1
|
Boumaiza M, Trabelsi K, Choucha Z, Akrouti I, Leone S, Picone D, Kallel H. Production and characterization of a fusion form of hepatitis E virus tORF2 capsid protein in Escherichia coli. Prep Biochem Biotechnol 2020; 51:562-569. [PMID: 33095097 DOI: 10.1080/10826068.2020.1836656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Hepatitis E virus (HEV) is a nonenveloped virus causing an emerging zoonotic disease posing a severe threat to the public health in the world, especially to pregnant women. In this study, a truncated form (aa 368-606) of the open reading frame 2 of the capsid protein (tORF2-HEV), a major structural protein of HEV, was expressed in Escherichia coli. This work characterizes for the first time, the fused Glutathione-S-Transferase-tagged tORF2 (GST-tORF2) and tORF2-HEV forms in E. coli. The fusion protein was purified by affinity chromatography with a purity higher than 90% and to yield about 27% after thrombin digestion. The purified GST-tORF2 protein was then characterized by western blot, using anti-GST antibodies, and CD spectroscopy. The GST-tORF2 and tORF2-HEV proteins were shown to be efficient to develop an ELISA test to detect anti-HEV IgG in mice sera immunized with a recombinant full length ORF2 protein. Sera showed a significant increase of the absorbance signal at 450 nm, in plate wells coated with a quantity of 0.5, 1 and 2 µg of proteins. ELISA plates coated with the purified GST-tORF2 and tORF2-HEV showed similar response when compared to the HEV ELISA where total insect cell lysate, infected with the recombinant baculovirus expressing full ORF2, was used as positive control.
Collapse
Affiliation(s)
- Mohamed Boumaiza
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Khaled Trabelsi
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.,Life Science Department, Biotechnology Programme, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Zeineb Choucha
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ines Akrouti
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Serena Leone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Héla Kallel
- Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis, Tunisia.,UnivercellsVaccines, Nivelles, Belgium
| |
Collapse
|
2
|
Sabara MI, Larence JE, Halayko S. Use of a Japanese Quail Fibrosarcoma Cell Line (QT-35) in Serologic Assays to Determine the Antigenic Relationship of Avian Metapneumoviruses. J Vet Diagn Invest 2016; 15:447-53. [PMID: 14535544 DOI: 10.1177/104063870301500507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The ability of a Japanese quail fibrosarcoma cell line (QT-35) to support the replication of avian metapneumoviruses belonging to the 3 subgroups A (14/1 virus), B (Colorado virus), and C (Hungary virus) enabled the development of assays for the detection and evaluation of virus-specific antibodies. On the basis of the results of enzyme-linked immunosorbent assay (ELISA), plaque reduction neutralization assay (PRNA), immunofluorescent assay (IFA), and Western blot analysis, some degree of antigenic cross-reactivity was observed between prototype viruses belonging to each of the 3 subgroups A, B, and C. The antigen produced in QT-35 cells was found to be superior with respect to its reactivity with virus-specific antibodies, as determined when used in ELISA and IFA. Standardization of both the input virus and the virus-specific antibodies in PRNA enabled a more detailed analysis of the antigenic relationship between these viruses. Specifically, it was observed that 14/1 virus shared more neutralizing regions with Hungary and Colorado viruses than did either of these viruses with 14/1 virus. In addition, Hungary virus shared comparatively fewer neutralizing epitopes with the Colorado virus than did 14/1 virus. Western blot analysis of the reactivity patterns of virus antigen, produced in QT-35 cells, with subgroup-specific antibodies identified a cross-reactive protein migrating at approximately 18 kD. These assays and the information from the Western blot will enable further analysis of avian metapneumovirus isolates to determine antigenic relationships.
Collapse
Affiliation(s)
- Marta I Sabara
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington Street, Winnipeg, Manitoba R3E 3M4, Canada
| | | | | |
Collapse
|
3
|
Banerjee S, Sullender WM, Ahuja RK, Broor S. Seroepidemiological study of human metapneumovirus in New Delhi, India. Indian J Med Microbiol 2012; 29:363-7. [PMID: 22120795 DOI: 10.4103/0255-0857.90162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
PURPOSE There are a few seroepidemiological studies reported on human metapneumovirus (hMPV) as hMPV was only discovered in the year 2001. This respiratory virus has been reported to be ubiquitous and associated with respiratory tract infections in all age groups. The present study aimed at determining the prevalence of antibodies to hMPV in children and adults of 1 month to 55 years of age. MATERIALS AND METHODS Serum samples from 100 study subjects were tested for hMPV antibody by an in-house ELISA system that used hMPV-infected cell lysate antigen. RESULT The prevalence of antibody to hMPV was lowest in children less than 5 years of age (60%) and increased throughout age to > 80%. Similarly, geometric mean titres were 1:180 in children less than 5 years of age and reached a peak of 1:419 in adults over 35 years of age. CONCLUSION The results show that hMPV infection is acquired early in life and re-infection in later life may maintain the seroprevalence and antibody levels in adult population.
Collapse
Affiliation(s)
- S Banerjee
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi - 110 029, India
| | | | | | | |
Collapse
|
4
|
Park J, Lee D, Shin H. Serological survey of antibodies against avian metapneumovirus in Korean chicken flocks. J APPL POULTRY RES 2011. [DOI: 10.3382/japr.2010-00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Balamurugan V, Venkatesan G, Sen A, Annamalai L, Bhanuprakash V, Singh RK. Recombinant protein-based viral disease diagnostics in veterinary medicine. Expert Rev Mol Diagn 2010; 10:731-53. [PMID: 20843198 DOI: 10.1586/erm.10.61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identification of pathogens or antibody response to pathogens in human and animals modulates the treatment strategies for naive population and subsequent infections. Diseases can be controlled and even eradicated based on the epidemiology and effective prophylaxis, which often depends on development of efficient diagnostics. In addition, combating newly emerging diseases in human as well as animal healthcare is challenging and is dependent on developing safe and efficient diagnostics. Detection of antibodies directed against specific antigens has been the method of choice for documenting prior infection. Other than zoonosis, development of inexpensive vaccines and diagnostics is a unique problem in animal healthcare. The advent of recombinant DNA technology and its application in the biotechnology industry has revolutionized animal healthcare. The use of recombinant DNA technology in animal disease diagnosis has improved the rapidity, specificity and sensitivity of various diagnostic assays. This is because of the absence of host cellular proteins in the recombinant derived antigen preparations that dramatically decrease the rate of false-positive reactions. Various recombinant products are used for disease diagnosis in veterinary medicine and this article discusses recombinant-based viral disease diagnostics currently used for detection of pathogens in livestock and poultry.
Collapse
|
6
|
Serum antibody response to respiratory syncytial virus F and N proteins in two populations at high risk of infection: children and elderly. J Virol Methods 2010; 168:170-6. [PMID: 20488207 DOI: 10.1016/j.jviromet.2010.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 03/16/2010] [Accepted: 05/11/2010] [Indexed: 11/22/2022]
Abstract
Human respiratory syncytial virus (hRSV) is the main viral cause of severe respiratory infections in children and a common cause of morbidity in the elderly. The nucleocapsid (N) and fusion (F) proteins of hRSV were expressed in insect cells and used as antigens in two independent enzyme-linked immunosorbent assays (ELISAs) to measure the serum antibody response in two populations at high risk of hRSV infection, children and the elderly. Fifty-seven serum specimens from children aged from 1 to 10 years old and 91 sera from adults over 60 years old were tested. The ELISA results were compared with those obtained by an immunofluorescence assay (IFA) based on hRSV-infected cells, which was considered as the reference technique. Sensitivity and specificity were 94% and 85% for the N-ELISA and 86% and 81% for the F-ELISA, respectively. When the immune responses of the two groups of individuals were compared, it appeared that almost 100% of the elderly had antibodies against the N or F protein whereas only 50% of the sera from children had antibodies against either of the two viral proteins. In conclusion, the F and N ELISAs can be used successfully for detecting a specific antibody response to hRSV.
Collapse
|
7
|
Development and evaluation of a whole virus-based enzyme-linked immunosorbent assay for the detection of human metapneumovirus antibodies in human sera. J Virol Methods 2009; 164:24-9. [PMID: 19925829 DOI: 10.1016/j.jviromet.2009.11.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 11/20/2022]
Abstract
To apply serological testing for human metapneumovirus (hMPV) to large-scale sera samples, an enzyme-linked immunosorbent assay (ELISA) was developed in which purified virions were used as the antigen. The ELISA was evaluated using 102 human sera specimens from patients aged 0-59 years. There was a positive association between the ELISA results and neutralization test titers, with the correlation coefficients being greater in children <6 years old (rho=0.899, P<0.0001), which is consistent with a primary infection, than in persons >or=6 years old (rho=0.523, P<0.0001). Fifty sera samples were subjected to radioimmunoprecipitation to measure the quantity of antibodies to the fusion protein (RIP-F) and the nucleoprotein (RIP-N). The results showed significant associations between the ELISA titers and the amount of RIP-F as determined by radioimmunoprecipitation in children <6 years old (rho=0.804, P=0.0083) and in persons >or=6 years old (rho=0.577, P=0.0009). The correlation between the ELISA titer and the amount of RIP-N determined by radioimmunoprecipitation was not significant in persons >or=6 years old (rho=0.417, P=0.0829), although this correlation was significant in children <6 years old (rho=0.764, P=0.0137). The ELISA titer correlated with the amount of antibodies to the F protein, but not to the N protein. This whole virus-based ELISA will be useful for the diagnosis of hMPV infection in clinical laboratories and is also useful for the large-scale investigations, such as seroprevalence among residents of a particular region.
Collapse
|
8
|
Luo L, Sabara MI, Li Y. Analysis of Antigenic Cross-Reactivity Between Subgroup C Avian Pneumovirus and Human Metapneumovirus by Using Recombinant Fusion Proteins. Transbound Emerg Dis 2009; 56:303-10. [DOI: 10.1111/j.1865-1682.2009.01085.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Cha RM, Khatri M, Sharma JM. B-Cell Infiltration in the Respiratory Mucosa of Turkeys Exposed to Subtype C Avian Metapneumovirus. Avian Dis 2007; 51:764-70. [DOI: 10.1637/0005-2086(2007)51[764:biitrm]2.0.co;2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Kong BW, Foster LK, Foster DN. Comparison of avian cell substrates for propagating subtype C avian metapneumovirus. Virus Res 2006; 116:58-68. [PMID: 16194579 DOI: 10.1016/j.virusres.2005.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/25/2005] [Accepted: 08/26/2005] [Indexed: 11/25/2022]
Abstract
Avian metapneumovirus (AMPV) is a respiratory viral pathogen that causes turkey rhinotracheitis (TRT) or swollen head syndrome (SHS) in chickens. AMPV was first isolated in South Africa during the early 1970s and has subsequently spread worldwide during the 1980s to include Europe, Asia, and South America. In 1996, a genetically distinct AMPV subgroup C was isolated in the US following an outbreak of TRT. Vero cells are currently the best available substrate for AMPV propagation but are of non-avian origin. A number of different avian cell substrates have been compared to determine which is the most suitable for the propagation of AMPV to sufficiently high titers. Of the cell substrates tested, primary turkey turbinate and kidney and chicken kidney cells produced titers equal to or greater than Vero cells. Turkey turbinate and kidney epithelial cells that were life-span extended by the ectopic expression of human telomerase catalytic subunit (HTERT) initially displayed AMPV titers comparable to Vero cell controls, but declined in virus production with increased passage in culture. Interestingly, plaques emanating from Vero propagated virus were relatively small and dispersed, when analyzed by immunofluorescent assays (IFA), while both turkey turbinate and kidney cell propagated AMPV produced larger plaques. Even with these differences, there were no changes in the predicted amino acid sequences of the nucleocapsid (N) and phosphoprotein (P) genes of AMPV propagated in either turkey turbinate or Vero host cells. However, the fusion (F) gene showed 11 amino acid differences (98.7% identity) between the two host cell types. These results suggest that AMPV propagated in homologous avian cellular substrates may produce more infectious virus with possibly more effective fusion activity, compared to Vero cell propagation.
Collapse
Affiliation(s)
- Byung-Whi Kong
- Department of Animal Science, University of Minnesota, 495 AnSci/VetMed, 1988 Fitch Ave., St. Paul, 55108, USA
| | | | | |
Collapse
|
11
|
Chary P, Njenga MK, Sharma JM. Protection by recombinant viral proteins against a respiratory challenge with virulent avian metapneumovirus. Vet Immunol Immunopathol 2005; 108:427-32. [PMID: 16112741 DOI: 10.1016/j.vetimm.2005.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 06/09/2005] [Accepted: 06/23/2005] [Indexed: 11/20/2022]
Abstract
Protection by recombinant avian metapneumovirus (aMPV) N or M proteins against a respiratory challenge with virulent aMPV was examined. N, M or N+M proteins were administered intramuscularly (IM) with incomplete Freund's adjuvant (IFA) or by the oculonasal (ON) route with cholera toxin-B (CTB). Each turkey received 40 or 80 microg of each recombinant protein. Birds were considered protected against challenge if the challenge virus was not detectable in the choanal swabs by RT-PCR. At a dose of 40 microg/bird, N protein given with IFA by the IM route protected eight out of nine birds. M protein at the same dose protected three out of seven birds, while a combination of N+M proteins (40 microg each) protected three out of four birds. At a dose of 80 microg of each of N and M proteins per bird given with IFA by the IM route, 100% protection was achieved. ON immunization with a mixture of N and M proteins induced partial protection when the proteins were given with CTB; no detectable protection was noted without CTB. N and M proteins induced anti-aMPV antibodies, although protection against virulent virus challenge did not appear to be associated with the level or presence of antibodies.
Collapse
Affiliation(s)
- Parag Chary
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | | | | |
Collapse
|
12
|
Hamelin ME, Boivin G. Development and validation of an enzyme-linked immunosorbent assay for human metapneumovirus serology based on a recombinant viral protein. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:249-53. [PMID: 15699418 PMCID: PMC549303 DOI: 10.1128/cdli.12.2.249-253.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human metapneumovirus (hMPV) is a newly reported respiratory virus belonging to the Paramyxoviridae family that has been associated with bronchiolitis and pneumonia in young children. We developed a simple enzyme-linked immunosorbent assay (ELISA) for hMPV serological testing using the nucleoprotein (N) from group A or B (N-A or N-B) as the antigen, and we evaluated it in both children and adults. The N proteins were first used in a Western immunoblot assay to identify hMPV-negative sera, which were then used to determine the cutoff value of the ELISA test. Subsequent evaluation of the ELISA-N test revealed that the mean reciprocal antibody titer of 20 randomly selected seropositive children was 143, compared to 69 for 20 seropositive adults. In a prospective evaluation of 71 adults with acute exacerbations of chronic obstructive pulmonary disease, 58 (81.6%) had prior hMPV antibodies and 3 (4.2%) had evidence of recent hMPV infection. In testing paired sera from adults (n = 4) with recent hMPV group A infection confirmed by reverse transcriptase PCR (RT-PCR), ELISAs using the N-A or N-B proteins were able to detect hMPV seroconversion. Moreover, testing of paired sera from three adults with a recent infection by the human respiratory syncytial virus confirmed by RT-PCR and serology did not reveal any increase in hMPV antibodies over time. The ELISA-N is a simple, objective, and specific serological test useful for detecting anti-hMPV antibodies following group A or B viral infections, which should permit a better understanding of the epidemiology of this virus.
Collapse
Affiliation(s)
- Marie-Eve Hamelin
- Research Center in Infectious Diseases of the Centre Hospitalier Universitaire de Québec, Québec City, Canada
| | | |
Collapse
|
13
|
Luo L, Sabara MI, Li Y. Expression of recombinant small hydrophobic protein for serospecific detection of avian pneumovirus subgroup C. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:187-91. [PMID: 15643005 PMCID: PMC540199 DOI: 10.1128/cdli.12.1.187-191.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The small hydrophobic (SH) gene of the avian pneumovirus (APV) Colorado isolate (CO), which belongs to subgroup C (APV/C), was expressed with a baculovirus vector. The recombinant SH protein was evaluated as a potential subgroup-specific diagnostic reagent in order to differentiate infections resulting from APV/C from those induced by APV/A, APV/B, and human metapneumovirus (hMPV). When the recombinant baculovirus was used to infect insect cells, a 31- to 38-kDa glycosylated form of the SH protein was produced and subsequently tested for reactivity with antibodies specific for APV/A, APV/B, APV/C, and hMPV. Western blot analysis showed that the expressed recombinant SH protein could only be recognized by APV/C-specific antibodies. This result was consistent with sequence analysis of the APV/C SH protein, which had very low (24%) amino acid identity with the corresponding protein of hMPV and no discernible identity with the SH protein of APV/A or APV/B. A recombinant SH protein-based enzyme-linked immunosorbent assay (ELISA) was developed, and it further confirmed the lack of reactivity of this protein with antisera raised to APV/A, APV/B, and hMPV and supported its designation as a subgroup-specific antigen. This finding indicated that the recombinant SH protein was a suitable antigen for ELISA-based detection of subgroup-specific antibodies in turkeys and could be used for serologically based differential diagnosis of APV and hMPV infections.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antibody Specificity/immunology
- Antigens, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Genetic Variation
- Humans
- Metapneumovirus/genetics
- Metapneumovirus/immunology
- Molecular Sequence Data
- Paramyxoviridae Infections/diagnosis
- Paramyxoviridae Infections/immunology
- Paramyxoviridae Infections/veterinary
- Poultry Diseases/diagnosis
- Poultry Diseases/immunology
- Poultry Diseases/virology
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Retroviridae Proteins, Oncogenic/biosynthesis
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/immunology
- Sequence Homology, Amino Acid
- Serologic Tests
- Turkeys/virology
Collapse
Affiliation(s)
- Lizhong Luo
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Manitoba R3E 3M4, Canada.
| | | | | |
Collapse
|
14
|
Alvarez R, Njenga MK, Scott M, Seal BS. Development of a nucleoprotein-based enzyme-linked immunosorbent assay using a synthetic peptide antigen for detection of avian metapneumovirus antibodies in Turkey sera. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2004; 11:245-9. [PMID: 15013970 PMCID: PMC371206 DOI: 10.1128/cdli.11.2.245-249.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avian metapneumoviruses (aMPV) cause an upper respiratory tract disease with low mortality but high morbidity, primarily in commercial turkeys, that can be exacerbated by secondary infections. There are three types of aMPV, of which type C is found only in the United States. The aMPV nucleoprotein (N) amino acid sequences of serotypes A, B, and C were aligned for comparative analysis. On the basis of the predicted antigenicity of consensus sequences, five aMPV-specific N peptides were synthesized for development of a peptide antigen enzyme-linked immunosorbent assay (aMPV N peptide-based ELISA) to detect aMPV-specific antibodies among turkeys. Sera from naturally and experimentally infected turkeys were used to demonstrate the presence of antibodies reactive to the chemically synthesized aMPV N peptides. Subsequently, aMPV N peptide 1, which had the sequence 10-DLSYKHAILKESQYTIKRDV-29, with variations at only three amino acids among aMPV serotypes, was evaluated as a universal aMPV ELISA antigen. Data obtained with the peptide-based ELISA correlated positively with total aMPV viral antigen-based ELISAs, and the peptide ELISA provided higher optical density readings. The results indicated that aMPV N peptide 1 can be used as a universal ELISA antigen to detect antibodies for all aMPV serotypes.
Collapse
Affiliation(s)
- Rene Alvarez
- Southeast Poultry Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA
| | | | | | | |
Collapse
|
15
|
Turpin EA, Lauer DC, Swayne DE. Development and evaluation of a blocking enzyme-linked immunosorbent assay for detection of avian metapneumovirus type C-specific antibodies in multiple domestic avian species. J Clin Microbiol 2003; 41:3579-83. [PMID: 12904358 PMCID: PMC179842 DOI: 10.1128/jcm.41.8.3579-3583.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The first cases of infection caused by avian metapneumoviruses (aMPVs) were described in turkeys with respiratory disease in South Africa during 1978. The causative agent was isolated and identified as a pneumovirus in 1986. aMPVs have been detected in domestic nonpoultry species in Europe, but tests for the detection of these viruses are not available in the United States. To begin to understand the potential role of domestic ducks and geese and wild waterfowl in the epidemiology of aMPV, we have developed and evaluated a blocking enzyme-linked immunosorbent assay (bELISA) for the detection of aMPV type C (aMPV-C)-specific antibodies. This assay method overcomes the species-specific platform of indirect ELISAs to allow detection of aMPV-C-specific antibodies from potentially any avian species. The bELISA was initially tested with experimental turkey serum samples, and the results were found to correlate with those of virus neutralization assays and indirect enzyme-linked immunosorbent assay (iELISA). One thousand serum samples from turkey flocks in Minnesota were evaluated by our bELISA, and the level of agreement of the results of the bELISA and those of the iELISA was 94.9%. In addition, we were able to show that the bELISA could detect aMPV-C-specific antibodies from experimentally infected ducks, indicating its usefulness for the screening of serum samples from multiple avian species. This is the first diagnostic assay for the detection of aMPV-C-specific antibodies from multiple avian species in the United States.
Collapse
Affiliation(s)
- Elizabeth A Turpin
- Southeast Poultry Research Laboratory, Agricultural Research Service, US Department of Agriculture, Athens, Georgia 30605, USA
| | | | | |
Collapse
|
16
|
Yunus AS, Govindarajan D, Huang Z, Samal SK. Deduced amino acid sequence of the small hydrophobic protein of US avian pneumovirus has greater identity with that of human metapneumovirus than those of non-US avian pneumoviruses. Virus Res 2003; 93:91-7. [PMID: 12727346 DOI: 10.1016/s0168-1702(03)00074-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We report here the nucleotide and deduced amino acid (aa) sequences of the small hydrophobic (SH) gene of the avian pneumovirus strain Colorado (APV/CO). The SH gene of APV/CO is 628 nucleotides in length from gene-start to gene-end. The longest ORF of the SH gene encoded a protein of 177 aas in length. Comparison of the deduced aa sequence of the SH protein of APV/CO with the corresponding published sequences of other members of genera metapneumovirus showed 28% identity with the newly discovered human metapneumovirus (hMPV), but no discernable identity with the APV subgroup A or B. Collectively, this data supports the hypothesis that: (i) APV/CO is distinct from European APV subgroups and belongs to the novel subgroup APV/C (APV/US); (ii) APV/CO is more closely related to hMPV, a mammalian metapneumovirus, than to either APV subgroup A or B. The SH gene of APV/CO was cloned using a genomic walk strategy which initiated cDNA synthesis from genomic RNA that traversed the genes in the order 3'-M-F-M2-SH-G-5', thus confirming that gene-order of APV/CO conforms in the genus Metapneumovirus. We also provide the sequences of transcription-signals and the M-F, F-M2, M2-SH and SH-G intergenic regions of APV/CO.
Collapse
Affiliation(s)
- Abdul S Yunus
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
17
|
Lwamba HCM, Halvorson DA, Nagaraja KV, Turpin EA, Swayne D, Seal BS, Njenga MK. Antigenic cross-reactivity among avian pneumoviruses of subgroups A, B, and C at the matrix but not nucleocapsid proteins. Avian Dis 2003; 46:725-9. [PMID: 12243541 DOI: 10.1637/0005-2086(2002)046[0725:acraap]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Earlier findings from our laboratory based on analysis of nucleotide and predicted amino acid sequence identities of 15 avian pneumoviruses (APVs) isolated from the United States (subgroup C) demonstrated that the viruses were phylogenetically separated from the European subgroup A and subgroup B viruses. Here, we investigated whether viruses from the three subgroups were cross-reactive by testing field sera positive for each of the APV subgroups in an enzyme-linked immunosorbent assay (ELISA) test with recombinant matrix (M) and nucleoprotein (N) proteins generated from a Minnesota APV isolate (APV/MN2A). Sera from turkeys infected with APV subgroup A, B, or C reacted with recombinant M protein derived from APV/MN2A. In contrast, recombinant N protein from APV/MN2A virus was reactive with sera from subtypes A and C viruses but not from subtype B virus. The results illustrate that viruses from the three APV subtypes share antigenic homology, and the M protein-based ELISA is adequate for monitoring APV outbreaks but not for distinguishing between different subtypes.
Collapse
Affiliation(s)
- Humphrey C M Lwamba
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul 55108, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Lwamba HCM, Bennett RS, Lauer DC, Halvorson DA, Njenga MK. Characterization of avian metapneumoviruses isolated in the USA. Anim Health Res Rev 2002; 3:107-17. [PMID: 12665110 DOI: 10.1079/ahrr200243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Avian pneumovirus (APV; officially known as turkey rhinotracheitis virus) is an emergent pathogen of birds in the USA that results in upper respiratory tract disease in turkeys. Six years after the first outbreak in the USA, the disease continues to ravage turkey flocks, primarily in the state of Minnesota. From 1997 to 2000, the industry recorded losses estimated at 15 million US dollars per annum. Researchers have developed sensitive diagnostic techniques, including the enzyme-linked immunosorbent assay and the reverse transcriptase-polymerase chain reaction. which, when used together, are highly sensitive in detecting APV outbreaks in commercial turkey flocks. Phylogenetic analysis of the nucleotide and predicted amino acid sequence of 15 US viruses isolated between 1996 and 2000 demonstrated that the US viruses are relatively homogenous but different from the European APV subgroups A and B, resulting in the classification of US isolates into subgroup C. Infectious APV was isolated from sentinel waterfowls placed close to an infected commercial turkey farm and from wild Canada geese captured in Minnesota, suggesting that free-ranging birds may be involved in the spread of APV. Current efforts to prevent and control the infection include improving management and biosecurity practices and developing attenuated live and deletion mutant vaccines capable of conferring protection.
Collapse
Affiliation(s)
- Humphrey C M Lwamba
- Department of Veterinary Pathobiology, University of Minnesota, 1971 Commonwealth Avenue, St Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
19
|
Alkahalaf AN, Halvorson DA, Saif YM. Comparison of Enzyme-Linked Immunosorbent Assays and Virus Neutralization Test for Detection of Antibodies to Avian Pneumovirus. Avian Dis 2002; 46:700-3. [PMID: 12243535 DOI: 10.1637/0005-2086(2002)046[0700:coelia]2.0.co;2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two different whole-virus enzyme-linked immunosorbent assays (ELISAs), developed in Ohio (OH) with APV/Minnesota/turkey/2a/97 and in Minnesota (MN) with APV/Colorado/turkey/97, and the virus neutralization (VN) test were used to test 270 turkey serum samples from 27 Minnesota turkey flocks for avian pneumovirus (APV) antibodies. In addition, 77 turkey serum samples and 128 ostrich serum samples from Ohio were tested. None of the turkey samples from Ohio had antibodies to APV by the VN test and OH ELISA. The ostrich samples were only tested with the VN test and were all negative for antibodies to APV. For the Minnesota serum samples, 107, 115, and 120 were positive by the VN test, the OH ELISA, and the MN ELISA, respectively. The Kappa values of 0.938 and 0.825 showed excellent agreement between the VN test and the OH ELISA and the MN ELISA, respectively, for detection of antibodies to the APV. The OH ELISA and MN ELISA had sensitivities of 1.0 and 0.953, specificities of 0.950 and 0.889, and accuracies of 0.970 and 0.914, respectively. Our results indicate that the 3 methods are sensitive and specific for diagnosis of the APV infection.
Collapse
Affiliation(s)
- A N Alkahalaf
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster 44691, USA
| | | | | |
Collapse
|
20
|
Shin HJ, Cameron KT, Jacobs JA, Turpin EA, Halvorson DA, Goyal SM, Nagaraja KV, Kumar MC, Lauer DC, Seal BS, Njenga MK. Molecular epidemiology of subgroup C avian pneumoviruses isolated in the United States and comparison with subgroup a and B viruses. J Clin Microbiol 2002; 40:1687-93. [PMID: 11980943 PMCID: PMC130925 DOI: 10.1128/jcm.40.5.1687-1693.2002] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The avian pneumovirus (APV) outbreak in the United States is concentrated in the north-central region, particularly in Minnesota, where more outbreaks in commercial turkeys occur in the spring (April to May) and autumn (October to December). Comparison of the nucleotide and amino acid sequences of nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), and second matrix (M2) genes of 15 U.S. APV strains isolated between 1996 and 1999 revealed between 89 and 94% nucleotide sequence identity and 81 to 95% amino acid sequence identity. In contrast, genes from U.S. viruses had 41 to 77% nucleotide sequence identity and 52 to 78% predicted amino acid sequence identity with European subgroup A or B viruses, confirming that U.S. viruses belonged to a separate subgroup. Of the five proteins analyzed in U.S. viruses, P was the most variable (81% amino acid sequence identity) and N was the most conserved (95% amino acid sequence identity). Phylogenetic comparison of subgroups A, B, and C viruses indicated that A and B viruses were more closely related to each other than either A or B viruses were to C viruses.
Collapse
Affiliation(s)
- Hyun-Jin Shin
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shin HJ, Nagaraja KV, McComb B, Halvorson DA, Jirjis FF, Shaw DP, Seal BS, Njenga MK. Isolation of avian pneumovirus from mallard ducks that is genetically similar to viruses isolated from neighboring commercial turkeys. Virus Res 2002; 83:207-12. [PMID: 11864753 DOI: 10.1016/s0168-1702(01)00402-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Our earlier studies demonstrating avian pneumovirus (APV) RNA in wild geese, sparrows, swallows, starlings and mallard ducks suggested that wild birds might be involved in the circulation of APV in the United States. To determine whether turkey virus can be transmitted to the free flying birds, we placed APV-negative mallard ducks next to a turkey farm experiencing a severe APV outbreak and in an area with a large population of waterfowls. The sentinel ducks did not develop clinical APV disease but infectious APV (APV/MN-12) was recovered from choanal swabs after 2 weeks, and anti-APV antibodies detected after 4 weeks. Four APV isolates recovered from the neighboring turkeys that were experiencing an APV outbreak at the same time shared 95-99% nucleotide identity and 97-99% predicted amino acid identity with the duck isolate. In addition experimental infection of turkey poults with APV/MN-12 resulted in detection of viral RNA in nasal turbinates and APV-specific IgG in serum. These results indicate that the APV isolates from turkeys and ducks shared a common source, and the viruses from different avian species can cross-infect.
Collapse
Affiliation(s)
- Hyun-Jin Shin
- Department of Veterinary Pathobiology, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Gulati BR, Munir S, Patnayak DP, Goyal SM, Kapur V. Detection of antibodies to U.S. isolates of avian pneumovirus by a recombinant nucleocapsid protein-based sandwich enzyme-linked immunosorbent assay. J Clin Microbiol 2001; 39:2967-70. [PMID: 11474024 PMCID: PMC88271 DOI: 10.1128/jcm.39.8.2967-2970.2001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2000] [Accepted: 05/13/2001] [Indexed: 11/20/2022] Open
Abstract
The nucleocapsid (N) protein of subgroup C (United States-specific) avian pneumovirus (APV/US) was expressed in Escherichia coli, and antibodies to the recombinant N protein were shown to specifically recognize the approximately 47-kDa N protein of APV/US by Western immunoblot analysis. The recombinant APV/US N protein was used in a sandwich-capture enzyme-linked immunosorbent assay (ELISA), and the resulting assay was found to be more sensitive and specific than the routine indirect ELISA for the detection of APV/US antibodies in turkey sera.
Collapse
Affiliation(s)
- B R Gulati
- Department of Veterinary Diagnostic Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|
23
|
Shin HJ, Njenga MK, McComb B, Halvorson DA, Nagaraja KV. Avian pneumovirus (APV) RNA from wild and sentinel birds in the United States has genetic homology with RNA from APV isolates from domestic turkeys. J Clin Microbiol 2000; 38:4282-4. [PMID: 11060113 PMCID: PMC87586 DOI: 10.1128/jcm.38.11.4282-4284.2000] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nasal turbinates or swabs were collected from wild ducks, geese, owls, sparrows, swallows, and starlings and from sentinel ducks placed next to turkey farms experiencing avian pneumovirus (APV) infections and were analyzed for APV genome and infectious particles. APV RNA was detected in samples examined from geese, sparrows, and starlings. APV RNA and antibodies were also detected in two different groups of sentinel ducks. Infectious APV was recovered from sentinel duck samples. The APV M gene isolated from the wild birds had over 96% predicted amino acid identity with APV/Minnesota 2A, which was isolated earlier from domestic turkeys showing respiratory illness, suggesting that wild birds may be involved in spreading APV infection.
Collapse
Affiliation(s)
- H J Shin
- Department of Veterinary PathoBiology, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | |
Collapse
|