1
|
Gene expression and in vitro replication of bovine gammaherpesvirus type 4. Arch Virol 2021; 166:535-544. [PMID: 33403475 DOI: 10.1007/s00705-020-04898-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/11/2020] [Indexed: 10/22/2022]
Abstract
In vitro cell cultures are widely used models for dissecting cellular and molecular mechanisms that lead to certain physiological conditions and diseases. The pathogenesis of BoHV-4 in the bovine reproductive tract has been studied by conducting tests on primary cultures. However, many questions remain to be answered about the role of BoHV-4 in endometrial cells. The aim of this study was to compare the replication and gene expression of BoHV-4 in cell lines and bovine reproductive tract primary cells as an in vitro model for the study of this virus. We demonstrated that BoHV-4 strains differ in their in vitro growth kinetics and gene expression but have the same cell type preference. Our results demonstrate that BoHV-4 replicates preferentially in bovine endometrial cells (BEC). However, its replication capacity extends to various cell types, since all cells that were tested were permissive to BoHV-4 infection. The highest virus titers were obtained in BEC cells. Nevertheless, virus replication efficiency could not be fully predicted from the mRNA expression profiles. This implies that there are multiple cell-type-dependent factors and strain properties that determine the level of BoHV-4 replication. The results of this study provide relevant information about the in vitro behavior of two field isolates of BoHV-4 in different cell cultures. These findings may be useful for the design of future in vitro experiments to obtain reliable results not only about the pathogenic role of BoHV-4 in the bovine female reproductive tract but also in the development of efficient antiviral strategies.
Collapse
|
2
|
Aligholipour Farzani T, Bilge Dagalp S, Ozkul A, Gurdal H, Dogan F, Alkan F. Assessment of replication of bovine herpesvirus type 4 in human glioblastoma and breast cancer cells as a potential oncolytic virus. Virus Genes 2020; 57:31-39. [PMID: 33104955 DOI: 10.1007/s11262-020-01802-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/18/2020] [Indexed: 12/28/2022]
Abstract
Oncolytic viruses have been extensively used in cancer treatment due to their tropism, selective replication only in tumor cells, and possible synergic interaction with other therapeutics. Different researchers have demonstrated that bovine herpesvirus 4 (BoHV-4), a member of the gammaherpesviridae family, has oncolytic potential in some human-origin cancer cell lines like glioma through the selective replication strategy. Using four apoptosis detection methods, namely MTT, LDH, TUNEL, and Annexin V assays, we evaluated the apoptotic effect of BoHV-4 Movar33/63 reference strain along with a recombinant BoHV-4 expressing EGFP in U87 MG cells (human glioblastoma cell line), MDA MB-231 (human breast cancer cell line), and MCF10a (non-tumorigenic human mammary epithelial cell line). Our findings indicate that this virus can replicate and induce apoptosis in these cell lines and hinder in vitro proliferation in a dose-dependent manner. In conclusion, BoHV-4 has in vitro potential as a novel oncolytic virus in human cancer therapy. However, its replication potential in the MCF10a cells as a non-tumorigenic human mammary epithelial cell line is a concern in using this virus in cancer therapy, at least against human mammary tumors. Further studies must therefore be conducted to examine the specific apoptotic pathways induced by this virus to move on to further experiments.
Collapse
Affiliation(s)
- Touraj Aligholipour Farzani
- Division of Infectious Diseases and International Medicine (IDIM), University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Seval Bilge Dagalp
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Aykut Ozkul
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.,Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Hakan Gurdal
- Pharmacology Department, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Firat Dogan
- Virology Department, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Feray Alkan
- Virology Department, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Bovine Herpesvirus Type 4 (BoHV-4) Vector Delivering Nucleocapsid Protein of Crimean-Congo Hemorrhagic Fever Virus Induces Comparable Protective Immunity against Lethal Challenge in IFNα/β/γR-/- Mice Models. Viruses 2019; 11:v11030237. [PMID: 30857305 PMCID: PMC6466008 DOI: 10.3390/v11030237] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 01/09/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is the causative agent of a tick-borne infection with a significant mortality rate of up to 40% in endemic areas, with evidence of geographical expansion. Due to a lack of effective therapeutics and control measures, the development of a protective CCHFV vaccine remains a crucial public health task. This paper describes, for the first time, a Bovine herpesvirus type 4 (BoHV-4)-based viral vector (BoHV4-∆TK-CCHFV-N) and its immunogenicity in BALB/c and protection potential in IFNα/β/γR−/− mice models in comparison with two routinely used vaccine platforms, namely, Adenovirus type 5 and a DNA vector (pCDNA3.1 myc/His A), expressing the same antigen. All vaccine constructs successfully elicited significantly elevated cytokine levels and specific antibody responses in immunized BALB/c and IFNα/β/γR−/− mice. However, despite highly specific antibody responses in both animal models, the antibodies produced were unable to neutralize the virus in vitro. In the challenge experiment, only the BoHV4-∆TK-CCHFV-N and Ad5-N constructs produced 100% protection against lethal doses of the CCHFV Ank-2 strain in IFNα/β/γR−/− mice. The delivery platforms could not be compared due to similar protection rates in IFNα/β/γR−/− mice. However, during the challenge experiment in the T cell and passive antibody transfer assay, BoHV4-∆TK-CCHFV-N was dominant, with a protection rate of 75% compared to others. In conclusion, vector-based CCHFV N protein expression constitutes an effective approach for vaccine development and BoHV-4 emerged as a strong alternative to previously used viral vectors.
Collapse
|
4
|
Morán P, Pérez S, Odeón A, Verna A. Comparative analysis of replicative properties of phylogenetically divergent, Argentinean BoHV-4 strains in cell lines from different origins. Comp Immunol Microbiol Infect Dis 2019; 63:97-103. [PMID: 30961825 DOI: 10.1016/j.cimid.2019.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 01/20/2019] [Accepted: 01/21/2019] [Indexed: 11/28/2022]
Abstract
Bovine gammaherpesvirus 4 (BoHV4) is a member of the family Herpesviridae. In Argentina, BoHV4 was isolated and characterized in 2007 from samples of aborted cows. Argentinean isolates are highly divergent and are classified as: Genotype 1(Movar-like), Genotype 2 (DN599-like) and Genotype 3 (a novel group). The aim of this study was to comparatively evaluate the biological characteristics of six Argentinean BoHV4 field isolates in cell lines from different origins. All strains induced productive infection in the cell lines used, with different degrees of permissiveness. A direct relationship among the times of appearance of cytopathic effect, the growth kinetics, the size of the lysis plaques and the virulent-like behaviour in vitro could not be established. However, although slight, there are differences in the biological behaviour of the BoHV4 fields isolates analyzed. This variability is independent of their genetic classification but would be conditioned by the nature of the infected cells.
Collapse
Affiliation(s)
- Pedro Morán
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). Paraje Arroyo Seco S/N, Tandil, Buenos Aires, Argentina.
| | - Sandra Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA). Paraje Arroyo Seco S/N, Tandil, Buenos Aires, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Paraje Arroyo Seco S/N, Tandil, Buenos Aires, Argentina
| | - Anselmo Odeón
- Laboratorio de Virología, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA). Ruta 226, Km 73.5, Balcarce, Buenos Aires, Argentina
| | - Andrea Verna
- Laboratorio de Virología, Departamento de Producción Animal, Instituto Nacional de Tecnología Agropecuaria (INTA). Ruta 226, Km 73.5, Balcarce, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Buenos Aires, Argentina
| |
Collapse
|
5
|
Chiu E, Troyer RM, Lappin MR, VandeWoude S. Bovine herpesvirus 4 DNA is not detected in free-ranging domestic cats from California, Colorado or Florida. J Feline Med Surg 2017; 19:235-239. [PMID: 26450623 PMCID: PMC5502126 DOI: 10.1177/1098612x15607586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Objectives Several studies have reported that domestic cats can be naturally infected with bovine herpesvirus 4 (BHV4). Cats experimentally inoculated with BHV4 developed clinical signs involving the urinary tract, leading to the hypothesis that natural infection with BHV4 may be associated with feline lower urinary tract diseases. However, the question of whether BHV4 infection is common in cats remains equivocal. In this study, we sought to determine whether BHV4 is a common natural infection of domestic cats in the USA. Methods We used a sensitive nested PCR protocol specific to the BHV4 thymidine kinase gene to screen free-ranging domestic cat blood DNA samples (n = 101) collected from California, Colorado and Florida. Results Cats within this cohort were positive for seven other common pathogens of domestic cats, demonstrating the relatively high exposure of this population to endemic feline infections. In contrast, all domestic cat blood samples were negative for BHV4, while BHV4-containing tissue culture extracts were strongly positive. Conclusions and relevance BHV4 has been detected in tissues of latently infected cattle, though viral DNA is typically also detected in peripheral blood cells throughout infection. Our results suggest that persistent presence of BHV4 DNA in the blood of domestic cats is either rare or non-existent. We thus conclude that BHV4 is unlikely to be a major pathogen of cats.
Collapse
Affiliation(s)
- Elliott Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ryan M Troyer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Michael R Lappin
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Comparative study on the in vitro replication and genomic variability of Argentinean field isolates of bovine herpesvirus type 4 (BoHV-4). Virus Genes 2016; 52:372-8. [DOI: 10.1007/s11262-016-1312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/25/2016] [Indexed: 01/06/2023]
|
7
|
Morán PE, Pérez SE, Odeón AC, Verna AE. [Bovine herpesvirus 4 (BoHV-4): general aspects of the biology and status in Argentina]. Rev Argent Microbiol 2015; 47:155-66. [PMID: 25962539 DOI: 10.1016/j.ram.2015.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 10/23/2022] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) has been isolated from cattle with respiratory infections, vulvovaginitis, mastitis, abortions, endometritis and from apparently healthy animals throughout the world. Although it has not yet been established as causal agent of a specific disease entity, it is primarily associated with reproductive disorders of cattle. This virus can infect a wide range of species, either in vivo or in vitro. Two groups of prototype strains were originated from the first isolates: the DN599-type strains (American group) and the Movar-type strains (European group). In Argentina, BoHV-4 was isolated and characterized in 2007 from vaginal discharge samples taken from cows that had aborted. So far, more than 40 isolates, mainly associated with aborting bovine females have been registered in our country.
Collapse
Affiliation(s)
- Pedro E Morán
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina.
| | - Sandra E Pérez
- Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (UNCPBA), Tandil, Argentina; Centro de Investigación Veterinaria de Tandil (CIVETAN)-CONICET, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Anselmo C Odeón
- Departamento de Producción Animal, Laboratorio de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Argentina
| | - Andrea E Verna
- Departamento de Producción Animal, Laboratorio de Virología, Instituto Nacional de Tecnología Agropecuaria (INTA) Balcarce, Balcarce, Argentina
| |
Collapse
|
8
|
Montagnaro S, Ciarcia R, Pagnini F, De Martino L, Puzio MV, Granato GE, Avino F, Pagnini U, Iovane G, Giordano A. Bovine herpesvirus type 4 infection modulates autophagy in a permissive cell line. J Cell Biochem 2013; 114:1529-35. [PMID: 23297091 DOI: 10.1002/jcb.24494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 12/18/2012] [Indexed: 12/19/2022]
Abstract
Bovine herpesvirus type 4 (BoHV-4), like other herpesviruses, induces a series of alterations in the host cell that modify the intracellular environment in favor of viral replication, survival and spread. This research examined the impact of BoHV-4 infection on autophagy in BoHV-4 infected Madin Darby bovine kidney (MDBK) cells. Protein extracts of BoHV-4 infected and control MDBK cells were subjected to Western blot. The concentrations of the autophagy and apoptosis-related proteins Beclin 1, p21, PI3 kinase, Akt1/2, mTOR, phospho mTOR, p62 and the light chain three (LC3) were normalized to the actin level and expressed as the densitometric ratio. Western blot analysis of virus-infected cells revealed that autophagic degradation pathway was induced in the late phase of BoHV-4 infection. After 48 h post-infection the protein LC3II, which is essential for autophagy was found to be markedly increased, while infection of MDBK cells with BoHV-4 resulted in a depletion of p62 levels. Becline 1, PI3 kinase, Akt1/2 and p21 expression increased between 24 and 48 h post-infection. Surprisingly, mTOR and its phosphorylated form, which are negative regulators of autophagy, also increased after 24 h post-infection. In conclusion, our findings suggest that BoHV-4 has developed mechanisms for modulation of autophagy that are probably part of a strategy designed to enhance viral replication and to evade the immune system. Additional studies on the relationship between autophagy and BoHV-4 replication and survival, in both lytic and latent replication phases, are needed to understand the role of autophagy in BoHV-4 pathogenesis.
Collapse
Affiliation(s)
- Serena Montagnaro
- Department of Pathology and Animal Health, School of Veterinary Medicine, University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lednicky JA, Waltzek TB, McGeehan E, Loeb JC, Hamilton SB, Luetke MC. Isolation and genetic characterization of human coronavirus NL63 in primary human renal proximal tubular epithelial cells obtained from a commercial supplier, and confirmation of its replication in two different types of human primary kidney cells. Virol J 2013; 10:213. [PMID: 23805916 PMCID: PMC3716658 DOI: 10.1186/1743-422x-10-213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 12/29/2022] Open
Abstract
Background Cryopreserved primary human renal proximal tubule epithelial cells (RPTEC) were obtained from a commercial supplier for studies of Simian virus 40 (SV40). Within twelve hrs after cell cultures were initiated, cytoplasmic vacuoles appeared in many of the RPTEC. The RPTEC henceforth deteriorated rapidly. Since SV40 induces the formation of cytoplasmic vacuoles, this batch of RPTEC was rejected for the SV40 study. Nevertheless, we sought the likely cause(s) of the deterioration of the RPTEC as part of our technology development efforts. Methods Adventitious viruses in the RPTEC were isolated and/or detected and identified by isolation in various indicator cell lines, observation of cytopathology, an immunoflurorescence assay, electron microscopy, PCR, and sequencing. Results Cytomegalovirus (CMV) was detected in some RPTEC by cytology, an immunofluorescence assay, and PCR. Human Herpesvirus 6B was detected by PCR of DNA extracted from the RPTEC, but was not isolated. Human coronavirus NL63 was isolated and identified by RT-PCR and sequencing, and its replication in a fresh batch of RPTEC and another type of primary human kidney cells was confirmed. Conclusions At least 3 different adventitious viruses were present in the batch of contaminated RPTEC. Whereas we are unable to determine whether the original RPTEC were pre-infected prior to their separation from other kidney cells, or had gotten contaminated with HCoV-NL63 from an ill laboratory worker during their preparation for commercial sale, our findings are a reminder that human-derived biologicals should always be considered as potential sources of infectious agents. Importantly, HCoV-NL63 replicates to high titers in some primary human kidney cells.
Collapse
Affiliation(s)
- John A Lednicky
- Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Box 100188, Gainesville, FL 32610-0188, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Genomic analysis of bovine herpesvirus type 4 (BoHV-4) from Argentina: High genetic variability and novel phylogenetic groups. Vet Microbiol 2012; 160:1-8. [DOI: 10.1016/j.vetmic.2012.04.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/20/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022]
|
11
|
Donofrio G, Taddei S, Franceschi V, Capocefalo A, Cavirani S, Martinelli N, Ottonello S, Ferrari M. Swine adipose stromal cells loaded with recombinant bovine herpesvirus 4 virions expressing a foreign antigen induce potent humoral immune responses in pigs. Vaccine 2010; 29:867-72. [PMID: 21115049 DOI: 10.1016/j.vaccine.2010.11.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 11/03/2010] [Accepted: 11/14/2010] [Indexed: 01/14/2023]
Abstract
Increasingly effective vaccination strategies are needed to counteract the high incidence of contagious diseases associated with intensive swine breeding. Recombinant viral vaccines are a promising new avenue in this direction. Key features of viral vectors suitable for immunoprophylaxis are safety, ease of manipulation and the ability to replicate in a variety of hosts. Most of the above requirements are met by bovine herpesvirus 4 (BoHV-4), a non-pathogenic dsDNA virus capable of infecting a broad range of cell types in vitro. Here we report the results of an exploratory study using an engineered BoHV-4 virus (eBoHV-4) expressing two unrelated glycoprotein antigens from bovine viral diarrhea virus (BVDV) and bovine herpesvirus 1 (BoHV-1), to assess the potential of recombinant BoHV-4 as a self-adjuvanted immunogen in pigs. Free eBoHV-4 virions and virions preloaded into homologous swine adipose-derived stromal cells (SADSC) were tested. Neither virus formulation elicited neutralizing anti-BoHV-4 antibodies, nor any disease symptom, yet both induced specific immune responses against the heterologous antigens. However, a much earlier (18 vs 28 days post-infection) and more robust neutralizing response against BVDV and BoHV-1 viruses was elicited by eBoHV-4-preinfected SADSCs compared to free virions. The data validate BoHV-4 as a safe and effective heterologous antigen carrier/producer and identify SADSCs as helpful tools for the formulation of increasingly efficacious recombinant immunogens for pig vaccination.
Collapse
Affiliation(s)
- Gaetano Donofrio
- Dipartimento di Salute Animale, Università di Parma, Sezione di Malattie Infettive degli Animali, Via del Taglio 10, 43126 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Capocefalo A, Franceschi V, Whitelaw C, Vasey D, Lillico S, Cavirani S, Donofrio G. p21Waf1/Cip1 as a molecular sensor for BoHV-4 replication. J Virol Methods 2009; 161:308-11. [DOI: 10.1016/j.jviromet.2009.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/27/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
|
13
|
Donofrio G, Herath S, Sartori C, Cavirani S, Flammini CF, Sheldon IM. Bovine herpesvirus 4 is tropic for bovine endometrial cells and modulates endocrine function. Reproduction 2007; 134:183-97. [PMID: 17641100 PMCID: PMC2740819 DOI: 10.1530/rep-07-0065] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bovine postpartum uterine disease, metritis, affects about 40% of animals and is widely considered to have a bacterial aetiology. Although the gamma-herpesvirus bovine herpesvirus 4 (BoHV-4) has been isolated from several outbreaks of metritis or abortion, the role of viruses in endometrial pathology and the mechanisms of viral infection of uterine cells are often ignored. The objectives of the present study were to explore the interaction, tropism and outcomes of BoHV-4 challenge of endometrial stromal and epithelial cells. Endometrial stromal and epithelial cells were purified and infected with a recombinant BoHV-4 carrying an enhanced green fluorescent protein (EGFP) expression cassette to monitor the establishment of infection. BoHV-4 efficiently infected both stromal and epithelial cells, causing a strong non-apoptotic cytopathic effect, associated with robust viral replication. The crucial step for the BoHV-4 endometriotropism appeared to be after viral entry as there was enhanced transactivation of the BoHV-4 immediate early 2 gene promoter following transient transfection into the endometrial cells. Infection with BoHV-4 increased cyclooxygenase 2 protein expression and prostaglandin estradiol secretion in endometrial stromal cells, but not epithelial cells. Bovine macrophages are persistently infected with BoHV-4, and co-culture with endometrial stromal cells reactivated BoHV-4 replication in the persistently infected macrophages, suggesting a symbiotic relationship between the cells and virus. In conclusion, the present study provides evidence of cellular and molecular mechanisms, supporting the concept that BoHV-4 is a pathogen associated with uterine disease.
Collapse
Affiliation(s)
- Gaetano Donofrio
- Dipartimento di Salute Animale, Sezione di Malattie Infettive, Facoltà di Medicina Veterinaria, via del Taglio 8, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Machiels B, Gillet L, Nascimento Brito SD, Drion P, Delforge C, Nizet Y, Gianello P, Bona C, Costes B, Markine-Goriaynoff N, Vanderplasschen A. Natural antibody--complement dependent neutralization of bovine herpesvirus 4 by human serum. Microbes Infect 2007; 9:1530-7. [PMID: 18024120 DOI: 10.1016/j.micinf.2007.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/16/2007] [Accepted: 08/23/2007] [Indexed: 11/17/2022]
Abstract
In contrast to most gammaherpesviruses, Bovine herpesvirus 4 (BoHV-4) has a broad range of host species both in vitro and in vivo. Several in vitro studies demonstrated that some human cell lines are sensitive or even permissive to BoHV-4. These observations led to the hypothesis that cross-species transmission of BoHV-4 could lead to human infections. In the present study, we investigate the sensitivity of BoHV-4 to neutralization by naïve human sera in order to determine if humans exhibit innate anti-viral activities against this virus. Our results demonstrate that human sera from naïve individuals, in contrast to the sera of naïve subjects from various animal species, neutralize BoHV-4 efficiently. A series of complementary experiments were performed to unravel the mechanism(s) of this neutralization. The data obtained in this study demonstrates that human serum neutralizes BoHV-4 in a complement dependent manner activated by natural antibodies raised against the Galalpha1-3Galbeta1-4GlcNAc-R epitope expressed by bovine cells.
Collapse
Affiliation(s)
- Bénédicte Machiels
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Bvd de Colonster 20, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Martina BE, Verjans GMGM, Kuiken T, van Amerongen G, Osterhaus ADME. In vitro and in vivo replication of seal gammaherpesviruses in cells of multiple species. Microbes Infect 2006; 9:40-6. [PMID: 17194610 DOI: 10.1016/j.micinf.2006.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/03/2006] [Accepted: 10/10/2006] [Indexed: 01/17/2023]
Abstract
Phocid herpesvirus virus type 2 (PhHV-2), a putative gammaherpesvirus of seals, has been isolated from harbor seals (Phoca vitulina) and grey seals (Halichoerus grypus). In the present study, different PhHV-2 isolates were shown to have a broad in vitro tropism for various cell types from several mammalian species. Inbred mice and two species of non-human primates proved to be susceptible to experimental infection with PhHV-2. The development of myoepitheliomas and spleen hyperplasia upon cyclosporin A treatment in some of the PhHV-2-infected animals warrants further investigation of the oncogenic and zoonotic potential of this virus.
Collapse
Affiliation(s)
- Byron E Martina
- Erasmus Medical Centre, Institute of Virology, P.O. Box 1738, 3000 DR Rotterdam, Netherlands
| | | | | | | | | |
Collapse
|
16
|
Gillet L, Dewals B, Farnir F, de Leval L, Vanderplasschen A. Bovine herpesvirus 4 induces apoptosis of human carcinoma cell lines in vitro and in vivo. Cancer Res 2005; 65:9463-72. [PMID: 16230410 DOI: 10.1158/0008-5472.can-05-1076] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The idea of using oncolytic viruses for the treatment of cancers was proposed a century ago. During the last two decades, viruses able to replicate specifically in cancer cells and to induce their lysis were identified and were genetically modified to improve their viro-oncolytic properties. More recently, a new approach consisting of inducing selective apoptosis in cancer cells through viral infection has been proposed; this approach has been called viro-oncoapoptosis. In the present study, we report the property of bovine herpesvirus-4 (BoHV-4) to induce, in vitro and in vivo, apoptosis of some human carcinomas. This conclusion relies on the following observations: (a) In vitro, BoHV-4 infection induced apoptosis of A549 and OVCAR carcinoma cell lines in a time- and dose-dependent manner. (b) Apoptosis was induced by the expression of an immediate-early or an early BoHV-4 gene, but did not require viral replication. (c) Cell treatment with caspase inhibitors showed that apoptosis induced by BoHV-4 relied mainly on caspase-10 activation. (d) Infection of cocultures of A549 or OVCAR cells mixed with human 293 cells (in which BoHV-4 does not induce apoptosis) showed that BoHV-4 specifically eradicated A549 or OVCAR cancer cells from the cocultures. (e) Finally, in vivo experiments done with nude mice showed that BoHV-4 intratumoral injections reduced drastically the growth of preestablished A549 xenografts. Taken together, these results suggest that BoHV-4 may have potential as a viro-oncoapoptotic agent for the treatment of some human carcinomas. Moreover, further identification of BoHV-4 proapoptotic gene(s) and the cellular pathways targeted by this or these gene(s) could lead to the design of new cancer therapeutic strategies.
Collapse
Affiliation(s)
- Laurent Gillet
- Department of Infectious and Parasitic Diseases, Faculty of Medicine, University of Liège, Liège, Belgium
| | | | | | | | | |
Collapse
|
17
|
Bona C, Dewals B, Wiggers L, Coudijzer K, Vanderplasschen A, Gillet L. Short Communication: Pasteurization of Milk Abolishes Bovine Herpesvirus 4 Infectivity. J Dairy Sci 2005; 88:3079-83. [PMID: 16107396 DOI: 10.3168/jds.s0022-0302(05)72989-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus highly prevalent in the cattle population that has been isolated from the milk and the serum of healthy infected cows. Several studies reported the sensitivity and the permissiveness of some human cells to BoHV-4 infection. Moreover, our recent study demonstrated that some human cells sensitive but not permissive to BoHV-4 support a persistent infection protecting them from tumor necrosis factor-alpha-induced apoptosis. Together, these observations suggested that BoHV-4 could represent a danger for public health. To evaluate the risk of human infection by BoHV-4 through milk or serum derivatives, we investigated the resistance of BoHV-4 to the mildest thermal treatments usually applied to these products. The results demonstrated that milk pasteurization and thermal decomplementation of serum abolish BoHV-4 infectivity by inactivation of its property to enter permissive cells. Consequently, our results demonstrate that these treatments drastically reduce the risk of human infection by BoHV-4 through treated milk or serum derivatives.
Collapse
Affiliation(s)
- C Bona
- Immunology-Vaccinology (B43b), Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Donofrio G, Colleoni S, Galli C, Lazzari G, Cavirani S, Flammini CF. Susceptibility of bovine mesenchymal stem cells to bovine herpesvirus 4. J Virol Methods 2005; 127:168-70. [PMID: 15869810 DOI: 10.1016/j.jviromet.2005.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 02/23/2005] [Accepted: 02/24/2005] [Indexed: 11/23/2022]
Abstract
Bovine herpesvirus 4 (BoHV-4) is a gamma herpesvirus with no clear disease association. Previous studies have demonstrated that macrophages can harbour persistent BoHV-4. Since mesenchymal stem cells in bone marrow regulate the differentiation and proliferation of adjacent haematopoietic precursors, such as macrophages, the interaction between BoHV-4 and mesenchymal stem cells was investigated. Primary bovine mesenchymal stem cells were highly permissive to support full replication of BoHV-4. This finding could be considered a new important step in studies on the potential pathogenesis related to BoHV-4.
Collapse
Affiliation(s)
- G Donofrio
- Dipartimento di Salute Animale, Sezione di Malattie Infettive degli Animali, Facoltà di Medicina Veterinaria, Via del Taglio 8, 43100 Parma, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
Gillet L, Minner F, Detry B, Farnir F, Willems L, Lambot M, Thiry E, Pastoret PP, Schynts F, Vanderplasschen A. Investigation of the susceptibility of human cell lines to bovine herpesvirus 4 infection: demonstration that human cells can support a nonpermissive persistent infection which protects them against tumor necrosis factor alpha-induced apoptosis. J Virol 2004; 78:2336-47. [PMID: 14963130 PMCID: PMC369250 DOI: 10.1128/jvi.78.5.2336-2347.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus that has a worldwide distribution in the population of cattle. Many factors make human contamination by BoHV-4 likely to occur. In this study, we performed in vitro experiments to assess the risk and the consequences of human infection by BoHV-4. First, by using a recombinant BoHV-4 strain expressing enhanced green fluorescent protein under the control of the human cytomegalovirus immediate-early gene promoter, we tested 21 human cell lines for their sensitivity and their permissiveness to BoHV-4 infection. These experiments revealed that human cell lines from lymphoid and myeloid origins were resistant to infection, whereas epithelial cells, carcinoma cells, or adenocarcinoma cells isolated from various organs were sensitive but poorly permissive to BoHV-4 infection. Second, by using the HeLa cell line as a model of human cells sensitive but not permissive to BoHV-4 infection, we investigated the resistance of infected cells to apoptosis and the persistence of the infection through cellular divisions. The results obtained can be summarized as follows. (i) BoHV-4 nonpermissive infection of HeLa cells protects them against tumor necrosis factor alpha-induced apoptosis. (ii) BoHV-4 infection of HeLa cells persists in cell culture; however, the percentage of infected cells decreases with time due to erratic transmission of the viral genome through cell division. (iii) BoHV-4 infection has no effect on the rate of HeLa cell division. Altogether, these data suggest that BoHV-4 could infect humans. This study also stresses the importance of considering the insidious effects of nonpermissive infection when the biosafety of animal gammaherpesviruses for humans is being considered.
Collapse
Affiliation(s)
- L Gillet
- Immunology-Vaccinology, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Martina BEE, Verjans GMGM, Harder TC, Kuiken T, van de Bildt MWG, van Bergen PAC, Osterhaus ADME. Seal gammaherpesviruses: identification, characterisation and epidemiology. Virus Res 2003; 94:25-31. [PMID: 12837554 DOI: 10.1016/s0168-1702(03)00120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phocid herpesvirus type 2 (PhHV-2), tentatively classified as a gammaherpesvirus, has been isolated from European and American harbour seals (Phoca vitulina). Here we describe the isolation and the molecular as well as biological characterisation of different PhHV-2 isolates from harbour seals and grey seals (Halichoerus grypus). Of 522 harbour seals and 231 grey seals that had been admitted to the seal research and rehabilitation centre in Pieterburen, The Netherlands, between 1992 and 2000, 38 and 18%, respectively, proved to have PhHV-2 neutralising antibodies. PhHV-2 was isolated from peripheral blood mononuclear cells (PBMCs) of 12 and 28% of these seropositive animals, respectively, and 26 and 56% of these cell samples, respectively, were positive by PCR analysis. Analysis of amino acid sequences of PCR products and of the growth characteristics of different PhHV-2 isolates indicated that harbour and grey seals are infected with distinct gamma-herpesviruses, which however, may co-circulate between the two species.
Collapse
Affiliation(s)
- B E E Martina
- Seal Rehabilitation and Research Centre, Hoofdstraat 94a, 9968 AG Pieterburen, Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Egyed L, Baska F. Histological lesions in vascular tissues of bovine herpes virus type 4-infected rabbits. Vet Microbiol 2003; 91:1-10. [PMID: 12441227 DOI: 10.1016/s0378-1135(02)00261-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gamma-herpes virus bovine herpes virus type 4 (BoHV-4) is distributed worldwide in cattle populations with unknown pathogenicity. Bovine endothelial cells were recently shown to be susceptible to BoHV-4 infection in vitro and this virus accelerated the cholesterol-induced atherosclerotic process in rabbits. In this study, the in vivo effect of BoHV-4 on cardiovascular tissue was investigated by intravenous infection of rabbits fed a cholesterol free diet. Inflammatory lesions of vascular tissue in aortic and valvular endothelial cells, and smooth muscle cells were detected by H&E staining, PCR, IF, EM immunohistochemistry, while virus isolation was used to detect virus particles. Acute and chronic vasculitis, signs of chronic endocarditis, with mononuclear cell accumulation and a fresh thrombus was found. Herpes viruses have already been thought to initiate cardio-vascular disorders, now this paper shows that a bovine gamma-herpes virus could also be a causative agent of vascular lesions in mammals fed a normal diet. BoHV-4-infection of rabbits could serve as a useful animal model for research into virus-induced human cardio-vascular diseases.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/virology
- DNA, Viral/chemistry
- DNA, Viral/genetics
- Dexamethasone/metabolism
- Fluorescent Antibody Technique/veterinary
- Heart/virology
- Herpesviridae Infections/pathology
- Herpesviridae Infections/veterinary
- Herpesviridae Infections/virology
- Herpesvirus 4, Bovine/genetics
- Herpesvirus 4, Bovine/growth & development
- Immunosuppressive Agents/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/virology
- Myocardium/pathology
- Polymerase Chain Reaction/veterinary
- Rabbits/virology
- Vasculitis/veterinary
- Vasculitis/virology
Collapse
Affiliation(s)
- László Egyed
- Veterinary Medical Research Institute of the Hungarian Academy of Sciences, P.O. Box 18, H-1581 Budapest, Hungary.
| | | |
Collapse
|
22
|
Zimmermann W, Broll H, Ehlers B, Buhk HJ, Rosenthal A, Goltz M. Genome sequence of bovine herpesvirus 4, a bovine Rhadinovirus, and identification of an origin of DNA replication. J Virol 2001; 75:1186-94. [PMID: 11152491 PMCID: PMC114024 DOI: 10.1128/jvi.75.3.1186-1194.2001] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine herpesvirus 4 (BoHV-4) is a gammaherpesvirus of cattle. The complete long unique coding region (LUR) of BoHV-4 strain 66-p-347 was determined by a shotgun approach. Together with the previously published noncoding terminal repeats, the entire genome sequence of BoHV-4 is now available. The LUR consists of 108,873 bp with an overall G+C content of 41.4%. At least 79 open reading frames (ORFs) are present in this coding region, 17 of them unique to BoHV-4. In contrast to herpesvirus saimiri and human herpesvirus 8, BoHV-4 has a reduced set of ORFs homologous to cellular genes. Gene arrangement as well as phylogenetic analysis confirmed that BoHV-4 is a member of the genus Rhadinovirus. In addition, an origin of replication (ori) in the genome of BoHV-4 was identified by DpnI assays. A minimum of 1.69 kbp located between ORFs 69 and 71 was sufficient to act as a cis signal for replication.
Collapse
Affiliation(s)
- W Zimmermann
- Department of Genetic Analysis, Genome Sequencing Centre, Institut für Molekulare Biotechnologie, 07745 Jena, Robert Koch-Institut, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Donofrio G, Flammini CF, Scatozza F, Cavirani S. Detection of bovine herpesvirus 4 (BoHV-4) DNA in the cell fraction of milk of dairy cattle with history of BoHV-4 infection. J Clin Microbiol 2000; 38:4668-71. [PMID: 11101621 PMCID: PMC87662 DOI: 10.1128/jcm.38.12.4668-4671.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Accepted: 09/24/2000] [Indexed: 11/20/2022] Open
Abstract
We have demonstrated, by PCR and restriction enzyme analysis of the PCR product, the presence of bovine herpesvirus 4 (BoHV-4) DNA in the cell fraction of milk from dairy cattle with a history of BoHV-4 infection. We next evaluated the infectious nature of BoHV-4 DNA in those cells. Cocultivation of a BoHV-4-sensitive cell line with BoHV-4 DNA-positive milk cell samples produced cytopathic effects. The same result was obtained from frozen and thawed milk cell fraction coming from the cell milk fraction PCR-positive cows, ensuring that cells were killed and only infectious virus could be recovered after cocultivation with sensitive cells. This report shows that infectious BoHV-4 can be present in milk cells and that therefore nursing may be one of the transmission routes of BoHV-4.
Collapse
Affiliation(s)
- G Donofrio
- Istituto di Malattie Infettive Profilassi e Polizia Veterinaria, Facoltà di Medicina Veterinaria, Università di Parma, 43100 Parma, Italy.
| | | | | | | |
Collapse
|
24
|
Sciortino MT, Perri D, Medici MA, Foti M, Orlandella BM, Mastino A. The gamma-2-herpesvirus bovine herpesvirus 4 causes apoptotic infection in permissive cell lines. Virology 2000; 277:27-39. [PMID: 11062033 DOI: 10.1006/viro.2000.0575] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing evidence suggests that regulation of apoptosis in infected cells is associated with several viral infections. The gammaherpesvirus bovine herpesvirus 4 (BHV-4) has been shown to harbor genes with antiapoptotic potentialities. However, here we have demonstrated that productive infection of adherent, permissive cell lines by BHV-4 resulted in a cytopathic effect characterized by induction of apoptosis. This phenomenon was confirmed using different techniques to detect apoptosis and using different virus strains and cell targets. Apoptosis induced by BHV-4 was inhibited by (1) treatment with doses of heparin, which completely inhibited virus attachment and infectivity; (2) UV treatment, which completely abrogated infectivity; and (3) treatment with a dose of phosphonoacetic acid, which blocked virus replication. Virus-induced apoptosis was associated with a down-regulation of Bcl-2 expression and was reduced by Z-VAD-FMK, but not by Z-DEVD-FMK (caspase-3-specific) caspase inhibitors. Inhibition of apoptosis by Z-VAD-FMK treatment during infection did not modify virus yield. Therefore, despite the presence of antiapoptotic genes in its genoma, BHV-4 could complete its cycle of productive infection while inducing apoptosis of infected cells. This finding might have implications for the pathobiology of BHV-4 and other gammaherpesviruses in vivo.
Collapse
Affiliation(s)
- M T Sciortino
- Department of Microbiological, Genetic, and Molecular Sciences, University of Messina, Messina, Italy.
| | | | | | | | | | | |
Collapse
|
25
|
Kruger JM, Venta PJ, Swenson CL, Syring R, Gibbons-Burgener SN, Richter M, Maes RK. Prevalence of Bovine Herpesvirus-4 Infection in Cats in Central Michigan. J Vet Intern Med 2000. [DOI: 10.1111/j.1939-1676.2000.tb02282.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Donofrio G, Cavirani S, van Santen VL. Establishment of a cell line persistently infected with bovine herpesvirus-4 by use of a recombinant virus. J Gen Virol 2000; 81:1807-14. [PMID: 10859387 DOI: 10.1099/0022-1317-81-7-1807] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bovine herpesvirus-4 (BHV-4), a gammaherpesvirus lacking a clear disease association, productively infects multiple cell lines of various species and causes cell death. A human rhabdomyosarcoma cell line, RD-4, infected with BHV-4 produced low levels of early and late viral RNAs and infectious virus, but exhibited no cytopathic effect. Using a recombinant BHV-4 containing a neomycin-resistance gene, we established RD-4-derived cell lines persistently infected with BHV-4. The viral genome in these cells was predominantly circular. Because of drug selection, every cell contained a viral genome. In addition, all cells stained with a BHV-4-specific antiserum. Therefore, these cell lines are not carrier cultures. These cells produced infectious virus at all passages tested. Even though cells were selected and maintained at a concentration of geneticin at least 2.5 times that necessary to kill uninfected RD-4 cells, selected cells contained only approximately one viral genome per diploid host cell genome. Persistently infected cells grew more slowly than uninfected cells, even in the absence of drug. The slower growth of these cells suggests that any growth advantage conferred by multiple copies of the neomycin-gene-carrying viral genome might be offset by the detrimental effects of viral gene expression. This situation contrasts with other gammaherpesviruses, which are able to growth-transform cells.
Collapse
Affiliation(s)
- G Donofrio
- Istituto di Malattie Infettive Veterinarie, Facoltà di Medicina Veterinaria, Università degli Studi di Parma, 43100 Parma, Italy
| | | | | |
Collapse
|