was added to RPMI 1640 to study the effect of nitrate on the replication of LF82 in macrophages. 0.3% solid LB was used for flagellar motility assay and Hela was used to study flagellar gene deletion mutants and WT adhesion and invasion ability. Results In this study, we found that infection with LF82 results in acidification of macrophages. Subsequent experiments demonstrated that an intracellular acidic environment is necessary for LF82 replication. Transcriptome and phenotypic analysis showed that high expression of acid shock genes and acid fitness genes promotes LF82 replication in macrophages. Further, we found that the replication of LF82 in macrophages was increased under nitrate treatment, and nitrogen metabolism genes of LF82 were upregulated in acid treatment. The replication in macrophages of ΔnarK, ΔnarXL, ΔnarP, and Δhmp were decreased. In addition, we found that the expression of flagellar genes was downregulated in acidic pH and after LF82 invading macrophages. Motility assay shows that the movement of LF82 on an acidic semisolid agar plate was limited. Further results showed that ΔfliC and ΔfliD decreased in motility, adhesion ability, and invasion of host cells, but no significant effect on replication in macrophages was observed. Conclusion In this study, we simulated the acidic environment in macrophages, combined with transcriptome technology, and explained from the genetic level that LF82 promotes replication by activating its acid shock and fitness system, enhancing nitrate utilization, and inhibiting flagellar function.
Collapse
Affiliation(s)
- Ting Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Zimeng Huai
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xingmei Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaowen Liu
- Academy of Psychology and Behavior, Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China
- The Key Laboratory of Molecular Microbiology and Technology, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Ministry of Education, Tianjin, China
| |
Collapse
|
9
|
Carter MQ, Quiñones B, Laniohan N, Carychao D, Pham A, He X, Cooley M. Pathogenicity assessment of Shiga toxin-producing Escherichia coli strains isolated from wild birds in a major agricultural region in California. Front Microbiol 2023; 14:1214081. [PMID: 37822735 PMCID: PMC10562709 DOI: 10.3389/fmicb.2023.1214081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) consists of diverse strains differing in genetic make-up and virulence potential. To better understand the pathogenicity potential of STEC carried by the wildlife, three STEC and one E. coli strains isolated from wild birds near a major agricultural region in California were selected for comparative pathogenomic analyses. Three American crow (Corvus brachyrhynchos) strains, RM9088, RM9513, and RM10410, belonging to phylogroup A with serotypes O109:H48, O9:H30, and O113:H4, respectively, and a red-winged blackbird (Agelaius phoeniceus) strain RM14516 in phylogroup D with serotype O17:H18, were examined. Shiga toxin genes were identified in RM9088 (stx1a), RM10410 (stx1a + stx2d), and RM14516 (stx2a). Unlike STEC O157:H7 strain EDL933, none of the avian STEC strains harbored the pathogenicity islands OI-122, OI-57, and the locus of enterocyte effacement, therefore the type III secretion system biogenesis genes and related effector genes were absent in the three avian STEC genomes. Interestingly, all avian STEC strains exhibited greater (RM9088 and RM14516) or comparable (RM10410) cytotoxicity levels compared with EDL933. Comparative pathogenomic analyses revealed that RM9088 harbored numerous genes encoding toxins, toxins delivery systems, and adherence factors, including heat-labile enterotoxin, serine protease autotransporter toxin Pic, type VI secretion systems, protein adhesin Paa, fimbrial adhesin K88, and colonization factor antigen I. RM9088 also harbored a 36-Kb high pathogenicity island, which is related to iron acquisition and pathogenicity in Yersinia spp. Strain RM14516 carried an acid fitness island like the one in EDL933, containing a nine gene cluster involved in iron acquisition. Genes encoding extracellular serine protease EspP, subtilase cytotoxin, F1C fimbriae, and inverse autotransporter adhesin IatC were only detected in RM14516, and genes encoding serine protease autotransporter EspI and P fimbriae were only identified in RM10410. Although all curli genes were present in avian STEC strains, production of curli fimbriae was only detected for RM9088 and RM14516. Consistently, strong, moderate, and little biofilms were observed for RM9088, RM14516, and RM10410, respectively. Our study revealed novel combinations of virulence factors in two avian strains, which exhibited high level of cytotoxicity and strong biofilm formation. Comparative pathogenomics is powerful in assessing pathogenicity and health risk of STEC strains.
Collapse
Affiliation(s)
- Michelle Qiu Carter
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Beatriz Quiñones
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Nicole Laniohan
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Diana Carychao
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Antares Pham
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Xiaohua He
- Foodborne Toxin Detection and Prevention Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| | - Michael Cooley
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, CA, United States
| |
Collapse
|
10
|
Fiegna F, Pande S, Peitz H, Velicer GJ. Widespread density dependence of bacterial growth under acid stress. iScience 2023; 26:106952. [PMID: 37332671 PMCID: PMC10275722 DOI: 10.1016/j.isci.2023.106952] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/27/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Many microbial phenotypes are density-dependent, including group-level phenotypes emerging from cooperation. However, surveys for the presence of a particular form of density dependence across diverse species are rare, as are direct tests for the Allee effect, i.e., positive density dependence of fitness. Here, we test for density-dependent growth under acid stress in five diverse bacterial species and find the Allee effect in all. Yet social protection from acid stress appears to have evolved by multiple mechanisms. In Myxococcus xanthus, a strong Allee effect is mediated by pH-regulated secretion of a diffusible molecule by high-density populations. In other species, growth from low density under acid stress was not enhanced by high-density supernatant. In M. xanthus, high cell density may promote predation on other microbes that metabolically acidify their environment, and acid-mediated density dependence may impact the evolution of fruiting-body development. More broadly, high density may protect most bacterial species against acid stress.
Collapse
Affiliation(s)
- Francesca Fiegna
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Samay Pande
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Gregory J. Velicer
- Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|
11
|
Mallick S, Das S. Acid-tolerant bacteria and prospects in industrial and environmental applications. Appl Microbiol Biotechnol 2023; 107:3355-3374. [PMID: 37093306 DOI: 10.1007/s00253-023-12529-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Acid-tolerant bacteria such as Streptococcus mutans, Acidobacterium capsulatum, Escherichia coli, and Propionibacterium acidipropionici have developed several survival mechanisms to sustain themselves in various acid stress conditions. Some bacteria survive by minor changes in the environmental pH. In contrast, few others adapt different acid tolerance mechanisms, including amino acid decarboxylase acid resistance systems, mainly glutamate-dependent acid resistance (GDAR) and arginine-dependent acid resistance (ADAR) systems. The cellular mechanisms of acid tolerance include cell membrane alteration in Acidithiobacillus thioxidans, proton elimination by F1-F0-ATPase in Streptococcus pyogenes, biofilm formation in Pseudomonas aeruginosa, cytoplasmic urease activity in Streptococcus mutans, synthesis of the protective cloud of ammonia, and protection or repair of macromolecules in Bacillus caldontenax. Apart from cellular mechanisms, there are several acid-tolerant genes such as gadA, gadB, adiA, adiC, cadA, cadB, cadC, speF, and potE that help the bacteria to tolerate the acidic environment. This acid tolerance behavior provides new and broad prospects for different industrial applications and the bioremediation of environmental pollutants. The development of engineered strains with acid-tolerant genes may improve the efficiency of the transgenic bacteria in the treatment of acidic industrial effluents. KEY POINTS: • Bacteria tolerate the acidic stress by methylating unsaturated phospholipid tail • The activity of decarboxylase systems for acid tolerance depends on pH • Genetic manipulation of acid-tolerant genes improves acid tolerance by the bacteria.
Collapse
Affiliation(s)
- Souradip Mallick
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
12
|
Li D, Ren Z, Zhou Y, Jiang L, Zheng M, Liu G. Comammox Nitrospira and Ammonia-Oxidizing Archaea Are Dominant Ammonia Oxidizers in Sediments of an Acid Mine Lake Containing High Ammonium Concentrations. Appl Environ Microbiol 2023; 89:e0004723. [PMID: 36912626 PMCID: PMC10056971 DOI: 10.1128/aem.00047-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 03/14/2023] Open
Abstract
Exploring nitrifiers in extreme environments is vital to expanding our understanding of nitrogen cycle and microbial diversity. This study presents that complete ammonia oxidation (comammox) Nitrospira, together with acidophilic ammonia-oxidizing archaea (AOA), dominate in the nitrifying guild in sediments of an acid mine lake (AML). The lake water was characterized by acidic pH below 5 with a high ammonium concentration of 175 mg-N/liter, which is rare on the earth. Nitrification was active in sediments with a maximum nitrate production potential of 70.5 μg-N/(g-dry weight [dw] day) for mixed sediments. Quantitative PCR assays determined that in AML sediments, comammox Nitrospira and AOA amoA genes had relative abundances of 52% and 41%, respectively, among the total amoA genes. Further assays with 16S rRNA and amoA gene amplicon sequencing and metagenomics confirmed their dominance and revealed that the comammox Nitrospira found in sediments belonged to comammox Nitrospira clade A.2. Metagenomic binning retrieved a metagenome-assembled genome (MAG) of the comammox Nitrospira from sediments (completeness = 96.76%), and phylogenomic analysis suggested that it was a novel comammox Nitrospira. Comparative genomic investigation revealed that this comammox Nitrospira contained diverse metal resistance genes and an acidophile-affiliated F-type ATPase. Moreover, it had a more diverse genomic characteristic on nitrogen metabolism than the AOA in sediments and canonical AOB did. The results suggest that comammox Nitrospira is a versatile nitrifier that can adapt to acidic environments even with high ammonium concentrations. IMPORTANCE Ammonia-oxidizing archaea (AOA) was previously considered the sole dominant ammonia oxidizer in acidic environments. This study, however, found that complete ammonia oxidation (comammox) Nitrospira was also a dominant ammonia oxidizer in the sediments of an acidic mine lake, which had an acidic pH < 5 and a high ammonium concentration of 175 mg-N/liter. In combination with average nucleotide identity analysis, phylogenomic analysis suggested it is a novel strain of comammox Nitrospira. Moreover, the adaption of comammox Nitrospira to the acidic lake had been comprehensively investigated based on genome-centric metagenomic approaches. The outcomes of this study significantly expand our understanding of the diversity and adaptability of ammonia oxidizers in the acidic environments.
Collapse
Affiliation(s)
- Deyong Li
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Zhichang Ren
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yangqi Zhou
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Lugao Jiang
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), University of Queensland, St. Lucia, Brisbane, Queensland, Australia
| | - Guoqiang Liu
- Center for Environmental Microplastics Studies, Guangdong Engineering Research Center of Water Treatment Processes and Materials, Guangdong Key Laboratory of Environmental Pollution and Health, and School of Environment, Jinan University, Guangzhou, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
13
|
Derdouri N, Ginet N, Denis Y, Ansaldi M, Battesti A. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology. PLoS Genet 2023; 19:e1010672. [PMID: 36930675 PMCID: PMC10057817 DOI: 10.1371/journal.pgen.1010672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2023] [Accepted: 02/18/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial genome diversity is influenced by prophages, which are viral genomes integrated into the bacterial chromosome. Most prophage genes are silent but those that are expressed can provide unexpected properties to their host. Using as a model E. coli K-12 that carries 9 defective prophages in its genome, we aimed at highlighting the impact of genes encoded by prophages on host physiology. We focused our work on AppY, a transcriptional regulator encoded on the DLP12 prophage. By performing RNA-Seq experiments, we showed that AppY production modulates the expression of more than 200 genes. Among them, 11 were identified by ChIP-Seq as direct AppY targets. AppY directly and positively regulates several genes involved in the acid stress response including the master regulator gene gadE but also nhaR and gadY, two genes important for biofilm formation. Moreover, AppY indirectly and negatively impacts bacterial motility by favoring the degradation of FlhDC, the master regulator of the flagella biosynthesis. As a consequence of these regulatory effects, AppY increases acid stress resistance and biofilm formation while also causing a strong defect in motility. Our research shed light on the importance to consider the genetic interactions occurring between prophages and bacteria to fully understand bacterial physiology. It also highlights how a prophage-encoded transcriptional regulator integrates in a complex manner into the host regulatory network and how it benefits its host, allowing it to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Naoual Derdouri
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Nicolas Ginet
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Yann Denis
- Aix Marseille Université, Centre National de la Recherche Scientifique, Plateforme Transcriptome, Institut de Microbiologie de la Méditerranée-, Marseille, France
| | - Mireille Ansaldi
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Aurélia Battesti
- Aix Marseille Université, Centre National de la Recherche Scientifique, Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
14
|
Van Riet S, Tadesse W, Mortier J, Schlegel S, Simoens K, Bernaerts K, Dal Co A, Aertsen A. Heterogeneity and Evolutionary Tunability of Escherichia coli Resistance against Extreme Acid Stress. Microbiol Spectr 2022; 10:e0375722. [PMID: 36453903 PMCID: PMC9769608 DOI: 10.1128/spectrum.03757-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Since acidic environments often serve as an important line of defense against bacterial pathogens, it is important to fully understand how the latter manage to mount and evolve acid resistance mechanisms. Escherichia coli, a species harboring many pathovars, is typically equipped with the acid fitness island (AFI), a genomic region encoding the GadE master regulator together with several GadE-controlled functions to counter acid stress. This study reveals that gadE and consequently AFI functions are heterogeneously expressed even in the absence of any prior acid stress, thereby preemptively creating acid-resistant subpopulations within a clonal E. coli population. Directed evolution efforts selecting for modulated gadE expression confirm that a gain-of-function mutation in the EvgS sensor kinase can constitutively upregulate gadE expression and concomitant acid resistance. However, we reveal that such upregulation of EvgS also causes cross-resistance to heat stress because of SafA-mediated cross-activation of the PhoPQ regulon. Surprisingly, loss of function of the serC gene (encoding phosphoserine/phosphohydroxythreonine aminotransferase) can also significantly upregulate gadE expression, acid resistance, and heat cross-resistance, although via a currently cryptic mechanism. As such, our data reveal a noisy expression of gadE in E. coli that is functional for the survival of sudden acid stress and that can readily be genetically tuned. IMPORTANCE Acidic environments constitute one of the most important stresses for enteric bacteria and can be encountered in both natural (e.g., host gastrointestinal tract) and manmade (e.g., food processing) environments. The enteric species Escherichia coli harbors many pathovars and is well known for its ability to cope with acid stress. In this study, we uncover that E. coli's acid fitness island (AFI), a genomic region that encodes important functions to deal with acid stress, is by default expressed in a heterogeneous manner. In fact, using microfluidics-based single-cell approaches, we further demonstrate that this heterogeneity preemptively creates a clonal subpopulation that is much better equipped to survive a sudden acid shock. In addition, we reveal that environments with recurring acid stress can readily select for mutants displaying a higher fraction of AFI-expressing cells. These new insights are important to properly understand and anticipate the survival characteristics of E. coli.
Collapse
Affiliation(s)
- Stefanie Van Riet
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Wubishet Tadesse
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Julien Mortier
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| | - Susan Schlegel
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Kenneth Simoens
- Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | | | - Alma Dal Co
- Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
| | - Abram Aertsen
- Department of Molecular and Microbial Systems, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Carter MQ, Laniohan N, Pham A, Quiñones B. Comparative genomic and phenotypic analyses of the virulence potential in Shiga toxin-producing Escherichia coli O121:H7 and O121:H10. Front Cell Infect Microbiol 2022; 12:1043726. [PMID: 36506028 PMCID: PMC9729726 DOI: 10.3389/fcimb.2022.1043726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O121 is among the top six non-O157 serogroups that are most frequently associated with severe disease in humans. While O121:H19 is predominant, other O121 serotypes have been frequently isolated from environmental samples, but their virulence repertoire is poorly characterized. Here, we sequenced the complete genomes of two animal isolates belonging to O121:H7 and O121:H10 and performed comparative genomic analysis with O121:H19 to assess their virulence potential. Both O121:H7 and O121:H10 strains carry a genome comparable in size with the O121:H19 genomes and belong to phylogroup B1. However, both strains appear to have evolved from a different lineage than the O121:H19 strains according to the core genes-based phylogeny and Multi Locus Sequence Typing. A systematic search of over 300 E. coli virulence genes listed in the Virulence Factor DataBase revealed a total of 73 and 71 in O121:H7 and O121:H10 strains, respectively, in comparison with an average of 135 in the O121:H19 strains. This variation in the virulence genes repertoire was mainly attributed to the reduction in the number of genes related to the Type III Secretion System in the O121:H7 and O121:H10 strains. Compared to the O121:H19 strains, the O121:H7 strain carries more adherence and toxin genes while the O121:H10 strain carries more genes related to the Type VI Secretion System. Although both O121:H7 and O121:H10 strains carry the large virulence plasmid pEHEC, they do not harbor all pEHEC virulence genes in O121:H19. Furthermore, unlike the O121:H19 strains, neither the O121:H7 nor O121:H10 strain carried the Locus of Enterocyte Effacement, OI-122, nor the tellurite resistance island. Although an incomplete Locus of Adhesion and Autoaggregation (LAA) was identified in the O121:H7 and O121:H10 strains, a limited number of virulence genes were present. Consistently, both O121:H7 and O121:H10 strains displayed significant reduced cytotoxicity than either the O157:H7 strain EDL933 or the O121:H19 strain RM8352. In fact, the O121:H7 strain RM8082 appeared to cause minimal cytotoxicity to Vero cells. Our study demonstrated distinct evolutionary lineages among the strains of serotypes O121:H19, O121:H10, and O121:H7 and suggested reduced virulence potentials in STEC strains of O121:H10 and O121:H7.
Collapse
|
16
|
Neira G, Vergara E, Holmes DS. Genome-guided prediction of acid resistance mechanisms in acidophilic methanotrophs of phylogenetically deep-rooted Verrucomicrobia isolated from geothermal environments. Front Microbiol 2022; 13:900531. [PMID: 36212841 PMCID: PMC9543262 DOI: 10.3389/fmicb.2022.900531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2–3) and moderately thermophilic conditions (50–60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including “first line of defense” mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the “second line of defense” where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes
| |
Collapse
|
17
|
Dale AG, Porcu A, Mann J, Neidle S. The mechanism of resistance in Escherichia coli to ridinilazole and other antibacterial head-to-head bis-benzimidazole compounds. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe appY gene has been characterised as conferring resistance to a novel series of antimicrobial benzimidazole derivatives in E. coli MC1061 cells when expressed in high copy-number. A microarray approach was used to identify genes involved in the mechanism of appY-mediated antibacterial resistance, that were up- or down-regulated following induction of the gene in the appY knockout strain JW0553. In total, expression of 90 genes was induced and 48 repressed greater than 2.5-fold (P < 0.05), 45 min after appY induction. Over half the genes up-regulated following appY expression had confirmed or putative roles in acid resistance (AR) and response to oxidative and antibiotic stresses. These included the genes for MdtE and MdtF, which form a multi-drug transporter with TolC and have been implicated in resistance to several antibiotics including erythromycin. Amongst the acid resistance genes were gadAB and adiAC encoding the glutamate-dependant (AR2) and arginine-dependant (AR3) acid resistance systems respectively, in addition to the transcriptional activators of these systems gadE and gadX. In agreement with earlier studies, appA, appCB and hyaA-F were also up-regulated following induction of appY. This study has also confirmed that over-expression of mdtEF confers resistance to these antibacterial benzimidazoles, indicating that the observation of appY conferring resistance to these compounds, proceeds through an appY-mediated up-regulation of this efflux transporter. To assess the importance of the AppY enzyme to acid stress responses, the percentage survival of bacteria in acidified media (pH ≤ 2) was measured. From an initial input of 1 × 106 CFU/ml, the wild-type strain MG1655 showed 7.29% and 0.46% survival after 2 and 4 h, respectively. In contrast, strain JW0553 in which appY is deleted was completely killed by the treatment. Transformation of JW0553 with a plasmid carrying appY returned survival to wild-type levels (7.85% and 1.03% survival at 2 and 4 h). Further dissection of the response by prior induction of each of the three AR systems has revealed that AR1 and AR3 were most affected by the absence of appY. This work highlights an important and previously unidentified role for the AppY enzyme in mediating the responses to several stress conditions. It is likely that the appY gene fits into a complex transcriptional regulatory network involving σS and gadE and gadX. Further work to pinpoint its position in such a hierarchy and to assess the contribution of appY to oxidative stress responses should help determine its full significance. This work is also consistent with recent studies in C. difficile showing that the mechanism of action of ridinilazole involves AT-rich DNA minor groove binding.
Collapse
|
18
|
Kvesić M, Šamanić I, Novak A, Fredotović Ž, Dželalija M, Kamenjarin J, Goić Barišić I, Tonkić M, Maravić A. Submarine Outfalls of Treated Wastewater Effluents are Sources of Extensively- and Multidrug-Resistant KPC- and OXA-48-Producing Enterobacteriaceae in Coastal Marine Environment. Front Microbiol 2022; 13:858821. [PMID: 35602062 PMCID: PMC9121779 DOI: 10.3389/fmicb.2022.858821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid and ongoing spread of carbapenemase-producing Enterobacteriaceae has led to a global health threat. However, a limited number of studies have addressed this problem in the marine environment. We investigated their emergence in the coastal waters of the central Adriatic Sea (Croatia), which are recipients of submarine effluents from two wastewater treatment plants. Fifteen KPC-producing Enterobacteriaceae (nine Escherichia coli, four Klebsiella pneumoniae and two Citrobacter freundii) were recovered, and susceptibility testing to 14 antimicrobials from 10 classes showed that four isolates were extensively drug resistant (XDR) and two were resistant to colistin. After ERIC and BOX-PCR typing, eight isolates were selected for whole genome sequencing. The E. coli isolates belonged to serotype O21:H27 and sequence type (ST) 2795, while K. pneumoniae isolates were assigned to STs 37 and 534. Large-scale genome analysis revealed an arsenal of 137 genes conferring resistance to 19 antimicrobial drug classes, 35 genes associated with virulence, and 20 plasmid replicons. The isolates simultaneously carried 43–90 genes encoding for antibiotic resistance, while four isolates co-harbored carbapenemase genes blaKPC-2 and blaOXA-48. The blaOXA-48 was associated with IncL-type plasmids in E. coli and K. pneumoniae. Importantly, the blaKPC-2 in four E. coli isolates was located on ~40 kb IncP6 broad-host-range plasmids which recently emerged as blaKPC-2 vesicles, providing first report of these blaKPC-2-bearing resistance plasmids circulating in E. coli in Europe. This study also represents the first evidence of XDR and potentially virulent strains of KPC-producing E. coli in coastal waters and the co-occurrence of blaKPC-2 and blaOXA-48 carbapenemase genes in this species. The leakage of these strains through submarine effluents into coastal waters is of concern, indicating a reservoir of this infectious threat in the marine environment.
Collapse
Affiliation(s)
- Marija Kvesić
- Center of Excellence for Science and Technology, Integration of Mediterranean Region, University of Split, Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, Split, Croatia
| | - Ivica Šamanić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Anita Novak
- School of Medicine, University of Split, Split, Croatia
- University Hospital Split, Split, Croatia
| | - Željana Fredotović
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Mia Dželalija
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Juraj Kamenjarin
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
| | - Ivana Goić Barišić
- School of Medicine, University of Split, Split, Croatia
- University Hospital Split, Split, Croatia
| | - Marija Tonkić
- School of Medicine, University of Split, Split, Croatia
- University Hospital Split, Split, Croatia
| | - Ana Maravić
- Department of Biology, Faculty of Science, University of Split, Split, Croatia
- *Correspondence: Ana Maravić,
| |
Collapse
|
19
|
Comparative Genomics Applied to Systematically Assess Pathogenicity Potential in Shiga Toxin-Producing Escherichia coli O145:H28. Microorganisms 2022; 10:microorganisms10050866. [PMID: 35630311 PMCID: PMC9144400 DOI: 10.3390/microorganisms10050866] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O145:H28 can cause severe disease in humans and is a predominant serotype in STEC O145 environmental isolates. Here, comparative genomics was applied to a set of clinical and environmental strains to systematically evaluate the pathogenicity potential in environmental strains. While the core genes-based tree separated all O145:H28 strains from the non O145:H28 reference strains, it failed to segregate environmental strains from the clinical. In contrast, the accessory genes-based tree placed all clinical strains in the same clade regardless of their genotypes or serotypes, apart from the environmental strains. Loss-of-function mutations were common in the virulence genes examined, with a high frequency in genes related to adherence, autotransporters, and the type three secretion system. Distinct differences in pathogenicity islands LEE, OI-122, and OI-57, the acid fitness island, and the tellurite resistance island were detected between the O145:H28 and reference strains. A great amount of genetic variation was detected in O145:H28, which was mainly attributed to deletions, insertions, and gene acquisition at several chromosomal “hot spots”. Our study demonstrated a distinct virulence gene repertoire among the STEC O145:H28 strains originating from the same geographical region and revealed unforeseen contributions of loss-of-function mutations to virulence evolution and genetic diversification in STEC.
Collapse
|
20
|
Boase K, González C, Vergara E, Neira G, Holmes D, Watkin E. Prediction and Inferred Evolution of Acid Tolerance Genes in the Biotechnologically Important Acidihalobacter Genus. Front Microbiol 2022; 13:848410. [PMID: 35516430 PMCID: PMC9062700 DOI: 10.3389/fmicb.2022.848410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - David Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes,
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Elizabeth Watkin,
| |
Collapse
|
21
|
Mousavi R, Walid M, Hassan H, Gomaa A, Audet MC, Riadh H. Screening, characterization, and growth of γ-aminobutyric acid-producing probiotic candidates from food origin under simulated colonic conditions. J Appl Microbiol 2022; 132:4452-4465. [PMID: 35338685 DOI: 10.1111/jam.15550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/28/2022]
Abstract
AIMS This study aims to isolate probiotic bacteria candidates from various starter cultures and fermented foods and characterize their ability to produce γ-aminobutyric acid (GABA). GABA is a major inhibitory neuromediator of the central and enteric nervous systems with a role in several health disorders. METHODS AND RESULTS Fourteen strains of lactic acid bacteria were isolated from food environment and screened for the presence of the glutamate decarboxylase (gadB) gene using PCR and GAD enzymatic assay. The identified potent GABA-producers included Streptococcus thermophilus, Lactiplantibacillus plantarum, and Lactobacillus delbrueckii subsp. bulgaricus. GC-FID analyses confirmed the high GABA production capacity of S. thermophilus ST16 (1641.5 ± 154.15 μmol l-1 ), S. thermophilus ST8 (1724.5±48.08 μmol/L). In a lesser extent, Bifidobacterium animalis ST20, Lactobacillus acidophilus LP16-2, and Enterococcus faecium ST3 produced 947.5 ± 70.71, 918.0 ± 121.42, and 907.83 ± 55.15 μmol/L of GABA, respectively. These potent strains were able to grow and produce GABA in MRS broth and pre-fermented Macfarlane broth, the latter medium mimicking the nutrient and metabolome composition encountered in the colon. The identified bioactive strains exhibited strong biological safety and probiotic potential profiles as indicated by sensitivity to antibiotics, absence of virulence factors, and survival in gastrointestinal conditions CONCLUSIONS: Several GABA producing probiotic candidates, including B. animals ST20, S. thermophilus ST8, L. acidophilus LP16-2, L. plantarum LP6 & LP9, and E. faecium ST3, have shown potential to grow under simulated colonic conditions. SIGNIFICANCE AND IMPACT OF STUDY Findings from this study provide evidence of the suitability of the isolated GABA-producing probiotic candidates for the development of health-oriented functional food products.
Collapse
Affiliation(s)
- Rojaalsadat Mousavi
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Mottawea Walid
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Hebatoallah Hassan
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Ahmed Gomaa
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,National Research Center, Nutrition and Food Science Department, Cairo, Egypt
| | - Marie-Claude Audet
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Hammami Riadh
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada.,Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
22
|
Guerreiro DN, Pucciarelli MG, Tiensuu T, Gudynaite D, Boyd A, Johansson J, García-del Portillo F, O’Byrne CP. Acid stress signals are integrated into the σB-dependent general stress response pathway via the stressosome in the food-borne pathogen Listeria monocytogenes. PLoS Pathog 2022; 18:e1010213. [PMID: 35275969 PMCID: PMC8942246 DOI: 10.1371/journal.ppat.1010213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR. Mild acid shock (15 min at pH 5.0) activated σB and conferred protection against a subsequent lethal pH challenge. A mutant strain where the stressosome subunit RsbR1 was solely present retained the ability to induce σB activity at pH 5.0. The role of stressosome phosphorylation in signal transduction was investigated by mutating the putative phosphorylation sites in the core stressosome proteins RsbR1 (rsbR1-T175A, -T209A, -T241A) and RsbS (rsbS-S56A), or the stressosome kinase RsbT (rsbT-N49A). The rsbS S56A and rsbT N49A mutations abolished the response to low pH. The rsbR1-T209A and rsbR1-T241A mutants displayed constitutive σB activity. Mild acid shock upregulates invasion genes inlAB and stimulates epithelial cell invasion, effects that were abolished in mutants with an inactive or overactive stressosome. Overall, the results show that the stressosome is required for acid-induced activation of σB in L. monocytogenes. Furthermore, they show that RsbR1 can function independently of its paralogues and signal transduction requires RsbT-mediated phosphorylation of RsbS on S56 and RsbR1 on T209 but not T175. These insights shed light on the mechanisms of signal transduction that activate the GSR in L. monocytogenes in response to acidic environments, and highlight the role this sensory process in the early stages of the infectious cycle. The stress sensing hub known as the stressosome, found in many bacterial and archaeal lineages, plays a crucial role in both stress tolerance and virulence in the food-borne pathogen Listeria monocytogenes. However, the mechanisms that lead to its activation and the subsequent activation of the general stress response have remained elusive. In this study, we examined the signal transduction mechanisms that operate in the stressosome in response to acid stress. We found that only one of the five putative sensory proteins present in L. monocytogenes, RsbR1, was required for effective transduction of acid tress signals. We further found that phosphorylation of RsbS and RsbR1, mediated by the RsbT kinase, is essential for signal transduction. Failure to phosphorylate RsbS on Serine 56 completely abolished acid sensing by the stressosome, which prevented the development of adaptive acid tolerance. The acid-induced activation of internalin gene expression was also abolished in mutants with defective stressosome signalling, suggesting a role for the stressosome in the invasion of host cells. Together the data provide new insights into the mechanisms that activate the stressosome in response to acid stress and highlight the role this sensory hub plays in virulence.
Collapse
Affiliation(s)
- Duarte N. Guerreiro
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - M. Graciela Pucciarelli
- Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Centre of Molecular Biology ‘Severo Ochoa’ (CBMSO CSIC-UAM), Madrid, Spain
| | - Teresa Tiensuu
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | - Diana Gudynaite
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Aoife Boyd
- Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Jörgen Johansson
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre of Microbial Research, Umeå, Sweden
| | | | - Conor P. O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
23
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
24
|
Sharma VK, Akavaram S, Bayles DO. Genomewide transcriptional response of Escherichia coli O157:H7 to norepinephrine. BMC Genomics 2022; 23:107. [PMID: 35135480 PMCID: PMC8822769 DOI: 10.1186/s12864-021-08167-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2021] [Indexed: 01/18/2023] Open
Abstract
Background Chemical signaling between a mammalian host and intestinal microbes is health and maintenance of ‘healthy’ intestinal microbiota. Escherichia coli O157:H7 can hijack host- and microbiota-produced chemical signals for survival in a harsh and nutritionally competitive gastrointestinal environment and for intestinal colonization. Norepinephrine (NE) produced by sympathetic neurons of the enteric nervous system has been shown in vitro to induce expression of genes controlling E. coli O157:H7 swimming motility, acid resistance, and adherence to epithelial cells. A previous study used a microarray approach to identify differentially expressed genes in E. coli O157:H7 strain EDL933 in response to NE. To elucidate a comprehensive transcriptional response to NE, we performed RNA-Seq on rRNA-depleted RNA of E. coli O157:H7 strain NADC 6564, an isolate of a foodborne E. coli O157:H7 strain 86–24. The reads generated by RNA-Seq were mapped to NADC 6564 genome using HiSat2. The mapped reads were quantified by htseq-count against the genome of strain NADC 6564. The differentially expressed genes were identified by analyzing quantified reads by DESeq2. Results Of the 585 differentially expressed genes (≥ 2.0-fold; p < 0.05), many encoded pathways promoting ability of E. coli O157:H7 strain NADC 6564 to colonize intestines of carrier animals and to produce disease in an incidental human host through increased adherence to epithelial cells and production of Shiga toxins. In addition, NE exposure also induced the expression of genes encoding pathways conferring prolonged survival at extreme acidity, controlling influx/efflux of specific nutrients/metabolites, and modulating tolerance to various stressors. A correlation was also observed between the EvgS/EvgA signal transduction system and the ability of bacterial cells to survive exposure to high acidity for several hours. Many genes involved in nitrogen, sulfur, and amino acid uptake were upregulated while genes linked to iron (Fe3+) acquisition and transport were downregulated. Conclusion The availability of physiological levels of NE in gastrointestinal tract could serve as an important cue for E. coli O157:H7 to engineer its virulence, stress, and metabolic pathways for colonization in reservoir animals, such as cattle, causing illness in humans, and surviving outside of a host. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08167-z.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA.,Current address: 4302 TX-332, Freeport, TX, 77541, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, IA, 50010, USA
| |
Collapse
|
25
|
The hdeD Gene Represses the Expression of Flagella Biosynthesis via LrhA in Escherichia coli K-12. J Bacteriol 2021; 204:e0042021. [PMID: 34694904 DOI: 10.1128/jb.00420-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagella synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagella synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagella biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagella biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagella systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.
Collapse
|
26
|
A Shift to Human Body Temperature (37°C) Rapidly Reprograms Multiple Adaptive Responses in Escherichia coli That Would Facilitate Niche Survival and Colonization. J Bacteriol 2021; 203:e0036321. [PMID: 34516284 PMCID: PMC8544407 DOI: 10.1128/jb.00363-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the first environmental cues sensed by a microbe as it enters a human host is an upshift in temperature to 37°C. In this dynamic time point analysis, we demonstrate that this environmental transition rapidly signals a multitude of gene expression changes in Escherichia coli. Bacteria grown at 23°C under aerobic conditions were shifted to 37°C, and mRNA expression was measured at time points after the shift to 37°C (t = 0.5, 1, and 4 h). The first hour is characterized by a transient shift to anaerobic respiration strategies and stress responses, particularly acid resistance, indicating that temperature serves as a sentinel cue to predict and prepare for various niches within the host. The temperature effects on a subset of stress response genes were shown to be mediated by RpoS and directly correlated with RpoS, DsrA, and RprA levels, and increased acid resistance was observed that was dependent on 23°C growth and RpoS. By 4 h, gene expression shifted to aerobic respiration pathways and decreased stress responses, coupled with increases in genes associated with biosynthesis (amino acid and nucleotides), iron uptake, and host defense. ompT, a gene that confers resistance to antimicrobial peptides, was highly thermoregulated, with a pattern conserved in enteropathogenic and uropathogenic E. coli strains. An immediate decrease in curli gene expression concomitant with an increase in flagellar gene expression implicates temperature in this developmental decision. Together, our studies demonstrate that temperature signals a reprogramming of gene expression immediately upon an upshift that may predict, prepare, and benefit the survival of the bacterium within the host. IMPORTANCE As one of the first cues sensed by the microbe upon entry into a human host, understanding how bacteria like E. coli modulate gene expression in response to temperature improves our understanding of how bacteria immediately initiate responses beneficial for survival and colonization. For pathogens, understanding the various pathways of thermal regulation could yield valuable targets for anti-infective chemotherapeutic drugs or disinfection measures. In addition, our data provide a dynamic examination of the RpoS stress response, providing genome-wide support for how temperature impacts RpoS through changes in RpoS stability and modulation by small regulatory RNAs.
Collapse
|
27
|
Evguenieva-Hackenberg E. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1696. [PMID: 34651439 DOI: 10.1002/wrna.1696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/25/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Gene expression strategies ensuring bacterial survival and competitiveness rely on cis- and trans-acting RNA-regulators (riboregulators). Among the cis-acting riboregulators are transcriptional and translational attenuators, and antisense RNAs (asRNAs). The trans-acting riboregulators are small RNAs (sRNAs) that bind proteins or base pairs with other RNAs. This classification is artificial since some regulatory RNAs act both in cis and in trans, or function in addition as small mRNAs. A prominent example is the archetypical, ribosome-dependent attenuator of tryptophan (Trp) biosynthesis genes. It responds by transcription attenuation to two signals, Trp availability and inhibition of translation, and gives rise to two trans-acting products, the attenuator sRNA rnTrpL and the leader peptide peTrpL. In Escherichia coli, rnTrpL links Trp availability to initiation of chromosome replication and in Sinorhizobium meliloti, it coordinates regulation of split tryptophan biosynthesis operons. Furthermore, in S. meliloti, peTrpL is involved in mRNA destabilization in response to antibiotic exposure. It forms two types of asRNA-containing, antibiotic-dependent ribonucleoprotein complexes (ARNPs), one of them changing the target specificity of rnTrpL. The posttranscriptional role of peTrpL indicates two emerging paradigms: (1) sRNA reprograming by small molecules and (2) direct involvement of antibiotics in regulatory RNPs. They broaden our view on RNA-based mechanisms and may inspire new approaches for studying, detecting, and using antibacterial compounds. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Small Molecule-RNA Interactions RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
|
28
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
29
|
Schaffner SH, Lee AV, Pham MTN, Kassaye BB, Li H, Tallada S, Lis C, Lang M, Liu Y, Ahmed N, Galbraith LG, Moore JP, Bischof KM, Menke CC, Slonczewski JL. Extreme Acid Modulates Fitness Trade-Offs of Multidrug Efflux Pumps MdtEF-TolC and AcrAB-TolC in Escherichia coli K-12. Appl Environ Microbiol 2021; 87:e0072421. [PMID: 34085861 PMCID: PMC8315180 DOI: 10.1128/aem.00724-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Bacterial genomes encode various multidrug efflux pumps (MDR) whose specific conditions for fitness advantage are unknown. We show that the efflux pump MdtEF-TolC, in Escherichia coli, confers a fitness advantage during exposure to extreme acid (pH 2). Our flow cytometry method revealed pH-dependent fitness trade-offs between bile acids (a major pump substrate) and salicylic acid, a membrane-permeant aromatic acid that induces a drug resistance regulon but depletes proton motive force (PMF). The PMF drives MdtEF-TolC and related pumps such as AcrAB-TolC. Deletion of mdtE (with loss of the pump MdtEF-TolC) increased the strain's relative fitness during growth with or without salicylate or bile acids. However, when the growth cycle included a 2-h incubation at pH 2 (below the pH growth range), MdtEF-TolC conferred a fitness advantage. The fitness advantage required bile salts but was decreased by the presence of salicylate, whose uptake is amplified by acid. For comparison, AcrAB-TolC, the primary efflux pump for bile acids, conferred a PMF-dependent fitness advantage with or without acid exposure in the growth cycle. A different MDR pump, EmrAB-TolC, conferred no selective benefit during growth in the presence of bile acids. Without bile acids, all three MDR pumps incurred a large fitness cost with salicylate when exposed at pH 2. These results are consistent with the increased uptake of salicylate at low pH. Overall, we showed that MdtEF-TolC is an MDR pump adapted for transient extreme-acid exposure and that low pH amplifies the salicylate-dependent fitness cost for drug pumps. IMPORTANCE Antibiotics and other drugs that reach the gut must pass through stomach acid. However, little is known of how extreme acid modulates the effect of drugs on gut bacteria. We find that extreme-acid exposure leads to a fitness advantage for a multidrug pump that otherwise incurs a fitness cost. At the same time, extreme acid amplifies the effect of salicylate selection against multidrug pumps. Thus, organic acids and stomach acid could play important roles in regulating multidrug resistance in the gut microbiome. Our flow cytometry assay provides a way to measure the fitness effects of extreme-acid exposure to various membrane-soluble organic acids, including plant-derived nutrients and pharmaceutical agents. Therapeutic acids might be devised to control the prevalence of multidrug pumps in environmental and host-associated habitats.
Collapse
Affiliation(s)
| | - Abigail V. Lee
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | - Cassandra Lis
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mark Lang
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Yangyang Liu
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Nafeez Ahmed
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | | | | |
Collapse
|
30
|
Kamal SM, Simpson DJ, Wang Z, Gänzle M, Römling U. Horizontal Transmission of Stress Resistance Genes Shape the Ecology of Beta- and Gamma-Proteobacteria. Front Microbiol 2021; 12:696522. [PMID: 34295324 PMCID: PMC8290217 DOI: 10.3389/fmicb.2021.696522] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/07/2021] [Indexed: 01/25/2023] Open
Abstract
The transmissible locus of stress tolerance (tLST) is found mainly in beta- and gamma-Proteobacteria and confers tolerance to elevated temperature, pressure, and chlorine. This genomic island, previously referred to as transmissible locus of protein quality control or locus of heat resistance likely originates from an environmental bacterium thriving in extreme habitats, but has been widely transmitted by lateral gene transfer. Although highly conserved, the gene content on the island is subject to evolution and gene products such as small heat shock proteins are present in several functionally distinct sequence variants. A number of these genes are xenologs of core genome genes with the gene products to widen the substrate spectrum and to be highly (complementary) expressed thus their functionality to become dominant over core genome genes. In this review, we will present current knowledge of the function of core tLST genes and discuss current knowledge on selection and counter-selection processes that favor maintenance of the tLST island, with frequent acquisition of gene products involved in cyclic di-GMP signaling, in different habitats from the environment to animals and plants, processed animal and plant products, man-made environments, and subsequently humans.
Collapse
Affiliation(s)
- Shady Mansour Kamal
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| | - David J Simpson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiying Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Michael Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
31
|
Zhang Y, Wang Y, Zhu H, Yi Z, Afayibo DJA, Tao C, Li T, Tian M, Qi J, Ding C, Yu S, Wang S. DctR contributes to the virulence of avian pathogenic Escherichia coli through regulation of type III secretion system 2 expression. Vet Res 2021; 52:101. [PMID: 34229767 PMCID: PMC8259166 DOI: 10.1186/s13567-021-00970-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/26/2021] [Indexed: 02/02/2023] Open
Abstract
Pathogens could precisely alter their gene expression to facilitate their survival and successful infection. The LuxR family transcriptional regulator DctR (also known as YhiF) was shown to participate in the regulation of acid fitness and adhesion of enterohemorrhagic E. coli (EHEC) O157:H7. Avian pathogenic Escherichia coli (APEC) causes significant economic losses to the poultry industries and also potentially threatens human health. However, the effects of DctR on the fitness and virulence of APEC have not been investigated yet. To assess the function of DctR in APEC, the dctR gene mutant and complemented strains were constructed and biologically characterized. Our results show that inactivation of the dctR gene led to decreased biofilm formation, diminished serum resistance, reduced adherence capacity, attenuated colonization and virulence of APEC in ducks. The altered capacities of the mutant strain were restored by genetic complementation. In addition, we found that DctR positively regulates the expression of E. coli type III secretion system 2 (ETT2) core genes in APEC. The expression of the inflammatory cytokines interleukin (IL)-1β and IL-8 were decreased in HD-11 macrophages infected with the mutant strain compared with the wild-type strain. These observations indicate that regulator DctR contributes to the virulence of APEC through regulation of ETT2 expression.
Collapse
Affiliation(s)
- Yaodong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Yao Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Hong Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Zhengfei Yi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Dossêh Jean Apôtre Afayibo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chenglin Tao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Mingxing Tian
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jingjing Qi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Shengqing Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Shaohui Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
32
|
Gregorchuk BSJ, Reimer SL, Green KAC, Cartwright NH, Beniac DR, Hiebert SL, Booth TF, Chong PM, Westmacott GR, Zhanel GG, Bay DC. Phenotypic and Multi-Omics Characterization of Escherichia coli K-12 Adapted to Chlorhexidine Identifies the Role of MlaA and Other Cell Envelope Alterations Regulated by Stress Inducible Pathways in CHX Resistance. Front Mol Biosci 2021; 8:659058. [PMID: 34095221 PMCID: PMC8170033 DOI: 10.3389/fmolb.2021.659058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
Chlorhexidine (CHX) is an essential medicine used as a topical antiseptic in skin and oral healthcare treatments. The widespread use of CHX has increased concerns regarding the development of antiseptic resistance in Enterobacteria and its potential impact on cross-resistance to other antimicrobials. Similar to other cationic antiseptics, resistance to CHX is believed to be driven by three membrane-based mechanisms: lipid synthesis/transport, altered porin expression, and increased efflux pump activity; however, specific gene and protein alterations associated with CHX resistance remain unclear. Here, we adapted Escherichia coli K-12 BW25113 to increasing concentrations of CHX to determine what phenotypic, morphological, genomic, transcriptomic, and proteomic changes occurred. We found that CHX-adapted E. coli isolates possessed no cross-resistance to any other antimicrobials we tested. Scanning electron microscopy imaging revealed that CHX adaptation significantly altered mean cell widths and lengths. Proteomic analyses identified changes in the abundance of porin OmpF, lipid synthesis/transporter MlaA, and efflux pump MdfA. Proteomic and transcriptomic analyses identified that CHX adaptation altered E. coli transcripts and proteins controlling acid resistance (gadE, cdaR) and antimicrobial stress-inducible pathways Mar-Sox-Rob, stringent response systems. Whole genome sequencing analyses revealed that all CHX-resistant isolates had single nucleotide variants in the retrograde lipid transporter gene mlaA as well as the yghQ gene associated with lipid A transport and synthesis. CHX resistant phenotypes were reversible only when complemented with a functional copy of the mlaA gene. Our results highlight the importance of retrograde phospholipid transport and stress response systems in CHX resistance and the consequences of prolonged CHX exposure.
Collapse
Affiliation(s)
- Branden S J Gregorchuk
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Shelby L Reimer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kari A C Green
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Nicola H Cartwright
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Daniel R Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Shannon L Hiebert
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Timothy F Booth
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Patrick M Chong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Garrett R Westmacott
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
33
|
Kim H, Wu K, Lee C. Stress-Responsive Periplasmic Chaperones in Bacteria. Front Mol Biosci 2021; 8:678697. [PMID: 34046432 PMCID: PMC8144458 DOI: 10.3389/fmolb.2021.678697] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/19/2021] [Indexed: 01/14/2023] Open
Abstract
Periplasmic proteins are involved in a wide range of bacterial functions, including motility, biofilm formation, sensing environmental cues, and small-molecule transport. In addition, a wide range of outer membrane proteins and proteins that are secreted into the media must travel through the periplasm to reach their final destinations. Since the porous outer membrane allows for the free diffusion of small molecules, periplasmic proteins and those that travel through this compartment are more vulnerable to external environmental changes, including those that result in protein unfolding, than cytoplasmic proteins are. To enable bacterial survival under various stress conditions, a robust protein quality control system is required in the periplasm. In this review, we focus on several periplasmic chaperones that are stress responsive, including Spy, which responds to envelope-stress, DegP, which responds to temperature to modulate chaperone/protease activity, HdeA and HdeB, which respond to acid stress, and UgpB, which functions as a bile-responsive chaperone.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Biological Sciences, Ajou University, Suwon, South Korea
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
| | - Kevin Wu
- Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| |
Collapse
|
34
|
Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Microorganisms 2021; 9:microorganisms9030651. [PMID: 33801066 PMCID: PMC8003927 DOI: 10.3390/microorganisms9030651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Biocides are frequently applied as disinfectants in animal husbandry to prevent the transmission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised, that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria. Especially, extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli have become a global health threat. In our study, 29 ESBL-/AmpC-producing and 64 NON-ESBL-/AmpC-producing E.coli isolates from three German broiler fattening farms collected in 2016 following regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing, analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence determinants associated with extraintestinal pathogenic E.coli showed variable phylogenetic distribution patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benzalkonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most prevalent. The majority of ESBL-/AmpC-producing isolates carried blaCTX-M (55%) or blaCMY-2 (24%) genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and metal resistance determinants were found on mobile genetic elements together with antibiotic resistance genes raising concerns that biocides used in the food industry may lead to selection pressure for strains carrying acquired resistance determinants to different antimicrobials.
Collapse
|
35
|
Yu Y, Dong J, Wang Y, Gong X. RNA-seq analysis of antibacterial mechanism of Cinnamomum camphora essential oil against Escherichia coli. PeerJ 2021; 9:e11081. [PMID: 33777538 PMCID: PMC7980702 DOI: 10.7717/peerj.11081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 01/19/2023] Open
Abstract
Background Transcriptome analysis plays a central role in elucidating the complexity of gene expression regulation in Escherichia coli. In recent years, the overuse of antibiotics has led to an increase in antimicrobial resistance, which greatly reduces the efficacy of antibacterial drugs and affects people’s health. Therefore, several researchers are focused on finding other materials, which could replace or supplement antibiotic treatment. Methods E. coli was treated with water, acetone and Cinnamomum camphora essential oils, respectively. The antibacterial activity was assessed using the minimum inhibitory concentration (MIC), the minimum bactericidal concentration (MBC), the dry weight and the wet weight of the cells. To explore the antibacterial mechanism of the oil, the RNA-Seq analysis was adopted under three different treatments. Finally, the expression of related genes was verified by Quantitative PCR. Results In this study, we showed that the C. Camphora essential oil exerted a strong antibacterial effect. Our results showed that the inhibitory efficiency increased with increasing of the concentration of essential oil. RNA-seq analysis indicated that the essential oil inhibited the growth of E. coli by inhibiting the metabolism, chemotaxis, and adhesion, meanwhile, life activities were maintained by enhancing E. coli resistance reactions. These results are contributed to uncover the antimicrobial mechanisms of essential oils against E. coli, and the C. Camphora essential oil could be applied as an antibacterial agent to replace or ally with antibiotic.
Collapse
Affiliation(s)
- Yutian Yu
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| | - Jie Dong
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| | - Yanlu Wang
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gong
- Human Aging Research Institute and School of Life Science and Jiangxi Key Laboratory of Human Aging, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
36
|
Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052201] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme pH environments and their effect on microbial corrosion are presented and discussed.
Collapse
|
37
|
Smith EA, Newton ILG. Genomic Signatures of Honey Bee Association in an Acetic Acid Symbiont. Genome Biol Evol 2020; 12:1882-1894. [PMID: 32870981 PMCID: PMC7664317 DOI: 10.1093/gbe/evaa183] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Recent declines in the health of the honey bee have startled researchers and lay people alike as honey bees are agriculture's most important pollinator. Honey bees are important pollinators of many major crops and add billions of dollars annually to the US economy through their services. One factor that may influence colony health is the microbial community. Indeed, the honey bee worker digestive tract harbors a characteristic community of bee-specific microbes, and the composition of this community is known to impact honey bee health. However, the honey bee is a superorganism, a colony of eusocial insects with overlapping generations where nestmates cooperate, building a hive, gathering and storing food, and raising brood. In contrast to what is known regarding the honey bee worker gut microbiome, less is known of the microbes associated with developing brood, with food stores, and with the rest of the built hive environment. More recently, the microbe Bombella apis was identified as associated with nectar, with developing larvae, and with honey bee queens. This bacterium is related to flower-associated microbes such as Saccharibacter floricola and other species in the genus Saccharibacter, and initial phylogenetic analyses placed it as sister to these environmental bacteria. Here, we used comparative genomics of multiple honey bee-associated strains and the nectar-associated Saccharibacter to identify genomic changes that may be associated with the ecological transition to honey bee association. We identified several genomic differences in the honey bee-associated strains, including a complete CRISPR/Cas system. Many of the changes we note here are predicted to confer upon Bombella the ability to survive in royal jelly and defend themselves against mobile elements, including phages. Our results are a first step toward identifying potential function of this microbe in the honey bee superorganism.
Collapse
Affiliation(s)
- Eric A Smith
- Department of Biology, Indiana University, Bloomington
| | | |
Collapse
|
38
|
Gamma irradiation triggers a global stress response in Escherichia coli O157:H7 including base and nucleotides excision repair pathways. Microb Pathog 2020; 149:104342. [PMID: 32534179 DOI: 10.1016/j.micpath.2020.104342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022]
Abstract
Shiga toxin-producing Escherichia coli O157:H7, one of the most severe human foodborne pathogens, can withstand several stresses, including some levels of γ-irradiation. In this study, the response of E. coli O157:H7 to a sensitization irradiation dose of 0.4 kGy was assessed using RNA-seq transcriptomic at 10 (t10) and 60 (t60) min post-irradiation, combined with an isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis at 60 min post-irradiation. Several functions were induced by the treatment, such as base excision repair and nucleotide excision repair pathways; sulfur and histidine metabolism, and virulence mechanisms. Additionally, the sulA gene, coding for the cell division repressor, together with other genes involved in SOS response and repair mechanism (including recA, recN, recJ, recQ, mutM and uvrB) were up-regulated at t60. As the early response to irradiation stress (t10), dnaK, groEL, ibpA, sulfur metabolism genes, as well as those related to oxidative stress were up-regulated, while histidine biosynthesis genes were down-regulated. Acid stress, heat shock, UV resistance and several virulence genes, especially stx2A/stx2b which code for the Shiga toxins characteristic of O157:H7, were upregulated at 60 min post-irradiation. The treatment was also found to increase the levels of CysN, MutM, DinG and DnaC in the cells, proteins involved respectively in sulfur metabolism, base excision repair, recombinational DNA repair and chromosome replication. Our results provide insights into the resistance response of E. coli O157:H7 to a non-lethal irradiation dose. Our findings indicate that E. coli O157:H7 can resist to γ-irradiation through important modifications in genes expression and proteins profiles.
Collapse
|
39
|
Evolution of Predicted Acid Resistance Mechanisms in the Extremely Acidophilic Leptospirillum Genus. Genes (Basel) 2020; 11:genes11040389. [PMID: 32260256 PMCID: PMC7231039 DOI: 10.3390/genes11040389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/01/2023] Open
Abstract
Organisms that thrive in extremely acidic environments (≤pH 3.5) are of widespread importance in industrial applications, environmental issues, and evolutionary studies. Leptospirillum spp. constitute the only extremely acidophilic microbes in the phylogenetically deep-rooted bacterial phylum Nitrospirae. Leptospirilli are Gram-negative, obligatory chemolithoautotrophic, aerobic, ferrous iron oxidizers. This paper predicts genes that Leptospirilli use to survive at low pH and infers their evolutionary trajectory. Phylogenetic and other bioinformatic approaches suggest that these genes can be classified into (i) "first line of defense", involved in the prevention of the entry of protons into the cell, and (ii) neutralization or expulsion of protons that enter the cell. The first line of defense includes potassium transporters, predicted to form an inside positive membrane potential, spermidines, hopanoids, and Slps (starvation-inducible outer membrane proteins). The "second line of defense" includes proton pumps and enzymes that consume protons. Maximum parsimony, clustering methods, and gene alignments are used to infer the evolutionary trajectory that potentially enabled the ancestral Leptospirillum to transition from a postulated circum-neutral pH environment to an extremely acidic one. The hypothesized trajectory includes gene gains/loss events driven extensively by horizontal gene transfer, gene duplications, gene mutations, and genomic rearrangements.
Collapse
|
40
|
The Locus of Heat Resistance Confers Resistance to Chlorine and Other Oxidizing Chemicals in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.02123-19. [PMID: 31811037 DOI: 10.1128/aem.02123-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/28/2019] [Indexed: 12/20/2022] Open
Abstract
Some chlorine-resistant Escherichia coli isolates harbor the locus of heat resistance (LHR), a genomic island conferring heat resistance. In this study, the protective effect of the LHR for cells challenged by chlorine and oxidative stress was quantified. Cloning of the LHR protected against NaClO (32 mM; 5 min), H2O2 (120 mM; 5 min), and peroxyacetic acid (105 mg/liter; 5 min) but not against 5.8 mM KIO4, 10 mM acrolein, or 75 mg/liter allyl isothiocyanate. The lethality of oxidizing treatments for LHR-negative strains of E. coli was about 2 log10 CFU/ml higher than that for LHR-positive strains of E. coli The oxidation of cytoplasmic proteins and membrane lipids was quantified with the fusion probe roGFP2-Orp1 and the fluorescent probe BODIPY581/591, respectively. The fragment of the LHR coding for heat shock proteins protected cytoplasmic proteins but not membrane lipids against oxidation. The middle fragment of the LHR protected against the oxidation of membrane lipids but not of cytoplasmic proteins. The addition of H2O2, NaClO, and peroxyacetic acid also induced green fluorescent protein (GFP) expression in the oxidation-sensitive reporter strain E. coli O104:H4 Δstx 2::gfp::amp Cloning of pLHR reduced phage induction in E. coli O104:H4 Δstx 2::gfp::amp after treatment with oxidizing chemicals. Screening of 160 strains of Shiga toxin-producing E. coli (STEC) revealed that none of them harbors the LHR, additionally suggesting that the LHR and Stx prophages are mutually exclusive. Taking our findings together, the contribution of the LHR to resistance to chlorine and oxidative stress is based on the protection of multiple cellular targets by different proteins encoded by the genetic island.IMPORTANCE Chlorine treatments are used in water and wastewater sanitation; the resistance of Escherichia coli to chlorine is thus of concern to public health. We show that a genetic island termed the locus of heat resistance (LHR) protects E. coli not only against heat but also against chlorine and other oxidizing chemicals, adding to our knowledge of the tools used by E. coli to resist stress. Specific detection of the oxidation of different cellular targets in combination with the cloning of fragments of the LHR provided insight into mechanisms of protection and demonstrated that different fragments of the LHR protect different cellular targets. In E. coli, the presence of the LHR virtually always excluded other virulence factors. It is tempting to speculate that the LHR is maintained by strains of E. coli with an environmental lifestyle but is excluded by pathogenic strains that adapted to interact with vertebrate hosts.
Collapse
|
41
|
Guan N, Liu L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol 2020; 104:51-65. [PMID: 31773206 PMCID: PMC6942593 DOI: 10.1007/s00253-019-10226-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Microorganisms encounter acid stress during multiple bioprocesses. Microbial species have therefore developed a variety of resistance mechanisms. The damage caused by acidic environments is mitigated through the maintenance of pH homeostasis, cell membrane integrity and fluidity, metabolic regulation, and macromolecule repair. The acid tolerance mechanisms can be used to protect probiotics against gastric acids during the process of food intake, and can enhance the biosynthesis of organic acids. The combination of systems and synthetic biology technologies offers new and wide prospects for the industrial applications of microbial acid tolerance mechanisms. In this review, we summarize acid stress response mechanisms of microbial cells, illustrate the application of microbial acid tolerance in industry, and prospect the introduction of systems and synthetic biology to further explore the acid tolerance mechanisms and construct a microbial cell factory for valuable chemicals.
Collapse
Affiliation(s)
- Ningzi Guan
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
42
|
Liu Y, Li S, Li W, Wang P, Ding P, Li L, Wang J, Yang P, Wang Q, Xu T, Xiong Y, Yang B. RstA, a two-component response regulator, plays important roles in multiple virulence-associated processes in enterohemorrhagic Escherichia coli O157:H7. Gut Pathog 2019; 11:53. [PMID: 31695752 PMCID: PMC6824119 DOI: 10.1186/s13099-019-0335-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/24/2019] [Indexed: 01/09/2023] Open
Abstract
Background Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157) causes bloody diarrhea and hemolytic-uremic syndrome. EHEC O157 encounters varied microenvironments during infection, and can efficiently adapt to these using the two-component system (TCS). Recently, a functional TCS, RstAB, has been implicated in the regulation of virulence of several bacterial pathogens. However, the regulatory function of RstAB in EHEC O157 is poorly understood. This study aimed at providing insights into the global effects of RstA on gene expression in EHEC O157. Results In the present study, we analyzed gene expression differences between the EHEC O157 wild-type strain and a ΔrstA mutant using RNA-seq technology. Genes with differential expression in the ΔrstA mutant compared to that in the wild-type strain were identified and grouped into clusters of orthologous categories. RstA promoted EHEC O157 LEE gene expression, adhesion in vitro, and colonization in vivo by indirect regulation. We also found that RstA could bind directly to the promoter region of hdeA and yeaI to enhance acid tolerance and decrease biofilm formation by modulating the concentration of c-di-GMP. Conclusions In summary, the RstAB TCS in EHEC O157 plays a major role in the regulation of virulence, acid tolerance, and biofilm formation. We clarified the regulatory function of RstA, providing an insight into mechanisms that may be potential drug targets for treatment of EHEC O157-related infections.
Collapse
Affiliation(s)
- Yutao Liu
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Shujie Li
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Wendi Li
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Peisheng Wang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Peng Ding
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Lingyu Li
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Junyue Wang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Pan Yang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Qian Wang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Tingting Xu
- 3Shenzhen Institute of Respiratory Diseases, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020 People's Republic of China
| | - Yingying Xiong
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| | - Bin Yang
- 1The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, 300071 People's Republic of China.,TEDA, Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457 People's Republic of China
| |
Collapse
|
43
|
Moore JP, Li H, Engmann ML, Bischof KM, Kunka KS, Harris ME, Tancredi AC, Ditmars FS, Basting PJ, George NS, Bhagwat AA, Slonczewski JL. Inverted Regulation of Multidrug Efflux Pumps, Acid Resistance, and Porins in Benzoate-Evolved Escherichia coli K-12. Appl Environ Microbiol 2019; 85:e00966-19. [PMID: 31175192 PMCID: PMC6677852 DOI: 10.1128/aem.00966-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/30/2019] [Indexed: 01/23/2023] Open
Abstract
Benzoic acid, a partial uncoupler of the proton motive force (PMF), selects for sensitivity to chloramphenicol and tetracycline during the experimental evolution of Escherichia coli K-12. Transcriptomes of E. coli isolates evolved with benzoate showed the reversal of benzoate-dependent regulation, including the downregulation of multidrug efflux pump genes, the gene for the Gad acid resistance regulon, the nitrate reductase genes narHJ, and the gene for the acid-consuming hydrogenase Hyd-3. However, the benzoate-evolved strains had increased expression of OmpF and other large-hole porins that admit fermentable substrates and antibiotics. Candidate genes identified from benzoate-evolved strains were tested for their roles in benzoate tolerance and in chloramphenicol sensitivity. Benzoate or salicylate tolerance was increased by deletion of the Gad activator ariR or of the acid fitness island from slp to the end of the gadX gene encoding Gad regulators and the multidrug pump genes mdtEF Benzoate tolerance was also increased by deletion of multidrug component gene emrA, RpoS posttranscriptional regulator gene cspC, adenosine deaminase gene add, hydrogenase gene hyc (Hyd-3), and the RNA chaperone/DNA-binding regulator gene hfq Chloramphenicol resistance was decreased by mutations in genes for global regulators, such as RNA polymerase alpha subunit gene rpoA, the Mar activator gene rob, and hfq Deletion of lipopolysaccharide biosynthetic kinase gene rfaY decreased the rate of growth in chloramphenicol. Isolates from experimental evolution with benzoate had many mutations affecting aromatic biosynthesis and catabolism, such as aroF (encoding tyrosine biosynthesis) and apt (encoding adenine phosphoribosyltransferase). Overall, benzoate or salicylate exposure selects for the loss of multidrug efflux pumps and of hydrogenases that generate a futile cycle of PMF and upregulates porins that admit fermentable nutrients and antibiotics.IMPORTANCE Benzoic acid is a common food preservative, and salicylic acid (2-hydroxybenzoic acid) is the active form of aspirin. At high concentrations, benzoic acid conducts a proton across the membrane, depleting the proton motive force. In the absence of antibiotics, benzoate exposure selects against proton-driven multidrug efflux pumps and upregulates porins that admit fermentable substrates but that also allow the entry of antibiotics. Thus, evolution with benzoate and related molecules, such as salicylates, requires a trade-off for antibiotic sensitivity, a trade-off that could help define a stable gut microbiome. Benzoate and salicylate are naturally occurring plant signal molecules that may modulate the microbiomes of plants and animal digestive tracts so as to favor fermenters and exclude drug-resistant pathogens.
Collapse
Affiliation(s)
- Jeremy P Moore
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Haofan Li
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | - Karina S Kunka
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | - Mary E Harris
- Department of Biology, Kenyon College, Gambier, Ohio, USA
| | | | | | | | - Nadja S George
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | - Arvind A Bhagwat
- Environmental Microbiology and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Beltsville, Maryland, USA
| | | |
Collapse
|
44
|
Lalaouna D, Prévost K, Laliberté G, Houé V, Massé E. Contrasting silencing mechanisms of the same target mRNA by two regulatory RNAs in Escherichia coli. Nucleic Acids Res 2019; 46:2600-2612. [PMID: 29294085 PMCID: PMC5861431 DOI: 10.1093/nar/gkx1287] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Small RNAs are key components of complex regulatory networks. These molecules can integrate multiple cellular signals to control specific target mRNAs. The recent development of high-throughput methods tremendously helped to characterize the full targetome of sRNAs. Using MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we reveal the targetomes of two sRNAs, CyaR and RprA. Interestingly, both CyaR and RprA interact with the 5′-UTR of hdeD mRNA, which encodes an acid-resistance membrane protein. We demonstrate that CyaR classically binds to the RBS of hdeD, interfering with translational initiation. We identified an A/U-rich motif on hdeD, which is bound by the RNA chaperone Hfq. Our results indicate that binding of this motif by Hfq is required for CyaR-induced degradation of hdeD mRNA. Additional data suggest that two molecules of RprA must bind the 5′-UTR of hdeD to block translation initiation. Surprisingly, while both CyaR and RprA sRNAs bind to the same motif on hdeD mRNA, RprA solely acts at the translational level, leaving the target RNA intact. By interchanging the seed region of CyaR and RprA sRNAs, we also swap their regulatory behavior. These results suggest that slight changes in the seed region could modulate the regulation of target mRNAs.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karine Prévost
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Guillaume Laliberté
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Vincent Houé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
45
|
The Escherichia coli O157:H7 carbon starvation-inducible lipoprotein Slp contributes to initial adherence in vitro via the human polymeric immunoglobulin receptor. PLoS One 2019; 14:e0216791. [PMID: 31188867 PMCID: PMC6561548 DOI: 10.1371/journal.pone.0216791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/29/2019] [Indexed: 01/19/2023] Open
Abstract
Escherichia coli O157:H7 is the most well-studied serotype of the enterohemorrhagic E. coli (EHEC) class of E. coli intestinal pathogens and is responsible for many outbreaks of serious food-borne illness worldwide each year. Adherence mechanisms are a critical component of its pathogenesis, persistence in natural reservoirs, and environmental contamination. E. coli O157:H7 has a highly effective virulence operon, the Locus of Enterocyte Effacement (LEE), and its encoded intimate adherence mechanism is well characterized. However, factors involved in the preceding initial attachment are not well understood. In this study, we propose a mechanism of initial adherence used by E. coli O157:H7 in vitro. We describe a bacterial protein not previously reported to be involved in adherence, Slp, and its interactions with the human host protein polymeric immunoglobulin receptor (pIgR). The human pIgR has previously been shown to act as an adherence receptor for some mucosal pathogens and is highly expressed in the intestine. Following observation of significant colocalization between E. coli O157:H7 bacteria and pIgR location on Caco-2 cells, a co-immunoprecipitation (Co-IP) assay using a human recombinant Fc-tagged pIgR protein led to the identification of this protein. Disruption of Slp expression in E. coli O157:H7, through deletion of its encoding gene slp, produced a significant adherence deficiency to Caco-2 cells at early time points associated with initial adherence. Plasmid complementation of the slp gene fully restored the wild-type phenotype. Furthermore, immunofluorescence microscopy revealed evidence that this interaction is specific to the pathogenic strains of E. coli tested and not the nonpathogenic control strain E. coli K12. Additionally, deletion of slp gene resulted in the absence of the corresponding protein band in further Co-IP assays, while the plasmid-encoded slp gene complementation of the deletion mutant strain restored the wild-type pattern. These data support the proposal that Slp directly contributes to initial adherence, with the pIgR protein as its proposed receptor.
Collapse
|
46
|
D'Souza C, Prabhakar Alva P, Karanth Padyana A, Karunasagar I, Karunasagar I, Kumar BK. Unveiling the acid stress response of clinical genotype Vibrio vulnificus isolated from the marine environments of Mangaluru coast, India. Can J Microbiol 2019; 65:681-690. [PMID: 31075207 DOI: 10.1139/cjm-2018-0700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gastric acidity is one of the earliest host defences faced by ingested organisms, and successful pathogens need to overcome this hurdle. The objective of this study was the systematic assessment of acid-stress response of Vibrio vulnificus isolated from coastal regions of Mangaluru. Acid-shock experiments were carried out at pH 4.0 and pH 4.5, with different experimental conditions expected to produce a varied acid response. Exposure to mild acid before the acid shock was favourable to the bacteria but was dependent on cell population and pH of the media and was independent of the strains tested. Lysine-dependent acid response was demonstrated with reference to the previously identified lysine decarboxylase system. Additionally, the results showed that inoculation into oysters provided some level of protection against acid stress. Increased expression of lysine/cadaverine genes was observed upon the addition of ground oyster and was confirmed by quantitative real-time PCR. The potential role of ornithine was analyzed with regard to acid stress, but no change in the survival pattern was observed. These findings highlight the physiology of bacteria in acid stress.
Collapse
Affiliation(s)
- Caroline D'Souza
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Prathiksha Prabhakar Alva
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Anupama Karanth Padyana
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Iddya Karunasagar
- Nitte (Deemed to be University), University Enclave, Medical Sciences Complex, Deralakatte, Mangaluru 575018, Karnataka, India
| | - Indrani Karunasagar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| | - Ballamoole Krishna Kumar
- Division of Infectious Diseases, Nitte University Centre for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru 575018, Karnataka, India
| |
Collapse
|
47
|
Liu CJ, Lin CT, Chiang JD, Lin CY, Tay YX, Fan LC, Peng KN, Lin CH, Peng HL. RcsB regulation of the YfdX-mediated acid stress response in Klebsiella pneumoniae CG43S3. PLoS One 2019; 14:e0212909. [PMID: 30818355 PMCID: PMC6394985 DOI: 10.1371/journal.pone.0212909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/12/2019] [Indexed: 12/31/2022] Open
Abstract
In Klebsiella pneumoniae CG43S3, deletion of the response regulator gene rcsB reduced the capsular polysaccharide amount and survival on exposure to acid stress. A comparison of the pH 4.4-induced proteomes between CG43S3 and CG43S3ΔrcsB revealed numerous differentially expressed proteins and one of them, YfdX, which has recently been reported as a periplasmic protein, was absent in CG43S3ΔrcsB. Acid survival analysis was then conducted to determine its role in the acid stress response. Deletion of yfdX increased the sensitivity of K. pneumoniae CG43S3 to a pH of 2.5, and transforming the mutant with a plasmid carrying yfdX restored the acid resistance (AR) levels. In addition, the effect of yfdX deletion was cross-complemented by the expression of the periplasmic chaperone HdeA. Furthermore, the purified recombinant protein YfdX reduced the acid-induced protein aggregation, suggesting that YfdX as well as HdeA functions as a chaperone. The following promoter activity measurement revealed that rcsB deletion reduced the expression of yfdX after the bacteria were subjected to pH 4.4 adaptation. Western blot analysis also revealed that YfdX production was inhibited by rcsB deletion and only the plasmid expressing RcsB or the nonphosphorylated form of RcsB, RcsBD56A, could restore the YfdX production, and the RcsB-mediated complementation was no longer observed when the sensor kinase RcsD gene was deleted. In conclusion, this is the first study demonstrating that YfdX may be involved in the acid stress response as a periplasmic chaperone and that RcsB positively regulates the acid stress response partly through activation of yfdX expression. Moreover, the phosphorylation status of RcsB may affect the YfdX expression under acidic conditions.
Collapse
Affiliation(s)
- Chia-Jui Liu
- Department of Biological Science and Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, Republic of China
| | - Jo-Di Chiang
- Department of Biological Science and Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Chen-Yi Lin
- Department of Biological Science and Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Yen-Xi Tay
- Institute of Molecular Medicine and Biological Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Li-Cheng Fan
- Department of Biological Science and Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Kuan-Nan Peng
- Department of Biological Science and Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Chih-Huan Lin
- Institute of Molecular Medicine and Biological Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Department of Biological Science and Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
- Institute of Molecular Medicine and Biological Technology, School of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
48
|
Early J, Ollinger J, Darby C, Alling T, Mullen S, Casey A, Gold B, Ochoada J, Wiernicki T, Masquelin T, Nathan C, Hipskind PA, Parish T. Identification of Compounds with pH-Dependent Bactericidal Activity against Mycobacterium tuberculosis. ACS Infect Dis 2019; 5:272-280. [PMID: 30501173 PMCID: PMC6371205 DOI: 10.1021/acsinfecdis.8b00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
![]()
To find new inhibitors of Mycobacterium tuberculosis that have novel mechanisms of
action, we miniaturized a high throughput
screen to identify compounds that disrupt pH homeostasis. We adapted
and validated a 384-well format assay to determine intrabacterial
pH using a ratiometric green fluorescent protein. We screened 89000
small molecules under nonreplicating conditions and confirmed 556
hits that reduced intrabacterial pH (below pH 6.5). We selected five
compounds that disrupt intrabacterial pH homeostasis and also showed
some activity against nonreplicating bacteria in a 4-stress model,
but with no (or greatly reduced) activity against replicating bacteria.
The compounds selected were two benzamide sulfonamides, a benzothiadiazole,
a bissulfone, and a thiadiazole, none of which are known antibacterial
agents. All of these five compounds demonstrated bactericidal activity
against nonreplicating bacteria in buffer. Four of the five compounds
demonstrated increased activity under low pH conditions. None of the
five compounds acted as ionophores or as general disrupters of membrane
potential. These compounds are useful starting points for work to
elucidate their mechanism of action and their utility for drug discovery.
Collapse
Affiliation(s)
- Julie Early
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Juliane Ollinger
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Crystal Darby
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Torey Alling
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Steven Mullen
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Allen Casey
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| | - Ben Gold
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Jason Ochoada
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Todd Wiernicki
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Thierry Masquelin
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Carl Nathan
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, Box 62, New York, New York 10065, United States
| | - Philip A. Hipskind
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46285, United States
| | - Tanya Parish
- TB Discovery Research, Infectious Disease Research Institute, 1616 Eastlake Avenue E, Suite 400, Seattle, Washington 98102, United States
| |
Collapse
|
49
|
Abstract
The biogenesis of periplasmic and outer membrane proteins (OMPs) in Escherichia coli is assisted by a variety of processes that help with their folding and transport to their final destination in the cellular envelope. Chaperones are macromolecules, usually proteins, that facilitate the folding of proteins or prevent their aggregation without becoming part of the protein's final structure. Because chaperones often bind to folding intermediates, they often (but not always) act to slow protein folding. Protein folding catalysts, on the other hand, act to accelerate specific steps in the protein folding pathway, including disulfide bond formation and peptidyl prolyl isomerization. This review is primarily concerned with E. coli and Salmonella periplasmic and cellular envelope chaperones; it also discusses periplasmic proline isomerization.
Collapse
Affiliation(s)
- Frederick Stull
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jean-Michel Betton
- Unité de Repliement et Modélisation des Protéines, Institut Pasteur-CNRS URA2185, 75724 Paris cedex 15, France
| | - James C A Bardwell
- Dept of Molecular Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
50
|
Shin J, Cho H, Kim S, Kim KS. Role of acid responsive genes in the susceptibility of Escherichia coli to ciclopirox. Biochem Biophys Res Commun 2018; 500:296-301. [PMID: 29654752 DOI: 10.1016/j.bbrc.2018.04.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Antibiotic resistance poses a huge threat to the effective treatment of bacterial infections. To circumvent the limitations in developing new antibiotics, researchers are attempting to repurpose pre-developed drugs that are known to be safe. Ciclopirox, an off-patent antifungal agent, inhibits the growth of Gram-negative bacteria, and genes involved in galactose metabolism and lipopolysaccharide (LPS) biosynthesis are plausible antibacterial targets for ciclopirox, since their expression levels partially increase susceptibility at restrictive concentrations. In the present study, to identify new target genes involved in the susceptibility of Escherichia coli to ciclopirox, genome-wide mRNA profiling was performed following ciclopirox addition at sublethal concentrations, and glutamate-dependent acid resistance (GDAR) genes were differentially regulated. Additional susceptibility testing, growth analyses and viability assays of GDAR regulatory genes revealed that down-regulation of evgS or hns strongly enhanced susceptibility to ciclopirox. Further microscopy and phenotypic analyses revealed that down-regulation of these genes increased cell size and decreased motility. Our findings could help to maximise the efficacy of ciclopirox against hard-to-treat Gram-negative pathogens.
Collapse
Affiliation(s)
- Jonghoon Shin
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Suran Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|