1
|
Kocabiyik DZ, Álvarez LF, Durigon EL, Wrenger C. West Nile virus - a re-emerging global threat: recent advances in vaccines and drug discovery. Front Cell Infect Microbiol 2025; 15:1568031. [PMID: 40444156 PMCID: PMC12119551 DOI: 10.3389/fcimb.2025.1568031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/21/2025] [Indexed: 06/02/2025] Open
Abstract
West Nile virus (WNV) is an emerging mosquito-borne pathogen and is posing significant global health challenge through climate change. WNV, transmitted between birds and Culex mosquitoes, has significantly expanded northward in recent years, leading to outbreaks across Europe and North America. This review explores the recent advancements and therapeutic strategies targeting WNV's structural and non-structural (NS) proteins, which play critical roles in viral replication and pathogenesis. Promising candidates include peptide-based inhibitors, monoclonal antibodies, and small molecules that disrupt protein-protein interactions. Most of current findings are derived from in silico methods or in vitro assays, with limited validation through in vivo studies. Although no vaccines are currently available for humans, several have been approved for horses, and development efforts are ongoing. The growing threat of WNV underscores the urgent need for validated antiviral therapies and scalable vaccines, especially considering its increasing geographic range and public health impact.
Collapse
Affiliation(s)
- Deren Zehra Kocabiyik
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lizdany Flórez Álvarez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
| | - Edison Luiz Durigon
- Institut Pasteur de São Paulo, São Paulo, Brazil
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Pant S, Jena NR. Computational predictions of artificial nucleoside triphosphates as potent inhibitors of RNA-dependent RNA polymerase of the ZIKA virus. Hum Immunol 2025; 86:111286. [PMID: 40117673 DOI: 10.1016/j.humimm.2025.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
As the RNA-dependent RNA polymerase (RdRp) of the Zika virus (ZIKV) is responsible for replicating the viral RNA genome inside host cells, its inhibition is necessary to control the Zika viral disease. Here, the interactions of 16 artificial RNA and DNA nucleoside triphosphates with the substrate active site of RdRp are studied in detail by using the molecular docking technique. The top 8 hits containing ligands such as ZTP, BTP, STP, XTP, dZTP, dBTP, dSTP, and dXTP were further studied by using molecular dynamics, and MM/GBSA Free-energy methods. It is revealed that among various nucleoside triphosphates studied herein, the dBTP would bind to RdRP most strongly with a binding free energy (ΔGbind) of -70.40 ± 4.6 kcal/mol followed by dZTP with a ΔGbind of -67.37 ± 3.1 kcal/mol. The binding of these artificial nucleoside triphosphates to RdRp is about 22-26 kcal/mol more stable than that of the natural nucleoside triphosphate GTP. Therefore, it is expected that dBTP and dZTP would inhibit the activities of RdRp strongly. The molecular mechanisms of inhibition of RdRp activities are also discussed and compared with experimental studies.
Collapse
Affiliation(s)
- S Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design and Manufacturing, Dumna Airport Road, Jabalpur 482005, India.
| |
Collapse
|
3
|
Hossain A, Joti FT, Hossain MS, Al-Noman A, Thowing C, Mursona M, Islam MR, Rahman ME, Matin MN, Haque MA. Identification of Potential Inhibitors Targeting Non-Structural Proteins NS3 and NS5 of Dengue Virus Using Docking and Deep Learning Approaches. Pharmaceuticals (Basel) 2025; 18:566. [PMID: 40284001 PMCID: PMC12030398 DOI: 10.3390/ph18040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/21/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Dengue virus (DENV) is the fatal pathogenic arthropod-borne virus (arboviruses) that belongs to the Flaviviridae family, which transmits to humans through mosquito bites from infected Aedes aegypti and Aedes albopictus mosquitoes or maternal-fetal transmission. Despite antigenic differences, the four serotypes of DENV (DENV-1 to DENV-4) share 65-78% of their genome. Non-structural (NS) proteins amongst serotypes show analogous functions. Among NS proteins, NS3 and NS5 are frequently used as targets for antiviral drugs due to their multifunctional roles. Methods: To identify potential inhibitors of DENV, we created a phytochemical library of 898 compounds derived from 17 medicinal plants recognized for their medicinal and antiviral properties. The phytochemicals library has been docked against the target proteins. Phytochemicals with a docking score greater than -8.0 kcal/mol were selected for further evaluation using a machine learning approach. Further, molecular dynamics (MD) simulations were conducted to evaluate the root mean square deviation, root mean square fluctuation, solvent-accessible surface area, radius of gyration, and hydrogen bond count of the compounds. Results: From the docking results, Silibinin, Rubiadin, and Ellagic acid showed binding affinities of -8.5, -8.3, and -8.2 kcal/mol, respectively, for NS3, and NSC 640467, Bisandrographolide A, and Andrographidin A showed binding affinities of -9.3, -10.1, and -9.3 kcal/mol, respectively, for NS5 target proteins. These compounds exhibited strong interactions with target proteins. MD simulation results confirmed the stable formation of protein-ligand complexes. Further, absorption, distribution, metabolism, excretion, and toxicity (ADMET) and bioactivity predictions confirmed their pharmacological safety. Conclusions: Despite global public health concerns, DENV still lacks specific drug treatments. Our identified new drug candidates might help for developing effective antiviral inhibitors against the DENV. However, further confirmation is needed through in vivo and in vitro research.
Collapse
Affiliation(s)
- Alomgir Hossain
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Faria Tasnin Joti
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Md. Shohag Hossain
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Abdullah Al-Noman
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Chomong Thowing
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Mehjabin Mursona
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Md. Robiul Islam
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
| | - Md. Ekhtiar Rahman
- Computational Biosciences and Chemistry Research Organization, Rajshahi 6205, Bangladesh; (A.H.); (F.T.J.); (M.S.H.); (A.A.-N.); (C.T.); (M.M.); (M.R.I.); (M.E.R.)
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Nurul Matin
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
4
|
Ogola EO, Roy A, Wollenberg K, Ochwoto M, Bloom ME. Strange relatives: the enigmatic arbo-jingmenviruses and orthoflaviviruses. NPJ VIRUSES 2025; 3:24. [PMID: 40295693 PMCID: PMC11971299 DOI: 10.1038/s44298-025-00106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/05/2025] [Indexed: 04/30/2025]
Abstract
Arthropod - and vertebrate-associated jingmenviruses (arbo-JMV) have segmented positive-strand RNA genomes and are provisional members of the genus Orthoflavivirus (family Flaviviridae). Current investigations have described arbo-JMV infection in vertebrate hosts in proximity to humans. This raises concerns about the virus host range and public health implications. This review explores the genomic and evolutionary relationship between arbo-JMV and orthoflaviviruses and evaluates the potential of arbo-JMV to pose a public health threat.
Collapse
Affiliation(s)
- Edwin O Ogola
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| | - Amitava Roy
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, 32 Campus Drive, Missoula, MT, 59812, USA
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Kurt Wollenberg
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, NIAID, NIH, 31 Center Drive, Room 3B62, Bethesda, MD, 20892-0485, USA
| | - Missiani Ochwoto
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Marshall E Bloom
- Biology of Vector Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, 903 South 4th Street, Hamilton, MT, 59840, USA.
| |
Collapse
|
5
|
Ravi V, Khare K, Mohite R, Mishra P, Halder S, Shukla R, Liu CSC, Yadav A, Soni J, Kanika, Chaudhary K, Neha, Tarai B, Budhiraja S, Khosla P, Sethi T, Imran M, Pandey R. Genomic hotspots in the DENV-2 serotype (E, NS4B, and NS5 genes) are associated with dengue disease severity in the endemic region of India. PLoS Negl Trop Dis 2025; 19:e0013034. [PMID: 40299925 PMCID: PMC12040166 DOI: 10.1371/journal.pntd.0013034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/04/2025] [Indexed: 05/01/2025] Open
Abstract
Dengue virus (DENV) infection manifests a wide spectrum of clinical outcomes, ranging from mild fever to severe and potentially fatal disease, yet the factors driving this variability remain poorly understood. This study aims to unravel the relationship between clinical manifestations of dengue and the genetic diversity of the virus, providing insights into the genomic variability driving disease severity. To achieve this, serum samples were collected during a dengue outbreak in National Capital Region-Delhi, India, from June to November 2023. Serotyping of RNA isolated from 4,045 clinical serum samples revealed DENV-2 as the predominant serotype in circulation (n = 3702). Whole-genome sequencing for 3702 clinical samples was performed using Oxford Nanopore Technology (ONT) further yielding 3254 DENV-2 genomes with >50% coverage. However, all of them identified the cosmopolitan genotype of DENV-2, forming a distinct monophyletic cluster in the global phylogenetic tree. Comprehensive variant analysis uncovered 1,618,158 single nucleotide variations (SNVs) across the sequenced DENV-2 population. The clinico-genomic approach carried out in 1294 samples, mild (n = 473), moderate (n = 405) and clinically severe (n = 416), reveals a significant burden of SNVs in various genomic regions linked to differential disease outcomes. Statistical analyses, including Fisher's exact test and phi-correlation, identified hotspot regions in the Envelope (E), NS4B, and NS5 genes, where SNVs were strongly associated with mild and clinically severe phenotypes, providing insights into the genomic determinants of disease severity. Interestingly, the clustering of severity-associated SNVs in these genomic hotspot regions highlights their potential as therapeutic targets within the DENV genome. These findings offer a promising direction for developing early mitigation strategies and targeted interventions to manage the progression of severe DENV infections.
Collapse
Affiliation(s)
- Varsha Ravi
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
- Indraprastha Institute of Information Technology, Delhi, India
| | - Kriti Khare
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ramakant Mohite
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
| | - Pallavi Mishra
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
| | - Sayanti Halder
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
| | - Richa Shukla
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
| | - Chinky Shiu Chen Liu
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
| | - Aanchal Yadav
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jyoti Soni
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanika
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
| | - Komal Chaudhary
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India,
| | - Neha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India,
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India,
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi, India,
| | | | | | - Md Imran
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
| | - Rajesh Pandey
- Division of Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
6
|
Handa T, Saha A, Narayanan A, Ronzier E, Kumar P, Singla J, Tomar S. Structural Virology: The Key Determinants in Development of Antiviral Therapeutics. Viruses 2025; 17:417. [PMID: 40143346 PMCID: PMC11945554 DOI: 10.3390/v17030417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Structural virology has emerged as the foundation for the development of effective antiviral therapeutics. It is pivotal in providing crucial insights into the three-dimensional frame of viruses and viral proteins at atomic-level or near-atomic-level resolution. Structure-based assessment of viral components, including capsids, envelope proteins, replication machinery, and host interaction interfaces, is instrumental in unraveling the multiplex mechanisms of viral infection, replication, and pathogenesis. The structural elucidation of viral enzymes, including proteases, polymerases, and integrases, has been essential in combating viruses like HIV-1 and HIV-2, SARS-CoV-2, and influenza. Techniques including X-ray crystallography, Nuclear Magnetic Resonance spectroscopy, Cryo-electron Microscopy, and Cryo-electron Tomography have revolutionized the field of virology and significantly aided in the discovery of antiviral therapeutics. The ubiquity of chronic viral infections, along with the emergence and reemergence of new viral threats necessitate the development of novel antiviral strategies and agents, while the extensive structural diversity of viruses and their high mutation rates further underscore the critical need for structural analysis of viral proteins to aid antiviral development. This review highlights the significance of structure-based investigations for bridging the gap between structure and function, thus facilitating the development of effective antiviral therapeutics, vaccines, and antibodies for tackling emerging viral threats.
Collapse
Affiliation(s)
- Tanuj Handa
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Ankita Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Aarthi Narayanan
- Department of Biology, College of Science, George Mason University, Fairfax, VA 22030, USA;
| | - Elsa Ronzier
- Biomedical Research Laboratory, Institute for Biohealth Innovation, George Mason University, Fairfax, VA 22030, USA;
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Jitin Singla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India; (T.H.); (A.S.); (P.K.); (J.S.)
| |
Collapse
|
7
|
Donaldson MK, Zanders LA, Jose J. Functional Roles and Host Interactions of Orthoflavivirus Non-Structural Proteins During Replication. Pathogens 2025; 14:184. [PMID: 40005559 PMCID: PMC11858440 DOI: 10.3390/pathogens14020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Orthoflavivirus, a genus encompassing arthropod-borne, positive-sense, single-stranded RNA viruses in the Flaviviridae family, represents clinically relevant viruses that pose significant threats to human and animal health worldwide. With warming climates and persistent urbanization, arthropod vectors and the viruses they transmit continue to widen their geographic distribution, expanding endemic zones. Flaviviruses such as dengue virus, Zika virus, West Nile virus, and tick-borne encephalitis virus cause debilitating and fatal infections globally. In 2024, the World Health Organization and the Pan American Health Organization declared the current dengue situation a Multi-Country Grade 3 Outbreak, the highest level. FDA-approved treatment options for diseases caused by flaviviruses are limited or non-existent, and vaccines are suboptimal for many flaviviruses. Understanding the molecular characteristics of the flavivirus life cycle, virus-host interactions, and resulting pathogenesis in various cells and model systems is critical for developing effective therapeutic intervention strategies. This review will focus on the virus-host interactions of mosquito- and tick-borne flaviviruses from the virus replication and assembly perspective, emphasizing the interplay between viral non-structural proteins and host pathways that are hijacked for their advantage. Highlighting interaction pathways, including innate immunity, intracellular movement, and membrane modification, emphasizes the need for rigorous and targeted antiviral research and development against these re-emerging viruses.
Collapse
Affiliation(s)
- Meghan K. Donaldson
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Levi A. Zanders
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; (M.K.D.); (L.A.Z.)
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Tripathi A, Chauhan S, Khasa R. A Comprehensive Review of the Development and Therapeutic Use of Antivirals in Flavivirus Infection. Viruses 2025; 17:74. [PMID: 39861863 PMCID: PMC11769230 DOI: 10.3390/v17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Flaviviruses are a diverse group of viruses primarily transmitted through hematophagous insects like mosquitoes and ticks. Significant expansion in the geographic range, prevalence, and vectors of flavivirus over the last 50 years has led to a dramatic increase in infections that can manifest as hemorrhagic fever or encephalitis, leading to prolonged morbidity and mortality. Millions of infections every year pose a serious threat to worldwide public health, encouraging scientists to develop a better understanding of the pathophysiology and immune evasion mechanisms of these viruses for vaccine development and antiviral therapy. Extensive research has been conducted in developing effective antivirals for flavivirus. Various approaches have been extensively utilized in clinical trials for antiviral development, targeting virus entry, replication, polyprotein synthesis and processing, and egress pathways exploiting virus as well as host proteins. However, to date, no licensed antiviral drug exists to treat the diseases caused by these viruses. Understanding the mechanisms of host-pathogen interaction, host immunity, viral immune evasion, and disease pathogenesis is highly warranted to foster the development of antivirals. This review provides an extensively detailed summary of the most recent advances in the development of antiviral drugs to combat diseases.
Collapse
Affiliation(s)
- Aarti Tripathi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Shailendra Chauhan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Galveston National Laboratory, Galveston, TX 77555, USA
| | - Renu Khasa
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami/UHealth, Miami, FL 33136, USA
| |
Collapse
|
9
|
Álvarez-Mínguez A, del Río N, Belén-Blázquez A, Casanova E, Orduña JM, Camarero P, Hurtado-Marcos C, del Águila C, Pérez-Pérez M, Martín-Acebes MA, Agudo R. Development of a luminescence-based method for measuring West Nile Virus MTase activity and its application to screen for antivirals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100282. [PMID: 39445035 PMCID: PMC11497361 DOI: 10.1016/j.crmicr.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
West Nile virus (WNV) is a flavivirus responsible for causing febrile illness and severe neurological diseases, with an increasing impact on human health around the world. However, there is still no adequate therapeutic treatment available to struggle WNV infections. Therefore, there is an urgent need to develop new techniques to accelerate the discovery of drugs against this pathogen. The main protein implicated in the replication of WNV is the non-structural protein 5 (NS5). This multifunctional protein contains methyltransferase (MTase) activity involved in the capping formation at the 5'-end of RNA and the methylation of internal viral RNA residues, both functions being essential for viral processes, such as RNA translation and escape from the innate immune response. We have developed a straightforward luminescence-based assay to monitor the MTase activity of the WNV NS5 protein with potential for high-throughput screening. We have validated this method as a sensitive and suitable assay for the identification of WNV MTase inhibitors assessing the inhibitory effect of the broad MTase inhibitor sinefungin, a natural nucleoside analog of the universal methyl donor S-adenosyl methionine (SAM). The screening of a small series of purine derivatives identified an adenosine derivative as a dose-dependent inhibitor of the MTase activity. The antiviral efficacy of this compound was further confirmed in WNV infections, displaying a measurable antiviral effect. This result supports the utility of this novel method for the screening of inhibitors against WNV MTase activity, which can be of special relevance to the discovery and development of therapeutics against WNV.
Collapse
Affiliation(s)
- Alejandra Álvarez-Mínguez
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Natalia del Río
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
- Escuela de Doctorado, Universidad Autónoma de Madrid, Spain
| | - Ana Belén-Blázquez
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Elena Casanova
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - José-María Orduña
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Patricia Camarero
- Instituto de Quimica Medica (IQM, CSIC) c/ Juan de la Cierva 3, 28006 Madrid, Spain
| | - Carolina Hurtado-Marcos
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | - Carmen del Águila
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| | | | - Miguel A. Martín-Acebes
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnologia Agraria y Alimentaria (INIA-CSIC) Carretera de A Coruña Km 7.5, 28040 Madrid, Spain
| | - Rubén Agudo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660, Boadilla del Monte, Spain
| |
Collapse
|
10
|
vom Hemdt A, Thienel AL, Ciupka K, Wieseler J, Proksch HM, Schlee M, Kümmerer BM. 2'-O-methyltransferase-deficient yellow fever virus: Restricted replication in the midgut and secondary tissues of Aedes aegypti mosquitoes severely limits dissemination. PLoS Pathog 2024; 20:e1012607. [PMID: 39356716 PMCID: PMC11472933 DOI: 10.1371/journal.ppat.1012607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/14/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
The RNA genome of orthoflaviviruses encodes a methyltransferase within the non-structural protein NS5, which is involved in 2'-O-methylation of the 5'-terminal nucleotide of the viral genome resulting in a cap1 structure. While a 2'-O-unmethylated cap0 structure is recognized in vertebrates by the RNA sensor RIG-I, the cap1 structure allows orthoflaviviruses to evade the vertebrate innate immune system. Here, we analyzed whether the cap0 structure is also recognized in mosquitoes. Replication analyses of 2'-O-methyltransferase deficient yellow fever virus mutants (YFV NS5-E218A) of the vaccine 17D and the wild-type Asibi strain in mosquito cells revealed a distinct downregulation of the cap0 viruses. Interestingly, the level of inhibition differed for various mosquito cells. The most striking difference was found in Aedes albopictus-derived C6/36 cells with YFV-17D cap0 replication being completely blocked. Replication of YFV-Asibi cap0 was also suppressed in mosquito cells but to a lower extent. Analyses using chimeras between YFV-17D and YFV-Asibi suggest that a synergistic effect of several mutations across the viral genome accompanied by a faster initial growth rate of YFV-Asibi cap1 correlates with the lower level of YFV-Asibi cap0 attenuation. Viral growth analyses in Dicer-2 knockout cells demonstrated that Dicer-2 is entirely dispensable for attenuating the YFV cap0 viruses. Translation of a replication-incompetent cap0 reporter YFV-17D genome was reduced in mosquito cells, indicating a cap0 sensing translation regulation mechanism. Further, oral infection of Aedes aegypti mosquitoes resulted in lower infection rates for YFV-Asibi cap0. The latter is related to lower viral loads found in the midguts, which largely diminished dissemination to secondary tissues. After intrathoracic infection, YFV-Asibi cap0 replicated slower and to decreased amounts in secondary tissues compared to YFV-Asibi cap1. These results suggest the existence of an ubiquitously expressed innate antiviral protein recognizing 5'-terminal RNA cap-modifications in mosquitoes, both in the midgut as well as in secondary tissues.
Collapse
Affiliation(s)
- Anja vom Hemdt
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | - Katrin Ciupka
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Janett Wieseler
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Hannah M. Proksch
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Beate M. Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
- German Centre for Infection Research, Partner Site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
11
|
Krejčová K, Krafcikova P, Klima M, Chalupska D, Chalupsky K, Zilecka E, Boura E. Structural and functional insights in flavivirus NS5 proteins gained by the structure of Ntaya virus polymerase and methyltransferase. Structure 2024; 32:1099-1109.e3. [PMID: 38781970 DOI: 10.1016/j.str.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Flaviviruses are single-stranded positive-sense RNA (+RNA) viruses that are responsible for several (re)emerging diseases such as yellow, dengue, or West Nile fevers. The Zika epidemic highlighted their dangerousness when a relatively benign virus known since the 1950s turned into a deadly pathogen. The central protein for their replication is NS5 (non-structural protein 5), which is composed of the N-terminal methyltransferase (MTase) domain and the C-terminal RNA-dependent RNA-polymerase (RdRp) domain. It is responsible for both RNA replication and installation of the 5' RNA cap. We structurally and biochemically analyzed the Ntaya virus MTase and RdRp domains and we compared their properties to other flaviviral NS5s. The enzymatic centers are well conserved across Flaviviridae, suggesting that the development of drugs targeting all flaviviruses is feasible. However, the enzymatic activities of the isolated proteins were significantly different for the MTase domains.
Collapse
Affiliation(s)
- Kateřina Krejčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic; Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Petra Krafcikova
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Karel Chalupsky
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Eva Zilecka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic.
| |
Collapse
|
12
|
Deng J, Gong F, Li Y, Tan X, Liu X, Yang S, Chen X, Wang H, Liu Q, Shen C, Zhou L, Chen Y. Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2. Virol Sin 2024; 39:619-631. [PMID: 38969340 PMCID: PMC11401473 DOI: 10.1016/j.virs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.
Collapse
Affiliation(s)
- Jikai Deng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Feiyu Gong
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Yingjian Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xue Tan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xuemei Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xianying Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Chao Shen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
13
|
Kiemel D, Kroell ASH, Denolly S, Haselmann U, Bonfanti JF, Andres JI, Ghosh B, Geluykens P, Kaptein SJF, Wilken L, Scaturro P, Neyts J, Van Loock M, Goethals O, Bartenschlager R. Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation. Nat Commun 2024; 15:6080. [PMID: 39030239 PMCID: PMC11271582 DOI: 10.1038/s41467-024-50437-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/05/2024] [Indexed: 07/21/2024] Open
Abstract
Dengue fever represents a significant medical and socio-economic burden in (sub)tropical regions, yet antivirals for treatment or prophylaxis are lacking. JNJ-A07 was described as highly active against the different genotypes within each serotype of the disease-causing dengue virus (DENV). Based on clustering of resistance mutations it has been assumed to target DENV non-structural protein 4B (NS4B). Using a photoaffinity labeling compound with high structural similarity to JNJ-A07, here we demonstrate binding to NS4B and its precursor NS4A-2K-NS4B. Consistently, we report recruitment of the compound to intracellular sites enriched for these proteins. We further specify the mechanism-of-action of JNJ-A07, which has virtually no effect on viral polyprotein cleavage, but targets the interaction between the NS2B/NS3 protease/helicase complex and the NS4A-2K-NS4B cleavage intermediate. This interaction is functionally linked to de novo formation of vesicle packets (VPs), the sites of DENV RNA replication. JNJ-A07 blocks VPs biogenesis with little effect on established ones. A similar mechanism-of-action was found for another NS4B inhibitor, NITD-688. In summary, we unravel the antiviral mechanism of these NS4B-targeting molecules and show how DENV employs a short-lived cleavage intermediate to carry out an early step of the viral life cycle.
Collapse
Affiliation(s)
- Dominik Kiemel
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Ann-Sophie Helene Kroell
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Uta Haselmann
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany
| | - Jean-François Bonfanti
- Janssen Infectious Diseases Discovery, Janssen-Cilag, Val de Reuil, France
- Evotec, Toulouse, France
| | - Jose Ignacio Andres
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Toledo, Spain
| | - Brahma Ghosh
- Discovery Chemistry, Janssen R&D, a Johnson & Johnson company, Spring House, PA, USA
| | | | - Suzanne J F Kaptein
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | - Johan Neyts
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Olivia Goethals
- Janssen Global Public Health, Janssen Pharmaceutica NV, a Johnson & Johnson company, Beerse, Belgium
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, Heidelberg, Germany.
- German Centre for Infection Research, Heidelberg partner site, Heidelberg, Germany.
| |
Collapse
|
14
|
Arutyunov A, Durán-Laforet V, Ai S, Ferrari L, Murphy R, Schafer DP, Klein RS. West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules 2024; 14:808. [PMID: 39062523 PMCID: PMC11274721 DOI: 10.3390/biom14070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.
Collapse
Affiliation(s)
- Artem Arutyunov
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Shenjian Ai
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loris Ferrari
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robert Murphy
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robyn S. Klein
- Department of Microbiology & Immunology, Western Institute of Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, 100 Perth Dr, London, ON N6A 5K8, Canada
| |
Collapse
|
15
|
Terrell JR, Le TT, Paul A, Brinton MA, Wilson WD, Poon GMK, Germann MW, Siemer JL. Structure of an RNA G-quadruplex from the West Nile virus genome. Nat Commun 2024; 15:5428. [PMID: 38926367 PMCID: PMC11208454 DOI: 10.1038/s41467-024-49761-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Potential G-quadruplex sites have been identified in the genomes of DNA and RNA viruses and proposed as regulatory elements. The genus Orthoflavivirus contains arthropod-transmitted, positive-sense, single-stranded RNA viruses that cause significant human disease globally. Computational studies have identified multiple potential G-quadruplex sites that are conserved across members of this genus. Subsequent biophysical studies established that some G-quadruplexes predicted in Zika and tickborne encephalitis virus genomes can form and known quadruplex binders reduced viral yields from cells infected with these viruses. The susceptibility of RNA to degradation and the variability of loop regions have made structure determination challenging. Despite these difficulties, we report a high-resolution structure of the NS5-B quadruplex from the West Nile virus genome. Analysis reveals two stacked tetrads that are further stabilized by a stacked triad and transient noncanonical base pairing. This structure expands the landscape of solved RNA quadruplex structures and demonstrates the diversity and complexity of biological quadruplexes. We anticipate that the availability of this structure will assist in solving further viral RNA quadruplexes and provides a model for a conserved antiviral target in Orthoflavivirus genomes.
Collapse
Affiliation(s)
- J Ross Terrell
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Thao T Le
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ananya Paul
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Margo A Brinton
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA.
| | - Jessica L Siemer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
16
|
Tipo J, Gottipati K, Choi KH. High-resolution RNA tertiary structures in Zika virus stem-loop A for the development of inhibitory small molecules. RNA (NEW YORK, N.Y.) 2024; 30:609-623. [PMID: 38383158 PMCID: PMC11098461 DOI: 10.1261/rna.079796.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Flaviviruses such as Zika (ZIKV) and dengue virus (DENV) are positive-sense RNA viruses belonging to Flaviviridae The flavivirus genome contains a 5' end stem-loop promoter sequence known as stem-loop A (SLA) that is recognized by the flavivirus polymerase NS5 during viral RNA synthesis and 5' guanosine cap methylation. The crystal structures of ZIKV and DENV SLAs show a well-defined fold, consisting of a bottom stem, side loop, and top stem-loop, providing unique interaction sites for small molecule inhibitors to disrupt the promoter function. To facilitate the identification of small molecule binding sites in flavivirus SLA, we determined high-resolution structures of the bottom and top stems of ZIKV SLA, which contain a single U- or G-bulge, respectively. Both bulge nucleotides exhibit multiple orientations, from folded back on the adjacent nucleotide to flipped out of the helix, and are stabilized by stacking or base triple interactions. These structures suggest that even a single unpaired nucleotide can provide flexibility to RNA structures, and its conformation is mainly determined by the stabilizing chemical environment. To facilitate discovery of small molecule inhibitors that interfere with the functions of ZIKV SLA, we screened and identified compounds that bind to the bottom and top stems of ZIKV SLA.
Collapse
Affiliation(s)
- Jerricho Tipo
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Keerthi Gottipati
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Kyung H Choi
- Department of Biochemistry and Molecular Biology, and Sealy Center for Structural Biology, The University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| |
Collapse
|
17
|
Pérez-Yanes S, Lorenzo-Sánchez I, Cabrera-Rodríguez R, García-Luis J, Trujillo-González R, Estévez-Herrera J, Valenzuela-Fernández A. The ZIKV NS5 Protein Aberrantly Alters the Tubulin Cytoskeleton, Induces the Accumulation of Autophagic p62 and Affects IFN Production: HDAC6 Has Emerged as an Anti-NS5/ZIKV Factor. Cells 2024; 13:598. [PMID: 38607037 PMCID: PMC11011779 DOI: 10.3390/cells13070598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Department of Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, 38296 La Laguna, Spain;
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| |
Collapse
|
18
|
Avila-Bonilla RG, Macias S. The molecular language of RNA 5' ends: guardians of RNA identity and immunity. RNA (NEW YORK, N.Y.) 2024; 30:327-336. [PMID: 38325897 PMCID: PMC10946433 DOI: 10.1261/rna.079942.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
RNA caps are deposited at the 5' end of RNA polymerase II transcripts. This modification regulates several steps of gene expression, in addition to marking transcripts as self to enable the innate immune system to distinguish them from uncapped foreign RNAs, including those derived from viruses. Specialized immune sensors, such as RIG-I and IFITs, trigger antiviral responses upon recognition of uncapped cytoplasmic transcripts. Interestingly, uncapped transcripts can also be produced by mammalian hosts. For instance, 5'-triphosphate RNAs are generated by RNA polymerase III transcription, including tRNAs, Alu RNAs, or vault RNAs. These RNAs have emerged as key players of innate immunity, as they can be recognized by the antiviral sensors. Mechanisms that regulate the presence of 5'-triphosphates, such as 5'-end dephosphorylation or RNA editing, prevent immune recognition of endogenous RNAs and excessive inflammation. Here, we provide a comprehensive overview of the complexity of RNA cap structures and 5'-triphosphate RNAs, highlighting their roles in transcript identity, immune surveillance, and disease.
Collapse
Affiliation(s)
- Rodolfo Gamaliel Avila-Bonilla
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| | - Sara Macias
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, EH9 3FL Edinburgh, United Kingdom
| |
Collapse
|
19
|
Fiorucci D, Meaccini M, Poli G, Stincarelli MA, Vagaggini C, Giannecchini S, Sutto-Ortiz P, Canard B, Decroly E, Dreassi E, Brai A, Botta M. Identification of Novel Non-Nucleoside Inhibitors of Zika Virus NS5 Protein Targeting MTase Activity. Int J Mol Sci 2024; 25:2437. [PMID: 38397115 PMCID: PMC10888717 DOI: 10.3390/ijms25042437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Zika virus (ZIKV) is a positive-sense single-stranded virus member of the Flaviviridae family. Among other arboviruses, ZIKV can cause neurological disorders such as Guillain Barré syndrome, and it can have congenital neurological manifestations and affect fertility. ZIKV nonstructural protein 5 (NS5) is essential for viral replication and limiting host immune detection. Herein, we performed virtual screening to identify novel small-molecule inhibitors of the ZIKV NS5 methyltransferase (MTase) domain. Compounds were tested against the MTases of both ZIKV and DENV, demonstrating good inhibitory activities against ZIKV MTase. Extensive molecular dynamic studies conducted on the series led us to identify other derivatives with improved activity against the MTase and limiting ZIKV infection with an increased selectivity index. Preliminary pharmacokinetic parameters have been determined, revealing excellent stability over time. Preliminary in vivo toxicity studies demonstrated that the hit compound 17 is well tolerated after acute administration. Our results provide the basis for further optimization studies on novel non-nucleoside MTase inhibitors.
Collapse
Affiliation(s)
- Diego Fiorucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Micaela Meaccini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Giulio Poli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134 Florence, Italy; (M.A.S.); (S.G.)
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, 50134 Florence, Italy; (M.A.S.); (S.G.)
| | - Priscila Sutto-Ortiz
- AFMB, Aix-Marseille University, CNRS, UMR 7257, Case 925, 163 Avenue de Luminy, Cedex 09, 13288 Marseille, France; (P.S.-O.)
| | - Bruno Canard
- AFMB, Aix-Marseille University, CNRS, UMR 7257, Case 925, 163 Avenue de Luminy, Cedex 09, 13288 Marseille, France; (P.S.-O.)
| | - Etienne Decroly
- AFMB, Aix-Marseille University, CNRS, UMR 7257, Case 925, 163 Avenue de Luminy, Cedex 09, 13288 Marseille, France; (P.S.-O.)
| | - Elena Dreassi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Maurizio Botta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| |
Collapse
|
20
|
Mi Y, Guo Y, Luo X, Bai Y, Chen H, Wang M, Wang Y, Guo J. Natural products and derivatives as Japanese encephalitis virus antivirals. Pathog Dis 2024; 82:ftae022. [PMID: 39317665 PMCID: PMC11556344 DOI: 10.1093/femspd/ftae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/31/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute Japanese encephalitis (JE) in humans and reproductive disorders in pigs. There are ~68 000 cases of JE worldwide each year, with ~13 600-20 400 deaths. JE infections have a fatality rate of one-third, and half of the survivors experience permanent neurological sequelae. The disease is prevalent throughout the Asia-Pacific region and has the potential to spread globally. JEV poses a serious threat to human life and health, and vaccination is currently the only strategy for long-term sustainable protection against JEV infection. However, licensed JEV vaccines are not effective against all strains of JEV. To date, there are no drugs approved for clinical use, and the development of anti-JEV drugs is urgently needed. Natural products are characterized by a wide range of sources, unique structures, and low prices, and this paper provides an overview of the research and development of anti-JEV bioactive natural products.
Collapse
Affiliation(s)
- Yunqi Mi
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Yan Guo
- School of Modern Post, Xi’an University of Posts and Telecommunications, Xi’an 710061, China
| | - Xuliang Luo
- College of Animal Science and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Bai
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Haonan Chen
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Meihua Wang
- Faculty of Life Science and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Yang Wang
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| | - Jiao Guo
- The Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, School of Basic Medicine, Xi’an Medical University, Xi’an 710021, China
| |
Collapse
|
21
|
Rabaan AA, AlShehail BM, Halwani MA, Alshengeti A, Najim MA, Garout M, Bajunaid HA, Alshamrani SA, Al Fares MA, Alissa M, Alwashmi ASS. Investigation of Zika virus methyl transferase inhibitors using steered molecular dynamics. J Biomol Struct Dyn 2024; 42:1711-1724. [PMID: 37325855 DOI: 10.1080/07391102.2023.2224882] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 06/17/2023]
Abstract
Zika virus (ZIKV) spread is considered a major public health threat by the World Health Organization (WHO). There are no vaccines or drugs available to control the infection of the Zika virus, therefore a highly effective medicinal molecule is urgently required. In this study, a computationally intensive investigation was performed to identify a potent natural compound that could inhibit the ZIKV NS5 methyltransferase. This research approach is based on target-based drug identification principles where the native inhibitor SAH (S-adenosylhomocysteine) of ZIKV NS5 methyltransferase was selected as a reference. High-throughput virtual screening and tanimoto similarity coefficient were applied to the natural compound library for ranking the potential candidates. The top five compounds were selected for interaction analysis, MD simulation, total binding free energy through MM/GBSA, and steered MD simulation. Among these compounds, Adenosine 5'-monophosphate monohydrate, Tubercidin, and 5-Iodotubercidin showed stable binding to the protein compared to the native compound, SAH. These three compounds also showed less fluctuations in RMSF in contrast to native compound. Additionally, the same interacting residues observed in SAH also made strong interactions with these three compounds. Adenosine 5'-monophosphate monohydrate and 5-Iodotubercidin had greater total binding free energies than the reference ligand. Moreover, the dissociation resistance of all three compounds was equivalent to that of the reference ligand. This study suggested binding properties of three-hit compounds that could be used to develop drugs against Zika virus infections.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, Pakistan
| | - Bashayer M AlShehail
- Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Muhammad A Halwani
- Department of Medical Microbiology, Faculty of Medicine, Al Baha University, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah, Saudi Arabia
| | - Mustafa A Najim
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Huda A Bajunaid
- Makkah Specialized Laboratory, Fakeeh Care group, Hadda, Saudi Arabia
| | - Saleh A Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ameen S S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
22
|
Tsukamoto Y, Igarashi M, Kato H. Targeting cap1 RNA methyltransferases as an antiviral strategy. Cell Chem Biol 2024; 31:86-99. [PMID: 38091983 DOI: 10.1016/j.chembiol.2023.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/30/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Methylation is one of the critical modifications that regulates numerous biological processes. Guanine capping and methylation at the 7th position (m7G) have been shown to mature mRNA for increased RNA stability and translational efficiency. The m7G capped cap0 RNA remains immature and requires additional methylation at the first nucleotide (N1-2'-O-Me), designated as cap1, to achieve full maturation. This cap1 RNA with N1-2'-O-Me prevents its recognition by innate immune sensors as non-self. Viruses have also evolved various strategies to produce self-like capped RNAs with the N1-2'-O-Me that potentially evades the antiviral response and establishes an efficient replication. In this review, we focus on the importance of the presence of N1-2'-O-Me in viral RNAs and discuss the potential for drug development by targeting host and viral N1-2'-O-methyltransferases.
Collapse
Affiliation(s)
- Yuta Tsukamoto
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany.
| |
Collapse
|
23
|
Akram M, Hameed S, Hassan A, Khan KM. Development in the Inhibition of Dengue Proteases as Drug Targets. Curr Med Chem 2024; 31:2195-2233. [PMID: 37723635 DOI: 10.2174/0929867331666230918110144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/24/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND Viral infections continue to increase morbidity and mortality severely. The flavivirus genus has fifty different species, including the dengue, Zika, and West Nile viruses that can infect 40% of individuals globally, who reside in at least a hundred different countries. Dengue, one of the oldest and most dangerous human infections, was initially documented by the Chinese Medical Encyclopedia in the Jin period. It was referred to as "water poison," connected to flying insects, i.e., Aedes aegypti and Aedes albopictus. DENV causes some medical expressions like dengue hemorrhagic fever, acute febrile illness, and dengue shock syndrome. OBJECTIVE According to the World Health Organization report of 2012, 2500 million people are in danger of contracting dengue fever worldwide. According to a recent study, 96 million of the 390 million dengue infections yearly show some clinical or subclinical severity. There is no antiviral drug or vaccine to treat this severe infection. It can be controlled by getting enough rest, drinking plenty of water, and using painkillers. The first dengue vaccine created by Sanofi, called Dengvaxia, was previously approved by the USFDA in 2019. All four serotypes of the DENV1-4 have shown re-infection in vaccine recipients. However, the usage of Dengvaxia has been constrained by its adverse effects. CONCLUSION Different classes of compounds have been reported against DENV, such as nitrogen-containing heterocycles (i.e., imidazole, pyridine, triazoles quinazolines, quinoline, and indole), oxygen-containing heterocycles (i.e., coumarins), and some are mixed heterocyclic compounds of S, N (thiazole, benzothiazine, and thiazolidinediones), and N, O (i.e., oxadiazole). There have been reports of computationally designed compounds to impede the molecular functions of specific structural and non-structural proteins as potential therapeutic targets. This review summarized the current progress in developing dengue protease inhibitors.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Shehryar Hameed
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi, 75720, Pakistan
| |
Collapse
|
24
|
Samrat SK, Bashir Q, Zhang R, Huang Y, Liu Y, Wu X, Brown T, Wang W, Zheng YG, Zhang QY, Chen Y, Li Z, Li H. A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases. Emerg Microbes Infect 2023; 12:2204164. [PMID: 37060263 PMCID: PMC10165934 DOI: 10.1080/22221751.2023.2204164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/16/2023]
Abstract
SARS-CoV-2 has caused a global pandemic with significant humanity and economic loss since 2020. Currently, only limited options are available to treat SARS-CoV-2 infections for vulnerable populations. In this study, we report a universal fluorescence polarization (FP)-based high throughput screening (HTS) assay for SAM-dependent viral methyltransferases (MTases), using a fluorescent SAM-analogue, FL-NAH. We performed the assay against a reference MTase, NSP14, an essential enzyme for SARS-CoV-2 to methylate the N7 position of viral 5'-RNA guanine cap. The assay is universal and suitable for any SAM-dependent viral MTases such as the SARS-CoV-2 NSP16/NSP10 MTase complex and the NS5 MTase of Zika virus (ZIKV). Pilot screening demonstrated that the HTS assay was very robust and identified two candidate inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the NSP14 MTase with low micromolar IC50. We used three functional MTase assays to unambiguously verified the inhibitory potency of these molecules for the NSP14 N7-MTase function. Binding studies indicated that these molecules are bound directly to the NSP14 MTase with similar low micromolar affinity. Moreover, we further demonstrated that these molecules significantly inhibited the SARS-CoV-2 replication in cell-based assays at concentrations not causing cytotoxicity. Furthermore, NSC111552 significantly synergized with known SARS-CoV-2 drugs including nirmatrelvir and remdesivir. Finally, docking suggested that these molecules bind specifically to the SAM-binding site on the NSP14 MTase. Overall, these molecules represent novel and promising candidates to further develop broad-spectrum inhibitors for the management of viral infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Xiangmeng Wu
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Tyler Brown
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Wei Wang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Y. George Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Yin Chen
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, AZ, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson, AZ, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
25
|
Schindewolf C, Menachery VD. Coronavirus 2'-O-methyltransferase: A promising therapeutic target. Virus Res 2023; 336:199211. [PMID: 37634741 PMCID: PMC10485632 DOI: 10.1016/j.virusres.2023.199211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Coronaviruses (CoVs) have been the source of multiple epidemics and a global pandemic since the start of century, and there is an urgent need to understand CoV biology and develop better therapeutics. Here, we review the role of NSP16 in CoV replication, specifically its importance to 2'-O-methylation and CoV RNA capping. We describe the attenuation phenotypes of NSP16-mutant CoVs, the roles of MDA5 and IFITs in sensing and antagonizing viral RNA lacking 2'O methylation, and the dependence on 2'-O-methylation in other virus families. We also detail the growing body of research into targeting 2'-O-methylation for therapeutics or as a platform for live attenuated vaccines. Beyond its role in RNA capping, NSP16 may have yet uncharacterized importance to CoV replication, highlighting the need for continued studies into NSP16 functions. Understanding the full contribution of NSP16 to the replicative fitness of CoVs will better inform the development of treatments against future CoV outbreaks.
Collapse
Affiliation(s)
- Craig Schindewolf
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Vineet D Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA; World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
26
|
Chen H, Lin S, Yang F, Chen Z, Guo L, Yang J, Lin X, Wang L, Duan Y, Wen A, Zhang X, Dai Y, Yin K, Yuan X, Yu C, He Y, He B, Cao Y, Dong H, Li J, Zhao Q, Liu Q, Lu G. Structural and functional basis of low-affinity SAM/SAH-binding in the conserved MTase of the multi-segmented Alongshan virus distantly related to canonical unsegmented flaviviruses. PLoS Pathog 2023; 19:e1011694. [PMID: 37831643 PMCID: PMC10575543 DOI: 10.1371/journal.ppat.1011694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Alongshan virus (ALSV), a newly discovered member of unclassified Flaviviridae family, is able to infect humans. ALSV has a multi-segmented genome organization and is evolutionarily distant from canonical mono-segmented flaviviruses. The virus-encoded methyltransferase (MTase) plays an important role in viral replication. Here we show that ALSV MTase readily binds S-adenosyl-L-methionine (SAM) and S-adenosyl-L-homocysteine (SAH) but exhibits significantly lower affinities than canonical flaviviral MTases. Structures of ALSV MTase in the free and SAM/SAH-bound forms reveal that the viral enzyme possesses a unique loop-element lining side-wall of the SAM/SAH-binding pocket. While the equivalent loop in flaviviral MTases half-covers SAM/SAH, contributing multiple hydrogen-bond interactions; the pocket-lining loop of ALSV MTase is of short-length and high-flexibility, devoid of any physical contacts with SAM/SAH. Subsequent mutagenesis data further corroborate such structural difference affecting SAM/SAH-binding. Finally, we also report the structure of ALSV MTase bound with sinefungin, an SAM-analogue MTase inhibitor. These data have delineated the basis for the low-affinity interaction between ALSV MTase and SAM/SAH and should inform on antiviral drug design.
Collapse
Affiliation(s)
- Hua Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xi Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Duan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ao Wen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yushan Dai
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Keqing Yin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chongzhang Yu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yarong He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan, China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Quan Liu
- Center of Infectious diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, State Key Laboratory of Zoonotic Diseases, Changchun, Jilin, China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
27
|
Mensah IK, Norvil AB, He M, Lendy E, Hjortland N, Tan H, Pomerantz RT, Mesecar A, Gowher H. Development of a sensitive microplate assay for characterizing RNA methyltransferase activity: Implications for epitranscriptomics and drug development. J Biol Chem 2023; 299:105257. [PMID: 37716702 PMCID: PMC10582764 DOI: 10.1016/j.jbc.2023.105257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
RNA methylation is a ubiquitous post-transcriptional modification found in diverse RNA classes and is a critical regulator of gene expression. In this study, we used Zika virus RNA methyltransferase (MTase) to develop a highly sensitive microplate assay that uses a biotinylated RNA substrate and radiolabeled AdoMet coenzyme. The assay is fast, highly reproducible, exhibits linear progress-curve kinetics under multiple turnover conditions, has high sensitivity in competitive inhibition assays, and significantly lower background levels compared with the currently used method. Using our newly developed microplate assay, we observed no significant difference in the catalytic constants of the full-length nonstructural protein 5 enzyme and the truncated MTase domain. These data suggest that, unlike the Zika virus RNA-dependent RNA polymerase activity, the MTase activity is unaffected by RNA-dependent RNA polymerase-MTase interdomain interaction. Given its quantitative nature and accuracy, this method can be used to characterize various RNA MTases, and, therefore, significantly contribute to the field of epitranscriptomics and drug development against infectious diseases.
Collapse
Affiliation(s)
- Isaiah K Mensah
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Allison B Norvil
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Ming He
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Emma Lendy
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Nicole Hjortland
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Hern Tan
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Richard T Pomerantz
- Department Biochemistry and Molecular Biology, Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, Pennsylvania, USA
| | - Andrew Mesecar
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Humaira Gowher
- Department of Biochemistry, Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
28
|
Zhou P, Ma B, Gao Y, Xu Y, Li Z, Jin H, Luo R. Epidemiology, genetic diversity, and evolutionary dynamics of Tembusu virus. Arch Virol 2023; 168:262. [PMID: 37773423 DOI: 10.1007/s00705-023-05885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/02/2023] [Indexed: 10/01/2023]
Abstract
Tembusu virus (TMUV) is an emerging pathogenic flavivirus associated with acute egg-drop and fatal encephalitis in domestic waterfowl. Since its initial identification in mosquitoes in 1955, TMUV has been confirmed to infect ducks, pigeons, sparrows, geese, and chickens, posing a significant threat to the poultry industry. Here, we sequenced two DTMUV strains isolated in 2019 and systematically investigated the possible origin, genetic relationships, evolutionary dynamics, and transmission patterns of TMUV based on complete virus genome sequences in the public database. We found that TMUV can be divided into four major clusters: TMUV, cluster 1, cluster 2, and cluster 3. Interestingly, we found that cluster 2.2 (within cluster 2) is the most commonly involved in interspecies transmission events, and subcluster 2.1.2 (within cluster 2.1) is currently the most prevalent cluster circulating in Asia. Notably, we also identified three positively selected sites in the E and NS1 proteins, which may be involved in virus replication, immune evasion, and host adaptation. Finally, phylogeographic analysis revealed that cluster dispersal originated in Southeast Asia and that short-distance transmission events have occurred frequently. Altogether, these data provide novel insights into the evolution and dispersal of TMUV, facilitating the development of rapid diagnostics, vaccines, and therapeutics against TMUV infection.
Collapse
Affiliation(s)
- Peng Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Bin Ma
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yuan Gao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Yumin Xu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Zhuofei Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, No.1 Shizishan Road, Wuhan, 430070, Hubei, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, Hubei, China.
| |
Collapse
|
29
|
Diani E, Lagni A, Lotti V, Tonon E, Cecchetto R, Gibellini D. Vector-Transmitted Flaviviruses: An Antiviral Molecules Overview. Microorganisms 2023; 11:2427. [PMID: 37894085 PMCID: PMC10608811 DOI: 10.3390/microorganisms11102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Flaviviruses cause numerous pathologies in humans across a broad clinical spectrum with potentially severe clinical manifestations, including hemorrhagic and neurological disorders. Among human flaviviruses, some viral proteins show high conservation and are good candidates as targets for drug design. From an epidemiological point of view, flaviviruses cause more than 400 million cases of infection worldwide each year. In particular, the Yellow Fever, dengue, West Nile, and Zika viruses have high morbidity and mortality-about an estimated 20,000 deaths per year. As they depend on human vectors, they have expanded their geographical range in recent years due to altered climatic and social conditions. Despite these epidemiological and clinical premises, there are limited antiviral treatments for these infections. In this review, we describe the major compounds that are currently under evaluation for the treatment of flavivirus infections and the challenges faced during clinical trials, outlining their mechanisms of action in order to present an overview of ongoing studies. According to our review, the absence of approved antivirals for flaviviruses led to in vitro and in vivo experiments aimed at identifying compounds that can interfere with one or more viral cycle steps. Still, the currently unavailability of approved antivirals poses a significant public health issue.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Anna Lagni
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Virginia Lotti
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
| | - Emil Tonon
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Riccardo Cecchetto
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| | - Davide Gibellini
- Department of Diagnostic and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (A.L.); (V.L.); (R.C.)
- Unit of Microbiology, Azienda Ospedaliera Universitaria Integrata Verona, 37134 Verona, Italy;
| |
Collapse
|
30
|
Shukla D, Alanazi AM, Panda SP, Dwivedi VD, Kamal MA. Unveiling the antiviral potential of Plant compounds from the Meliaceae family against the Zika virus through QSAR modeling and MD simulation analysis. J Biomol Struct Dyn 2023; 42:11064-11079. [PMID: 37728536 DOI: 10.1080/07391102.2023.2259498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Zika virus (ZIKV) is a flavivirus transmitted by mosquitoes, causing neurological disorders and congenital malformations. RNA-dependent RNA polymerase (RdRp) is one of its essential enzymes and a promising drug target for antiviral therapy due to its involvement in the growth and multiplication of the virus. In this study, we conducted a QSAR-based chemical library screening from the Meliaceae family to identify potential RdRp inhibitors. The QSAR model was built using the known inhibitors of RdRp NS5 of ZIKV and their biological activity (EC50), along with the structural and chemical characteristics of the compounds. The top two hit compounds were selected from QSAR screening for further analysis using molecular docking to evaluate their binding energies and intermolecular interactions with RdRp, including the critical residue Trp485. Furthermore, molecular dynamics (MD) simulations were performed to evaluate their binding stability and flexibility upon binding to RdRp. The MD results showed that the selected compounds formed stable complexes with RdRp, and their binding interactions were similar to those observed for the native ligand. The binding energies of the top two hits (-8.6 and -7.7 kcal/mole) were comparable to those of previously reported ZIKV RdRp inhibitors (-8.9 kcal/mole). The compound IMPHY009135 showed the strongest binding affinity with RdRp, forming multiple hydrogen bonds and hydrophobic interactions with key residues. However, compound IMPHY009276 showed the most stable and consistent RMSD, which was similar to the native ligand. Our findings suggest that IMPHY009135 and IMPHY009276 are potential lead compounds for developing novel antiviral agents against ZIKV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Divyanshi Shukla
- Department of Chemistry, Lajpat Rai PG College, Sahibabad, Ghaziabad, India
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar, India
| | - Vivek Dhar Dwivedi
- Computational Chemistry & Drug Discovery Division, Quanta Calculus, Greater Noida, India
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Thandalam, Tamil Nadu, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Enzymoics, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| |
Collapse
|
31
|
Wu JS, Kan JY, Lai HC, Lin CW. Development of Zika Virus Mini-Replicon Based Single-Round Infectious Particles as Gene Delivery Vehicles. Viruses 2023; 15:1762. [PMID: 37632104 PMCID: PMC10459639 DOI: 10.3390/v15081762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Zika virus (ZIKV) is a type of RNA virus that belongs to the Flaviviridae family. We have reported the construction of a DNA-launched replicon of the Asian-lineage Natal RGN strain and the production of single-round infectious particles (SRIPs) via the combination of prM/E virus-like particles with the replicon. The main objective of the study was to engineer the ZIKV replicon as mammalian expression vectors and evaluate the potential of ZIKV mini-replicon-based SRIPs as delivery vehicles for heterologous gene expression in vitro and in vivo. The mini-replicons contained various genetic elements, including NS4B, an NS5 methyltransferase (MTase) domain, and an NS5 RNA-dependent RNA polymerase (RdRp) domain. Among these mini-replicons, only ZIKV mini-replicons 2 and 3, which contained the full NS5 and NS4B-NS5 genetic elements, respectively, exhibited the expression of reporters (green fluorescent protein (GFP) and cyan fluorescent protein-yellow fluorescent fusion protein (CYP)) and generated self-replicating RNAs. When the mini-replicons were transfected into the cells expressing ZIKV prM/E, this led to the production of ZIKV mini-replicon-based SRIPs. ZIKV mini-replicon 3 SRIPs showed a significantly higher yield titer and a greater abundance of self-replicating replicon RNAs when compared to ZIKV mini-replicon 2 SRIPs. Additionally, there were disparities in the dynamics of CYP expression and cytotoxic effects observed in various infected cell types between ZIKV mini-replicon 2-CYP and 3-CYP SRIPs. In particular, ZIKV mini-replicon 3-CYP SRIPs led to a substantial decrease in the survival rates of infected cells at a MOI of 2. An in vivo gene expression assay indicated that hACE2 expression was detected in the lung and brain tissues of mice following the intravenous administration of ZIKV mini-replicon 3-hACE2 SRIPs. Overall, this study highlights the potential of ZIKV mini-replicon-based SRIPs as promising vehicles for gene delivery applications in vitro and in vivo.
Collapse
Affiliation(s)
- Joh-Sin Wu
- The PhD Program for Health Science and Industry, China Medical University, Taichung 404333, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404333, Taiwan;
| | - Ju-Ying Kan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404333, Taiwan;
- The PhD Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan
| | - Hsueh-Chou Lai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Cheng-Wen Lin
- The PhD Program for Health Science and Industry, China Medical University, Taichung 404333, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 404333, Taiwan;
- The PhD Program of Biotechnology and Biomedical Industry, China Medical University, Taichung 404333, Taiwan
- Drug Development Center, China Medical University, Taichung 404333, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan
| |
Collapse
|
32
|
Samrat SK, Bashir Q, Huang Y, Trieshmann CW, Tharappel AM, Zhang R, Chen K, Geoge Zheng Y, Li Z, Li H. Broad-Spectrum Small-Molecule Inhibitors Targeting the SAM-Binding Site of Flavivirus NS5 Methyltransferase. ACS Infect Dis 2023; 9:1319-1333. [PMID: 37348028 PMCID: PMC10436986 DOI: 10.1021/acsinfecdis.2c00571] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Flavivirus infections, such as those caused by dengue virus (DENV), West Nile virus (WNV), yellow fever virus (YFV), and Zika virus (ZIKV), pose a rising threat to global health. There are no FDA-approved drugs for flaviviruses, although a small number of flaviviruses have vaccines. For flaviviruses or unknown viruses that may appear in the future, it is particularly desirable to identify broad-spectrum inhibitors. The NS5 protein is regarded as one of the most promising flavivirus drug targets because it is conserved across flaviviruses. In this study, we used FL-NAH, a fluorescent analog of the methyl donor S-adenosyl methionine (SAM), to develop a fluorescence polarization (FP)-based high throughput screening (HTS) assay to specifically target methyltransferase (MTase), a vital enzyme for flaviviruses that methylates the N7 and 2'-O positions of the viral 5'-RNA cap. Pilot screening identified two candidate MTase inhibitors, NSC 111552 and 288387. The two compounds inhibited the FL-NAH binding to the DENV3 MTase with low micromolar IC50. Functional assays verified the inhibitory potency of these molecules for the flavivirus MTase activity. Binding studies indicated that these molecules are bound directly to the DENV3 MTase with similar low micromolar affinity. Furthermore, we showed that these compounds greatly reduced ZIKV replication in cell-based experiments at dosages that did not cause cytotoxicity. Finally, docking studies revealed that these molecules bind to the SAM-binding region on the DENV3 MTase, and further mutagenesis studies verified residues important for the binding of these compounds. Overall, these compounds are innovative and attractive candidates for the development of broad-spectrum inhibitors for the treatment of flavivirus infections.
Collapse
Affiliation(s)
- Subodh Kumar Samrat
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Qamar Bashir
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Yiding Huang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Carl William Trieshmann
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Anil Mathew Tharappel
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ran Zhang
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Ke Chen
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Y. Geoge Zheng
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, 30602, USA
| | - Zhong Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
| | - Hongmin Li
- Department of Pharmacology and Toxicology, R Ken Coit College of Pharmacy, The University of Arizona, 1703 E Mabel St, Tucson AZ, 85721-0207, USA
- Department of Chemistry and Biochemistry, College of Science & College of Medicine, The University of Arizona, Tucson AZ, 85721, USA
- The BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
33
|
Akash S, Bayıl I, Rahman MA, Mukerjee N, Maitra S, Islam MR, Rajkhowa S, Ghosh A, Al-Hussain SA, Zaki MEA, Jaiswal V, Sah S, Barboza JJ, Sah R. Target specific inhibition of West Nile virus envelope glycoprotein and methyltransferase using phytocompounds: an in silico strategy leveraging molecular docking and dynamics simulation. Front Microbiol 2023; 14:1189786. [PMID: 37455711 PMCID: PMC10338848 DOI: 10.3389/fmicb.2023.1189786] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Mosquitoes are the primary vector for West Nile virus, a flavivirus. The virus's ability to infiltrate and establish itself in increasing numbers of nations has made it a persistent threat to public health worldwide. Despite the widespread occurrence of this potentially fatal disease, no effective treatment options are currently on the market. As a result, there is an immediate need for the research and development of novel pharmaceuticals. To begin, molecular docking was performed on two possible West Nile virus target proteins using a panel of twelve natural chemicals, including Apigenin, Resveratrol, Hesperetin, Fungisterol, Lucidone, Ganoderic acid, Curcumin, Kaempferol, Cholic acid, Chlorogenic acid, Pinocembrin, and Sanguinarine. West Nile virus methyltransferase (PDB ID: 2OY0) binding affinities varied from -7.4 to -8.3 kcal/mol, whereas West Nile virus envelope glycoprotein affinities ranged from -6.2 to -8.1 kcal/mol (PDB ID: 2I69). Second, substances with larger molecular weights are less likely to be unhappy with the Lipinski rule. Hence, additional research was carried out without regard to molecular weight. In addition, compounds 01, 02, 03, 05, 06, 07, 08, 09, 10 and 11 are more soluble in water than compound 04 is. Besides, based on maximum binding affinity, best three compounds (Apigenin, Curcumin, and Ganoderic Acid) has been carried out molecular dynamic simulation (MDs) at 100 ns to determine their stability. The MDs data is also reported that these mentioned molecules are highly stable. Finally, advanced principal component analysis (PCA), dynamics cross-correlation matrices (DCCM) analysis, binding free energy and dynamic cross correlation matrix (DCCM) theoretical study is also included to established mentioned phytochemical as a potential drug candidate. Research has indicated that the aforementioned natural substances may be an effective tool in the battle against the dangerous West Nile virus. This study aims to locate a bioactive natural component that might be used as a pharmaceutical.
Collapse
Affiliation(s)
- Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Imren Bayıl
- Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Türkiye
| | | | - Nobendu Mukerjee
- Department of Microbiology, West Bengal State University, Kolkata, West Bengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, NSW, Australia
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, West Bengal, India
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh, Assam, India
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Gwahati, Assam, India
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Vikash Jaiswal
- Department of Cardiovascular Research, Larkin Community Hospital, South Miami, FL, United States
| | - Sanjit Sah
- Global Consortium for Public Health and Research, Datta Meghe Institute of Higher Education and Research, Jawaharlal Nehru Medical College, Wardha, India
- SR Sanjeevani Hospital, Kayanpur, Siraha, Nepal
| | | | - Ranjit Sah
- Tribhuvan University Teaching Hospital, Institute of Medicine, Kathmandu, Nepal
- Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
34
|
Wu X, Huang S, Wang M, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Zhang S, Huang J, Ou X, Zhang L, Liu Y, Yu Y, Gao Q, Mao S, Sun D, Tian B, Yin Z, Jing B, Cheng A, Jia R. A novel live attenuated duck Tembusu virus vaccine targeting N7 methyltransferase protects ducklings against pathogenic strains. Vet Res 2023; 54:47. [PMID: 37308988 DOI: 10.1186/s13567-023-01170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/28/2023] [Indexed: 06/14/2023] Open
Abstract
Duck Tembusu virus (DTMUV), an emerging pathogenic flavivirus, causes markedly decreased egg production in laying duck and neurological dysfunction and death in ducklings. Vaccination is currently the most effective means for prevention and control of DTMUV. In previous study, we have found that methyltransferase (MTase) defective DTMUV is attenuated and induces a higher innate immunity. However, it is not clear whether MTase-deficient DTMUV can be used as a live attenuated vaccine (LAV). In this study, we investigated the immunogenicity and immunoprotection of N7-MTase defective recombinant DTMUV K61A, K182A and E218A in ducklings. These three mutants were highly attenuated in both virulence and proliferation in ducklings but still immunogenic. Furthermore, a single-dose immunization with K61A, K182A or E218A could induce robust T cell responses and humoral immune responses, which could protect ducks from the challenge of a lethal-dose of DTMUV-CQW1. Together, this study provides an ideal strategy to design LAVs for DTMUV by targeting N7-MTase without changing the antigen composition. This attenuated strategy targeting N7-MTase may apply to other flaviviruses.
Collapse
Affiliation(s)
- Xuedong Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shanzhi Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Ling Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunya Liu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Yu
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, 611130, China.
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|
35
|
van Bree JW, Visser I, Duyvestyn JM, Aguilar-Bretones M, Marshall EM, van Hemert MJ, Pijlman GP, van Nierop GP, Kikkert M, Rockx BH, Miesen P, Fros JJ. Novel approaches for the rapid development of rationally designed arbovirus vaccines. One Health 2023; 16:100565. [PMID: 37363258 PMCID: PMC10288159 DOI: 10.1016/j.onehlt.2023.100565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 06/28/2023] Open
Abstract
Vector-borne diseases, including those transmitted by mosquitoes, account for more than 17% of infectious diseases worldwide. This number is expected to rise with an increased spread of vector mosquitoes and viruses due to climate change and man-made alterations to ecosystems. Among the most common, medically relevant mosquito-borne infections are those caused by arthropod-borne viruses (arboviruses), especially members of the genera Flavivirus and Alphavirus. Arbovirus infections can cause severe disease in humans, livestock and wildlife. Severe consequences from infections include congenital malformations as well as arthritogenic, haemorrhagic or neuroinvasive disease. Inactivated or live-attenuated vaccines (LAVs) are available for a small number of arboviruses; however there are no licensed vaccines for the majority of these infections. Here we discuss recent developments in pan-arbovirus LAV approaches, from site-directed attenuation strategies targeting conserved determinants of virulence to universal strategies that utilize genome-wide re-coding of viral genomes. In addition to these approaches, we discuss novel strategies targeting mosquito saliva proteins that play an important role in virus transmission and pathogenesis in vertebrate hosts. For rapid pre-clinical evaluations of novel arbovirus vaccine candidates, representative in vitro and in vivo experimental systems are required to assess the desired specific immune responses. Here we discuss promising models to study attenuation of neuroinvasion, neurovirulence and virus transmission, as well as antibody induction and potential for cross-reactivity. Investigating broadly applicable vaccination strategies to target the direct interface of the vertebrate host, the mosquito vector and the viral pathogen is a prime example of a One Health strategy to tackle human and animal diseases.
Collapse
Affiliation(s)
- Joyce W.M. van Bree
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | - Imke Visser
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Jo M. Duyvestyn
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Eleanor M. Marshall
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Martijn J. van Hemert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Marjolein Kikkert
- Department of Medical Microbiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Barry H.G. Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500, HB, Nijmegen, the Netherlands
| | - Jelke J. Fros
- Laboratory of Virology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
36
|
Fiacre L, Lowenski S, Bahuon C, Dumarest M, Lambrecht B, Dridi M, Albina E, Richardson J, Zientara S, Jiménez-Clavero MÁ, Pardigon N, Gonzalez G, Lecollinet S. Evaluation of NS4A, NS4B, NS5 and 3'UTR Genetic Determinants of WNV Lineage 1 Virulence in Birds and Mammals. Viruses 2023; 15:v15051094. [PMID: 37243180 DOI: 10.3390/v15051094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
West Nile virus (WNV) is amplified in an enzootic cycle involving birds as amplifying hosts. Because they do not develop high levels of viremia, humans and horses are considered to be dead-end hosts. Mosquitoes, especially from the Culex genus, are vectors responsible for transmission between hosts. Consequently, understanding WNV epidemiology and infection requires comparative and integrated analyses in bird, mammalian, and insect hosts. So far, markers of WNV virulence have mainly been determined in mammalian model organisms (essentially mice), while data in avian models are still missing. WNV Israel 1998 (IS98) is a highly virulent strain that is closely genetically related to the strain introduced into North America in 1999, NY99 (genomic sequence homology > 99%). The latter probably entered the continent at New York City, generating the most impactful WNV outbreak ever documented in wild birds, horses, and humans. In contrast, the WNV Italy 2008 strain (IT08) induced only limited mortality in birds and mammals in Europe during the summer of 2008. To test whether genetic polymorphism between IS98 and IT08 could account for differences in disease spread and burden, we generated chimeric viruses between IS98 and IT08, focusing on the 3' end of the genome (NS4A, NS4B, NS5, and 3'UTR regions) where most of the non-synonymous mutations were detected. In vitro and in vivo comparative analyses of parental and chimeric viruses demonstrated a role for NS4A/NS4B/5'NS5 in the decreased virulence of IT08 in SPF chickens, possibly due to the NS4B-E249D mutation. Additionally, significant differences between the highly virulent strain IS98 and the other three viruses were observed in mice, implying the existence of additional molecular determinants of virulence in mammals, such as the amino acid changes NS5-V258A, NS5-N280K, NS5-A372V, and NS5-R422K. As previously shown, our work also suggests that genetic determinants of WNV virulence can be host-dependent.
Collapse
Affiliation(s)
- Lise Fiacre
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Steeve Lowenski
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Céline Bahuon
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Marine Dumarest
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | | | - Maha Dridi
- SCIENSANO, Avian Virology and Immunology, 1180 Brussels, Belgium
| | - Emmanuel Albina
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, 97170 Petit-Bourg, France
- ASTRE, CIRAD, INRAe, University of Montpellier, 34000 Montpellier, France
| | - Jennifer Richardson
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Stéphan Zientara
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Miguel-Ángel Jiménez-Clavero
- Centro de Investigación en Sanidad Animal (CISA-INIA), CSIC, Carretera Algete-El Casar s/n, 28130 Valdeolmos, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), 28001 Madrid, Spain
| | | | - Gaëlle Gonzalez
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| | - Sylvie Lecollinet
- Animal Health Laboratory, L'alimentation et L'environnement (INRAE), Institut National de Recherche pour L'agriculture, École Vétérinaire d'Alfort (ENVA), Agence Nationale de Sécurité Sanitaire de L'alimentation, de L'environnement et du Travail (ANSES), UMR Virology, 94700 Maisons-Alfort, France
| |
Collapse
|
37
|
Zhu Y, Chen S, Lurong Q, Qi Z. Recent Advances in Antivirals for Japanese Encephalitis Virus. Viruses 2023; 15:v15051033. [PMID: 37243122 DOI: 10.3390/v15051033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Culex mosquitoes are the primary vectors of the Japanese encephalitis virus (JEV). Since its discovery in 1935, Japanese encephalitis (JE), caused by JEV, has posed a significant threat to human health. Despite the widespread implementation of several JEV vaccines, the transmission chain of JEV in the natural ecosystem has not changed, and the vector of transmission cannot be eradicated. Therefore, JEV is still the focus of attention for flaviviruses. At present, there is no clinically specific drug for JE treatment. JEV infection is a complex interaction between the virus and the host cell, which is the focus of drug design and development. An overview of antivirals that target JEV elements and host factors is presented in this review. In addition, drugs that balance antiviral effects and host protection by regulating innate immunity, inflammation, apoptosis, or necrosis are reviewed to treat JE effectively.
Collapse
Affiliation(s)
- Yongzhe Zhu
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Shenglin Chen
- Department of Clinic Laboratory Diagnostics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Qilin Lurong
- Department of Geriatrics, General Hospital of Tibet Military Area Command of PLA, Lhasa 850007, China
| | - Zhongtian Qi
- Department of Microbiology, Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
38
|
Kitidee K, Samutpong A, Pakpian N, Wisitponchai T, Govitrapong P, Reiter RJ, Wongchitrat P. Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells. Sci Rep 2023; 13:6063. [PMID: 37055489 PMCID: PMC10099015 DOI: 10.1038/s41598-023-33254-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, causes high mortality rates in humans and it is the most clinically important and common cause of viral encephalitis in Asia. To date, there is no specific treatment for JEV infection. Melatonin, a neurotropic hormone, is reported to be effective in combating various bacterial and viral infections. However, the effects of melatonin on JEV infection have not yet been studied. The investigation tested the antiviral effects of melatonin against JEV infection and elucidated the possible molecular mechanisms of inhibition. Melatonin inhibited the viral production in JEV-infected SH-SY5Y cells in a time- and dose-dependent manner. Time-of-addition assays demonstrated a potent inhibitory effect of melatonin at the post-entry stage of viral replication. Molecular docking analysis revealed that melatonin negatively affected viral replication by interfering with physiological function and/or enzymatic activity of both JEV nonstructural 3 (NS3) and NS5 protein, suggesting a possible underlying mechanism of JEV replication inhibition. Moreover, treatment with melatonin reduced neuronal apoptosis and inhibited neuroinflammation induced by JEV infection. The present findings reveal a new property of melatonin as a potential molecule for the further development of anti-JEV agents and treatment of JEV infection.
Collapse
Affiliation(s)
- Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Arisara Samutpong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Nattaporn Pakpian
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Tanchanok Wisitponchai
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Prapimpun Wongchitrat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
39
|
Identification of West Nile virus RNA-dependent RNA polymerase non-nucleoside inhibitors by real-time high throughput fluorescence screening. Antiviral Res 2023; 212:105568. [PMID: 36842536 DOI: 10.1016/j.antiviral.2023.105568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
West Nile virus (WNV) is a re-emergent mosquito-borne RNA virus that causes major outbreaks of encephalitis around the world. However, there is no therapeutic treatment to struggle against WNV, and the current treatment relies on alleviating symptoms. Therefore, due to the threat virus poses to animal and human health, there is an urgent need to come up with fast strategies to identify and assess effective antiviral compounds. A relevant target when developing drugs against RNA viruses is the viral RNA-dependent RNA polymerase (RdRp), responsible for the replication of the viral genome within a host cell. RdRps are key therapeutic targets based on their specificity for RNA and their essential role in the propagation of the infection. We have developed a fluorescence-based method to measure WNV RdRp activity in a fast and reliable real-time way. Interestingly, rilpivirine has shown in our assay inhibition of the WNV RdRp activity with an IC50 value of 3.3 μM and its antiviral activity was confirmed in cell cultures. Furthermore, this method has been extended to build up a high-throughput screening platform to identify WNV polymerase inhibitors. By screening a small chemical library, novel RdRp inhibitors 1-4 have been identified. When their antiviral activity was tested against WNV in cell culture, 4 exhibited an EC50 value of 2.5 μM and a selective index of 12.3. Thus, rilpivirine shows up as an interesting candidate for repurposing against flavivirus. Moreover, the here reported method allows the rapid identification of new WNV RdRp inhibitors.
Collapse
|
40
|
Chen R, Francese R, Wang N, Li F, Sun X, Xu B, Liu J, Liu Z, Donalisio M, Lembo D, Zhou GC. Exploration of novel hexahydropyrrolo[1,2-e]imidazol-1-one derivatives as antiviral agents against ZIKV and USUV. Eur J Med Chem 2023; 248:115081. [PMID: 36623328 DOI: 10.1016/j.ejmech.2022.115081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Zika virus (ZIKV) and Usutu virus (USUV) are two emerging flaviviruses mostly transmitted by mosquitos. ZIKV is associated with microcephaly in newborns and the less-known USUV, with its reported neurotropism and its extensive spread in Europe, represents a growing concern for human health. There is still no approved vaccine or specific antiviral against ZIKV and USUV infections. The main goal of this study is to investigate the anti-ZIKV and anti-USUV activity of a new library of compounds and to preliminarily investigate the mechanism of action of the selected hit compounds in vitro. Two potent anti-ZIKV and anti-USUV agents, namely ZDL-115 and ZDL-116, were discovered, both presenting low cytotoxicity, cell-line independent antiviral activity in the low micromolar range and ability of reducing viral progeny production. The analysis of the structure-activity relationship (SAR) revealed that introduction of 2-deoxyribose to 3-arene was fundamental to enhance the solubility and improve the antiviral action. Additionally, we demonstrated that ZDL-115 and ZDL-116 are significantly active against both viruses when added on cells for at least 24 h prior to viral inoculation or immediately post-infection. The docking analysis showed that ZDL-116 could target the host vitamin D receptor (VDR) and viral proteins. Future experiments will be focused on compound modification to discover analogues that are more potent and on the clarification of the mechanism of action and the specific drug target. The discovery and the development of a novel anti-flavivirus drug will have a significant impact in a context where there are no fully effective antiviral drugs or vaccines for most flaviviruses.
Collapse
Affiliation(s)
- Ran Chen
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China
| | - Rachele Francese
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - Na Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Feng Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Xia Sun
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Bin Xu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China
| | - Jinsong Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Zhuyun Liu
- School of Pharmacy, Taizhou Polytechnic College, Taizhou, 225300, Jiangsu, China
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Turin, Italy.
| | - Guo-Chun Zhou
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, Jiangsu, China; Xitaihu Lake Industrial College, Nanjing Tech University, Changzhou, 213149, Jiangsu, China.
| |
Collapse
|
41
|
Furtado ND, de Mello IS, de Godoy AS, Noske GD, Oliva G, Canard B, Decroly E, Bonaldo MC. Amino Acid Polymorphisms on the Brazilian Strain of Yellow Fever Virus Methyltransferase Are Related to the Host's Immune Evasion Mediated by Type I Interferon. Viruses 2023; 15:191. [PMID: 36680231 PMCID: PMC9863089 DOI: 10.3390/v15010191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
Since late 2016, a yellow fever virus (YFV) variant carrying a set of nine amino acid variations has circulated in South America. Three of them were mapped on the methyltransferase (MTase) domain of viral NS5 protein. To assess whether these changes affected viral infectivity, we synthesized YFV carrying the MTase of circulating lineage as well as its isoform with the residues of the previous strains (NS5 K101R, NS5 V138I, and NS5 G173S). We observed a slight difference in viral growth properties and plaque phenotype between the two synthetic YFVs. However, the MTase polymorphisms associated with the Brazilian strain of YFV (2016-2019) confer more susceptibility to the IFN-I. In addition, in vitro MTase assay revealed that the interaction between the YFV MTase and the methyl donor molecule (SAM) is altered in the Brazilian MTase variant. Altogether, the results reported here describe that the MTase carrying the molecular signature of the Brazilian YFV circulating since 2016 might display a slight decrease in its catalytic activity but virtually no effect on viral fitness in the parameters comprised in this study. The most marked influence of these residues stands in the immune escape against the antiviral response mediated by IFN-I.
Collapse
Affiliation(s)
- Nathália Dias Furtado
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Iasmim Silva de Mello
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| | - Andre Schutzer de Godoy
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Gabriela Dias Noske
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Glaucius Oliva
- Centro de Pesquisa e Inovação em Biodiversidade e Fármacos, Instituto de Física de São Carlos-USP, São Paulo 13563-120, Brazil
| | - Bruno Canard
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Etienne Decroly
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, CNRS, UMR7257, 13009 Marseille, France
| | - Myrna C. Bonaldo
- Laboratório de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
42
|
Dong S, Xiao MZX, Liang Q. Modulation of cellular machineries by Zika virus-encoded proteins. J Med Virol 2023; 95:e28243. [PMID: 36262094 DOI: 10.1002/jmv.28243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/11/2023]
Abstract
The strain of Zika virus (ZIKV) that circulated during the 2015 epidemic in Brazil has been associated with more than 2000 cases of microcephaly from September 2015 through November 2016. The viral genome determines the biology and pathogenesis of a virus and the virus employs its own gene products to evade host immune surveillance, manipulate cellular machineries, and establish efficient replication. Therefore, understanding the functions of virus-encoded protein not only aids the knowledge of ZIKV biology but also guides the development of anti-ZIKV drugs. In this review, we focus on 10 proteins encoded by ZIKV and summarize their functions in ZIKV replication and pathogenesis according to studies published in the past 6 years.
Collapse
Affiliation(s)
- Shupeng Dong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maggie Z X Xiao
- Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Qiming Liang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
The RNA polymerase of cytoplasmically replicating Zika virus binds with chromatin DNA in nuclei and regulates host gene transcription. Proc Natl Acad Sci U S A 2022; 119:e2205013119. [PMID: 36442102 PMCID: PMC9894162 DOI: 10.1073/pnas.2205013119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Zika virus (ZIKV) targets the neural progenitor cells (NPCs) in brain during intrauterine infections and consequently causes severe neurological disorders, such as microcephaly in neonates. Although replicating in the cytoplasm, ZIKV dysregulates the expression of thousands of host genes, yet the detailed mechanism remains elusive. Herein, we report that ZIKV encodes a unique DNA-binding protein to regulate host gene transcription in the nucleus. We found that ZIKV NS5, the viral RNA polymerase, associates tightly with host chromatin DNA through its methyltransferase domain and this interaction could be specifically blocked by GTP. Further study showed that expression of ZIKV NS5 in human NPCs markedly suppressed the transcription of its target genes, especially the genes involved in neurogenesis. Mechanistically, ZIKV NS5 binds onto the gene body of its target genes and then blocks their transcriptional elongation. The utero electroporation in pregnant mice showed that NS5 expression significantly disrupts the neurogenesis by reducing the number of Sox2- and Tbr2-positive cells in the fetal cortex. Together, our findings demonstrate a molecular clue linking to the abnormal neurodevelopment caused by ZIKV infection and also provide intriguing insights into the interaction between the host cell and the pathogenic RNA virus, where the cytoplasmic RNA virus encodes a DNA-binding protein to control the transcription of host cell in the nuclei.
Collapse
|
44
|
Li R, Niu Z, Liu Y, Bai X, Wang D, Chen C. Crystal structure and cap binding analysis of the methyltransferase of langat virus. Antiviral Res 2022; 208:105459. [PMID: 36347437 DOI: 10.1016/j.antiviral.2022.105459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
Abstract
Tick-borne encephalitis virus (TBEV) is a major dangerous human pathogen, as TBEV infection can cause serious illness that can lead to irreversible neurological sequelae and even death. Langat virus (LGTV), a member of the tick-borne encephalitis virus (TBEV) serogroup, belongs to the family Flaviviridae, genus Flavivirus. Its nonstructural protein 5 (NS5) protein contains a methyltransferase (MTase) domain that can methylate RNA cap structures, which is critical for viral replication. We determined the structure of LGTV NS5 methyltransferase bound to S-adenosyl-L-homocysteine (SAH) at a 1.70 Å resolution. Sequence analysis and structural comparison of homologous MTases suggests that folds and structures are closely conserved throughout Flavivirus species and play important roles. This study provides the key structural information on LGTV MTase and the foundation for research on antiviral drugs targeting LGTV MTase.
Collapse
Affiliation(s)
- Ruixue Li
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Ziping Niu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yujie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Bai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, the Department of Physiology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Chen Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
45
|
Ferrero DS, Albentosa-González L, Mas A, Verdaguer N. Structure and function of the NS5 methyltransferase domain from Usutu virus. Antiviral Res 2022; 208:105460. [DOI: 10.1016/j.antiviral.2022.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
46
|
Li N, Rana TM. Regulation of antiviral innate immunity by chemical modification of viral RNA. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1720. [PMID: 35150188 PMCID: PMC9786758 DOI: 10.1002/wrna.1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022]
Abstract
More than 100 chemical modifications of RNA, termed the epitranscriptome, have been described, most of which occur in prokaryotic and eukaryotic ribosomal, transfer, and noncoding RNA and eukaryotic messenger RNA. DNA and RNA viruses can modify their RNA either directly via genome-encoded enzymes or by hijacking the host enzymatic machinery. Among the many RNA modifications described to date, four play particularly important roles in promoting viral infection by facilitating viral gene expression and replication and by enabling escape from the host innate immune response. Here, we discuss our current understanding of the mechanisms by which the RNA modifications such as N6 -methyladenosine (m6A), N6 ,2'-O-dimethyladenosine (m6Am), 5-methylcytidine (m5C), N4-acetylcytidine (ac4C), and 2'-O-methylation (Nm) promote viral replication and/or suppress recognition by innate sensors and downstream activation of the host antiviral response. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Na Li
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| | - Tariq M. Rana
- Division of Genetics, Department of Pediatrics, Program in ImmunologyInstitute for Genomic MedicineLa JollaCaliforniaUSA
| |
Collapse
|
47
|
Shannon A, Sama B, Gauffre P, Guez T, Debart F, Vasseur JJ, Decroly E, Canard B, Ferron F. A second type of N7-guanine RNA cap methyltransferase in an unusual locus of a large RNA virus genome. Nucleic Acids Res 2022; 50:11186-11198. [PMID: 36265859 DOI: 10.1093/nar/gkac876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/12/2022] Open
Abstract
The order Nidovirales is a diverse group of (+)RNA viruses, with a common genome organization and conserved set of replicative and editing enzymes. In particular, RNA methyltransferases play a central role in mRNA stability and immune escape. However, their presence and distribution in different Nidovirales families is not homogeneous. In Coronaviridae, the best characterized family, two distinct methytransferases perform methylation of the N7-guanine and 2'-OH of the RNA-cap to generate a cap-1 structure (m7GpppNm). The genes of both of these enzymes are located in the ORF1b genomic region. While 2'-O-MTases can be identified for most other families based on conservation of both sequence motifs and genetic loci, identification of the N7-guanine methyltransferase has proved more challenging. Recently, we identified a putative N7-MTase domain in the ORF1a region (N7-MT-1a) of certain members of the large genome Tobaniviridae family. Here, we demonstrate that this domain indeed harbors N7-specific methyltransferase activity. We present its structure as the first N7-specific Rossmann-fold (RF) MTase identified for (+)RNA viruses, making it remarkably different from that of the known Coronaviridae ORF1b N7-MTase gene. We discuss the evolutionary implications of such an appearance in this unexpected location in the genome, which introduces a split-off in the classification of Tobaniviridae.
Collapse
Affiliation(s)
- Ashleigh Shannon
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Bhawna Sama
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Pierre Gauffre
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Théo Guez
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Françoise Debart
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Etienne Decroly
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France
| | - Bruno Canard
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France.,European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - François Ferron
- Aix-Marseille Université and CNRS, Laboratoire Architecture et Fonction des Macromolécules Biologiques, UMR 7257, 13009, Marseille, France.,European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| |
Collapse
|
48
|
Flavivirus NS4B protein: Structure, function, and antiviral discovery. Antiviral Res 2022; 207:105423. [PMID: 36179934 DOI: 10.1016/j.antiviral.2022.105423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
Abstract
Infections with mosquito-borne flaviviruses, such as Dengue virus, ZIKV virus, and West Nile virus, pose significant threats to public health. Flaviviruses cause about 400 million infections each year, leading to many forms of diseases, including fatal hemorrhagic, encephalitis, congenital abnormalities, and deaths. Currently, there are no clinically approved antiviral drugs for the treatment of flavivirus infections. The non-structural protein NS4B is an emerging target for drug discovery due to its multiple roles in the flaviviral life cycle. In this review, we summarize the latest knowledge on the structure and function of flavivirus NS4B, as well as the progress on antiviral compounds that target NS4B.
Collapse
|
49
|
Berzal-Herranz A, Berzal-Herranz B, Ramos-Lorente SE, Romero-López C. The Genomic 3' UTR of Flaviviruses Is a Translation Initiation Enhancer. Int J Mol Sci 2022; 23:8604. [PMID: 35955738 PMCID: PMC9369090 DOI: 10.3390/ijms23158604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/24/2022] [Accepted: 07/31/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses rely on the cellular machinery of host cells to synthesize their proteins, and have developed different mechanisms enabling them to compete with cellular mRNAs for access to it. The genus Flavivirus is a large group of positive, single-stranded RNA viruses that includes several important human pathogens, such as West Nile, Dengue and Zika virus. The genome of flaviviruses bears a type 1 cap structure at its 5' end, needed for the main translation initiation mechanism. Several members of the genus also use a cap-independent translation mechanism. The present work provides evidence that the WNV 5' end also promotes a cap-independent translation initiation mechanism in mammalian and insect cells, reinforcing the hypothesis that this might be a general strategy of flaviviruses. In agreement with previous reports, we show that this mechanism depends on the presence of the viral genomic 3' UTR. The results also show that the 3' UTR of the WNV genome enhances translation of the cap-dependent mechanism. Interestingly, WNV 3' UTR can be replaced by the 3' UTR of other flaviviruses and the translation enhancing effect is maintained, suggesting a molecular mechanism that does not involve direct RNA-RNA interactions to be at work. In addition, the deletion of specific structural elements of the WNV 3' UTR leads to increased cap-dependent and cap-independent translation. These findings suggest the 3' UTR to be involved in a fine-tuned translation regulation mechanism.
Collapse
Affiliation(s)
| | | | | | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina “López-Neyra” (IPBLN), CSIC, PTS Granada, Avenida del Conocimiento 17, 18016 Armilla, Granada, Spain; (B.B.-H.); (S.E.R.-L.)
| |
Collapse
|
50
|
Mersinoglu B, Cristinelli S, Ciuffi A. The Impact of Epitranscriptomics on Antiviral Innate Immunity. Viruses 2022; 14:1666. [PMID: 36016289 PMCID: PMC9412694 DOI: 10.3390/v14081666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Epitranscriptomics, i.e., chemical modifications of RNA molecules, has proven to be a new layer of modulation and regulation of protein expression, asking for the revisiting of some aspects of cellular biology. At the virological level, epitranscriptomics can thus directly impact the viral life cycle itself, acting on viral or cellular proteins promoting replication, or impacting the innate antiviral response of the host cell, the latter being the focus of the present review.
Collapse
Affiliation(s)
| | | | - Angela Ciuffi
- Institute of Microbiology, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland; (B.M.); (S.C.)
| |
Collapse
|