1
|
Zhang C, Gu H, Peng J, He B, Liu Y, Yan X, Feng J, Liu Y. Phylogenetic relationships and species composition of host community influence the transmission of coronaviruses in sympatric bats. Mol Phylogenet Evol 2025; 207:108343. [PMID: 40147782 DOI: 10.1016/j.ympev.2025.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Since the emergence of Severe Acute Respiratory Syndrome (SARS) in 2002, bats have been recognized as important reservoirs of diverse coronaviruses (CoVs). Despite extensive research on the broad geographic transmission of bat CoVs, there is a notable gap in understanding the transmission dynamics within sympatric bat communities. Using a phylogeographic Bayesian statistical framework, we examined CoV transmission patterns and their determinants in a region where four bat roosting caves coexist and CoVs circulate persistently. Our findings reveal that two subgenera of CoVs, α-CoVs and β-CoVs dominate different bat caves at varying times. Notably, β-CoVs show more frequent cross-species transmission events among the dominant reservoir hosts, bats of Rhinolophidae. Phylogenetic distance between host species emerges as the key influence factor of viral cross-species transmission, whereas cohabitation duration and the number of hosts sharing caves do not significantly influence viral transmission. In addition, we emphasize that the compositional similarity of species in the roosting caves is critical for the inter-cave transmission of bat-CoVs, rather than the distance between cave. These results provide novel insights into the complex transmission dynamics of bat CoVs within sympatric bat communities.
Collapse
Affiliation(s)
- Chen Zhang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Hao Gu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Jie Peng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China.
| | - Yuhang Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.
| | - Xiaomin Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China.
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; College of Life Science, Jilin Agricultural University, Changchun, China; Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, China.
| | - Ying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China; Key Laboratory of Vegetation Ecology, School of Environment, Institute of Grassland Science, Northeast Normal University, Ministry of Education, Changchun, China.
| |
Collapse
|
2
|
Owolabi IJ, Karim SU, Khanal S, Valdivia S, Frenzel C, Bai F, Flynt AS. Processing of genomic RNAs by Dicer in bat cells limits SARS-CoV-2 replication. Virol J 2025; 22:86. [PMID: 40133950 PMCID: PMC11934715 DOI: 10.1186/s12985-025-02693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/04/2025] [Indexed: 03/27/2025] Open
Abstract
Bats are reservoirs for numerous viruses that cause serious diseases in other animals and humans. Several mechanisms are proposed to contribute to the tolerance of bats to these pathogens. This study investigates the response of bat cells to double-stranded RNA generated by SARS-CoV-2 replication. Here, we found the involvement of Dicer in the processing of viral genomic RNAs during SARS-CoV-2 infection. Examining RNA sequencing of infected cells, small-interfering RNA (siRNA)-like fragments were found derived from viral RNAs. Depletion of Dicer showed a reduction in these RNAs and an increase in viral loads suggesting unlike other mammals, bats may use Dicer to limit viral replication. This prompted the exploration of key dsRNA sensors in bat cells. Our analysis showed significant upregulation of OAS1 and MX1 in response to dsRNA, while PKR levels remained low, suggesting alternative dsRNA-response mechanisms are present that eschew the common PKR-based system. These results further show how bats employ distinct strategies for antiviral defense that may contribute to tolerating viral infections. They suggest the involvement of Dicer in antiviral mechanisms in bats, a function not observed in other mammals. This highlights a mechanism for bat originating viruses to evolve features that in other animals could cause extreme antiviral responses such as is seen with SARS-CoV-2.
Collapse
Affiliation(s)
- Iyanuoluwani J Owolabi
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Shazeed-Ul Karim
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sweta Khanal
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Sergio Valdivia
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Christopher Frenzel
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Fengwei Bai
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Alex S Flynt
- Cellular and Molecular Biology, University of Southern Mississippi, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
3
|
Mao L, Cai X, Li J, Li X, Li S, Li W, Lu H, Dong Y, Zhai J, Xu X, Li B. Discovery of a novel Betacoronavirus 1, cpCoV, in goats in China: The new risk of cross-species transmission. PLoS Pathog 2025; 21:e1012974. [PMID: 40100842 PMCID: PMC11918373 DOI: 10.1371/journal.ppat.1012974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Betacoronavirus is a causative agent of respiratory and enteric diseases in humans and animals. Several ruminants are recognized to be intermediate hosts in the transmission of emerging coronaviruses from reservoir hosts to humans. Here, we first report a novel Betacoronavirus isolated from goats suffering from diarrhea in China, putatively named caprine coronavirus (cpCoV). Full-genome characterization and nuclear acid comparisons demonstrated that this virus is an evolutionarily distinct Betacoronavirus belonging to the subgenus Embecovirus and is a Betacoronavirus 1 species. Notably, on phylogenetic trees based on complete genomes and RdRp, S, and N genes, the cpCoVs were grouped into a clade distinct from other Betacoronavirus strains and were closely related to the HKU23- and HKU23-associated coronaviruses. CpCoV possessed a unique genome organization with a truncated NS4a protein and an elongated NS4b protein that showed no significant matches in the GenBank database. The homology of the S and NS4a-4b genes between cpCoV and Embecovirus was less than 95%. Analysis revealed possible recombination events occurred during the evolution of cpCoV and HKU23, and there are striking similarities between the two viruses in evolutionary terms. In addition, cpCoV showed a narrow cell tropism, replicating in human- and bovine-origin cells in vitro, and caused diarrhea and enteric pathologic changes in goats and calves in vivo. We have provided epidemiological, virological, evolutionary, and experimental evidence that cpCoV is a novel etiological agent for enteric disease in goats. Evidently, a spilling-over event might have occurred between ruminants, including goats, camels, cattle, and wild animals. This study highlights the importance of identifying coronavirus diversity and inter-species transmission in ruminants worldwide, broadens our understanding of the ecology of coronaviruses, and aids in the prevention of animal-to-human transmission and outbreaks.
Collapse
Affiliation(s)
- Li Mao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xuhang Cai
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Xia Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Siyuan Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wenliang Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Honghui Lu
- Animal Husbandry and Veterinary Station of Haimen District, Nantong, China
| | - Yichun Dong
- Animal Husbandry and Veterinary Station of Haian City, Nantong, China
| | - Junjun Zhai
- Shaanxi Province Engineering and Technology Research Center of Cashmere Goat, Yulin University, Yulin, China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture and Rural Affairs, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, China
- Guotai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| |
Collapse
|
4
|
Li Q, Bai H, Pan Y, Liao Y, Pei Z, Wu C, Ma C, Chen Z, Li C, Gong Y, Liu J, Yin Y, Teng L, Wang L, Zhang E, Wei T, Peng H. Genome-Wide Genomic Analysis and Evolutionary Insights into Bovine Coronavirus Strains in Southwest China. Vet Sci 2024; 12:9. [PMID: 39852884 PMCID: PMC11769207 DOI: 10.3390/vetsci12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/05/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
The global epidemic of bovine coronavirus (BCoV) has caused enormous economic losses. The characterisation and genetic composition of endemic strains in Southwest China remain elusive. This study aimed to fill this gap by isolating three BCoV strains from this region and sequencing their whole genomes. To elucidate the genetic evolution and characterisation of the prevalent strains, the results of BCoV sequences were compared in GenBank, with a focus on genetic evolution, mutation, and recombination patterns. The results showed close homology between strains NN190313 and NN230328, while strain NN221214 showed less similarity to these two strains but clustered with the French strain of the European branch. Intriguingly, NN190313 and NN230328 were grouped with goat-derived BCoV strains from Jiangsu Province in Eastern China in the Asian-American branch. In addition, recombination analyses revealed significant signals between NN230328 and either a Chinese goat-derived strain (XJCJ2301G) or a Shandong strain (ShX310). This study highlights the importance of monitoring cross-species transmission between cattle and goats, especially in the mountainous areas of Southwest China where mixed farming occurs, and thus, the monitoring of cross-species transmission between cattle and goats is important for preventing new public health challenges, providing important insights for research on cross-species transmission, early prevention, and control measures, with potential applications in vaccine development.
Collapse
Grants
- Guangxi Key Research and Development Program,AB21238003 Hao Peng
- Laibin Key Research and Development Programme,220819, 240113 Hao Peng
- Guangxi Agriculture Technology Program,z202228 Hao Peng
- Guangxi Innovation Team Construction Project of National Modern Agricultural Industry Technology System,nycytxgxcxtd20210905 Hao Peng
- Guangxi Basic Scientific Research Project,22-6, 24-2 Hao Peng
- Liangqing Key Research and Development Program,202118 Hao Peng
- Guizhou Science and Technology Program,20201Y075, 20203009-3 Yu Gong
- Guizhou agricultural animal and plant breeding project,NY [2018]016 Yu Gong
- Guizhou Beef Cattle Industry Technology System Construction Project,GZCYTX-03 Yu Gong
Collapse
Affiliation(s)
- Qingqing Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
| | - Huili Bai
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Yan Pan
- College of Animal Science and Technology, Guangxi Agricultural Vocational and Technical University, Nanning 530007, China;
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhe Pei
- School of Neuroscience, The City College of New York, New York, NY 10031, USA;
| | - Cuilan Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Chunxia Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Zhongwei Chen
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Yu Gong
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China; (Y.G.); (J.L.)
| | - Jing Liu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China; (Y.G.); (J.L.)
| | - Yangyan Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Ling Teng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Leping Wang
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| | - Ezhen Zhang
- Institute of Agricultural Products Processing, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Tianchao Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Q.L.); (H.B.); (C.W.); (C.M.)
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China; (Y.L.); (Z.C.); (C.L.); (Y.Y.); (L.T.); (L.W.)
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning 530001, China
| |
Collapse
|
5
|
Musaeva T, Fadeev A, Pisareva M, Eder V, Ksenafontov A, Korzhanova M, Tsvetkov V, Perederiy A, Kiseleva I, Danilenko D, Lioznov D, Komissarov A. Development of Primer Panels for Whole-Genome Amplification and Sequencing of Human Seasonal Coronaviruses: hCoV-OC43, hCoV-HKU1, hCoV-229E, and hCoV-NL63. Viruses 2024; 17:13. [PMID: 39861802 PMCID: PMC11768711 DOI: 10.3390/v17010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human seasonal coronaviruses (hCoVs) are a group of viruses that affect the upper respiratory tract. While seasonal patterns and the annual variability of predominant hCoV species are well-documented, their genetic and species diversity in St. Petersburg and across Russia remains largely unexplored. In this study, we developed a two-pool, long-amplicon (900-1100 bp) PCR primer panel for the whole-genome sequencing of four seasonal hCoV species. The panel was validated using nasopharyngeal swab samples collected within the Global Influenza Hospital Surveillance Network (GIHSN) project. Over a period of six epidemiological seasons from 2017 to 2023, we retrospectively analyzed 14,704 nasopharyngeal swabs collected from patients hospitalized in St. Petersburg clinics. Of these samples, 5010 (34.07%) tested positive for respiratory viruses, with 424 (2.88% of all samples) identified as seasonal human coronaviruses. The assessment of species diversity showed that predominant hCoV species alternate between seasons. Whole-genome sequences for 85 seasonal human coronaviruses (hCoVs) with >70% genome coverage were obtained, including 23 hCoV-OC43, 6 hCoV-HKU1, 39 hCoV-229E, and 17 hCoV-NL63. These represent the first near-complete genomes of seasonal hCoVs from the Russian Federation, addressing a significant gap in the genomic epidemiology of these viruses. A detailed phylogenetic analysis of the sequenced genomes was conducted, highlighting the emergence of hCoV-229E subclades 7b.1 and 7b.2, which carry numerous substitutions in the Spike protein. Additionally, we sequenced a historical hCoV-229E isolate collected in the USSR in 1979, the oldest sequenced 229E virus from Eurasia, and demonstrated that it belongs to Genotype 2. The newly developed PCR-based sequencing protocol for seasonal hCoVs is straightforward and well-suited for genomic surveillance, providing a valuable tool to enhance our understanding of the genetic diversity of human seasonal coronaviruses.
Collapse
Affiliation(s)
- Tamila Musaeva
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Artem Fadeev
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Maria Pisareva
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Veronika Eder
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Andrey Ksenafontov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Margarita Korzhanova
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Valery Tsvetkov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Alexander Perederiy
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Irina Kiseleva
- Institute of Experimental Medicine, 197022 Saint Petersburg, Russia
| | - Daria Danilenko
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| | - Dmitry Lioznov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
- Department of Infectious Diseases and Epidemiology, First Pavlov State Medical University, 197022 Saint Petersburg, Russia
| | - Andrey Komissarov
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia; (T.M.)
| |
Collapse
|
6
|
Latinne A, Hu B, Olival KJ, Zhu G, Zhang LB, Li H, Chmura AA, Field HE, Zambrana-Torrelio C, Epstein JH, Li B, Zhang W, Wang LF, Shi ZL, Daszak P. Origin and cross-species transmission of bat coronaviruses in China. Nat Commun 2024; 15:10705. [PMID: 39702450 PMCID: PMC11659393 DOI: 10.1038/s41467-024-55384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024] Open
Abstract
Bats are presumed reservoirs of diverse coronaviruses (CoVs) including progenitors of Severe Acute Respiratory Syndrome (SARS)-CoV and SARS-CoV-2, the causative agent of COVID-19. However, the evolution and diversification of these coronaviruses remains poorly understood. Here we use a Bayesian statistical framework and a large sequence data set from bat-CoVs (including 589 novel CoV sequences) in China to study their macroevolution, cross-species transmission and dispersal. We find that host-switching occurs more frequently and across more distantly related host taxa in alpha- than beta-CoVs, and is more highly constrained by phylogenetic distance for beta-CoVs. We show that inter-family and -genus switching is most common in Rhinolophidae and the genus Rhinolophus. Our analyses identify the host taxa and geographic regions that define hotspots of CoV evolutionary diversity in China that could help target bat-CoV discovery for proactive zoonotic disease surveillance. Finally, we present a phylogenetic analysis suggesting a likely origin for SARS-CoV-2 in Rhinolophus spp. bats.
Collapse
Affiliation(s)
- Alice Latinne
- EcoHealth Alliance, New York, New York, USA
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | - Ben Hu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Li-Biao Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | | | | | | | | | | | - Bei Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Zhang
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lin-Fa Wang
- Programme in Emerging Infectious Disease, Duke-NUS Medical School, Singapore, Singapore
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
| | | |
Collapse
|
7
|
Lukina-Gronskaya AV, Chudinov IK, Korneenko EV, Mashkova SD, Semashko TA, Sinkova MA, Penkin LN, Litvinova EM, Feoktistova NY, Speranskaya AS. Novel coronaviruses and mammarenaviruses of hedgehogs from Russia including the comparison of viral communities of hibernating and active specimens. Front Vet Sci 2024; 11:1486635. [PMID: 39736935 PMCID: PMC11683907 DOI: 10.3389/fvets.2024.1486635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025] Open
Abstract
Introduction Small mammals, especially rodents and bats, are known reservoirs of zoonotic viruses, but little is known about the viromes of insectivorous species including hedgehogs (order Eulipotyphla), which often live near human settlements and come into contact with humans. Methods We used high-throughput sequencing and metaviromic analysis to describe the viromes of 21 hedgehogs (Erinaceus sp.) sampled from summer 2022 to spring 2023. We captured 14 active animals from the wild (seven in European Russia and the other seven in Central Siberia). The remaining 7 animals were hibernating in captivity (captured in European Russia before the experiment). Results and discussion The diversity of identified viral taxa as well as the total number of reads classified as viral was high in all active animals (up to eight different viral families per animal), but significantly lower in hibernating animals (zero or no more than three different viral families per animal). The present study reports, for the first time, betacoronaviruses and mammasrenaviruses in hedgehogs from Russia. Erinaceus coronaviruses (EriCoVs) were found in 4 of 7 active animals captured in the wild, in European Russia, making it is the easiest finding of EriCoVs in Europe. One animal was found to carry of two different EriCoVs. Both strains belong to the same phylogenetic clade as other coronaviruses from European hedgehogs. Pairwise comparative analysis suggested that one of these two strains arose by recombination with an unknown coronavirus, since all of identified SNPs (n = 288) were found only in the local genome region (the part of ORF1b and S gene). The novel mammarenaviruses (EriAreVs) were detected in 2 out of 7 active and in 2 out of 7 hibernating animals from the European Russia. Several complete L and S segments of EriAreVs were assembled. All identified EriAreVs belonged to the same clade as the recently described MEMV virus from Hungarian hedgehogs. As the hibernating hedgehogs were positive for EriAreVs when kept in controlled conditions without contact with each other, we suggest the possibility of persistent arenavirus infection in hedgehogs, but further experiments are needed to prove this.
Collapse
Affiliation(s)
- A. V. Lukina-Gronskaya
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - I. K. Chudinov
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - E. V. Korneenko
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
- Department of Epidemiology, Saint Petersburg Pasteur Institute, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Saint Petersburg, Russia
| | - S. D. Mashkova
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - T. A. Semashko
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - M. A. Sinkova
- Zoological Museum of Moscow State University Named After M.V. Lomonosov, Moscow, Russia
| | - L. N. Penkin
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| | - E. M. Litvinova
- Biological Department, Lomonosov Moscow State University, Moscow, Russia
| | - N. Yu Feoktistova
- A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - A. S. Speranskaya
- Laboratory of Multiomics Research, Scientific Research Institute for Systems Biology and Medicine, Federal Service on Consumer Rights Protection and Human Well-Being Surveillance, Moscow, Russia
| |
Collapse
|
8
|
Kirk NM, Liang Y, Ly H. Pathogenesis and virulence of coronavirus disease: Comparative pathology of animal models for COVID-19. Virulence 2024; 15:2316438. [PMID: 38362881 PMCID: PMC10878030 DOI: 10.1080/21505594.2024.2316438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/04/2024] [Indexed: 02/17/2024] Open
Abstract
Animal models that can replicate clinical and pathologic features of severe human coronavirus infections have been instrumental in the development of novel vaccines and therapeutics. The goal of this review is to summarize our current understanding of the pathogenesis of coronavirus disease 2019 (COVID-19) and the pathologic features that can be observed in several currently available animal models. Knowledge gained from studying these animal models of SARS-CoV-2 infection can help inform appropriate model selection for disease modelling as well as for vaccine and therapeutic developments.
Collapse
Affiliation(s)
- Natalie M. Kirk
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Yuying Liang
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| | - Hinh Ly
- Department of Veterinary & Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
9
|
Mah MG, Zeller MA, Zhang R, Zhuang Y, Maro VP, Crump JA, Rubach MP, Ooi EE, Low JG, Wang DY, Smith GJD, Su YCF. Discordant phylodynamic and spatiotemporal transmission patterns driving the long-term persistence and evolution of human coronaviruses. NPJ VIRUSES 2024; 2:49. [PMID: 40295720 PMCID: PMC11721344 DOI: 10.1038/s44298-024-00058-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/10/2024] [Indexed: 04/30/2025]
Abstract
Four distinct species of human coronaviruses (HCoVs) circulate in humans. Despite the recent attention due to SARS-CoV-2, a comprehensive understanding of the molecular epidemiology and genomic evolution of HCoVs remains unclear. Here, we employed primary differentiated human nasal epithelial cells for the successful isolation and genome sequencing of HCoVs derived from two retrospective cohorts in Singapore and Tanzania. Phylodynamic inference shows that HCoV-229E and HCoV-OC43 were subject to stronger genetic drift and reduced purifying selection from the early 2000s onwards, primarily targeting spike Domain A and B. This resulted in increased lineage diversification, coinciding with a higher effective reproductive number (Re>1.0). However, HCoV-NL63 and HCoV-HKU1 experienced weaker genetic drift and selective pressure with prolonged regional persistence. Our findings suggest that HCoV-229E and HCoV-OC43 viruses are adept at generating new variants and achieving widespread intercontinental dissemination driven by continuous genetic drift, recombination, and complex migration patterns.
Collapse
Affiliation(s)
- Marcus G Mah
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Michael A Zeller
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, USA
| | - Rong Zhang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Yan Zhuang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Venance P Maro
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - John A Crump
- Kilimanjaro Christian Medical Centre, Moshi, Tanzania
- Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Division of Infectious Diseases and International Health, Department of Medicine, Duke University, Durham, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Matthew P Rubach
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
- Centre for International Health, University of Otago, Dunedin, New Zealand
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Eng Eong Ooi
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Jenny G Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore.
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
| |
Collapse
|
10
|
Zhu R, Cao R, Wang L, Gong Y, Cheng Q, Long H, Xia D, Song Q, Xia Z, Liu M, Du H, Song J, Han J, Gao C. Seasonal human coronavirus NL63 epidemics in children in Guilin, China, reveal the emergence of a new subgenotype of HCoV-NL63. Front Cell Infect Microbiol 2024; 14:1378804. [PMID: 38736749 PMCID: PMC11082418 DOI: 10.3389/fcimb.2024.1378804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Introduction Seasonal human coronavirus NL63 (HCoV-NL63) is a frequently encountered virus linked to mild upper respiratory infections. However, its potential to cause more severe or widespread disease remains an area of concern. This study aimed to investigate a rare localized epidemic of HCoV-NL63-induced respiratory infections among pediatric patients in Guilin, China, and to understand the viral subtype distribution and genetic characteristics. Methods In this study, 83 pediatric patients hospitalized with acute respiratory infections and positive for HCoV-NL63 were enrolled. Molecular analysis was conducted to identify the viral subgenotypes and to assess genetic variations in the receptor-binding domain of the spiking protein. Results Among the 83 HCoV-NL63-positive children, three subgenotypes were identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation (I507L) in the receptor-binding domain of the spiking protein, which was also observed in the previously reported C3 genotype. This mutation may suggest potential increases in viral transmissibility and pathogenicity. Discussion The findings of this study highlight the rapid mutation dynamics of HCoV-NL63 and its potential for increased virulence and epidemic transmission. The presence of a unique mutation in the C4 subtype, shared with the C3 genotype, raises concerns about the virus's evolving nature and its potential public health implications. This research contributes valuable insights into the understanding of HCoV-NL63's epidemiology and pathogenesis, which is crucial for effective disease prevention and control strategies. Future studies are needed to further investigate the biological significance of the observed mutation and its potential impact on the virus's transmissibility and pathogenicity.
Collapse
Affiliation(s)
- Renhe Zhu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Rundong Cao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lulu Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Gong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Cheng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hu Long
- Epidemic Prevention and Control Department, Guilin Center for Disease Control and Prevention, Guilin, China
| | - Dong Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qinqin Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiqiang Xia
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Mi Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - HaiJun Du
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Han
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Chen Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
Wang D, Yang X, Ren Z, Hu B, Zhao H, Yang K, Shi P, Zhang Z, Feng Q, Nawenja CV, Obanda V, Robert K, Nalikka B, Waruhiu CN, Ochola GO, Onyuok SO, Ochieng H, Li B, Zhu Y, Si H, Yin J, Kristiansen K, Jin X, Xu X, Xiao M, Agwanda B, Ommeh S, Li J, Shi ZL. Substantial viral diversity in bats and rodents from East Africa: insights into evolution, recombination, and cocirculation. MICROBIOME 2024; 12:72. [PMID: 38600530 PMCID: PMC11005217 DOI: 10.1186/s40168-024-01782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Zoonotic viruses cause substantial public health and socioeconomic problems worldwide. Understanding how viruses evolve and spread within and among wildlife species is a critical step when aiming for proactive identification of viral threats to prevent future pandemics. Despite the many proposed factors influencing viral diversity, the genomic diversity and structure of viral communities in East Africa are largely unknown. RESULTS Using 38.3 Tb of metatranscriptomic data obtained via ultradeep sequencing, we screened vertebrate-associated viromes from 844 bats and 250 rodents from Kenya and Uganda collected from the wild. The 251 vertebrate-associated viral genomes of bats (212) and rodents (39) revealed the vast diversity, host-related variability, and high geographic specificity of viruses in East Africa. Among the surveyed viral families, Coronaviridae and Circoviridae showed low host specificity, high conservation of replication-associated proteins, high divergence among viral entry proteins, and frequent recombination. Despite major dispersal limitations, recurrent mutations, cocirculation, and occasional gene flow contribute to the high local diversity of viral genomes. CONCLUSIONS The present study not only shows the landscape of bat and rodent viromes in this zoonotic hotspot but also reveals genomic signatures driven by the evolution and dispersal of the viral community, laying solid groundwork for future proactive surveillance of emerging zoonotic pathogens in wildlife. Video Abstract.
Collapse
Affiliation(s)
- Daxi Wang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Xinglou Yang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
- Hubei Jiangxia Lab, Wuhan, 430071, China
| | - Zirui Ren
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Ben Hu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China
| | - Hailong Zhao
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Kaixin Yang
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Peibo Shi
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Zhipeng Zhang
- BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Qikai Feng
- BGI Research, Shenzhen, 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China
| | - Carol Vannesa Nawenja
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | - Kityo Robert
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Betty Nalikka
- Department of Zoology, Entomology and Fisheries Sciences, School of BioSciences, Makerere University, Kampala, Uganda
| | - Cecilia Njeri Waruhiu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Griphin Ochieng Ochola
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Samson Omondi Onyuok
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Harold Ochieng
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya
| | - Bei Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan Zhu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haorui Si
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Jin
- BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China
| | - Minfeng Xiao
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Bernard Agwanda
- Mammalogy Section, National Museums of Kenya, Nairobi, Kenya.
| | - Sheila Ommeh
- Center for Animal Science, Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Junhua Li
- BGI Research, Shenzhen, 518083, China.
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen, 518083, China.
| | - Zheng-Li Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
12
|
Meyer M, Melville DW, Baldwin HJ, Wilhelm K, Nkrumah EE, Badu EK, Oppong SK, Schwensow N, Stow A, Vallo P, Corman VM, Tschapka M, Drosten C, Sommer S. Bat species assemblage predicts coronavirus prevalence. Nat Commun 2024; 15:2887. [PMID: 38575573 PMCID: PMC10994947 DOI: 10.1038/s41467-024-46979-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Anthropogenic disturbances and the subsequent loss of biodiversity are altering species abundances and communities. Since species vary in their pathogen competence, spatio-temporal changes in host assemblages may lead to changes in disease dynamics. We explore how longitudinal changes in bat species assemblages affect the disease dynamics of coronaviruses (CoVs) in more than 2300 cave-dwelling bats captured over two years from five caves in Ghana. This reveals uneven CoV infection patterns between closely related species, with the alpha-CoV 229E-like and SARS-related beta-CoV 2b emerging as multi-host pathogens. Prevalence and infection likelihood for both phylogenetically distinct CoVs is influenced by the abundance of competent species and naïve subadults. Broadly, bat species vary in CoV competence, and highly competent species are more common in less diverse communities, leading to increased CoV prevalence in less diverse bat assemblages. In line with the One Health framework, our work supports the notion that biodiversity conservation may be the most proactive measure to prevent the spread of pathogens with zoonotic potential.
Collapse
Affiliation(s)
- Magdalena Meyer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Dominik W Melville
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Heather J Baldwin
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Evans Ewald Nkrumah
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ebenezer K Badu
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Samuel Kingsley Oppong
- Department of Wildlife and Range Management, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Nina Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Adam Stow
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Peter Vallo
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin Institute of Virology, Berlin, Germany
- German Center for Infection Research (DZIF), Berlin, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| |
Collapse
|
13
|
Ogunjinmi OD, Abdullahi T, Somji RA, Bevan CL, Barclay WS, Temperton N, Brooke GN, Giotis ES. The antiviral potential of the antiandrogen enzalutamide and the viral-androgen signaling interplay in seasonal coronaviruses. J Med Virol 2024; 96:e29540. [PMID: 38529542 DOI: 10.1002/jmv.29540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
The sex disparity in COVID-19 outcomes with males generally faring worse than females has been associated with the androgen-regulated expression of the protease TMPRSS2 and the cell receptor ACE2 in the lung and fueled interest in antiandrogens as potential antivirals. In this study, we explored enzalutamide, an antiandrogen used commonly to treat prostate cancer, as a potential antiviral against the human coronaviruses which cause seasonal respiratory infections (HCoV-NL63, -229E, and -OC43). Using lentivirus-pseudotyped and authentic HCoV, we report that enzalutamide reduced 229E and NL63 entry and infection in both TMPRSS2- and nonexpressing immortalized cells, suggesting a TMPRSS2-independent mechanism. However, no effect was observed against OC43. To decipher this distinction, we performed RNA-sequencing analysis on 229E- and OC43-infected primary human airway cells. Our results show a significant induction of androgen-responsive genes by 229E compared to OC43 at 24 and 72 h postinfection. The virus-mediated effect on AR-signaling was further confirmed with a consensus androgen response element-driven luciferase assay in androgen-depleted MRC-5 cells. Specifically, 229E induced luciferase-reporter activity in the presence and absence of the synthetic androgen mibolerone, while OC43 inhibited induction. These findings highlight a complex interplay between viral infections and androgen-signaling, offering insights for disparities in viral outcomes and antiviral interventions.
Collapse
Affiliation(s)
| | - Tukur Abdullahi
- School of Life Sciences, University of Essex, Colchester, UK
| | - Riaz-Ali Somji
- School of Life Sciences, University of Essex, Colchester, UK
| | - Charlotte L Bevan
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham, UK
| | - Greg N Brooke
- School of Life Sciences, University of Essex, Colchester, UK
| | - Efstathios S Giotis
- School of Life Sciences, University of Essex, Colchester, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| |
Collapse
|
14
|
Li Q, Pan Y, Wu C, Ma C, Li J, Li C, Bai H, Gong Y, Liu J, Tao L, Yin Y, Teng L, Zhong S, Lan M, Hu S, Xuan X, Wei T, Peng H. Development of Rapid Isothermal Detection Methods Real-Time Fluorescence and Lateral Flow Reverse Transcription Recombinase-Aided Amplification Assay for Bovine Coronavirus. Transbound Emerg Dis 2024; 2024:7108960. [PMID: 40303076 PMCID: PMC12017248 DOI: 10.1155/2024/7108960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 05/02/2025]
Abstract
Bovine coronavirus (BCoV) is a notable pathogen affecting newly born calves and adult cattle, increasing mortality rates among calves and reducing productivity in meat and dairy industries, thereby causing substantial economic losses. Current primary laboratory methods for detecting BCoV include RT-PCR assay, real-time RT-PCR assay, and ELISA. However, these methods are time-consuming, require specialized technicians, and necessitate a laboratory environment. Consequently, there is an urgent need for a rapid, sensitive, and easy to use diagnostic method to detect BCoV. This study introduces two innovative protocols: the real-time fluorescent reverse transcription recombinase-aided amplification (RT-RAA) and the test strip RT-RAA (RT-RAA-LFD). Our results indicate that real-time RT-RAA can complete the reaction in 20 min at 39°C, while RT-RAA-LFD can achieve detection in just 17.5 min at 35°C. These new approaches offer higher specificity, with no cross-reactivity to other viruses, and significantly enhanced sensitivity compared to existing methods (1.46 × 101 and 1.46 × 102 copies/μL, respectively). We evaluated the performance of our methods using 242 clinical samples, and compared with RT-PCR and RT-qPCR. Both real-time RT-RAA and RT-qPCR yielded similar detection rates, the detection rate of RT-RAA-LFD was better than RT-PCR. The RT-RAA methods developed in this study effectively overcome the limitations associated with both RT-PCR and RT-qPCR by offering advantages including a single, low reaction temperature that allows for room temperature operation. Both methods boast shorter reaction times, simpler and more portable instrumentation, as well as reduced technical and environmental demands. Generally, both RT-RAA methods established in this study offer new avenues for the rapid detection of BCoV, contributing significantly to the monitoring, prevention, and control of the disease in global bovine industry.
Collapse
Affiliation(s)
- Qingqing Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Yan Pan
- College of Animal Science and Technology, Guangxi Vocational University of Agriculture, Nanning 530007, China
| | - Cuilan Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Chunxia Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Huili Bai
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Yu Gong
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China
| | - Jing Liu
- Guizhou Animal Husbandry and Veterinary Research Institute, Guiyang 550005, China
| | - Li Tao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Yangyan Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Ling Teng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Shuhong Zhong
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Meiyi Lan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Shuai Hu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Xiongbiao Xuan
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| | - Tianchao Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
- Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Nanning, China
| |
Collapse
|
15
|
Zhuang J, Yan Z, Zhou T, Li Y, Wang H. The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs. Arch Virol 2024; 169:35. [PMID: 38265497 DOI: 10.1007/s00705-023-05956-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/19/2023] [Indexed: 01/25/2024]
Abstract
The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Collapse
Affiliation(s)
- Jie Zhuang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Zhiwei Yan
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Tiezhong Zhou
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, 121000, China.
| | - Huinuan Wang
- Department of Basic Veterinary Medicine, College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, 121000, China.
| |
Collapse
|
16
|
Weber MN, da Silva MS. Corona- and Paramyxoviruses in Bats from Brazil: A Matter of Concern? Animals (Basel) 2023; 14:88. [PMID: 38200819 PMCID: PMC10778288 DOI: 10.3390/ani14010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Chiroptera are one of the most diverse mammal orders. They are considered reservoirs of main human pathogens, where coronaviruses (CoVs) and paramyxoviruses (PMVs) may be highlighted. Moreover, the growing number of publications on CoVs and PMVs in wildlife reinforces the scientific community's interest in eco-vigilance, especially because of the emergence of important human pathogens such as the SARS-CoV-2 and Nipha viruses. Considering that Brazil presents continental dimensions, is biologically rich containing one of the most diverse continental biotas and presents a rich biodiversity of animals classified in the order Chiroptera, the mapping of CoV and PMV genetics related to human pathogens is important and the aim of the present work. CoVs can be classified into four genera: Alphacoronavirus, Betacoronavirus, Deltacoronavirus and Gammacoronavirus. Delta- and gammacoronaviruses infect mainly birds, while alpha- and betacoronaviruses contain important animal and human pathogens. Almost 60% of alpha- and betacoronaviruses are related to bats, which are considered natural hosts of these viral genera members. The studies on CoV presence in bats from Brazil have mainly assayed phyllostomid, molossid and vespertilionid bats in the South, Southeast and North territories. Despite Brazil not hosting rhinophilid or pteropodid bats, which are natural reservoirs of SARS-related CoVs and henipaviruses, respectively, CoVs and PMVs reported in Brazilian bats are genetically closely related to some human pathogens. Most works performed with Brazilian bats reported alpha-CoVs that were closely related to other bat-CoVs, despite a few reports of beta-CoVs grouped in the Merbecovirus and Embecovirus subgenera. The family Paramyxoviridae includes four subfamilies (Avulavirinae, Metaparamyxovirinae, Orthoparamyxovirinae and Rubulavirinae), and bats are significant drivers of PMV cross-species viral transmission. Additionally, the studies that have evaluated PMV presence in Brazilian bats have mainly found sequences classified in the Jeilongvirus and Morbillivirus genera that belong to the Orthoparamyxovirinae subfamily. Despite the increasing amount of research on Brazilian bats, studies analyzing these samples are still scarce. When surveying the representativeness of the CoVs and PMVs found and the available genomic sequences, it can be perceived that there may be gaps in the knowledge. The continuous monitoring of viral sequences that are closely related to human pathogens may be helpful in mapping and predicting future hotspots in the emergence of zoonotic agents.
Collapse
Affiliation(s)
- Matheus Nunes Weber
- Laboratório de Microbiologia Molecular, Universidade FEEVALE, Novo Hamburgo 93525-075, RS, Brazil;
| | | |
Collapse
|
17
|
Hu GM, Tai YC, Chen CM. Unraveling the evolutionary patterns and phylogenomics of coronaviruses: A consensus network approach. J Med Virol 2023; 95:e29233. [PMID: 38009694 DOI: 10.1002/jmv.29233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023]
Abstract
The COVID-19 pandemic emphasizes the significance of studying coronaviruses (CoVs). This study investigates the evolutionary patterns of 350 CoVs using four structural proteins (S, E, M, and N) and introduces a consensus methodology to construct a comprehensive phylogenomic network. Our clustering of CoVs into 4 genera is consistent with the current CoV classification. Additionally, we calculate network centrality measures to identify CoV strains with significant average weighted degree and betweenness centrality values, with a specific focus on RaTG13 in the beta genus and NGA/A116E7/2006 in the gamma genus. We compare the phylogenetics of CoVs using our distance-based approach and the character-based model with IQ-TREE. Both methods yield largely consistent outcomes, indicating the reliability of our consensus approach. However, it is worth mentioning that our consensus method achieves an approximate 5000-fold increase in speed compared to IQ-TREE when analyzing the data set of 350 CoVs. This improved efficiency enhances the feasibility of conducting large-scale phylogenomic studies on CoVs.
Collapse
Affiliation(s)
- Geng-Ming Hu
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Chen Tai
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| | - Chi-Ming Chen
- Department of Physics, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
18
|
Weber N, Nagy M, Markotter W, Schaer J, Puechmaille SJ, Sutton J, Dávalos LM, Dusabe MC, Ejotre I, Fenton MB, Knörnschild M, López-Baucells A, Medellin RA, Metz M, Mubareka S, Nsengimana O, O'Mara MT, Racey PA, Tuttle M, Twizeyimana I, Vicente-Santos A, Tschapka M, Voigt CC, Wikelski M, Dechmann DK, Reeder DM. Robust evidence for bats as reservoir hosts is lacking in most African virus studies: a review and call to optimize sampling and conserve bats. Biol Lett 2023; 19:20230358. [PMID: 37964576 PMCID: PMC10646460 DOI: 10.1098/rsbl.2023.0358] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.
Collapse
Affiliation(s)
- Natalie Weber
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juliane Schaer
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Sébastien J. Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Liliana M. Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, USA
| | | | - Imran Ejotre
- Institute of Biology, Humboldt University, Berlin, Germany
- Muni University, Arua, Uganda
| | - M. Brock Fenton
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Evolutionary Ethology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Rodrigo A. Medellin
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samira Mubareka
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - M. Teague O'Mara
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Bat Conservation International Austin, TX, USA
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Paul A. Racey
- Centre for Ecology and Conservation, University of Exeter, Exeter, UK
| | - Merlin Tuttle
- Merlin Tuttle's Bat Conservation, Austin, TX USA
- Department of Integrative Biology, University of Texas, Austin, USA
| | | | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Emory University, Atlanta, GA, USA
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Marco Tschapka
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dina K.N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
19
|
Geldenhuys M, Ross N, Dietrich M, de Vries JL, Mortlock M, Epstein JH, Weyer J, Pawęska JT, Markotter W. Viral maintenance and excretion dynamics of coronaviruses within an Egyptian rousette fruit bat maternal colony: considerations for spillover. Sci Rep 2023; 13:15829. [PMID: 37739999 PMCID: PMC10517123 DOI: 10.1038/s41598-023-42938-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023] Open
Abstract
Novel coronavirus species of public health and veterinary importance have emerged in the first two decades of the twenty-first century, with bats identified as natural hosts for progenitors of many coronaviruses. Targeted wildlife surveillance is needed to identify the factors involved in viral perpetuation within natural host populations, and drivers of interspecies transmission. We monitored a natural colony of Egyptian rousette bats at monthly intervals across two years to identify circulating coronaviruses, and to investigate shedding dynamics and viral maintenance within the colony. Three distinct lineages were detected, with different seasonal temporal excretion dynamics. For two lineages, the highest periods of coronavirus shedding were at the start of the year, when large numbers of bats were found in the colony. Highest peaks for a third lineage were observed towards the middle of the year. Among individual bat-level factors (age, sex, reproductive status, and forearm mass index), only reproductive status showed significant effects on excretion probability, with reproductive adults having lower rates of detection, though factors were highly interdependent. Analysis of recaptured bats suggests that viral clearance may occur within one month. These findings may be implemented in the development of risk reduction strategies for potential zoonotic coronavirus transmission.
Collapse
Affiliation(s)
- Marike Geldenhuys
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| | | | - Muriel Dietrich
- UMR Processus Infectieux en Milieu Insulaire Tropical, Sainte-Clotilde, Reunion Island, France
| | - John L de Vries
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinda Mortlock
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jonathan H Epstein
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- EcoHealth Alliance, New York, USA
| | - Jacqueline Weyer
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Janusz T Pawęska
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, Gauteng, South Africa
- Department of Microbiology and Infectious Diseases, School of Pathology, University of Witwatersrand, Johannesburg, Gauteng, South Africa
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
20
|
Llanco L, Retamozo K, Oviedo N, Manchego A, Lázaro C, Navarro-Mamani DA, Santos N, Rojas M. Co-Circulation of Multiple Coronavirus Genera and Subgenera during an Epizootic of Lethal Respiratory Disease in Newborn Alpacas ( Vicugna pacos) in Peru: First Report of Bat-like Coronaviruses in Alpacas. Animals (Basel) 2023; 13:2983. [PMID: 37760383 PMCID: PMC10525639 DOI: 10.3390/ani13182983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Coronaviruses (CoVs) infect a wide range of hosts, including humans, domestic animals, and wildlife, typically causing mild-to-severe respiratory or enteric disease. The main objective of this study was to identify CoV genera and subgenera detected in Peruvian alpacas. Lung lavage specimens were collected from 32 animals aged 1 to 6 weeks. CoVs were identified by using RT-PCR to amplify a pan-CoV conserved region of the RNA-dependent RNA polymerase-encoding gene. A nested PCR was performed to identify β-CoVs. Then, β-CoV-positive samples were subjected to RT-PCR using specific primers to identify the Embecovirus subgenus. Out of 32 analyzed samples, 30 (93.8%) tested positive for at least one CoV genus. β-, α-, or unclassified CoVs were identified in 24 (80%), 1 (3.3%), and 1 (3.3%) of the positive samples, respectively. A CoV genus could not be identified in two (6.7%) samples. A mixture of different CoV genera was detected in two (6.7%) samples: one was co-infected with β- and α-CoVs, and the other contained a β- and an unclassified CoV. A sequence analysis of the amplicons generated by the PCR identified 17 β-CoV strains belonging to the subgenus Embecovirus and two α-CoV strains belonging to Decacovirus. A phylogenetic analysis of two strains revealed a relationship with an unclassified Megaderma BatCoV strain. A subgenus could not be identified in nine β-CoV samples. Our data show a high prevalence and a high genetic diversity of CoV genera and subgenera that infect alpacas, in which the β-CoV subgenus Embecovirus predominated. Our data also suggest a new role for bats in the dissemination and transmission of uncommon CoVs to alpacas raised in rural Peru.
Collapse
Affiliation(s)
- Luis Llanco
- Escuela de Medicina Humana, Universidad Privada San Juan Bautista, Apartado, Chincha 15067, Peru;
| | - Karubya Retamozo
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| | - Noriko Oviedo
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| | - Alberto Manchego
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| | - César Lázaro
- Laboratório de Farmacología y Toxicología Veterinaria, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru;
| | - Dennis A. Navarro-Mamani
- Laboratório de Virología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru;
| | - Norma Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Miguel Rojas
- Laboratório de Inmunología, Facultad de Medicina Veterinaria, Universidad Nacional Mayor de San Marcos, Apartado, Lima 03-5137, Peru; (K.R.); (N.O.); (A.M.)
| |
Collapse
|
21
|
Jackson RT, Webala PW, Ogola JG, Lunn TJ, Forbes KM. Roost selection by synanthropic bats in rural Kenya: implications for human-wildlife conflict and zoonotic pathogen spillover. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230578. [PMID: 37711150 PMCID: PMC10498048 DOI: 10.1098/rsos.230578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Many wildlife species are synanthropic and use structures built by humans, creating a high-risk interface for human-wildlife conflict and zoonotic pathogen spillover. However, studies that investigate features of urbanizing areas that attract or repel wildlife are currently lacking. We surveyed 85 buildings used by bats and 172 neighbouring buildings unused by bats (controls) in southeastern Kenya during 2021 and 2022 and evaluated the role of microclimate and structural attributes in building selection. We identified eight bat species using buildings, with over 25% of building roosts used concurrently by multiple species. Bats selected taller cement-walled buildings with higher water vapour pressure and lower presence of permanent human occupants. However, roost selection criteria differed across the most common bat species: molossids selected structures like those identified by our main dataset whereas Cardioderma cor selected buildings with lower presence of permanent human occupants. Our results show that roost selection of synanthropic bat species is based on specific buildings attributes. Further, selection criteria that facilitate bat use of buildings are not homogeneous across species. These results provide information on the general mechanisms of bat-human contact in rural settings, as well as specific information on roost selection for synanthropic bats in urbanizing Africa.
Collapse
Affiliation(s)
- Reilly T. Jackson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-4002, USA
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, Narok, Kenya
| | - Joseph G. Ogola
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Tamika J. Lunn
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-4002, USA
| | - Kristian M. Forbes
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701-4002, USA
| |
Collapse
|
22
|
Sun J, Zhang Q, Zhang C, Liu Z, Zhang J. Epidemiology of porcine deltacoronavirus among Chinese pig populations in China: systematic review and meta-analysis. Front Vet Sci 2023; 10:1198593. [PMID: 37483295 PMCID: PMC10361067 DOI: 10.3389/fvets.2023.1198593] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/31/2023] [Indexed: 07/25/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging and important porcine enteropathogenic coronavirus that seriously threatens the swine industry in China and worldwide. We conducted a systematic review and meta-analysis to access the prevalence of PDCoV infection in pig population from mainland China. Electronic databases were reviewed for PDCoV infection in pig population, and meta-analysis was performed to calculate the overall estimated prevalence using random-effect models. Thirty-nine studies were included (including data from 31,015 pigs). The overall estimated prevalence of PDCoV infection in pigs in China was 12.2% [95% confidence interval (CI), 10.2-14.2%], and that in Central China was 24.5% (95%CI, 16.1-32.9%), which was higher than those in other regions. During 2014-2021, the estimated prevalence of PDCoV infection was the highest in 2015 at 20.5% (95%CI, 10.1-31.0%) and the lowest in 2021 at 4.8% (95%CI, 2.3-7.3%). The prevalence of PDCoV infection in sows was 23.6% (95%CI, 15.8-31.4%), which was higher than those in suckling piglets, nursery piglets, and finishing pigs. The prevalence of PDCoV infection was significantly associated with sampling region, sampling year, pig stage, and clinical signs (diarrhea). This study systematically evaluated the epidemiology of PDCoV infection in Chinese pig population. The findings provide us with a comprehensive understanding of PDCoV infection and are beneficial for establishing new controlling strategies worldwide.
Collapse
Affiliation(s)
- Junying Sun
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qin Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Zhicheng Liu
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Guangzhou, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
23
|
Tan CCS, Trew J, Peacock TP, Mok KY, Hart C, Lau K, Ni D, Orme CDL, Ransome E, Pearse WD, Coleman CM, Bailey D, Thakur N, Quantrill JL, Sukhova K, Richard D, Kahane L, Woodward G, Bell T, Worledge L, Nunez-Mino J, Barclay W, van Dorp L, Balloux F, Savolainen V. Genomic screening of 16 UK native bat species through conservationist networks uncovers coronaviruses with zoonotic potential. Nat Commun 2023; 14:3322. [PMID: 37369644 PMCID: PMC10300128 DOI: 10.1038/s41467-023-38717-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2023] Open
Abstract
There has been limited characterisation of bat-borne coronaviruses in Europe. Here, we screened for coronaviruses in 48 faecal samples from 16 of the 17 bat species breeding in the UK, collected through a bat rehabilitation and conservationist network. We recovered nine complete genomes, including two novel coronavirus species, across six bat species: four alphacoronaviruses, a MERS-related betacoronavirus, and four closely related sarbecoviruses. We demonstrate that at least one of these sarbecoviruses can bind and use the human ACE2 receptor for infecting human cells, albeit suboptimally. Additionally, the spike proteins of these sarbecoviruses possess an R-A-K-Q motif, which lies only one nucleotide mutation away from a furin cleavage site (FCS) that enhances infectivity in other coronaviruses, including SARS-CoV-2. However, mutating this motif to an FCS does not enable spike cleavage. Overall, while UK sarbecoviruses would require further molecular adaptations to infect humans, their zoonotic risk warrants closer surveillance.
Collapse
Affiliation(s)
- Cedric C S Tan
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
- The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Jahcub Trew
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Kai Yi Mok
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Charlie Hart
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy (LBEM), School of Basic Science, École Polytechnique Fédérale de Lausanne, Rte Cantonale, 1015, Lausanne, Switzerland
| | - C David L Orme
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Emma Ransome
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - William D Pearse
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Christopher M Coleman
- Queen's Medical Centre, University of Nottingham, Derby Rd, Lenton, Nottingham, NG7 2UH, UK
| | | | - Nazia Thakur
- The Pirbright Institute, Surrey, GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jessica L Quantrill
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Ksenia Sukhova
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Damien Richard
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Laura Kahane
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Guy Woodward
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Thomas Bell
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Lisa Worledge
- The Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London, SW8 4BG, UK
| | - Joe Nunez-Mino
- The Bat Conservation Trust, Studio 15 Cloisters House, Cloisters Business Centre, 8 Battersea Park Road, London, SW8 4BG, UK
| | - Wendy Barclay
- Department of Infectious Disease, Imperial College London, St Marys Medical School, Paddington, London, W2 1PG, UK
| | - Lucy van Dorp
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Francois Balloux
- UCL Genetics Institute, University College London, Gower St, London, WC1E 6BT, UK
| | - Vincent Savolainen
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| |
Collapse
|
24
|
Wells HL, Bonavita CM, Navarrete-Macias I, Vilchez B, Rasmussen AL, Anthony SJ. The coronavirus recombination pathway. Cell Host Microbe 2023; 31:874-889. [PMID: 37321171 PMCID: PMC10265781 DOI: 10.1016/j.chom.2023.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Recombination is thought to be a mechanism that facilitates cross-species transmission in coronaviruses, thus acting as a driver of coronavirus spillover and emergence. Despite its significance, the mechanism of recombination is poorly understood, limiting our potential to estimate the risk of novel recombinant coronaviruses emerging in the future. As a tool for understanding recombination, here, we outline a framework of the recombination pathway for coronaviruses. We review existing literature on coronavirus recombination, including comparisons of naturally observed recombinant genomes as well as in vitro experiments, and place the findings into the recombination pathway framework. We highlight gaps in our understanding of coronavirus recombination illustrated by the framework and outline how further experimental research is critical for disentangling the molecular mechanism of recombination from external environmental pressures. Finally, we describe how an increased understanding of the mechanism of recombination can inform pandemic predictive intelligence, with a retrospective emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Heather L Wells
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA; Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| | - Cassandra M Bonavita
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Isamara Navarrete-Macias
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Blake Vilchez
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Angela L Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, SK, Canada
| | - Simon J Anthony
- Department of Pathology, Microbiology, and Immunology, University of California Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
25
|
Cohen LE, Fagre AC, Chen B, Carlson CJ, Becker DJ. Coronavirus sampling and surveillance in bats from 1996-2019: a systematic review and meta-analysis. Nat Microbiol 2023; 8:1176-1186. [PMID: 37231088 PMCID: PMC10234814 DOI: 10.1038/s41564-023-01375-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified.
Collapse
Affiliation(s)
- Lily E Cohen
- Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Anna C Fagre
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Binqi Chen
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Colin J Carlson
- Center for Global Health Science and Security, Georgetown University Medical Center, Washington, DC, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK, USA
| |
Collapse
|
26
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
27
|
Castillo G, Mora-Díaz JC, Breuer M, Singh P, Nelli RK, Giménez-Lirola LG. Molecular mechanisms of human coronavirus NL63 infection and replication. Virus Res 2023; 327:199078. [PMID: 36813239 PMCID: PMC9944649 DOI: 10.1016/j.virusres.2023.199078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Human coronavirus NL63 (HCoV-NL63) is spread globally, causing upper and lower respiratory tract infections mainly in young children. HCoV-NL63 shares a host receptor (ACE2) with severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 but, unlike them, HCoV-NL63 primarily develops into self-limiting mild to moderate respiratory disease. Although with different efficiency, both HCoV-NL63 and SARS-like CoVs infect ciliated respiratory cells using ACE2 as receptor for binding and cell entry. Working with SARS-like CoVs require access to BSL-3 facilities, while HCoV-NL63 research can be performed at BSL-2 laboratories. Thus, HCoV-NL63 could be used as a safer surrogate for comparative studies on receptor dynamics, infectivity and virus replication, disease mechanism, and potential therapeutic interventions against SARS-like CoVs. This prompted us to review the current knowledge on the infection mechanism and replication of HCoV-NL63. Specifically, after a brief overview on the taxonomy, genomic organization and virus structure, this review compiles the current HCoV-NL63-related research in virus entry and replication mechanism, including virus attachment, endocytosis, genome translation, and replication and transcription. Furthermore, we reviewed cumulative knowledge on the susceptibility of different cells to HCoV-NL63 infection in vitro, which is essential for successful virus isolation and propagation, and contribute to address different scientific questions from basic science to the development and assessment of diagnostic tools, and antiviral therapies. Finally, we discussed different antiviral strategies that have been explored to suppress replication of HCoV-NL63, and other related human coronaviruses, by either targeting the virus or enhancing host antiviral mechanisms.
Collapse
Affiliation(s)
- Gino Castillo
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Juan Carlos Mora-Díaz
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Mary Breuer
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Pallavi Singh
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rahul K Nelli
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA
| | - Luis G Giménez-Lirola
- Department of Veterinary Diagnostic and Production Animal Medicine, Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Iowa State University, 1850 Christensen Drive, Ames, IA 50011, USA.
| |
Collapse
|
28
|
Cotten M, Phan MV. Evolution of increased positive charge on the SARS-CoV-2 spike protein may be adaptation to human transmission. iScience 2023; 26:106230. [PMID: 36845032 PMCID: PMC9937996 DOI: 10.1016/j.isci.2023.106230] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and infect individuals. The exterior surface of the SARS-CoV-2 virion is dominated by the spike protein, and the current work examined spike protein biochemical features that have changed during the 3 years in which SARS-CoV-2 has infected humans. Our analysis identified a striking change in spike protein charge, from -8.3 in the original Lineage A and B viruses to -1.26 in most of the current Omicron viruses. We conclude that in addition to immune selection pressure, the evolution of SARS-CoV-2 has also altered viral spike protein biochemical properties, which may influence virion survival and promote transmission. Future vaccine and therapeutic development should also exploit and target these biochemical properties.
Collapse
Affiliation(s)
- Matthew Cotten
- Medical Research Council–University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, UK
- UK Medical Research Council–Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51- 59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda, UK
| | - My V.T. Phan
- UK Medical Research Council–Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Plot 51- 59 Nakiwogo Road, P.O Box 49, Entebbe, Uganda, UK
| |
Collapse
|
29
|
Harrison CM, Doster JM, Landwehr EH, Kumar NP, White EJ, Beachboard DC, Stobart CC. Evaluating the Virology and Evolution of Seasonal Human Coronaviruses Associated with the Common Cold in the COVID-19 Era. Microorganisms 2023; 11:microorganisms11020445. [PMID: 36838410 PMCID: PMC9961755 DOI: 10.3390/microorganisms11020445] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Approximately 15-30% of all cases of the common cold are due to human coronavirus infections. More recently, the emergence of the more severe respiratory coronaviruses, SARS-CoV and MERS-CoV, have highlighted the increased pathogenic potential of emergent coronaviruses. Lastly, the current emergence of SARS-CoV-2 has demonstrated not only the potential for significant disease caused by emerging coronaviruses, but also the capacity of novel coronaviruses to promote pandemic spread. Largely driven by the global response to the COVID-19 pandemic, significant research in coronavirus biology has led to advances in our understanding of these viruses. In this review, we evaluate the virology, emergence, and evolution of the four endemic coronaviruses associated with the common cold, their relationship to pandemic SARS-CoV-2, and discuss the potential for future emergent human coronaviruses.
Collapse
Affiliation(s)
- Cameron M. Harrison
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Jayden M. Doster
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Emily H. Landwehr
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Nidhi P. Kumar
- Department of Biology, DeSales University, Central Valley, PA 18034, USA
| | - Ethan J. White
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Dia C. Beachboard
- Department of Biology, DeSales University, Central Valley, PA 18034, USA
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
- Correspondence:
| |
Collapse
|
30
|
Abstract
The existence of coronaviruses has been known for many years. These viruses cause significant disease that primarily seems to affect agricultural species. Human coronavirus disease due to the 2002 outbreak of Severe Acute Respiratory Syndrome and the 2012 outbreak of Middle East Respiratory Syndrome made headlines; however, these outbreaks were controlled, and public concern quickly faded. This complacency ended in late 2019 when alarms were raised about a mysterious virus responsible for numerous illnesses and deaths in China. As we now know, this novel disease called Coronavirus Disease 2019 (COVID-19) was caused by Severe acute respiratory syndrome-related-coronavirus-2 (SARS-CoV-2) and rapidly became a worldwide pandemic. Luckily, decades of research into animal coronaviruses hastened our understanding of the genetics, structure, transmission, and pathogenesis of these viruses. Coronaviruses infect a wide range of wild and domestic animals, with significant economic impact in several agricultural species. Their large genome, low dependency on host cellular proteins, and frequent recombination allow coronaviruses to successfully cross species barriers and adapt to different hosts including humans. The study of the animal diseases provides an understanding of the virus biology and pathogenesis and has assisted in the rapid development of the SARS-CoV-2 vaccines. Here, we briefly review the classification, origin, etiology, transmission mechanisms, pathogenesis, clinical signs, diagnosis, treatment, and prevention strategies, including available vaccines, for coronaviruses that affect domestic, farm, laboratory, and wild animal species. We also briefly describe the coronaviruses that affect humans. Expanding our knowledge of this complex group of viruses will better prepare us to design strategies to prevent and/or minimize the impact of future coronavirus outbreaks.
Collapse
Key Words
- bcov, bovine coronavirus
- ccov, canine coronavirus
- cov(s), coronavirus(es)
- covid-19, coronavirus disease 2019
- crcov, canine respiratory coronavirus
- e, coronaviral envelope protein
- ecov, equine coronavirus
- fcov, feline coronavirus
- fipv, feline infectious peritonitis virus
- gfcov, guinea fowl coronavirus
- hcov, human coronavirus
- ibv, infectious bronchitis virus
- m, coronaviral membrane protein
- mers, middle east respiratory syndrome-coronavirus
- mhv, mouse hepatitis virus
- pedv, porcine epidemic diarrhea virus
- pdcov, porcine deltacoronavirus
- phcov, pheasant coronavirus
- phev, porcine hemagglutinating encephalomyelitis virus
- prcov, porcine respiratory coronavirus
- rt-pcr, reverse transcriptase polymerase chain reaction
- s, coronaviral spike protein
- sads-cov, swine acute diarrhea syndrome-coronavirus
- sars-cov, severe acute respiratory syndrome-coronavirus
- sars-cov-2, severe acute respiratory syndrome–coronavirus–2
- tcov, turkey coronavirus
- tgev, transmissible gastroenteritis virus
Collapse
Affiliation(s)
- Alfonso S Gozalo
- Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;,
| | - Tannia S Clark
- Office of Laboratory Animal Medicine, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - David M Kurtz
- Comparative Medicine Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, North Carolina
| |
Collapse
|
31
|
Kembou-Ringert JE, Steinhagen D, Readman J, Daly JM, Adamek M. Tilapia Lake Virus Vaccine Development: A Review on the Recent Advances. Vaccines (Basel) 2023; 11:vaccines11020251. [PMID: 36851129 PMCID: PMC9961428 DOI: 10.3390/vaccines11020251] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Tilapia tilapinevirus (or tilapia lake virus, TiLV) is a recently emerging virus associated with a novel disease affecting and decimating tilapia populations around the world. Since its initial identification, TiLV has been reported in 17 countries, often causing mortalities as high as 90% in the affected populations. To date, no therapeutics or commercial vaccines exist for TiLV disease control. Tilapia exposed to TiLV can develop protective immunity, suggesting that vaccination is achievable. Given the important role of vaccination in fish farming, several vaccine strategies are currently being explored and put forward against TiLV but, a comprehensive overview on the efficacy of these platforms is lacking. We here present these approaches in relation with previously developed fish vaccines and discuss their efficacy, vaccine administration routes, and the various factors that can impact vaccine efficacy. The overall recent advances in TiLV vaccine development show different but promising levels of protection. The field is however hampered by the lack of knowledge of the biology of TiLV, notably the function of its genes. Further research and the incorporation of several approaches including prime-boost vaccine regimens, codon optimization, or reverse vaccinology would be beneficial to increase the effectiveness of vaccines targeting TiLV and are further discussed in this review.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- Correspondence: (J.E.K.-R.); (M.A.)
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - John Readman
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Correspondence: (J.E.K.-R.); (M.A.)
| |
Collapse
|
32
|
Chinunga TT, Titanji BK, Chahroudi A. Breaking barriers: Scientific contributions in virology from women in low- and middle-income countries. FRONTIERS IN VIROLOGY 2023. [DOI: 10.3389/fviro.2022.1078953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The advancement of science has been a collective effort and benefits from a diversity of views and gender representation. However, support for and recognition of women in science is often insufficient. Despite historically being marginalized by the scientific community, research by women has advanced the field of virology, from the discovery of rotavirus and isolation of human immunodeficiency virus (HIV) to a vaccine for polio and the initial description of a virus’ ability to cause cancer. Although women in science, technology, engineering, and mathematics (STEM) fields are continuing to share their diverse wealth of knowledge and innovation, even today many are under-recognized and under-supported in low- and middle-income countries (LMICs). This review will highlight women in virology from LMICs in Africa, Asia, and Latin America where the barriers to scientific education and achievement for women can be far greater than in high income countries. Despite these barriers, the women we profile below have made important contributions to translational virology. We hope this review will contribute to the global expansion of efforts to provide improved access to and retention in scientific careers for women.
Collapse
|
33
|
Cui Y, Li J, Guo J, Pan Y, Tong X, Liu C, Wang D, Xu W, Shi Y, Ji Y, Qiu Y, Yang X, Hou L, Zhou J, Feng X, Wang Y, Liu J. Evolutionary Origin, Genetic Recombination, and Phylogeography of Porcine Kobuvirus. Viruses 2023; 15:240. [PMID: 36680281 PMCID: PMC9867129 DOI: 10.3390/v15010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The newly identified porcine Kobuvirus (PKV) has raised concerns owing to its association with diarrheal symptom in pigs worldwide. The process involving the emergence and global spread of PKV remains largely unknown. Here, the origin, genetic diversity, and geographic distribution of PKV were determined based on the available PKV sequence information. PKV might be derived from the rabbit Kobuvirus and sheep were an important intermediate host. The most recent ancestor of PKV could be traced back to 1975. Two major clades are identified, PKVa and PKVb, and recombination events increase PKV genetic diversity. Cross-species transmission of PKV might be linked to interspecies conserved amino acids at 13-17 and 25-40 residue motifs of Kobuvirus VP1 proteins. Phylogeographic analysis showed that Spain was the most likely location of PKV origin, which then spread to pig-rearing countries in Asia, Africa, and Europe. Within China, the Hubei province was identified as a primary hub of PKV, transmitting to the east, southwest, and northeast regions of the country. Taken together, our findings have important implications for understanding the evolutionary origin, genetic recombination, and geographic distribution of PKV thereby facilitating the design of preventive and containment measures to combat PKV infection.
Collapse
Affiliation(s)
- Yongqiu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinshuo Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yang Pan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinxin Tong
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Changzhe Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Weiyin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yongyan Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Ying Ji
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yonghui Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyu Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Lei Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianwei Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xufei Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yong Wang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jue Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
34
|
Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. Vaccines (Basel) 2023; 11:vaccines11010174. [PMID: 36680018 PMCID: PMC9862439 DOI: 10.3390/vaccines11010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses interact with protein or carbohydrate receptors through their spike proteins to infect cells. Even if the known protein receptors for these viruses have no evolutionary relationships, they do share ontological commonalities that the virus might leverage to exacerbate the pathophysiology. ANPEP/CD13, DPP IV/CD26, and ACE2 are the three protein receptors that are known to be exploited by several human coronaviruses. These receptors are moonlighting enzymes involved in several physiological processes such as digestion, metabolism, and blood pressure regulation; moreover, the three proteins are expressed in kidney, intestine, endothelium, and other tissues/cell types. Here, we spot the commonalities between the three enzymes, the physiological functions of the enzymes are outlined, and how blocking either enzyme results in systemic deregulations and multi-organ failures via viral infection or therapeutic interventions is addressed. It can be difficult to pinpoint any coronavirus as the target when creating a medication to fight them, due to the multiple processes that receptors are linked to and their extensive expression.
Collapse
|
35
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
36
|
Šimičić P, Židovec-Lepej S. A Glimpse on the Evolution of RNA Viruses: Implications and Lessons from SARS-CoV-2. Viruses 2022; 15:1. [PMID: 36680042 PMCID: PMC9866536 DOI: 10.3390/v15010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
RNA viruses are characterised by extremely high genetic variability due to fast replication, large population size, low fidelity, and (usually) a lack of proofreading mechanisms of RNA polymerases leading to high mutation rates. Furthermore, viral recombination and reassortment may act as a significant evolutionary force among viruses contributing to greater genetic diversity than obtainable by mutation alone. The above-mentioned properties allow for the rapid evolution of RNA viruses, which may result in difficulties in viral eradication, changes in virulence and pathogenicity, and lead to events such as cross-species transmissions, which are matters of great interest in the light of current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemics. In this review, we aim to explore the molecular mechanisms of the variability of viral RNA genomes, emphasising the evolutionary trajectory of SARS-CoV-2 and its variants. Furthermore, the causes and consequences of coronavirus variation are explored, along with theories on the origin of human coronaviruses and features of emergent RNA viruses in general. Finally, we summarise the current knowledge on the circulating variants of concern and highlight the many unknowns regarding SARS-CoV-2 pathogenesis.
Collapse
Affiliation(s)
| | - Snježana Židovec-Lepej
- Department of Immunological and Molecular Diagnostics, University Hospital for Infectious Diseases “Dr. Fran Mihaljević”, HR-10000 Zagreb, Croatia
| |
Collapse
|
37
|
Sangwan J, Tripathi S, Yadav N, Kumar Y, Sangwan N. Comparative sequence analysis of SARS nCoV and SARS CoV genomes for variation in structural proteins. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [PMCID: PMC9765352 DOI: 10.1007/s43538-022-00140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-nCoV was identified as corona virus had spread worldwide very quickly and affected more than million people worldwide. To halt this acceleration and for efficient control the knowledge on genomic information is of utmost importance. We attempted to determine the nature of variation i.e., insertion, deletion, substitution, among structural sequences required to code for membrane, spike, nucleocapsid, envelope protein and glycosylation variation between SARS CoV and SARS nCoV spike glycoproteins, respectively. Comparative sequence analysis was performed by using retrieved sequences from the NCBI database. The analyzed sequences revealed, that the sequences coding for envelope protein show minor substituting amino acids. SARS CoV showed 94.74 percent amino acid identities with SARS nCoV amino acid sequences coding for envelope protein. In comparison to SARS nCoV, distinct amino acid residues vary in SARS CoV sequences coding for membrane, nucleocapsid, and spike proteins, respectively. S protein coding sequences of SARS CoV exhibited one deletion, six insertion and six hundred three substitutions in SARS nCoV sequence. Insertion of valine was found in receptor binding domain of SARS nCoV at position 487, and NSPR amino acid residues at position 683–686. Deletions and substitutions were also found in nucleotide sequences of strain B.1.617.2 of SARS nCoV. Additionally, binding interaction pattern of ACE2 receptor protein with original wild-type SARS-CoV-2 strain with the recently evolved Omicron variant was also evaluated. The docking results substantiated that the specific variation in binding residues is likely to impact virulence pattern of both variants.
Collapse
Affiliation(s)
- Jyoti Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | | | - Nisha Yadav
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| | - Yogesh Kumar
- Department of General, Visceral and Thoracic Surgery, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Neelam Sangwan
- Department of Biochemistry, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
38
|
Thakur N, Das S, Kumar S, Maurya VK, Dhama K, Paweska JT, Abdel‐Moneim AS, Jain A, Tripathi AK, Puri B, Saxena SK. Tracing the origin of Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A systematic review and narrative synthesis. J Med Virol 2022; 94:5766-5779. [PMID: 35945190 PMCID: PMC9538017 DOI: 10.1002/jmv.28060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 01/06/2023]
Abstract
The aim of the study was to trace and understand the origin of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) through various available literatures and accessible databases. Although the world enters the third year of the coronavirus disease 2019 pandemic, health and socioeconomic impacts continue to mount, the origin and mechanisms of spill-over of the SARS-CoV-2 into humans remain elusive. Therefore, a systematic review of the literature was performed that showcased the integrated information obtained through manual searches, digital databases (PubMed, CINAHL, and MEDLINE) searches, and searches from legitimate publications (1966-2022), followed by meta-analysis. Our systematic analysis data proposed three postulated hypotheses concerning the origin of the SARS-CoV-2, which include zoonotic origin (Z), laboratory origin (L), and obscure origin (O). Despite the fact that the zoonotic origin for SARS-CoV-2 has not been conclusively identified to date, our data suggest a zoonotic origin, in contrast to some alternative concepts, including the probability of a laboratory incident or leak. Our data exhibit that zoonotic origin (Z) has higher evidence-based support as compared to laboratory origin (L). Importantly, based on all the studies included, we generated the forest plot with 95% confidence intervals (CIs) of the risk ratio estimates. Our meta-analysis further supports the zoonotic origin of SARS/SARS-CoV-2 in the included studies.
Collapse
Affiliation(s)
- Nagendra Thakur
- Department of Microbiology, School of Life SciencesSikkim UniversityTadong GangtokIndia
| | - Sayak Das
- Department of Microbiology, School of Life SciencesSikkim UniversityTadong GangtokIndia
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Vimal K. Maurya
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Kuldeep Dhama
- Division of PathologyICAR‐Indian Veterinary Research InstituteIzatnagar, BareillyIndia
| | - Janusz T. Paweska
- Centre for Emerging Zoonotic and Parasitic DiseasesNational Institute for Communicable Diseases of the National Health Laboratory ServicePB X4Sandringham‐JohannesburgSouth Africa
| | | | - Amita Jain
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Anil K. Tripathi
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Bipin Puri
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| | - Shailendra K. Saxena
- Centre for Advanced Research (CFAR), Faculty of MedicineKing George's Medical University (KGMU)LucknowIndia
| |
Collapse
|
39
|
Kuchinski KS, Loos KD, Suchan DM, Russell JN, Sies AN, Kumakamba C, Muyembe F, Mbala Kingebeni P, Ngay Lukusa I, N’Kawa F, Atibu Losoma J, Makuwa M, Gillis A, LeBreton M, Ayukekbong JA, Lerminiaux NA, Monagin C, Joly DO, Saylors K, Wolfe ND, Rubin EM, Muyembe Tamfum JJ, Prystajecky NA, McIver DJ, Lange CE, Cameron ADS. Targeted genomic sequencing with probe capture for discovery and surveillance of coronaviruses in bats. eLife 2022; 11:e79777. [PMID: 36346652 PMCID: PMC9643004 DOI: 10.7554/elife.79777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Public health emergencies like SARS, MERS, and COVID-19 have prioritized surveillance of zoonotic coronaviruses, resulting in extensive genomic characterization of coronavirus diversity in bats. Sequencing viral genomes directly from animal specimens remains a laboratory challenge, however, and most bat coronaviruses have been characterized solely by PCR amplification of small regions from the best-conserved gene. This has resulted in limited phylogenetic resolution and left viral genetic factors relevant to threat assessment undescribed. In this study, we evaluated whether a technique called hybridization probe capture can achieve more extensive genome recovery from surveillance specimens. Using a custom panel of 20,000 probes, we captured and sequenced coronavirus genomic material in 21 swab specimens collected from bats in the Democratic Republic of the Congo. For 15 of these specimens, probe capture recovered more genome sequence than had been previously generated with standard amplicon sequencing protocols, providing a median 6.1-fold improvement (ranging up to 69.1-fold). Probe capture data also identified five novel alpha- and betacoronaviruses in these specimens, and their full genomes were recovered with additional deep sequencing. Based on these experiences, we discuss how probe capture could be effectively operationalized alongside other sequencing technologies for high-throughput, genomics-based discovery and surveillance of bat coronaviruses.
Collapse
Affiliation(s)
- Kevin S Kuchinski
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouverCanada
- Public Health Laboratory, British Columbia Centre for Disease ControlVancouverCanada
| | - Kara D Loos
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Danae M Suchan
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Jennifer N Russell
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Ashton N Sies
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | | | | | - Placide Mbala Kingebeni
- Metabiota IncKinshasaDemocratic Republic of the Congo
- Institut National de Recherche BiomédicaleKinshasaDemocratic Republic of the Congo
| | | | - Frida N’Kawa
- Metabiota IncKinshasaDemocratic Republic of the Congo
| | | | - Maria Makuwa
- Metabiota IncKinshasaDemocratic Republic of the Congo
- Labyrinth Global Health IncSt. PetersburgUnited States
| | - Amethyst Gillis
- Metabiota IncSan FranciscoUnited States
- Development AlternativesWashingtonUnited States
| | | | | | - Nicole A Lerminiaux
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| | - Corina Monagin
- Metabiota IncSan FranciscoUnited States
- One Health Institute, School of Veterinary Medicine, University of California, DavisDavisUnited States
| | - Damien O Joly
- MetabiotaNanaimoCanada
- Nyati Health ConsultingNanaimoCanada
| | - Karen Saylors
- Labyrinth Global Health IncSt. PetersburgUnited States
- Metabiota IncSan FranciscoUnited States
| | | | | | | | - Natalie A Prystajecky
- Department of Pathology and Laboratory Medicine, University of British ColumbiaVancouverCanada
- Public Health Laboratory, British Columbia Centre for Disease ControlVancouverCanada
| | - David J McIver
- MetabiotaNanaimoCanada
- Institute for Global Health Sciences, University of California, San FranciscoSan FranciscoUnited States
| | - Christian E Lange
- Labyrinth Global Health IncSt. PetersburgUnited States
- MetabiotaNanaimoCanada
| | - Andrew DS Cameron
- Department of Biology, Faculty of Science, University of ReginaReginaCanada
- Institute for Microbial Systems and Society, Faculty of Science, University of ReginaReginaCanada
| |
Collapse
|
40
|
Goldstein SA, Brown J, Pedersen BS, Quinlan AR, Elde NC. Extensive Recombination-driven Coronavirus Diversification Expands the Pool of Potential Pandemic Pathogens. Genome Biol Evol 2022; 14:6795266. [PMID: 36477201 PMCID: PMC9730504 DOI: 10.1093/gbe/evac161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The ongoing SARS-CoV-2 pandemic is the third zoonotic coronavirus identified in the last 20 years. Enzootic and epizootic coronaviruses of diverse lineages also pose a significant threat to livestock, as most recently observed for virulent strains of porcine epidemic diarrhea virus (PEDV) and swine acute diarrhea-associated coronavirus (SADS-CoV). Unique to RNA viruses, coronaviruses encode a proofreading exonuclease (ExoN) that lowers point mutation rates to increase the viability of large RNA virus genomes, which comes with the cost of limiting virus adaptation via point mutation. This limitation can be overcome by high rates of recombination that facilitate rapid increases in genetic diversification. To compare the dynamics of recombination between related sequences, we developed an open-source computational workflow (IDPlot) that bundles nucleotide identity, recombination, and phylogenetic analysis into a single pipeline. We analyzed recombination dynamics among three groups of coronaviruses with noteworthy impacts on human health and agriculture: SARSr-CoV, Betacoronavirus-1, and SADSr-CoV. We found that all three groups undergo recombination with highly diverged viruses from undersampled or unsampled lineages, including in typically highly conserved regions of the genome. In several cases, no parental origin of recombinant regions could be found in genetic databases, demonstrating our shallow characterization of coronavirus diversity and expanding the genetic pool that may contribute to future zoonotic events. Our results also illustrate the limitations of current sampling approaches for anticipating zoonotic threats to human and animal health.
Collapse
Affiliation(s)
| | | | - Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
41
|
Shao N, Zhang C, Dong J, Sun L, Chen X, Xie Z, Xu B, An S, Zhang T, Yang F. Molecular evolution of human coronavirus-NL63, -229E, -HKU1 and -OC43 in hospitalized children in China. Front Microbiol 2022; 13:1023847. [PMID: 36406425 PMCID: PMC9666422 DOI: 10.3389/fmicb.2022.1023847] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
Human coronaviruses (HCoVs) HCoV-NL63, HCoV-229E, HCoV-HKU1 and HCoV-OC43 have been circulated in the human population worldwide, and they are associated with a broad range of respiratory diseases with varying severity. However, there are neither effective therapeutic drugs nor licensed vaccines available for the treatment and prevention of infections by the four HCoVs. In this study, we collected nasopharyngeal aspirates of children hospitalized for respiratory tract infection in China during 2014-2018 and conducted next-generation sequencing. Sequences of four HCoVs were then selected for an in-depth analysis. Genome sequences of 2 HCoV-NL63, 8 HCoV-229E, 2 HCoV-HKU1, and 6 HCoV-OC43 were obtained. Based on the full-length S gene, a strong temporal signal was found in HCoV-229E and the molecular evolutionary rate was 6 × 10-4 substitutions/site/year. Based on the maximum-likelihood (ML) phylogenetic tree of complete S gene, we designated H78 as a new sub-genotype C2 of HCoV-HKU1, and the obtained P43 sequence was grouped into the reported novel genotype K of HCoV-OC43 circulating in Guangzhou, China. Based on the complete genome, potential recombination events were found to occur as two phenomena, namely intraspecies and interspecies. Moreover, we observed two amino acid substitutions in the S1 subunit of obtained HCoV-NL63 (G534V) and HCoV-HKU1 (H512R), while residues 534 and 512 are important for the binding of angiotensin-converting enzyme 2 and neutralizing antibodies, respectively. Our findings might provide a clue for the molecular evolution of the four HCoVs and help in the early diagnosis, treatment and prevention of broad-spectrum HCoV infection.
Collapse
Affiliation(s)
- Nan Shao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chi Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiangpeng Chen
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Baoping Xu
- National Clinical Research Center for Respiratory Diseases, Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Respiratory department, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Shuhua An
- Hebei Province Children’s Hospital, Shijiazhuang, Hebei, China
| | - Ting Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,*Correspondence: Ting Zhang,
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China,Fan Yang,
| |
Collapse
|
42
|
Lee SJ, Kim YJ, Ahn DG. Distinct Molecular Mechanisms Characterizing Pathogenesis of SARS-CoV-2. J Microbiol Biotechnol 2022; 32:1073-1085. [PMID: 36039385 PMCID: PMC9628960 DOI: 10.4014/jmb.2206.06064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 01/18/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has continued for over 2 years, following the outbreak of coronavirus-19 (COVID-19) in 2019. It has resulted in enormous casualties and severe economic crises. The rapid development of vaccines and therapeutics against SARS-CoV-2 has helped slow the spread. In the meantime, various mutations in the SARS-CoV-2 have emerged to evade current vaccines and therapeutics. A better understanding of SARS-CoV-2 pathogenesis is a prerequisite for developing efficient, advanced vaccines and therapeutics. Since the outbreak of COVID-19, a tremendous amount of research has been conducted to unveil SARSCoV-2 pathogenesis, from clinical observations to biochemical analysis at the molecular level upon viral infection. In this review, we discuss the molecular mechanisms of SARS-CoV-2 propagation and pathogenesis, with an update on recent advances.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yu-Jin Kim
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Dae-Gyun Ahn
- Department of Convergent Research of Emerging Virus Infection, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| |
Collapse
|
43
|
Alves RS, do Canto Olegário J, Weber MN, da Silva MS, Canova R, Sauthier JT, Baumbach LF, Witt AA, Varela APM, Mayer FQ, da Fontoura Budaszewski R, Canal CW. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound Emerg Dis 2022; 69. [PMID: 33977671 PMCID: PMC8242716 DOI: 10.1111/tbed.14150+10.1111/tbed.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The vampire bat (Desmodus rotundus) is a haematophagous animal that feeds exclusively on the blood of domestic mammals. Vampire bat feeding habits enable their contact with mammalian hosts and may enhance zoonotic spillover. Moreover, they may carry several pathogenic organisms, including coronaviruses (CoVs), for which they are important hosts. The human pathogens that cause severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV) and possibly coronavirus disease 2019 (SARS-CoV-2) all originated in bats but required bridge hosts to spread into human populations. To monitor the presence of potential zoonotic viruses in bats, the present work evaluated the presence of CoVs in vampire bats from southern Brazil. A total of 101 vampire bats were captured and euthanized between 2017 and 2019 in Rio Grande do Sul state, southern Brazil. The brain, heart, liver, lungs, kidneys and intestines were collected and macerated individually. The samples were pooled and submitted to high-throughput sequencing (HTS) using the Illumina MiSeq platform and subsequently individually screened using a pancoronavirus RT-PCR protocol. We detected CoV-related sequences in HTS, but only two (2/101; 1.98%) animals had CoV detected in the intestines by RT-PCR. Partial sequences of RdRp and spike genes were obtained in the same sample and the RdRp region in the other sample. The sequences were classified as belonging to Alphacoronavirus. The sequences were closely related to alphacoronaviruses detected in vampire bats from Peru. The continuous monitoring of bat CoVs may help to map and predict putative future zoonotic agents with great impacts on human health.
Collapse
Affiliation(s)
- Raquel Silva Alves
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Juliana do Canto Olegário
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Matheus Nunes Weber
- Laboratório de Microbiologia MolecularInstituto de Ciências da SaúdeUniversidade FeevaleNovo HamburgoBrazil
| | - Mariana Soares da Silva
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Raissa Canova
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Jéssica Tatiane Sauthier
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Letícia Ferreira Baumbach
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - André Alberto Witt
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
- Secretaria Estadual de AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do Sul Rio Grande do SulBrazil
| | - Ana Paula Muterle Varela
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | | | - Cláudio Wageck Canal
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| |
Collapse
|
44
|
Human coronaviruses: origin, host and receptor. J Clin Virol 2022; 155:105246. [PMID: 35930858 PMCID: PMC9301904 DOI: 10.1016/j.jcv.2022.105246] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/10/2022] [Accepted: 07/20/2022] [Indexed: 01/02/2023]
|
45
|
Alves RS, do Canto Olegário J, Weber MN, da Silva MS, Canova R, Sauthier JT, Baumbach LF, Witt AA, Varela APM, Mayer FQ, da Fontoura Budaszewski R, Canal CW. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound Emerg Dis 2022; 69. [PMID: 33977671 PMCID: PMC8242716 DOI: 10.1111/tbed.14150 10.1111/tbed.14150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The vampire bat (Desmodus rotundus) is a haematophagous animal that feeds exclusively on the blood of domestic mammals. Vampire bat feeding habits enable their contact with mammalian hosts and may enhance zoonotic spillover. Moreover, they may carry several pathogenic organisms, including coronaviruses (CoVs), for which they are important hosts. The human pathogens that cause severe acute respiratory syndrome (SARS-CoV), Middle East respiratory syndrome (MERS-CoV) and possibly coronavirus disease 2019 (SARS-CoV-2) all originated in bats but required bridge hosts to spread into human populations. To monitor the presence of potential zoonotic viruses in bats, the present work evaluated the presence of CoVs in vampire bats from southern Brazil. A total of 101 vampire bats were captured and euthanized between 2017 and 2019 in Rio Grande do Sul state, southern Brazil. The brain, heart, liver, lungs, kidneys and intestines were collected and macerated individually. The samples were pooled and submitted to high-throughput sequencing (HTS) using the Illumina MiSeq platform and subsequently individually screened using a pancoronavirus RT-PCR protocol. We detected CoV-related sequences in HTS, but only two (2/101; 1.98%) animals had CoV detected in the intestines by RT-PCR. Partial sequences of RdRp and spike genes were obtained in the same sample and the RdRp region in the other sample. The sequences were classified as belonging to Alphacoronavirus. The sequences were closely related to alphacoronaviruses detected in vampire bats from Peru. The continuous monitoring of bat CoVs may help to map and predict putative future zoonotic agents with great impacts on human health.
Collapse
Affiliation(s)
- Raquel Silva Alves
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Juliana do Canto Olegário
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Matheus Nunes Weber
- Laboratório de Microbiologia MolecularInstituto de Ciências da SaúdeUniversidade FeevaleNovo HamburgoBrazil
| | - Mariana Soares da Silva
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Raissa Canova
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Jéssica Tatiane Sauthier
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - Letícia Ferreira Baumbach
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| | - André Alberto Witt
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil,Secretaria Estadual de AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do Sul Rio Grande do SulBrazil
| | - Ana Paula Muterle Varela
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde AnimalInstituto de Pesquisas Veterinárias Desidério Finamor (IPVDF)Departamento de Diagnóstico e Pesquisa Agropecuária (DDPA)Secretaria da AgriculturaPecuária e Desenvolvimento Rural (SEAPDR)Rio Grande do SulBrazil
| | | | - Cláudio Wageck Canal
- Laboratório de VirologiaFaculdade de VeterináriaUniversidade Federal do Rio Grande do Sul (UFRGS)Porto AlegreBrazil
| |
Collapse
|
46
|
Tian J, Sun J, Li D, Wang N, Wang L, Zhang C, Meng X, Ji X, Suchard MA, Zhang X, Lai A, Su S, Veit M. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep 2022; 39:110969. [PMID: 35679864 PMCID: PMC9148931 DOI: 10.1016/j.celrep.2022.110969] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/10/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022] Open
Abstract
Emerging infectious diseases, especially if caused by bat-borne viruses, significantly affect public health and the global economy. There is an urgent need to understand the mechanism of interspecies transmission, particularly to humans. Viral genetics; host factors, including polymorphisms in the receptors; and ecological, environmental, and population dynamics are major parameters to consider. Here, we describe the taxonomy, geographic distribution, and unique traits of bats associated with their importance as virus reservoirs. Then, we summarize the origin, intermediate hosts, and the current understanding of interspecies transmission of Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2, Nipah, Hendra, Ebola, Marburg virus, and rotaviruses. Finally, the molecular interactions of viral surface proteins with host cell receptors are examined, and a comparison of these interactions in humans, intermediate hosts, and bats is conducted. This uncovers adaptive mutations in virus spike protein that facilitate cross-species transmission and risk factors associated with the emergence of novel viruses from bats.
Collapse
Affiliation(s)
- Jin Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Harbin 150069, China.
| | - Jiumeng Sun
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Dongyan Li
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Ningning Wang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Lifang Wang
- College of Veterinary Medicine, China Agricultural University, No. 17 Qinghua Donglu, Beijing 100083, China
| | - Chang Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xiaorong Meng
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany
| | - Xiang Ji
- Department of Mathematics, School of Science & Engineering, Tulane University, 6823 St., Charles Avenue, New Orleans, LA 70118, USA
| | - Marc A Suchard
- Departments of Biomathematics, Human Genetics and Biostatistics, David Geffen School of Medicine and Fielding School of Public Health, University of California, Los Angeles, Geffen Hall 885 Tiverton Drive, Los Angeles, CA 90095, USA
| | - Xu Zhang
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Alexander Lai
- School of Science, Technology, Engineering, and Mathematics, Kentucky State University, 400 East Main St., Frankfort, KY 40601, USA
| | - Shuo Su
- College of Veterinary Medicine, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.
| | - Michael Veit
- Institute for Virology, Center for Infection Medicine, Veterinary Faculty, Free University Berlin, Robert-von-Ostertag-Str. 7, 14163 Berlin, Germany.
| |
Collapse
|
47
|
Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Belém MO, Pinto YO, Moreira HHT, Magalhaes ICL, Castelo-Branco DSCM, Montenegro RC, de Andrade CR. The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. Int J Biol Macromol 2022; 208:105-125. [PMID: 35300999 PMCID: PMC8920968 DOI: 10.1016/j.ijbiomac.2022.03.058] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/23/2022]
Abstract
Late in 2019, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) emerged, causing an unknown type of pneumonia today called coronaviruses disease 2019 (COVID-19). COVID-19 is still an ongoing global outbreak that has claimed and threatened many lives worldwide. Along with the fastest vaccine developed in history to fight SARS-CoV-2 came a critical problem, SARS-CoV-2. These new variants are a result of the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which is by far the most critical protein for SARS-CoV-2 to recognize cells and escape the immune system, in addition to playing a role in SARS-CoV-2 infection, pathogenicity, transmission, and evolution. In this review, we discuss mutation of S protein and how these mutations have led to new variants that are usually more transmissible and can thus mitigate the immunity produced by vaccination. Here, analysis of S protein sequences and structures from variants point out the mutations among them, how they emerge, and the behavior of S protein from each variant. This review brings details in an understandable way about how the variants of SARS-CoV-2 are a result of mutations in S protein, making them more transmissible and even more aggressive than their relatives.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil; Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil.
| | - Felipe P Mesquita
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Patrícia G C Landim
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Karollyny R P Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Marília B Costa
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Izabelle R Farias
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Mônica O Belém
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| | - Yago O Pinto
- Medical Education Institution-Idomed, Canindé, Ceará, Brazil
| | | | | | - Débora S C M Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raquel C Montenegro
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Claudia R de Andrade
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| |
Collapse
|
48
|
Chu KK, Zhou ZJ, Wang Q, Ye SB, Guo L, Qiu Y, Zhang YZ, Ge XY. Characterization of Deltacoronavirus in Black-Headed Gulls (Chroicocephalus ridibundus) in South China Indicating Frequent Interspecies Transmission of the Virus in Birds. Front Microbiol 2022; 13:895741. [PMID: 35633699 PMCID: PMC9133700 DOI: 10.3389/fmicb.2022.895741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Deltacoronavirus (DCoV) is a genus of coronavirus (CoV) commonly found in avian and swine, but some DCoVs are capable of infecting humans, which causes the concern about interspecies transmission of DCoVs. Thus, monitoring the existence of DCoVs in animals near communities is of great importance for epidemic prevention. Black-headed gulls (Chroicocephalus ridibundus) are common migratory birds inhabiting in most urban and rural wetlands of Yunnan Province, China, which is a typical habitat for black-headed gulls to overwinter. Whether Yunnan black-headed gulls carry CoV has never been determined. In this study, we identified three strains of DCoVs in fecal samples of Yunnan black-headed gulls by reverse-transcriptional PCR and sequenced their whole genomes. Genomic analysis revealed that these three strains shared genomic identity of more than 99%, thus named DCoV HNU4-1, HNU4-2, and HNU4-3; their NSP12 showed high similarity of amino acid sequence to the homologs of falcon coronavirus UAE-HKU27 (HKU27), houbara coronavirus UAE-HKU28 (HKU28), and pigeon coronavirus UAE-HKU29 (HKU29). Since both HKU28 and HKU29 were found in Dubai, there might be cross-border transmission of these avian DCoVs through specific routes. Further coevolutionary analysis supported this speculation that HNU4 (or its ancestors) in black-headed gulls originated from HKU28 (or its homologous strain) in houbara, which was interspecies transmission between two different avian orders. In addition, interspecies transmission of DCoV, from houbara to falcon, pigeon and white-eye, from sparrow to common-magpie, and quail and mammal including porcine and Asian leopard cat, from munia to magpie-robin, was predicted. This is the first report of black-headed gull DCoV in Asia which was highly homolog to other avian DCoVs, and the very “active” host-switching events in DCoV were predicted, which provides important reference for the study of spread and transmission of DCoVs.
Collapse
Affiliation(s)
- Kan-Kan Chu
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
- Yunnan Province Key Laboratory of Anti-pathogenic Plant Resources Screening (Cultivation), Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali, China
| | - Zhi-Jian Zhou
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
| | - Qiong Wang
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
| | - Sheng-Bao Ye
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
| | - Ling Guo
- Yunnan Province Key Laboratory of Anti-pathogenic Plant Resources Screening (Cultivation), Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali, China
| | - Ye Qiu
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
- *Correspondence: Ye Qiu,
| | - Yun-Zhi Zhang
- Yunnan Province Key Laboratory of Anti-pathogenic Plant Resources Screening (Cultivation), Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali, China
- Yun-Zhi Zhang,
| | - Xing-Yi Ge
- College of Biology & Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
- Xing-Yi Ge,
| |
Collapse
|
49
|
Ruiz-Aravena M, McKee C, Gamble A, Lunn T, Morris A, Snedden CE, Yinda CK, Port JR, Buchholz DW, Yeo YY, Faust C, Jax E, Dee L, Jones DN, Kessler MK, Falvo C, Crowley D, Bharti N, Brook CE, Aguilar HC, Peel AJ, Restif O, Schountz T, Parrish CR, Gurley ES, Lloyd-Smith JO, Hudson PJ, Munster VJ, Plowright RK. Ecology, evolution and spillover of coronaviruses from bats. Nat Rev Microbiol 2022; 20:299-314. [PMID: 34799704 PMCID: PMC8603903 DOI: 10.1038/s41579-021-00652-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
In the past two decades, three coronaviruses with ancestral origins in bats have emerged and caused widespread outbreaks in humans, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the first SARS epidemic in 2002-2003, the appreciation of bats as key hosts of zoonotic coronaviruses has advanced rapidly. More than 4,000 coronavirus sequences from 14 bat families have been identified, yet the true diversity of bat coronaviruses is probably much greater. Given that bats are the likely evolutionary source for several human coronaviruses, including strains that cause mild upper respiratory tract disease, their role in historic and future pandemics requires ongoing investigation. We review and integrate information on bat-coronavirus interactions at the molecular, tissue, host and population levels. We identify critical gaps in knowledge of bat coronaviruses, which relate to spillover and pandemic risk, including the pathways to zoonotic spillover, the infection dynamics within bat reservoir hosts, the role of prior adaptation in intermediate hosts for zoonotic transmission and the viral genotypes or traits that predict zoonotic capacity and pandemic potential. Filling these knowledge gaps may help prevent the next pandemic.
Collapse
Affiliation(s)
- Manuel Ruiz-Aravena
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Clifton McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Amandine Gamble
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tamika Lunn
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Aaron Morris
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Celine E Snedden
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Claude Kwe Yinda
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Julia R Port
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yao Yu Yeo
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Christina Faust
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Elinor Jax
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Lauren Dee
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Devin N Jones
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Maureen K Kessler
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Caylee Falvo
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Daniel Crowley
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Nita Bharti
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Cara E Brook
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Alison J Peel
- Centre for Planetary Health and Food Security, Griffith University, Nathan, QLD, Australia
| | - Olivier Restif
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Emily S Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter J Hudson
- Department of Biology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, USA
| | - Vincent J Munster
- National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA
| | - Raina K Plowright
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
50
|
Choi S, Kim KW, Ku KB, Kim SJ, Park C, Park D, Kim S, Yi H. Human Alphacoronavirus Universal Primers for Genome Amplification and Sequencing. Front Microbiol 2022; 13:789665. [PMID: 35401489 PMCID: PMC8990890 DOI: 10.3389/fmicb.2022.789665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid and accurate sequencing covering the entire genome is essential to identify genetic variations of viral pathogens. However, due to the low viral titers in clinical samples, certain amplification steps are required for viral genome sequencing. At present, there are no universal primers available for alphacoronaviruses and that, since these viruses have diverse strains, new primers specific to the target strain must be continuously developed for sequencing. Thus, in this study, we aimed to develop a universal primer set valid for all human alphacoronaviruses and applicable to samples containing trace amounts of the virus. To this aim, we designed overlapping primer pairs capable of amplifying the entire genome of all known human alphacoronaviruses. The selected primers, named the AC primer set, were composed of 10 primer pairs stretching over the entire genome of alphacoronaviruses, and produced PCR products of the expected size (3-5 kb) from both the HCoV-229E and HCoV-NL63 strains. After genome amplification, an evaluation using various sequencing platforms was carried out. The amplicon library sequencing data were assembled into complete genome sequences in all sequencing strategies examined in this study. The sequencing accuracy varied depending on the sequencing technology, but all sequencing methods showed a sequencing error of less than 0.01%. In the mock clinical specimen, the detection limit was 10-3 PFU/ml (102 copies/ml). The AC primer set and experimental procedure optimized in this study may enable the fast diagnosis of mutant alphacoronaviruses in future epidemics.
Collapse
Affiliation(s)
- Sungmi Choi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea
| | - Kwan Woo Kim
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea
| | - Keun Bon Ku
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Changwoo Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Dongju Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea.,Department of Biological Science, Chungnam National University, Daejeon, South Korea
| | - Seil Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea.,Department of Bio-Analysis Science, University of Science and Technology, Daejeon, South Korea
| | - Hana Yi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.,School of Biosystems and Biomedical Sciences, Korea University, Seoul, South Korea
| |
Collapse
|