1
|
Schmied V, Korkut-Demirbaş M, Venturino A, Maya-Arteaga JP, Siegert S. Microglia determine an immune-challenged environment and facilitate ibuprofen action in human retinal organoids. J Neuroinflammation 2025; 22:98. [PMID: 40181459 PMCID: PMC11966913 DOI: 10.1186/s12974-025-03366-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/01/2025] [Indexed: 04/05/2025] Open
Abstract
Prenatal immune challenges pose significant risks to human embryonic brain and eye development. However, our knowledge about the safe usage of anti-inflammatory drugs during pregnancy is still limited. While human induced pluripotent stem cells (hIPSC)-derived brain organoid models have started to explore functional consequences upon viral stimulation, these models commonly lack microglia, which are susceptible to and promote inflammation. Furthermore, microglia are actively involved in neuronal development. Here, we generate hIPSC-derived microglia precursor cells and assemble them into retinal organoids. Once the outer plexiform layer forms, these hIPSC-derived microglia (iMG) fully integrate into the retinal organoids. Since the ganglion cell survival declines by this time in 3D-retinal organoids, we adapted the model into 2D and identify that the improved ganglion cell number significantly decreases only with iMG presence. In parallel, we applied the immunostimulant POLY(I:C) to mimic a fetal viral infection. While POLY(I:C) exposure alters the iMG phenotype, it does not hinder their interaction with ganglion cells. Furthermore, iMG significantly enhance the supernatant's inflammatory secretome and increase retinal cell proliferation. Simultaneous exposure with the non-steroidal anti-inflammatory drug (NSAID) ibuprofen dampens POLY(I:C)-mediated changes of the iMG phenotype and ameliorates cell proliferation. Remarkably, while POLY(I:C) disrupts neuronal calcium dynamics independent of iMG, ibuprofen rescues this effect only if iMG are present. Mechanistically, ibuprofen targets the enzymes cyclooxygenase 1 and 2 (COX1/PTGS1 and COX2/PTGS2) simultaneously, from which iMG mainly express COX1. Selective COX1 blockage fails to restore the calcium peak amplitude upon POLY(I:C) stimulation, suggesting ibuprofen's beneficial effect depends on the presence and interplay of COX1 and COX2. These findings underscore the importance of microglia in the context of prenatal immune challenges and provide insight into the mechanisms by which ibuprofen exerts its protective effects during embryonic development.
Collapse
Affiliation(s)
- Verena Schmied
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Medina Korkut-Demirbaş
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Alessandro Venturino
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Juan Pablo Maya-Arteaga
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Sandra Siegert
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
2
|
Xu Y, Bai X, Lin J, Lu K, Weng S, Wu Y, Liu S, Li H, Wu Z, Chen G, Li W. Intracranial AAV administration dose-dependently recruits B cells to inhibit the AAV redosing. Mol Ther Methods Clin Dev 2025; 33:101420. [PMID: 40034424 PMCID: PMC11874542 DOI: 10.1016/j.omtm.2025.101420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/22/2025] [Indexed: 03/05/2025]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, a limitation of AAV-mediated gene therapy is that patients are typically dosed only once. In this study, we investigated the possibility of delivering multiple rounds of AAV through intracerebral injections in the mouse brain, and discovered a dose-dependent modulation of the second administration by the first-round AAV injection in a brain-wide scale. High-dose AAV injection increased chemokines CXCL9 and CXCL10 to recruit parenchymal infiltration of lymphocytes, whereas the blood-brain-barrier was relatively intact. Brain-wide dissection discovered the likely routes of the infiltrated lymphocytes through perivascular space and ventricles. Further analysis revealed that B lymphocytes played a critical role in inhibiting the redose. Choosing the right dosage for the first injection or switching the second AAV to a different serotype provided an effective way to antagonize the first-round AAV inhibition. Together, these results suggest that mammalian brains are not immunoprivileged for AAV infection, but multiple rounds of AAV gene therapy are feasible if designed carefully with proper doses and serotypes.
Collapse
Affiliation(s)
- Yuge Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Xiaoni Bai
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Jianhua Lin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Kang Lu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Shihan Weng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Yiying Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Shanggong Liu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Houlin Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
| | - Zheng Wu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| | - Gong Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| | - Wen Li
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Jinan University, Guangzhou, China
- Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-Human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Pachner AR, Pike S, Smith AD, Gilli F. CXCL13 as a Biomarker: Background and Utility in Multiple Sclerosis. Biomolecules 2024; 14:1541. [PMID: 39766248 PMCID: PMC11673926 DOI: 10.3390/biom14121541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
CXCL13 is a chemokine which is upregulated within the CNS in multiple sclerosis, Lyme neuroborreliosis, and other inflammatory diseases and is increasingly clinically useful as a biomarker. This review provides background for understanding its function in the immune system and its relationship to ectopic lymphoid follicles. Also reviewed are its utility in multiple sclerosis and Lyme neuroborreliosis and potential problems in its measurement. CXCL13 has the potential to be an exceptionally useful biomarker in a range of inflammatory diseases.
Collapse
Affiliation(s)
- Andrew R. Pachner
- Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, USA (A.D.S.); (F.G.)
| | | | | | | |
Collapse
|
4
|
Fisher TM, Liddelow SA. Emerging roles of astrocytes as immune effectors in the central nervous system. Trends Immunol 2024; 45:824-836. [PMID: 39332912 DOI: 10.1016/j.it.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024]
Abstract
The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.
Collapse
Affiliation(s)
- Theodore M Fisher
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA.
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Govaerts J, Van Breedam E, De Beuckeleer S, Goethals C, D'Incal CP, Di Stefano J, Van Calster S, Buyle-Huybrecht T, Boeren M, De Reu H, Paludan SR, Thiry M, Lebrun M, Sadzot-Delvaux C, Motaln H, Rogelj B, Van Weyenbergh J, De Vos WH, Vanden Berghe W, Ogunjimi B, Delputte P, Ponsaerts P. Varicella-zoster virus recapitulates its immune evasive behaviour in matured hiPSC-derived neurospheroids. Front Immunol 2024; 15:1458967. [PMID: 39351233 PMCID: PMC11439716 DOI: 10.3389/fimmu.2024.1458967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024] Open
Abstract
Varicella-zoster virus (VZV) encephalitis and meningitis are potential central nervous system (CNS) complications following primary VZV infection or reactivation. With Type-I interferon (IFN) signalling being an important first line cellular defence mechanism against VZV infection by the peripheral tissues, we here investigated the triggering of innate immune responses in a human neural-like environment. For this, we established and characterised 5-month matured hiPSC-derived neurospheroids (NSPHs) containing neurons and astrocytes. Subsequently, NSPHs were infected with reporter strains of VZV (VZVeGFP-ORF23) or Sendai virus (SeVeGFP), with the latter serving as an immune-activating positive control. Live cell and immunocytochemical analyses demonstrated VZVeGFP-ORF23 infection throughout the NSPHs, while SeVeGFP infection was limited to the outer NSPH border. Next, NanoString digital transcriptomics revealed that SeVeGFP-infected NSPHs activated a clear Type-I IFN response, while this was not the case in VZVeGFP-ORF23-infected NSPHs. Moreover, the latter displayed a strong suppression of genes related to IFN signalling and antigen presentation, as further demonstrated by suppression of IL-6 and CXCL10 production, failure to upregulate Type-I IFN activated anti-viral proteins (Mx1, IFIT2 and ISG15), as well as reduced expression of CD74, a key-protein in the MHC class II antigen presentation pathway. Finally, even though VZVeGFP-ORF23-infection seems to be immunologically ignored in NSPHs, its presence does result in the formation of stress granules upon long-term infection, as well as disruption of cellular integrity within the infected NSPHs. Concluding, in this study we demonstrate that 5-month matured hiPSC-derived NSPHs display functional innate immune reactivity towards SeV infection, and have the capacity to recapitulate the strong immune evasive behaviour towards VZV.
Collapse
Affiliation(s)
- Jonas Govaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Sarah De Beuckeleer
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Charlotte Goethals
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Claudio Peter D'Incal
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julia Di Stefano
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Siebe Van Calster
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Tamariche Buyle-Huybrecht
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Marlies Boeren
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Marc Thiry
- Laboratory of Cell and Tissue Biology, GIGA-Neurosciences, Cell Biology L3, University of Liège, Liege, Belgium
| | - Marielle Lebrun
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Catherine Sadzot-Delvaux
- Laboratory of Virology and Immunology, GIGA-Infection, Inflammation and Immunity, University of Liège, Liège, Belgium
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling - Epigenetics Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Benson Ogunjimi
- Antwerp Center for Translational Immunology and Virology (ACTIV), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Antwerp Unit for Data Analysis and Computation in Immunology and Sequencing (AUDACIS), Antwerp, Belgium
- Centre for Health Economics Research and Modelling Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Department of Paediatrics, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Antwerp, Belgium
- Infla-Med, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology (LEH), Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Antwerp, Belgium
- Flow Cytometry and Cell Sorting Core Facility (FACSUA), University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Gavazzi F, Gonzalez CD, Arnold K, Swantkowski M, Charlton L, Modesti N, Dar AA, Vanderver A, Bennett M, Adang LA. Nucleotide metabolism, leukodystrophies, and CNS pathology. J Inherit Metab Dis 2024; 47:860-875. [PMID: 38421058 PMCID: PMC11358362 DOI: 10.1002/jimd.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The balance between a protective and a destructive immune response can be precarious, as exemplified by inborn errors in nucleotide metabolism. This class of inherited disorders, which mimics infection, can result in systemic injury and severe neurologic outcomes. The most common of these disorders is Aicardi Goutières syndrome (AGS). AGS results in a phenotype similar to "TORCH" infections (Toxoplasma gondii, Other [Zika virus (ZIKV), human immunodeficiency virus (HIV)], Rubella virus, human Cytomegalovirus [HCMV], and Herpesviruses), but with sustained inflammation and ongoing potential for complications. AGS was first described in the early 1980s as familial clusters of "TORCH" infections, with severe neurology impairment, microcephaly, and basal ganglia calcifications (Aicardi & Goutières, Ann Neurol, 1984;15:49-54) and was associated with chronic cerebrospinal fluid (CSF) lymphocytosis and elevated type I interferon levels (Goutières et al., Ann Neurol, 1998;44:900-907). Since its first description, the clinical spectrum of AGS has dramatically expanded from the initial cohorts of children with severe impairment to including individuals with average intelligence and mild spastic paraparesis. This broad spectrum of potential clinical manifestations can result in a delayed diagnosis, which families cite as a major stressor. Additionally, a timely diagnosis is increasingly critical with emerging therapies targeting the interferon signaling pathway. Despite the many gains in understanding about AGS, there are still many gaps in our understanding of the cell-type drivers of pathology and characterization of modifying variables that influence clinical outcomes and achievement of timely diagnosis.
Collapse
Affiliation(s)
- Francesco Gavazzi
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | - Kaley Arnold
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Meghan Swantkowski
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Lauren Charlton
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Nicholson Modesti
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Asif A. Dar
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Adeline Vanderver
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mariko Bennett
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura A. Adang
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Syage AR, Pachow C, Murray KM, Henningfield C, Fernandez K, Du A, Cheng Y, Olivarria G, Kawauchi S, MacGregor GR, Green KN, Lane TE. Cystatin F attenuates neuroinflammation and demyelination following murine coronavirus infection of the central nervous system. J Neuroinflammation 2024; 21:157. [PMID: 38879499 PMCID: PMC11179388 DOI: 10.1186/s12974-024-03153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/12/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Collin Pachow
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kaitlin M Murray
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Caden Henningfield
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Kellie Fernandez
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Annie Du
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Yuting Cheng
- Department of Molecular Biology & Biochemistry, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Gema Olivarria
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Shimako Kawauchi
- Transgenic Mouse Facility, ULAR, Office of Research, University of California, Irvine, 92697, USA
| | - Grant R MacGregor
- Department of Developmental & Cell Biology, University of California, Irvine, 92697, USA
| | - Kim N Green
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA
| | - Thomas E Lane
- Department of Neurobiology & Behavior, School of Biological Sciences, University of California, Irvine, 92697, USA.
- Center for Virus Research, University of California, Irvine, 92697, USA.
| |
Collapse
|
8
|
Welsh N, Disano K, Linzey M, Pike SC, Smith AD, Pachner AR, Gilli F. CXCL10/IgG1 Axis in Multiple Sclerosis as a Potential Predictive Biomarker of Disease Activity. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200200. [PMID: 38346270 DOI: 10.1212/nxi.0000000000200200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/16/2023] [Indexed: 02/15/2024]
Abstract
BACKGROUND AND OBJECTIVES Multiple sclerosis (MS) is a heterogeneous disease, and its course is difficult to predict. Prediction models can be established by measuring intrathecally synthesized proteins involved in inflammation, glial activation, and CNS injury. METHODS To determine how these intrathecal proteins relate to the short-term, i.e., 12 months, disease activity in relapsing-remitting MS (RRMS), we measured the intrathecal synthesis of 46 inflammatory mediators and 14 CNS injury or glial activation markers in matched serum and CSF samples from 47 patients with MS (pwMS), i.e., 23 RRMS and 24 clinically isolated syndrome (CIS), undergoing diagnostic lumbar puncture. Subsequently, all pwMS were followed for ≥12 months in a retrospective follow-up study and ultimately classified into "active", i.e., developing clinical and/or radiologic disease activity, n = 18) or "nonactive", i.e., not having disease activity, n = 29. Disease activity in patients with CIS corresponded to conversion to RRMS. Thus, patients with CIS were subclassified as "converters" or "nonconverters" based on their conversion status at the end of a 12-month follow-up. Twenty-seven patients with noninflammatory neurologic diseases were included as negative controls. Data were subjected to differential expression analysis and modeling techniques to define the connectivity arrangement (network) between neuroinflammation and CNS injury relevant to short-term disease activity in RRMS. RESULTS Lower age and/or higher CXCL13 levels positively distinguished active/converting vs nonactive/nonconverting patients. Network analysis significantly improved the prediction of short-term disease activity because active/converting patients featured a stronger positive connection between IgG1 and CXCL10. Accordingly, analysis of disease activity-free survival demonstrated that pwMS, both RRMS and CIS, with a lower or negative IgG1-CXCL10 correlation, have a higher probability of activity-free survival than the patients with a significant correlation (p < 0.0001, HR ≥ 2.87). DISCUSSION Findings indicate that a significant IgG1-CXCL10 positive correlation predicts the risk of short-term disease activity in patients with RRMS and CIS. Thus, the present results can be used to develop a predictive model for MS activity and conversion to RRMS.
Collapse
Affiliation(s)
- Nora Welsh
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Krista Disano
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Michael Linzey
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Steven C Pike
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Andrew D Smith
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Andrew R Pachner
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| | - Francesca Gilli
- From the Integrative Neuroscience (N.W., M.L., S.C.P.), Dartmouth College, Hanover, NH; Neurology (N.W., K.D., S.C.P., A.D.S., A.R.P., F.G.), Dartmouth Hitchcock Medical Center, Lebanon, NH; and Veteran Affairs Medical Center (K.D.), White River Junction, VT
| |
Collapse
|
9
|
Zhang Z, Zhu Z, Zuo X, Wang X, Ju C, Liang Z, Li K, Zhang J, Luo L, Ma Y, Song Z, Li X, Li P, Quan H, Huang P, Yao Z, Yang N, Zhou J, Kou Z, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation reduces neuropathic pain after spinal cord injury by downregulating CXCL10 expression. CNS Neurosci Ther 2023; 29:3995-4017. [PMID: 37475184 PMCID: PMC10651991 DOI: 10.1111/cns.14325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Many studies have recently highlighted the role of photobiomodulation (PBM) in neuropathic pain (NP) relief after spinal cord injury (SCI), suggesting that it may be an effective way to relieve NP after SCI. However, the underlying mechanisms remain unclear. This study aimed to determine the potential mechanisms of PBM in NP relief after SCI. METHODS We performed systematic observations and investigated the mechanism of PBM intervention in NP in rats after SCI. Using transcriptome sequencing, we screened CXCL10 as a possible target molecule for PBM intervention and validated the results in rat tissues using reverse transcription-polymerase chain reaction and western blotting. Using immunofluorescence co-labeling, astrocytes and microglia were identified as the cells responsible for CXCL10 expression. The involvement of the NF-κB pathway in CXCL10 expression was verified using inhibitor pyrrolidine dithiocarbamate (PDTC) and agonist phorbol-12-myristate-13-acetate (PMA), which were further validated by an in vivo injection experiment. RESULTS Here, we demonstrated that PBM therapy led to an improvement in NP relative behaviors post-SCI, inhibited the activation of microglia and astrocytes, and decreased the expression level of CXCL10 in glial cells, which was accompanied by mediation of the NF-κB signaling pathway. Photobiomodulation inhibit the activation of the NF-κB pathway and reduce downstream CXCL10 expression. The NF-κB pathway inhibitor PDTC had the same effect as PBM on improving pain in animals with SCI, and the NF-κB pathway promoter PMA could reverse the beneficial effect of PBM. CONCLUSIONS Our results provide new insights into the mechanisms by which PBM alleviates NP after SCI. We demonstrated that PBM significantly inhibited the activation of microglia and astrocytes and decreased the expression level of CXCL10. These effects appear to be related to the NF-κB signaling pathway. Taken together, our study provides evidence that PBM could be a potentially effective therapy for NP after SCI, CXCL10 and NF-kB signaling pathways might be critical factors in pain relief mediated by PBM after SCI.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhijie Zhu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xiaoshuang Zuo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xuankang Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Cheng Ju
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhuowen Liang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Kun Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jiawei Zhang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Liang Luo
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Yangguang Ma
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhiwen Song
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xin Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
- 967 Hospital of People's Liberation Army Joint Logistic Support ForceDalianLiaoningChina
| | - Penghui Li
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Huilin Quan
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Peipei Huang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhou Yao
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Ning Yang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Jie Zhou
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhenzhen Kou
- Department of Anatomy, Histology and Embryology, School of Basic MedicineAir Force Military Medical UniversityXi'anShaanxiChina
| | - Beiyu Chen
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Tan Ding
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Zhe Wang
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| | - Xueyu Hu
- Department of OrthopedicsXijing Hospital, Air Force Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
10
|
Syage A, Pachow C, Cheng Y, Mangale V, Green KN, Lane TE. Microglia influence immune responses and restrict neurologic disease in response to central nervous system infection by a neurotropic murine coronavirus. Front Cell Neurosci 2023; 17:1291255. [PMID: 38099152 PMCID: PMC10719854 DOI: 10.3389/fncel.2023.1291255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis followed by viral persistence in white matter tracts accompanied by chronic neuroinflammation and demyelination. Microglia serve numerous functions including maintenance of the healthy central nervous system (CNS) and are among the first responders to injury or infection. More recently, studies have demonstrated that microglia aid in tailoring innate and adaptive immune responses following infection by neurotropic viruses including flaviviruses, herpesviruses, and picornaviruses. These findings have emphasized an important role for microglia in host defense against these viral pathogens. In addition, microglia are also critical in optimizing immune-mediated control of JHMV replication within the CNS while restricting the severity of demyelination and enhancing remyelination. This review will highlight our current understanding of the molecular and cellular mechanisms by which microglia aid in host defense, limit neurologic disease, and promote repair following CNS infection by a neurotropic murine coronavirus.
Collapse
Affiliation(s)
- Amber Syage
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Collin Pachow
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Yuting Cheng
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Vrushali Mangale
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Kim N. Green
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Thomas E. Lane
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
11
|
Yuan WQ, Huang WP, Jiang YC, Xu H, Duan CS, Chen NH, Liu YJ, Fu XM. The function of astrocytes and their role in neurological diseases. Eur J Neurosci 2023; 58:3932-3961. [PMID: 37831013 DOI: 10.1111/ejn.16160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/14/2023]
Abstract
Astrocytes have countless links with neurons. Previously, astrocytes were only considered a scaffold of neurons; in fact, astrocytes perform a variety of functions, including providing support for neuronal structures and energy metabolism, offering isolation and protection and influencing the formation, function and elimination of synapses. Because of these functions, astrocytes play an critical role in central nervous system (CNS) diseases. The regulation of the secretiory factors, receptors, channels and pathways of astrocytes can effectively inhibit the occurrence and development of CNS diseases, such as neuromyelitis optica (NMO), multiple sclerosis, Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease. The expression of aquaporin 4 in AS is directly related to NMO and indirectly involved in the clearance of Aβ and tau proteins in AD. Connexin 43 has a bidirectional effect on glutamate diffusion at different stages of stroke. Interestingly, astrocytes reduce the occurrence of PD through multiple effects such as secretion of related factors, mitochondrial autophagy and aquaporin 4. Therefore, this review is focused on the structure and function of astrocytes and the correlation between astrocytes and CNS diseases and drug treatment to explore the new functions of astrocytes with the astrocytes as the target. This, in turn, would provide a reference for the development of new drugs to protect neurons and promote the recovery of nerve function.
Collapse
Affiliation(s)
- Wen-Qin Yuan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Wei-Peng Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Minzu University of China, Beijing, China
| | - Yang-Chao Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hao Xu
- College of Economics and Management, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Chong-Shen Duan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying-Jiao Liu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiao-Mei Fu
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
12
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Immune Functions of Astrocytes in Viral Neuroinfections. Int J Mol Sci 2023; 24:ijms24043514. [PMID: 36834929 PMCID: PMC9960577 DOI: 10.3390/ijms24043514] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Neuroinfections of the central nervous system (CNS) can be triggered by various pathogens. Viruses are the most widespread and have the potential to induce long-term neurologic symptoms with potentially lethal outcomes. In addition to directly affecting their host cells and inducing immediate changes in a plethora of cellular processes, viral infections of the CNS also trigger an intense immune response. Regulation of the innate immune response in the CNS depends not only on microglia, which are fundamental immune cells of the CNS, but also on astrocytes. These cells align blood vessels and ventricle cavities, and consequently, they are one of the first cell types to become infected after the virus breaches the CNS. Moreover, astrocytes are increasingly recognized as a potential viral reservoir in the CNS; therefore, the immune response initiated by the presence of intracellular virus particles may have a profound effect on cellular and tissue physiology and morphology. These changes should be addressed in terms of persisting infections because they may contribute to recurring neurologic sequelae. To date, infections of astrocytes with different viruses originating from genetically distinct families, including Flaviviridae, Coronaviridae, Retroviridae, Togaviridae, Paramyxoviridae, Picomaviridae, Rhabdoviridae, and Herpesviridae, have been confirmed. Astrocytes express a plethora of receptors that detect viral particles and trigger signaling cascades, leading to an innate immune response. In this review, we summarize the current knowledge on virus receptors that initiate the release of inflammatory cytokines from astrocytes and depict the involvement of astrocytes in immune functions of the CNS.
Collapse
|
14
|
Cardani‐Boulton A, Boylan BT, Stetsenko V, Bergmann CC. B cells going viral in the CNS: Dynamics, complexities, and functions of B cells responding to viral encephalitis. Immunol Rev 2022; 311:75-89. [PMID: 35984298 PMCID: PMC9804320 DOI: 10.1111/imr.13124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A diverse number of DNA and RNA viruses have the potential to invade the central nervous system (CNS), causing inflammation and injury to cells that have a limited capacity for repair and regeneration. While rare, viral encephalitis in humans is often fatal and survivors commonly suffer from permanent neurological sequelae including seizures. Established treatment options are extremely limited, predominantly relying on vaccines, antivirals, or supportive care. Many viral CNS infections are characterized by the presence of antiviral antibodies in the cerebral spinal fluid (CSF), indicating local maintenance of protective antibody secreting cells. However, the mechanisms maintaining these humoral responses are poorly characterized. Furthermore, while both viral and autoimmune encephalitis are associated with the recruitment of diverse B cell subsets to the CNS, their protective and pathogenic roles aside from antibody production are just beginning to be understood. This review will focus on the relevance of B cell responses to viral CNS infections, with an emphasis on the importance of intrathecal immunity and the potential contribution to autoimmunity. Specifically, it will summarize the newest data characterizing B cell activation, differentiation, migration, and localization in clinical samples as well as experimental models of acute and persistent viral encephalitis.
Collapse
Affiliation(s)
| | - Brendan T. Boylan
- Cleveland Clinic Lerner Research Institute, NeuroscienceClevelandOhioUSA,Case Western Reserve University School of Medicine, PathologyClevelandOhioUSA
| | - Volodymyr Stetsenko
- Cleveland Clinic Lerner Research Institute, NeuroscienceClevelandOhioUSA,Kent State University, School of Biomedical SciencesKentOhioUSA
| | | |
Collapse
|
15
|
Humoral immune defense of the central nervous system. Curr Opin Immunol 2022; 76:102179. [DOI: 10.1016/j.coi.2022.102179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/21/2022]
|
16
|
Olude MA, Mouihate A, Mustapha OA, Farina C, Quintana FJ, Olopade JO. Astrocytes and Microglia in Stress-Induced Neuroinflammation: The African Perspective. Front Immunol 2022; 13:795089. [PMID: 35707531 PMCID: PMC9190229 DOI: 10.3389/fimmu.2022.795089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Africa is laden with a youthful population, vast mineral resources and rich fauna. However, decades of unfortunate historical, sociocultural and leadership challenges make the continent a hotspot for poverty, indoor and outdoor pollutants with attendant stress factors such as violence, malnutrition, infectious outbreaks and psychological perturbations. The burden of these stressors initiate neuroinflammatory responses but the pattern and mechanisms of glial activation in these scenarios are yet to be properly elucidated. Africa is therefore most vulnerable to neurological stressors when placed against a backdrop of demographics that favor explosive childbearing, a vast population of unemployed youths making up a projected 42% of global youth population by 2030, repressive sociocultural policies towards women, poor access to healthcare, malnutrition, rapid urbanization, climate change and pollution. Early life stress, whether physical or psychological, induces neuroinflammatory response in developing nervous system and consequently leads to the emergence of mental health problems during adulthood. Brain inflammatory response is driven largely by inflammatory mediators released by glial cells; namely astrocytes and microglia. These inflammatory mediators alter the developmental trajectory of fetal and neonatal brain and results in long-lasting maladaptive behaviors and cognitive deficits. This review seeks to highlight the patterns and mechanisms of stressors such as poverty, developmental stress, environmental pollutions as well as malnutrition stress on astrocytes and microglia in neuroinflammation within the African context.
Collapse
Affiliation(s)
- Matthew Ayokunle Olude
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
- *Correspondence: Matthew Ayokunle Olude,
| | - Abdeslam Mouihate
- Department of Physiology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Kuwait City, Kuwait
| | - Oluwaseun Ahmed Mustapha
- Vertebrate Morphology, Environmental Toxicology and Neuroscience Unit, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - Cinthia Farina
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS) San Raffaele Scientific Institute, Institute of Experimental Neurology (INSPE) and Division of Neuroscience, Milan, Italy
| | - Francisco Javier Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - James Olukayode Olopade
- Neuroscience Unit, Department of Veterinary Anatomy, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
17
|
Gao L, Yang WY, Qi H, Sun CJ, Qin XM, Du GH. Unveiling the anti-senescence effects and senescence-associated secretory phenotype (SASP) inhibitory mechanisms of Scutellaria baicalensis Georgi in low glucose-induced astrocytes based on boolean network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153990. [PMID: 35202958 DOI: 10.1016/j.phymed.2022.153990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Astrocytes senescence has been demonstrated in the aging brain and Alzheimer's disease (AD). Moreover, lower glucose metabolism has been confirmed in the early stage of AD. However, whether low glucose could induce astrocytes senescence remain ambiguous. Studies have shown that the ethanol extracts of Scutellaria baicalensis Georgi (SGE) exert neuroprotective and anti-aging effects, while whether SGE could delay astrocytes senescence was unclear. PURPOSE This study investigated the anti-senescence effect of SGE in low glucose-induced T98G cells and primary astrocytes, and explored the possible mechanisms based on boolean network. METHODS The neuroprotective effects of SGE in low glucose-induced T98G cells were evaluated by measurement of cell viability, LDH, ROS and ATP. The anti-senescence effects of SGE were investigated by detection of senescence-associated β-galactosidase (SA-β-Gal), senescence-associated secretory phenotype (SASP), cell cycle and senescence-related markers. The possible mechanisms of SGE in delaying astrocytes senescence were discovered through integrating transcriptomics with boolean network, and validation experiments were further performed. RESULTS Our results revealed that low glucose could induce astrocytes senescence, and SGE could delay astrocytes senescence by decreasing the staining rate of SA-β-gal, reducing secretions of SASP factors (IL-6, CXCL1, MMP-1), alleviating cell cycle arrest in G0/G1 phase, decreasing the formation of punctate DNA foci and down-regulating the expression of p16INK4A, p21 and γH2A.X. Transcriptomics and further verification results showed that SGE could markedly inhibit the mRNA expression levels of SASP factors (CXCL10, CXCL2, CCL2, IL-6, CXCR4, CCR7). Moreover, C-X-C motif chemokine 10 (CXCL10) was predicted to be the key SASP factor affecting the network stability by using boolean network. Further experiments validated that SGE could markedly reduce CXCL10 level, decrease the secretion of IL-6 and inhibit cell migration in CXCL10 induced primary astrocytes. CONCLUSION In summary, our research unmasks that the anti-senescence effects of SGE were highly correlated with the suppression of SASP secretions, and CXCL10 mediated the SASP inhibition effect of SGE in low glucose-induced astrocytes. Our study highlights that the delay of astrocytes senescence and the inhibition of SASP might be a new mechanism of SGE for alleviating neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Wu-Yan Yang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Chang-Jun Sun
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
18
|
Olivarria G, Lane TE. Evaluating the role of chemokines and chemokine receptors involved in coronavirus infection. Expert Rev Clin Immunol 2022; 18:57-66. [PMID: 34964406 PMCID: PMC8851429 DOI: 10.1080/1744666x.2022.2017282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Coronaviruses are a large family of positive-stranded nonsegmented RNA viruses with genomes of 26-32 kilobases in length. Human coronaviruses are commonly associated with mild respiratory illness; however, the past three decades have seen the emergence of severe acute respiratory coronavirus (SARS-CoV), middle eastern respiratory coronavirus (MERS-CoV), and SARS-CoV-2 which is the etiologic agent for COVID-19. Severe forms of COVID-19 include acute respiratory distress syndrome (ARDS) associated with cytokine release syndrome that can culminate in multiorgan failure and death. Among the proinflammatory factors associated with severe COVID-19 are the chemokines CCL2, CCL3, CXCL8, and CXCL10. Infection of susceptible mice with murine coronaviruses, such as mouse hepatitis virus (MHV), elicits a similar chemokine response profile as observed in COVID-19 patients and these in vivo models have been informative and show that targeting chemokines reduces the severity of inflammation in target organs. AREAS COVERED PubMed was used using keywords: Chemokines and coronaviruses; Chemokines and mouse hepatitis virus; Chemokines and COVID-19. Clinicaltrials.gov was used using keywords: COVID-19 and chemokines; COVID-19 and cytokines; COVID-19 and neutrophil. EXPERT OPINION Chemokines and chemokine receptors are clinically relevant therapeutic targets for reducing coronavirus-induced inflammation.
Collapse
Affiliation(s)
- Gema Olivarria
- Department of Neurobiology & Behavior, University of California, Irvine 92697
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, University of California, Irvine 92697
- Department of Molecular Biology & Behavior, School of Biological Sciences, University of California, Irvine 92697
- Center for Virus Research, University of California, Irvine 92697
| |
Collapse
|
19
|
Chakravarty D, Das Sarma J. Murine-β-coronavirus-induced neuropathogenesis sheds light on CNS pathobiology of SARS-CoV2. J Neurovirol 2021; 27:197-216. [PMID: 33547593 PMCID: PMC7864135 DOI: 10.1007/s13365-021-00945-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 01/12/2021] [Indexed: 02/06/2023]
Abstract
The pandemic caused by SARS-CoV-2 has caused widespread infection and significant mortality across the globe. Combined virology perspective of SARS-CoV-2 with a deep-rooted understanding of pathophysiological and immunological processes underlying the clinical manifestations of COVID-19 is of prime importance. The characteristic symptom of COVID-19 is respiratory distress with diffused alveolar damage, but emerging evidence suggests COVID-19 might also have neurologic consequences. Dysregulated homeostasis in the lungs has proven to be fatal, but one cannot ignore that the inability to breathe might be due to defects in the respiratory control center of the brainstem. While the mechanism of pulmonary distress has been documented in the literature, awareness of neurological features and their pathophysiology is still in the nascent state. This review makes references to the neuro-immune axis and neuro-invasive potential of SARS-CoV and SARS-CoV2, as well as the prototypic H-CoV strains in human brains. Simultaneously, considerable discussion on relevant experimental evidence of mild to severe neurological manifestations of fellow neurotropic murine-β-CoVs (m-CoVs) in the mouse model will help understand the underpinning mechanisms of Neuro-COVID. In this review, we have highlighted the neuroimmunopathological processes in murine CoVs. While MHV infection in mice and SARS-CoV-2 infection in humans share numerous parallels, there are critical differences in viral recognition and viral entry. These similarities are highlighted in this review, while differences have also been emphasized. Though CoV-2 Spike does not favorably interact with murine ACE2 receptor, modification of murine SARS-CoV2 binding domain or development of transgenic ACE-2 knock-in mice might help in mediating consequential infection and understanding human CoV2 pathogenesis in murine models. While a global animal model that can replicate all aspects of the human disease remains elusive, prior insights and further experiments with fellow m-β-CoV-induced cause-effect experimental models and current human COVID-19 patients data may help to mitigate the SARS-CoV-2-induced multifactorial multi-organ failure.
Collapse
Affiliation(s)
- Debanjana Chakravarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Haringhata, 741246, Mohanpur, India
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Haringhata, 741246, Mohanpur, India.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Liu B, Liu J, Sun H, Xie M, Yang C, Pan Y, Huang D, Cheng L, Chen H, Ma J, Jiang L. Autoimmune encephalitis after Japanese encephalitis in children: A prospective study. J Neurol Sci 2021; 424:117394. [PMID: 33773410 DOI: 10.1016/j.jns.2021.117394] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/22/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To explore anti-neuronal surface antibodies and identify associated serum predictors of autoimmune encephalitis after Japanese encephalitis (JE). METHODS This prospective study first detected anti-neuronal surface antibodies and cytokines in the serum and cerebrospinal fluid (CSF) of JE patients within one week of symptom onset. Anti-neuronal surface antibodies and cytokines in the serum were detected on day 21 post-JE. If the patients relapsed during the convalescent phase, we simultaneously detected JE virus RNA and cytokines in the CSF, as well as anti-neuronal surface antibodies in the serum and CSF. RESULTS All 31 patients were negative for anti-neuronal surface antibodies at the onset of JE in the serum and CSF. During the convalescent phase, five patients developed autoimmune encephalitis (two had anti-N-methyl-d-aspartate receptor [NMDAR] antibodies, one had γ-aminobutyric acid-B receptor [GABABR] antibodies, and two had other antibodies against unknown neuronal surface antigens). Patients who developed autoimmune encephalitis experienced more severe outcomes than those who did not at the one-year follow-up (p = 0.044). The levels of serum CXCL13 and IL-6, as well as CXCL13, BAFF, CXCL10, and MMP-9 in the CSF were increased in the convalescent phase compared to the acute phase in patients who developed autoimmune encephalitis (p < 0.05). CONCLUSION In addition to anti-NMDAR antibodies, anti-GABABR antibodies and antibodies against unknown neuronal surface antigens can trigger autoimmune encephalitis following JE. Patients who developed autoimmune encephalitis had a poorer prognosis at the one-year follow-up. Serum CXCL13 may represent a predictor of autoimmune encephalitis after JE.
Collapse
Affiliation(s)
- Benke Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hong Sun
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Mingdan Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chen Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yanan Pan
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Li Cheng
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hengsheng Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jiannan Ma
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China; Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Pediatrics, Chongqing, China.
| |
Collapse
|
21
|
Septyaningtrias DE, Susilowati R. Neurological involvement of COVID-19: from neuroinvasion and neuroimmune crosstalk to long-term consequences. Rev Neurosci 2021; 32:427-442. [PMID: 33550780 DOI: 10.1515/revneuro-2020-0092] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022]
Abstract
As the coronavirus disease 2019 (COVID-19) pandemic continues to be a multidimensional threat to humanity, more evidence of neurological involvement associated with it has emerged. Neuroimmune interaction may prove to be important not only in the pathogenesis of neurological manifestations but also to prevent systemic hyperinflammation. In this review, we summarize reports of COVID-19 cases with neurological involvement, followed by discussion of possible routes of entry, immune responses against coronavirus infection in the central nervous system and mechanisms of nerve degeneration due to viral infection and immune responses. Possible mechanisms for neuroprotection and virus-associated neurological consequences are also discussed.
Collapse
Affiliation(s)
- Dian Eurike Septyaningtrias
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta55281, Indonesia
| | - Rina Susilowati
- Department of Histology and Cell Biology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako Sekip Utara, Yogyakarta55281, Indonesia
| |
Collapse
|
22
|
Liu J, Liu L, Kang W, Peng G, Yu D, Ma Q, Li Y, Zhao Y, Li L, Dai F, Wang J. Cytokines/Chemokines: Potential Biomarkers for Non-paraneoplastic Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Front Neurol 2021; 11:582296. [PMID: 33408682 PMCID: PMC7779630 DOI: 10.3389/fneur.2020.582296] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Objective: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most common type of autoimmune encephalitis. This study focuses on finding new biomarkers to evaluate the clinical condition and provide new directions for treatment. Methods: A total of 44 cytokines/chemokines in the cerebrospinal fluid of 10 non-paraneoplastic patients and nine controls were measured. We selected some of the cytokines/chemokines that significantly increased in patients. Six selected cytokines/chemokines, including IL-10, CXCL10, CCL22, CCL3, IL-7, TNF-α, and three previously reported (IL-2, IL-6, and IL-17A), were measured in seven other patients who provided repeat samples. We compared their levels and explored correlations with severity of disease and antibody titers. Results: The levels of Th1 axis (CXCL10, TNF-α, IFN-γ, CCL3), Th2 axis (CCL1, CCL8, CCL17, CCL22), Treg axis (IL-10), Th17 axis (IL-7), and B cell axis (CXCL13) cytokines, as well as IL-12 p40 and IL-16, were significantly higher in patients compared to those in controls. The level of IL-2 was significantly decreased at the intermediate stage of treatment compared with that before treatment. The severity of disease is positively correlated with levels of CXCL10, CCL3, IL-10, CCL22, and IL-6. The level of CCL3 in the high antibody titer group was greater than that in the low antibody titer group. Conclusion: The pathogenesis of anti-NMDAR encephalitis involves T cell and B cell cytokines. T cells likely assist B cells to produce antibodies. IL-2, CXCL10, CCL3, IL-10, CCL22, and IL-6 may represent new biomarkers in anti-NMDAR encephalitis. Given the lack of research on IL-10, CCL3, and CCL22 in this disease, it will be informative to explore their potential role in pathogenesis in larger studies.
Collapse
Affiliation(s)
- Jingwen Liu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lei Liu
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wenting Kang
- Medical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Gongxin Peng
- Center for Bioinformatics, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Di Yu
- Medical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiuying Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yatong Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yan Zhao
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Lin Li
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Feifei Dai
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jiawei Wang
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Medical Research Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Ireland DDC, Manangeeswaran M, Lewkowicz AP, Engel K, Clark SM, Laniyan A, Sykes J, Lee HN, McWilliams IL, Kelley-Baker L, Tonelli LH, Verthelyi D. Long-term persistence of infectious Zika virus: Inflammation and behavioral sequela in mice. PLoS Pathog 2020; 16:e1008689. [PMID: 33301527 PMCID: PMC7728251 DOI: 10.1371/journal.ppat.1008689] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022] Open
Abstract
The neurodevelopmental defects associated with ZIKV infections early in pregnancy are well documented, however the potential defects and long-term consequences associated with milder infections in late pregnancy and perinatal period are less well understood. To model these, we challenged 1 day old (P1) immunocompetent C57BL/6 mice with ZIKV. The animals developed a transient neurological syndrome including unsteady gait, kinetic tremors, severe ataxia and seizures 10-15 days post-infection (dpi) but symptoms subsided after a week, and most animals survived. Despite apparent recovery, MRI of convalescent mice show reduced cerebellar volume that correlates with altered coordination and motor function as well as hyperactivity and impulsivity. Persistent mRNA levels of pro-inflammatory genes including Cd80, Il-1α, and Ifn-γ together with Cd3, Cd8 and perforin (PrfA), suggested persistence of low-grade inflammation. Surprisingly, the brain parenchyma of convalescent mice harbor multiple small discrete foci with viral antigen, active apoptotic processes in neurons, and cellular infiltrates, surrounded by activated astrocytes and microglia as late as 1-year post-infection. Detection of negative-sense strand viral RNA and isolation of infectious virus derived from these convalescent mice by blinded passage in Vero cells confirmed long-term persistence of replicating ZIKV in CNS of convalescent mice. Although the infection appears to persist in defined reservoirs within CNS, the resulting inflammation could increase the risk of neurodegenerative disorders. This raises concern regarding possible long-term effects in asymptomatic children exposed to the virus and suggests that long-term neurological and behavioral monitoring as well as anti-viral treatment to clear virus from the CNS may be useful in patients exposed to ZIKV at an early age.
Collapse
Affiliation(s)
- Derek D. C. Ireland
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Mohanraj Manangeeswaran
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Aaron P. Lewkowicz
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Kaliroi Engel
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Sarah M. Clark
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Adelle Laniyan
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Jacob Sykes
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Ha-Na Lee
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Ian L. McWilliams
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Logan Kelley-Baker
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| | - Leonardo H. Tonelli
- University of Maryland School of Medicine, Department of Psychiatry, Baltimore, Maryland, United States of America
| | - Daniela Verthelyi
- US Food and Drug Administration, Office of Biotechnology Products, Silver Spring, Maryland, United States of America
| |
Collapse
|
24
|
Syage AR, Ekiz HA, Skinner DD, Stone C, O'Connell RM, Lane TE. Single-Cell RNA Sequencing Reveals the Diversity of the Immunological Landscape following Central Nervous System Infection by a Murine Coronavirus. J Virol 2020; 94:e01295-20. [PMID: 32999036 PMCID: PMC7925182 DOI: 10.1128/jvi.01295-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/16/2020] [Indexed: 01/12/2023] Open
Abstract
Intracranial (i.c.) infection of susceptible C57BL/6 mice with the neurotropic JHM strain of mouse hepatitis virus (JHMV) (a member of the Coronaviridae family) results in acute encephalomyelitis and viral persistence associated with an immune-mediated demyelinating disease. The present study was undertaken to better understand the molecular pathways evoked during innate and adaptive immune responses as well as the chronic demyelinating stage of disease in response to JHMV infection of the central nervous system (CNS). Using single-cell RNA sequencing analysis (scRNAseq) on flow-sorted CD45-positive (CD45+) cells enriched from brains and spinal cords of experimental mice, we demonstrate the heterogeneity of the immune response as determined by the presence of unique molecular signatures and pathways involved in effective antiviral host defense. Furthermore, we identify potential genes involved in contributing to demyelination as well as remyelination being expressed by both microglia and macrophages. Collectively, these findings emphasize the diversity of the immune responses and molecular networks at defined stages following viral infection of the CNS.IMPORTANCE Understanding the immunological mechanisms contributing to both host defense and disease following viral infection of the CNS is of critical importance given the increasing number of viruses that are capable of infecting and replicating within the nervous system. With this in mind, the present study was undertaken to evaluate the molecular signatures of immune cells within the CNS at defined times following infection with a neuroadapted murine coronavirus using scRNAseq. This approach has revealed that the immunological landscape is diverse, with numerous immune cell subsets expressing distinct mRNA expression profiles that are, in part, dictated by the stage of infection. In addition, these findings reveal new insight into cellular pathways contributing to control of viral replication as well as to neurologic disease.
Collapse
Affiliation(s)
- Amber R Syage
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - H Atakan Ekiz
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Colleen Stone
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Ryan M O'Connell
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
25
|
Mangale V, Syage AR, Ekiz HA, Skinner DD, Cheng Y, Stone CL, Brown RM, O'Connell RM, Green KN, Lane TE. Microglia influence host defense, disease, and repair following murine coronavirus infection of the central nervous system. Glia 2020; 68:2345-2360. [PMID: 32449994 PMCID: PMC7280614 DOI: 10.1002/glia.23844] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022]
Abstract
The present study examines functional contributions of microglia in host defense, demyelination, and remyelination following infection of susceptible mice with a neurotropic coronavirus. Treatment with PLX5622, an inhibitor of colony stimulating factor 1 receptor (CSF1R) that efficiently depletes microglia, prior to infection of the central nervous system (CNS) with the neurotropic JHM strain of mouse hepatitis virus (JHMV) resulted in increased mortality compared with control mice that correlated with impaired control of viral replication. Single cell RNA sequencing (scRNASeq) of CD45+ cells isolated from the CNS revealed that PLX5622 treatment resulted in muted CD4+ T cell activation profile that was associated with decreased expression of transcripts encoding MHC class II and CD86 in macrophages but not dendritic cells. Evaluation of spinal cord demyelination revealed a marked increase in white matter damage in PLX5622-treated mice that corresponded with elevated expression of transcripts encoding disease-associated proteins Osteopontin (Spp1), Apolipoprotein E (Apoe), and Triggering receptor expressed on myeloid cells 2 (Trem2) that were enriched within macrophages. In addition, PLX5622 treatment dampened expression of Cystatin F (Cst7), Insulin growth factor 1 (Igf1), and lipoprotein lipase (Lpl) within macrophage populations which have been implicated in promoting repair of damaged nerve tissue and this was associated with impaired remyelination. Collectively, these findings argue that microglia tailor the CNS microenvironment to enhance control of coronavirus replication as well as dampen the severity of demyelination and influence repair.
Collapse
Affiliation(s)
- Vrushali Mangale
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Amber R. Syage
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - H. Atakan Ekiz
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Dominic D. Skinner
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Yuting Cheng
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Colleen L. Stone
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - R. Marshall Brown
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Ryan M. O'Connell
- Division of Microbiology & Immunology, Department of PathologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
| | - Kim N. Green
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Thomas E. Lane
- Department of Neurobiology & Behavior, School of Biological SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
26
|
Liba Z, Vaskova M, Zamecnik J, Kayserova J, Nohejlova H, Ebel M, Sanda J, Ramos-Rivera GA, Brozova K, Liby P, Tichy M, Krsek P. An immunotherapy effect analysis in Rasmussen encephalitis. BMC Neurol 2020; 20:359. [PMID: 32972372 PMCID: PMC7517818 DOI: 10.1186/s12883-020-01932-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/14/2020] [Indexed: 01/16/2023] Open
Abstract
Background Immune-mediated mechanisms substantially contribute to the Rasmussen encephalitis (RE) pathology, but for unknown reasons, immunotherapy is generally ineffective in patients who have already developed intractable epilepsy; overall laboratory data regarding the effect of immunotherapy on patients with RE are limited. We analyzed multiple samples from seven differently treated children with RE and evaluated the effects of immunotherapies on neuroinflammation. Immunotherapy was introduced to all patients at the time of intractable epilepsy and they all had to undergo hemispherothomy. Methods Immunohistochemistry, flow cytometry, Luminex multiplex bead and enzyme-linked immunosorbent assay techniques were combined to determine: 1) inflammatory changes and lymphocyte subpopulations in 45 brain tissues; 2) lymphocyte subpopulations and the levels of 12 chemokines/cytokines in 24 cerebrospinal fluid (CSF) samples and 30 blood samples; and 3) the dynamics of these parameters in four RE patients from whom multiple samples were collected. Results Sustained T cell-targeted therapy with cyclophosphamide, natalizumab, alemtuzumab, and intrathecal methotrexate (ITMTX), but not with azathioprine, substantially reduced inflammation in brain tissues. Despite the therapy, the distributions of CD8+ T cells and the levels of C-X-C motif ligand (CXCL) 10, CXCL13, and B cell activating factor (BAFF) in patients’ CSF remained increased compared to controls. A therapeutic approach combining alemtuzumab and ITMTX was the most effective in producing simultaneous reductions in histopathological inflammatory findings and in the numbers of activated CD8+ T cells in the brain tissue, as well as in the overall CD8+ T cell population and chemokine/cytokine production in the CSF. Conclusions We provide evidence that various T cell-targeted immunotherapies reduced inflammation in the brains of RE patients. The observation that intractable epilepsy persisted in all of the patients suggests a relative independence of seizure activity on the presence of T cells in the brain later in the disease course. Thus, new therapeutic targets must be identified. CXCL10, CXCL13 and BAFF levels were substantially increased in CSF from all patients and their significance in RE pathology remains to be addressed.
Collapse
Affiliation(s)
- Zuzana Liba
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Martina Vaskova
- CLIP - Childhood Leukaemia Investigation Prague, Department of Pediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Josef Zamecnik
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,Imunale s.r.o, Prague, Czech Republic
| | - Hana Nohejlova
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic.,Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Matyas Ebel
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jan Sanda
- Department of Radiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Gonzalo Alonso Ramos-Rivera
- Department of Pediatric Neurology, Comenius University Faculty of Medicine and National Institute of Children's Diseases, Bratislava, Slovak Republic
| | - Klara Brozova
- Department of Pediatric Neurology, Thomayer Hospital, Prague, Czech Republic.,Department of Neurology and Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Petr Liby
- Department of Neurosurgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Michal Tichy
- Department of Neurosurgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, 15006, Prague, Czech Republic
| |
Collapse
|
27
|
Paediatric onset of multiple sclerosis: Analysis of chemokine and cytokine levels in the context of the early clinical course. Mult Scler Relat Disord 2020; 46:102467. [PMID: 32889374 DOI: 10.1016/j.msard.2020.102467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/19/2020] [Accepted: 08/23/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Inflammatory activity in children with paediatric onset multiple sclerosis (POMS) is higher than that in adults with MS. Chemokine/cytokine profiling in children may provide new insights into the disease pathogenesis and clinical course. The levels of chemokines/cytokines and their roles in POMS remain largely unknown. OBJECTIVE To identify the possible utility of chemokines/cytokines in children with POMS, we analysed their levels at the time of disease diagnosis and in the context of subsequent clinical relapse. METHODS CC and CXC motif ligand chemokines (CCL2, CXCL8, CXCL10, and CXCL13), interleukin (IL)-4, IL-17A, interferon gamma and B cell-activating factor in the blood and cerebrospinal fluid (CSF) of 34 POMS patients and 20 age-related controls were measured using Luminex multiplex bead and enzyme-linked immunosorbent assay techniques. Nonparametric tests were used for statistical analyses. RESULTS The CSF levels of CXCL8 (p = 0.002), CXCL10 (p = 0.001), and CXCL13 (p<0.0001) were higher in POMS than in controls; CXCL10 and CXCL13 correlated with pleocytosis and oligoclonal bands. A subsequent clinical relapse occurred in 17/34 of the children; the median time from the diagnosis of POMS was 6 months (range, 2-64 months). The follow-up period of patients who did not experience a clinical relapse was significantly longer than the time to first relapse (p = 0.003). The initial CCL2 level was lower in relapsing than in non-relapsing patients (p = 0.063) and correlated negatively with the CSF/serum albumin ratio and positively with the time to relapse (p<0.04). CONCLUSIONS Elevated CSF levels of CXL10 and CXCL13 in children with POMS at the time of disease diagnosis reflect inflammatory activity and suggest the involvement of adaptive immunity; elevated CXCL8 levels further indicate the involvement of innate immunity. An initial low CSF level of CCL2 may be associated with an unfavourable early MS course.
Collapse
|
28
|
Inflammatory Activation of Astrocytes Facilitates Melanoma Brain Tropism via the CXCL10-CXCR3 Signaling Axis. Cell Rep 2020; 28:1785-1798.e6. [PMID: 31412247 DOI: 10.1016/j.celrep.2019.07.033] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/20/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the deadliest skin cancer due to its high rate of metastasis, frequently to the brain. Brain metastases are incurable; therefore, understanding melanoma brain metastasis is of great clinical importance. We used a mouse model of spontaneous melanoma brain metastasis to study the interactions of melanomas with the brain microenvironment. We find that CXCL10 is upregulated in metastasis-associated astrocytes in mice and humans and is functionally important for the chemoattraction of melanoma cells. Moreover, CXCR3, the receptor for CXCL10, is upregulated in brain-tropic melanoma cells. Targeting melanoma expression of CXCR3 by nanoparticle-mediated siRNA delivery or by shRNA transduction inhibits melanoma cell migration and attenuates brain metastasis in vivo. These findings suggest that the instigation of pro-inflammatory signaling in astrocytes is hijacked by brain-metastasizing tumor cells to promote their metastatic capacity and that the CXCL10-CXCR3 axis may be a potential therapeutic target for the prevention of melanoma brain metastasis.
Collapse
|
29
|
Mirzaei R, Karampoor S, Sholeh M, Moradi P, Ranjbar R, Ghasemi F. A contemporary review on pathogenesis and immunity of COVID-19 infection. Mol Biol Rep 2020; 47:5365-5376. [PMID: 32601923 PMCID: PMC7323602 DOI: 10.1007/s11033-020-05621-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/22/2020] [Indexed: 02/09/2023]
Abstract
Emerging of the COVID-19 pandemic has raised interests in the field of biology and pathogenesis of coronaviruses; including interactions between host immune reactions specific, and viral factors. Deep knowledge about the interaction between coronaviruses and the host factors could be useful to provide a better support for the disease sufferers and be advantageous for managing and treatment of the lung infection caused by the virus. At this study, we reviewed the updated information on the pathogenesis of the COVID-19 and the immune responses toward it, with a special focus on structure, genetics, and viral accessory proteins, viral replication, viral receptors, the human immune reactions, cytopathic effects, and host-related factors.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Pouya Moradi
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
30
|
Tsai CF, Chen JH, Yeh WL. Pulmonary fibroblasts-secreted CXCL10 polarizes alveolar macrophages under pro-inflammatory stimuli. Toxicol Appl Pharmacol 2019; 380:114698. [PMID: 31394157 DOI: 10.1016/j.taap.2019.114698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND During acute lung injury, lung fibroblasts produce chemokines that assist the activation and migration of resident macrophages. The interactions between pulmonary fibroblasts and alveolar macrophages demonstrate the early event in the recruitment of immune cells, and the production of chemokines appear to be central mediators of the initiation and progression of inflammatory responses. In this study, the aim was to investigate the signaling pathway leading to CXCL10 secretion and the effects of CXCL10 released by activated fibroblasts on regulating macrophage polarization in a pro-inflammatory microenvironment. METHODS The expression of chemokines CCL2, CCL5, CXCL10, and CXCL12, and the phosphorylation of signaling molecules STAT3, FAK, GSK3αβ and PKCδ were investigated by real time-PCR, ELISA, or Western blot on TNFα- or IL-1β-activated MRC-5 pulmonary fibroblasts. By collecting conditioned medium from TNFα-activated fibroblasts, the expression of iNOS and arginase I on MH-S alveolar macrophages were examined by real-time PCR. Surface markers CD86 and CD206 expressions on alveolar macrophages were also evaluated by flow cytometry. RESULTS We found that CXCL10 production was significantly elevated on MRC-5 fibroblasts under TNFα- or IL-1β treatment. In addition, we revealed that TNFα and IL-1β initiated phosphorylation of STAT3, FAK, GSK3αβ and PKCδ signaling cascade, leading to the elevation of CXCL10 expression. Moreover, conditioned medium collected from TNFα-activated MRC-5 fibroblasts increased iNOS and CD86 expressions and decreased arginase I and CD206 expressions on MH-S alveolar macrophages, and neutralization of CXCL10 abolished these observed phenomena. CONCLUSION These results suggest that CXCL10 is crucial in activated fibroblasts-promoted M1 phenotype polarization of alveolar macrophages. In this regard, targeting fibroblasts-released CXCL10 may be promising as anti-inflammatory therapy against acute lung injury.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan
| | - Jia-Hong Chen
- Department of General Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
31
|
DiSano KD, Royce DB, Gilli F, Pachner AR. Central Nervous System Inflammatory Aggregates in the Theiler's Virus Model of Progressive Multiple Sclerosis. Front Immunol 2019; 10:1821. [PMID: 31428102 PMCID: PMC6687912 DOI: 10.3389/fimmu.2019.01821] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022] Open
Abstract
Persistent central nervous system (CNS) inflammation, as seen in chronic infections or inflammatory demyelinating diseases such as Multiple Sclerosis (MS), results in the accumulation of various B cell subsets in the CNS, including naïve, activated, memory B cells (Bmem), and antibody secreting cells (ASC). However, factors driving heterogeneous B cell subset accumulation and antibody (Ab) production in the CNS compartment, including the contribution of ectopic lymphoid follicles (ELF), during chronic CNS inflammation remain unclear and is a major gap in our understanding of neuroinflammation. We sought to address this gap using the Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) model of progressive MS. In this model, injection of the virus into susceptible mouse strains results in a persistent infection associated with demyelination and progressive disability. During chronic infection, the predominant B cell phenotypes accumulating in the CNS were isotype-switched B cells, including Bmem and ASC with naïve/early activated and transitional B cells present at low frequencies. B cell accumulation in the CNS during chronic TMEV-IDD coincided with intrathecal Ab synthesis in the cerebrospinal fluid (CSF). Mature and isotype-switched B cells predominately localized to the meninges and perivascular space, with IgG isotype-switched B cells frequently accumulating in the parenchymal space. Both mature and isotype-switched B cells and T cells occupied meningeal and perivascular spaces, with minimal evidence for spatial organization typical of ELF mimicking secondary lymphoid organs (SLO). Moreover, immunohistological analysis of immune cell aggregates revealed a lack of SLO-like ELF features, such as cell proliferation, cell death, and germinal center B cell markers. Nonetheless, flow cytometric assessment of B cells within the CNS showed enhanced expression of activation markers, including moderate upregulation of GL7 and expression of the costimulatory molecule CD80. B cell-related chemokines and trophic factors, including APRIL, BAFF, CXCL9, CXCL10, CCL19, and CXCL13, were elevated in the CNS. These results indicate that localization of heterogeneous B cell populations, including activated and isotype-switched B cell phenotypes, to the CNS and intrathecal Ab (ItAb) synthesis can occur independently of SLO-like follicles during chronic inflammatory demyelinating disease.
Collapse
Affiliation(s)
- Krista D DiSano
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Darlene B Royce
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| | - Andrew R Pachner
- Department of Neurology, Dartmouth Hitchcock Medical Center and Geisel School of Medicine, Lebanon, NH, United States
| |
Collapse
|
32
|
Liba Z, Nohejlova H, Capek V, Krsek P, Sediva A, Kayserova J. Utility of chemokines CCL2, CXCL8, 10 and 13 and interleukin 6 in the pediatric cohort for the recognition of neuroinflammation and in the context of traditional cerebrospinal fluid neuroinflammatory biomarkers. PLoS One 2019; 14:e0219987. [PMID: 31356620 PMCID: PMC6663008 DOI: 10.1371/journal.pone.0219987] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 07/05/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The recognition of active inflammation in the central nervous system (CNS) in the absence of infectious agents is challenging. The present study aimed to determine the diagnostic relevance of five selected chemo/cytokines in the recognition of CNS inflammation and in the context of traditional cerebrospinal fluid (CSF) biomarkers (white blood cell [WBC] counts, oligoclonal bands, protein levels, CSF/serum albumin ratios) and clinical diagnoses. METHODS C-C and C-X-C motif ligands (CCL2, CXCL8, 10 and 13) and interleukin (IL) 6 levels in the CSF and serum from 37 control and 87 symptomatic children with ten different (mostly noninfectious) inflammatory CNS disorders (16 of which had follow-up samples after recovery) were determined using Luminex multiple bead technology and software. Nonparametric tests were used; p < 0.05 was considered statistically significant. Receiver operating characteristic curves were constructed to analyze controls and 1) all symptomatic samples or 2) symptomatic samples without CSF pleocytosis. RESULTS Compared with the control CSF samples, levels of all investigated chemo/cytokines were increased in symptomatic CSF samples, and only IL-6 remained elevated in recovery samples (p ≤ 0.001). CSF CXCL-13 levels (> 10.9 pg/mL) were the best individual discriminatory criterion to differentiate neuroinflammation (specificity/sensitivity: 97/72% and 97/61% for samples without pleocytosis), followed by CSF WBC counts (specificity/sensitivity: 97/62%). The clinical utility of the remaining CSF chemo/cytokine levels was determined in descending order of sensitivities corresponding to thresholds that ensured 97% specificity for neuroinflammation in samples without pleocytosis (pg/mL; sensitivity %): IL-6 (3.8; 34), CXCL8 (32; 26), CXCL10 (317; 24) and CCL2 (387; 10). Different diagnosis-related patterns of CSF chemo/cytokines were observed. CONCLUSIONS The increased CSF level of CXCL13 was the marker with the greatest predictive utility for the general recognition of neuroinflammation among all of the individually investigated biomarkers. The potential clinical utility of chemo/cytokines in the differential diagnosis of neuroinflammatory diseases was identified.
Collapse
Affiliation(s)
- Zuzana Liba
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- * E-mail:
| | - Hana Nohejlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Vaclav Capek
- Bioinformatics Centre, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Pavel Krsek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jana Kayserova
- Department of Immunology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
33
|
Zhou YQ, Liu DQ, Chen SP, Sun J, Zhou XR, Xing C, Ye DW, Tian YK. The Role of CXCR3 in Neurological Diseases. Curr Neuropharmacol 2019; 17:142-150. [PMID: 29119926 PMCID: PMC6343204 DOI: 10.2174/1570159x15666171109161140] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/22/2017] [Accepted: 11/07/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neurological diseases have become an obvious challenge due to insufficient therapeutic intervention. Therefore, novel drugs for various neurological disorders are in desperate need. Recently, compelling evidence has demonstrated that chemokine receptor CXCR3, which is a G protein-coupled receptor in the CXC chemokine receptor family, may play a pivotal role in the development of neurological diseases. The aim of this review is to provide evidence for the potential of CXCR3 as a therapeutic target for neurological diseases. METHODS English journal articles that focused on the invovlement of CXCR3 in neurological diseases were searched via PubMed up to May 2017. Moreover, reference lists from identified articles were included for overviews. RESULTS The expression level of CXCR3 in T cells was significantly elevated in several neurological diseases, including multiple sclerosis (MS), glioma, Alzheimer's disease (AD), chronic pain, human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and bipolar disorder. CXCR3 antagonists showed therapeutic effects in these neurological diseases. CONCLUSION These studies provided hard evidence that CXCR3 plays a vital role in the pathogenesis of MS, glioma, AD, chronic pain, HAM/TSP and bipolar disorder. CXCR3 is a crucial molecule in neuroinflammatory and neurodegenerative diseases. It regulates the activation of infiltrating cells and resident immune cells. However, the exact functions of CXCR3 in neurological diseases are inconclusive. Thus, it is important to understand the topic of chemokines and the scope of their activity in neurological diseases.
Collapse
Affiliation(s)
- Ya-Qun Zhou
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dai-Qiang Liu
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Ping Chen
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Sun
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue-Rong Zhou
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Xing
- Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Da-Wei Ye
- Cancer Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Ke Tian
- Anesthesiology Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Khodadadi L, Cheng Q, Radbruch A, Hiepe F. The Maintenance of Memory Plasma Cells. Front Immunol 2019; 10:721. [PMID: 31024553 PMCID: PMC6464033 DOI: 10.3389/fimmu.2019.00721] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022] Open
Abstract
It is now well accepted that plasma cells can become long-lived (memory) plasma cells and secrete antibodies for months, years or a lifetime. However, the mechanisms involved in this process of humoral memory, which is crucial for both protective immunity and autoimmunity, still are not fully understood. This article will address a number of open questions. For example: Is longevity of plasma cells due to their intrinsic competence, extrinsic factors, or a combination of both? Which internal signals are involved in this process? What factors provide external support? What survival factors play a part in inflammation and autoreactive disease? Internal and external factors that contribute to the maintenance of memory long-lived plasma cells will be discussed. The aim is to provide useful additional information about the maintenance of protective and autoreactive memory plasma cells that will help researchers design effective vaccines for the induction of life-long protection against infectious diseases and to efficiently target pathogenic memory plasma cells.
Collapse
Affiliation(s)
- Laleh Khodadadi
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Qingyu Cheng
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany
| | - Falk Hiepe
- Deutsches Rheuma-Forschungszentrum Berlin-A Leibniz Institute, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Berlin, Germany
| |
Collapse
|
35
|
Cheng Y, Skinner DD, Lane TE. Innate Immune Responses and Viral-Induced Neurologic Disease. J Clin Med 2018; 8:jcm8010003. [PMID: 30577473 PMCID: PMC6352557 DOI: 10.3390/jcm8010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Multiple sclerosis (MS) is a disease of the central nervous system (CNS) characterized by chronic neuroinflammation, axonal damage, and demyelination. Cellular components of the adaptive immune response are viewed as important in initiating formation of demyelinating lesions in MS patients. This notion is supported by preclinical animal models, genome-wide association studies (GWAS), as well as approved disease modifying therapies (DMTs) that suppress clinical relapse and are designed to impede infiltration of activated lymphocytes into the CNS. Nonetheless, emerging evidence demonstrates that the innate immune response e.g., neutrophils can amplify white matter damage through a variety of different mechanisms. Indeed, using a model of coronavirus-induced neurologic disease, we have demonstrated that sustained neutrophil infiltration into the CNS of infected animals correlates with increased demyelination. This brief review highlights recent evidence arguing that targeting the innate immune response may offer new therapeutic avenues for treatment of demyelinating disease including MS.
Collapse
Affiliation(s)
- Yuting Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
36
|
Soung A, Klein RS. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol Med 2018; 24:950-962. [PMID: 30314877 DOI: 10.1016/j.molmed.2018.09.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 10/28/2022]
Abstract
Neurotropic RNA virus infections cause a major neurological disease burden. Due to the morbidity and mortality rates of viral encephalitides worldwide, there is a need to develop clinical treatments. Features of the central nervous system (CNS), including interconnected cell types and limited regeneration, provide unique challenges. Viral encephalitis and antiviral immunity can disrupt the CNS environment, leaving patients with poor neurological outcomes despite virologic control. The cellular mechanism(s) underlying neurological recovery are not fully understood, but involve neuroimmune interactions that, until recently, primarily focused on microglia. With increasing evidence that astrocytes also have significant roles in inflammatory responses to viruses, here we summarize recent astrocyte contributions to acute virologic control and neurological impairments during recovery from viral infection.
Collapse
Affiliation(s)
- Allison Soung
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S Klein
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
37
|
Hwang M, Bergmann CC. Intercellular Communication Is Key for Protective IFNα/β Signaling During Viral Central Nervous System Infection. Viral Immunol 2018; 32:1-6. [PMID: 30222502 DOI: 10.1089/vim.2018.0101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A variety of viruses can induce central nervous system (CNS) infections and neurological diseases, although the incidence is rare. Similar to peripheral infections, IFNα/β induction and signaling constitutes a first line of defense to limit virus dissemination. However, CNS-resident cells differ widely in their repertoire and magnitude of both basal and inducible components in the IFNα/β pathway. While microglia as resident myeloid cells have been implicated as prominent sentinels of CNS invading pathogens or insults, astrocytes are emerging as key responders to many neurotropic RNA virus infections. Focusing on RNA viruses, this review discusses the role of astrocytes as IFNα/β inducers and responders and touches on the role of IFNα/β receptor signaling in regulating myeloid cell activation and IFNγ responsiveness. A summary picture emerges implicating IFNα/β not only as key in establishing the classical "antiviral" state, but also orchestrating cell mobility and IFNγ-mediated effector functions.
Collapse
Affiliation(s)
- Mihyun Hwang
- Department of Neurosciences, Lerner Research Institute , Cleveland Clinic Foundation, Cleveland, Ohio
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute , Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
38
|
Skinner D, Marro BS, Lane TE. Chemokine CXCL10 and Coronavirus-Induced Neurologic Disease. Viral Immunol 2018; 32:25-37. [PMID: 30109979 DOI: 10.1089/vim.2018.0073] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chemokines (chemotactic cytokines) are involved in a wide variety of biological processes. Following microbial infection, there is often robust chemokine signaling elicited from infected cells, which contributes to both innate and adaptive immune responses that control growth of the invading pathogen. Infection of the central nervous system (CNS) by the neuroadapted John Howard Mueller (JHM) strain of mouse hepatitis virus (JHMV) provides an excellent example of how chemokines aid in host defense as well as contribute to disease. Intracranial inoculation of the CNS of susceptible mice with JHMV results in an acute encephalomyelitis characterized by widespread dissemination of virus throughout the parenchyma. Virus-specific T cells are recruited to the CNS, and control viral replication through release of antiviral cytokines and cytolytic activity. Sterile immunity is not acquired, and virus will persist primarily in white matter tracts leading to chronic neuroinflammation and demyelination. Chemokines are expressed and contribute to defense as well as chronic disease by attracting targeted populations of leukocytes to the CNS. The T cell chemoattractant chemokine CXCL10 (interferon-inducible protein 10 kDa, IP-10) is prominently expressed in both stages of disease, and serves to attract activated T and B lymphocytes expressing CXC chemokine receptor 3 (CXCR3), the receptor for CXCL10. Functional studies that have blocked expression of either CXCL10 or CXCR3 illuminate the important role of this signaling pathway in host defense and neurodegeneration in a model of viral-induced neurologic disease.
Collapse
Affiliation(s)
- Dominic Skinner
- 1 Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Brett S Marro
- 2 Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California
| | - Thomas E Lane
- 1 Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah.,3 Immunology, Inflammation and Infectious Disease Initiative, University of Utah School of Medicine, Salt Lake City, Utah.,4 Neuroscience Initiative, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
39
|
Weinstock LD, Furness AM, Herron SS, Smith SS, Sankar SB, DeRosa SG, Gao D, Mepyans ME, Scotto Rosato A, Medina DL, Vardi A, Ferreira NS, Cho SM, Futerman AH, Slaugenhaupt SA, Wood LB, Grishchuk Y. Fingolimod phosphate inhibits astrocyte inflammatory activity in mucolipidosis IV. Hum Mol Genet 2018; 27:2725-2738. [PMID: 29771310 PMCID: PMC6915831 DOI: 10.1093/hmg/ddy182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/09/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mucolipidosis IV (MLIV) is an orphan neurodevelopmental disease that causes severe neurologic dysfunction and loss of vision. Currently there is no therapy for MLIV. It is caused by loss of function of the lysosomal channel mucolipin-1, also known as TRPML1. Knockout of the Mcoln1 gene in a mouse model mirrors clinical and neuropathologic signs in humans. Using this model, we previously observed robust activation of microglia and astrocytes in early symptomatic stages of disease. Here we investigate the consequence of mucolipin-1 loss on astrocyte inflammatory activation in vivo and in vitro and apply a pharmacologic approach to restore Mcoln1-/- astrocyte homeostasis using a clinically approved immunomodulator, fingolimod. We found that Mcoln1-/- mice over-express numerous pro-inflammatory cytokines, some of which were also over-expressed in astrocyte cultures. Changes in the cytokine profile in Mcoln1-/- astrocytes are concomitant with changes in phospho-protein signaling, including activation of PI3K/Akt and MAPK pathways. Fingolimod promotes cytokine homeostasis, down-regulates signaling within the PI3K/Akt and MAPK pathways and restores the lysosomal compartment in Mcoln1-/- astrocytes. These data suggest that fingolimod is a promising candidate for preclinical evaluation in our MLIV mouse model, which, in case of success, can be rapidly translated into clinical trial.
Collapse
Affiliation(s)
- Laura D Weinstock
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, USA
| | - Amanda M Furness
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Shawn S Herron
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Sierra S Smith
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Sitara B Sankar
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, USA
| | - Samantha G DeRosa
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Dadi Gao
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Molly E Mepyans
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Anna Scotto Rosato
- Telethon Institute of Genetics and Medicine (TIGEM), via Campi Flegrei 34, Pozzuoli (NA), Italy
| | - Diego L Medina
- Telethon Institute of Genetics and Medicine (TIGEM), via Campi Flegrei 34, Pozzuoli (NA), Italy
| | - Ayelet Vardi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia S Ferreira
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, Zurich, Switzerland
| | - Soo Min Cho
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Susan A Slaugenhaupt
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory, Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, 315 Ferst Dr., Atlanta, GA, USA
| | - Yulia Grishchuk
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, 185 Cambridge St., Boston, MA, USA
| |
Collapse
|
40
|
Alpha/Beta Interferon (IFN-α/β) Signaling in Astrocytes Mediates Protection against Viral Encephalomyelitis and Regulates IFN-γ-Dependent Responses. J Virol 2018; 92:JVI.01901-17. [PMID: 29491163 PMCID: PMC5923078 DOI: 10.1128/jvi.01901-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/22/2018] [Indexed: 12/25/2022] Open
Abstract
The contribution of distinct central nervous system (CNS) resident cells to protective alpha/beta interferon (IFN-α/β) function following viral infections is poorly understood. Based on numerous immune regulatory functions of astrocytes, we evaluated the contribution of astrocyte IFN-α/β signaling toward protection against the nonlethal glia- and neuronotropic mouse hepatitis virus (MHV) strain A59. Analysis of gene expression associated with IFN-α/β function, e.g., pattern recognition receptors (PRRs) and interferon-stimulated genes (ISGs), revealed lower basal mRNA levels in brain-derived astrocytes than in microglia. Although astrocytes poorly induced Ifnβ mRNA following infection, they upregulated various mRNAs in the IFN-α/β pathway to a higher extent than microglia, supporting effective IFN-α/β responsiveness. Ablation of the IFN-α/β receptor (IFNAR) in astrocytes using mGFAPcre IFNARfl/fl mice resulted in severe encephalomyelitis and mortality, coincident with uncontrolled virus replication. Further, virus spread was not restricted to astrocytes but also affected microglia and neurons, despite increased and sustained Ifnα/β and ISG mRNA levels within the CNS. IFN-γ, a crucial mediator for MHV control, was not impaired in infected mGFAPcre IFNARfl/fl mice despite reduced T cell CNS infiltration. Unexpectedly however, poor induction of IFN-γ-dependent major histocompatibility complex (MHC) class II expression on microglia supported that defective IFN-γ signaling contributes to uncontrolled virus replication. A link between sustained elevated IFN-α/β and impaired responsiveness to IFN-γ supports the novel concept that temporally limited early IFN-α/β responses are critical for effective antiviral IFN-γ function. Overall, our results imply that IFN-α/β signaling in astrocytes is not only critical in limiting early CNS viral spread but also promotes protective antiviral IFN-γ function.IMPORTANCE An antiviral state established by IFN-α/β contains initial viral spread as adaptive immunity develops. While it is apparent that the CNS lacks professional IFN-α/β producers and that resident cells have distinct abilities to elicit innate IFN-α/β responses, protective interactions between inducer and responder cells require further investigation. Infection with a glia- and neuronotropic coronavirus demonstrates that astrocytes mount a delayed but more robust response to infection than microglia, despite their lower basal mRNA levels of IFN-α/β-inducing components. Lethal, uncontrolled viral dissemination following ablation of astrocyte IFN-α/β signaling revealed the importance of IFN-α/β responses in a single cell type for protection. Sustained global IFN-α/β expression associated with uncontrolled virus did not suffice to protect neurons and further impaired responsiveness to protective IFN-γ. The results support astrocytes as critical contributors to innate immunity and the concept that limited IFN-α/β responses are critical for effective subsequent antiviral IFN-γ function.
Collapse
|
41
|
Protective Humoral Immunity in the Central Nervous System Requires Peripheral CD19-Dependent Germinal Center Formation following Coronavirus Encephalomyelitis. J Virol 2017; 91:JVI.01352-17. [PMID: 28931676 DOI: 10.1128/jvi.01352-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
B cell subsets with phenotypes characteristic of naive, non-isotype-switched, memory (Bmem) cells and antibody-secreting cells (ASC) accumulate in various models of central nervous system (CNS) inflammation, including viral encephalomyelitis. During neurotropic coronavirus JHMV infection, infiltration of protective ASC occurs after T cell-mediated viral control and is preceded by accumulation of non-isotype-switched IgD+ and IgM+ B cells. However, the contribution of peripheral activation events in cervical lymph nodes (CLN) to driving humoral immune responses in the infected CNS is poorly defined. CD19, a signaling component of the B cell receptor complex, is one of multiple regulators driving B cell differentiation and germinal center (GC) formation by lowering the threshold of antigen-driven activation. JHMV-infected CD19-/- mice were thus used to determine how CD19 affects CNS recruitment of B cell subsets. Early polyclonal ASC expansion, GC formation, and virus-specific ASC were all significantly impaired in CLN of CD19-/- mice compared to wild-type (WT) mice, consistent with lower and unsustained virus-specific serum antibody (Ab). ASC were also significantly reduced in the CNS, resulting in increased infectious virus during persistence. Nevertheless, CD19 deficiency did not affect early CNS IgD+ B cell accumulation. The results support the notion that CD19-independent factors drive early B cell mobilization and recruitment to the infected CNS, while delayed accumulation of virus-specific, isotype-switched ASC requires CD19-dependent GC formation in CLN. CD19 is thus essential for both sustained serum Ab and protective local Ab within the CNS following JHMV encephalomyelitis.IMPORTANCE CD19 activation is known to promote GC formation and to sustain serum Ab responses following antigen immunization and viral infections. However, the contribution of CD19 in the context of CNS infections has not been evaluated. This study demonstrates that antiviral protective ASC in the CNS are dependent on CD19 activation and peripheral GC formation, while accumulation of early-recruited IgD+ B cells is CD19 independent. This indicates that IgD+ B cells commonly found early in the CNS do not give rise to local ASC differentiation and that only antigen-primed, peripheral GC-derived ASC infiltrate the CNS, thereby limiting potentially harmful nonspecific Ab secretion. Expanding our understanding of activation signals driving CNS migration of distinct B cell subsets during neuroinflammatory insults is critical for preventing and managing acute encephalitic infections, as well as preempting reactivation of persistent viruses during immune-suppressive therapies targeting B cells in multiple sclerosis (MS), such as rituximab and ocrelizumab.
Collapse
|
42
|
Olabarria M, Goldman JE. Disorders of Astrocytes: Alexander Disease as a Model. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 12:131-152. [PMID: 28135564 DOI: 10.1146/annurev-pathol-052016-100218] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Astrocytes undergo important phenotypic changes in many neurological disorders, including strokes, trauma, inflammatory diseases, infectious diseases, and neurodegenerative diseases. We have been studying the astrocytes of Alexander disease (AxD), which is caused by heterozygous mutations in the GFAP gene, which is the gene that encodes the major astrocyte intermediate filament protein. AxD is a primary astrocyte disease because GFAP expression is specific to astrocytes in the central nervous system (CNS). The accumulation of extremely large amounts of GFAP causes many molecular changes in astrocytes, including proteasome inhibition, stress kinase activation, mechanistic target of rapamycin (mTOR) activation, loss of glutamate and potassium buffering capacity, loss of astrocyte coupling, and changes in cell morphology. Many of these changes appear to be common to astrocyte reactions in other neurological disorders. Using AxD to illuminate common mechanisms, we discuss the molecular pathology of AxD astrocytes and compare that to astrocyte pathology in other disorders.
Collapse
Affiliation(s)
- Markel Olabarria
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032; ,
| |
Collapse
|
43
|
Klein RS, Hunter CA. Protective and Pathological Immunity during Central Nervous System Infections. Immunity 2017; 46:891-909. [PMID: 28636958 PMCID: PMC5662000 DOI: 10.1016/j.immuni.2017.06.012] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 02/08/2023]
Abstract
The concept of immune privilege of the central nervous system (CNS) has dominated the study of inflammatory processes in the brain. However, clinically relevant models have highlighted that innate pathways limit pathogen invasion of the CNS and adaptive immunity mediates control of many neural infections. As protective responses can result in bystander damage, there are regulatory mechanisms that balance protective and pathological inflammation, but these mechanisms might also allow microbial persistence. The focus of this review is to consider the host-pathogen interactions that influence neurotropic infections and to highlight advances in our understanding of innate and adaptive mechanisms of resistance as key determinants of the outcome of CNS infection. Advances in these areas have broadened our comprehension of how the immune system functions in the brain and can readily overcome immune privilege.
Collapse
Affiliation(s)
- Robyn S Klein
- Departments of Medicine, Pathology and Immunology, Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Activated GL7 + B cells are maintained within the inflamed CNS in the absence of follicle formation during viral encephalomyelitis. Brain Behav Immun 2017; 60:71-83. [PMID: 27658544 PMCID: PMC5215090 DOI: 10.1016/j.bbi.2016.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system (CNS) inflammation associated with viral infection and autoimmune disease results in the accumulation of B cells in various differentiation stages. However, the contribution between peripheral and CNS activation remains unclear. During gliatropic coronavirus induced encephalomyelitis, accumulation of protective antibody secreting cells is preceded by infiltration of B cells with a naïve and early differentiation phenotype (Phares et al., 2014). Investigation of the temporal dynamics of B cell activation in draining cervical lymph nodes (CLN) and the CNS revealed that peak CNS infiltration of early activated, unswitched IgD+ and IgM+ B cells coincided with polyclonal activation in CLN. By contrast, isotype-switched IgG+ B cells did not accumulate until peripheral germinal center formation. In the CNS, unswitched B cells were confined to the perivascular space and meninges, with only rare B cell clusters, while isotype-switched B cells localized to parenchymal areas. Although ectopic follicle formation was not observed, more differentiated B cell subsets within the CNS expressed the germinal center marker GL7, albeit at lower levels than CLN counterparts. During chronic infection, CNS IgDint and IgD- B cell subsets further displayed sustained markers of proliferation and CD4 T cell help, which were only transiently expressed in the CLN. A contribution of local CD4 T cell help to sustain B cell activation was supported by occasional B cells adjacent to T cells. The results suggest that accumulation of differentiated B cell subsets within the CNS is largely dictated by peripheral activation, but that local events contribute to their sustained activation independent of ectopic follicle formation.
Collapse
|
45
|
C-X-C motif chemokine 10 in non-alcoholic steatohepatitis: role as a pro-inflammatory factor and clinical implication. Expert Rev Mol Med 2016; 18:e16. [PMID: 27669973 DOI: 10.1017/erm.2016.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. Non-alcoholic steatohepatitis (NASH) is a more severe form of NAFLD and causes subsequent pathological changes including cirrhosis and hepatocellular carcinoma. Inflammation is the key pathological change in NASH and involves a series of cytokines and chemokines. The C-X-C motif chemokine 10 (CXCL10), which is known as a pro-inflammation chemokine, was recently proven to play a pivotal role in the pathogenesis of NASH. Hepatic CXCL10 is mainly secreted by hepatocytes and liver sinusoidal endothelium. By binding to its specific receptor CXCR3, CXCL10 recruits activated CXCR3+ T lymphocytes and macrophages to parenchyma and promotes inflammation, apoptosis and fibrosis. The circulating CXCL10 level correlates with the severity of lobular inflammation and is an independent risk factor for NASH patients. Thus, CXCL10 may be both a potential prognostic tool and a therapeutic target for the treatment of patients with NASH. The aim of this review is to highlight the growing advances in basic knowledge and clinical interest of CXCL10 in NASH to propagate new insights into novel pharmacotherapeutic avenues.
Collapse
|
46
|
Baxter VK, Griffin DE. Interferon gamma modulation of disease manifestation and the local antibody response to alphavirus encephalomyelitis. J Gen Virol 2016; 97:2908-2925. [PMID: 27667782 DOI: 10.1099/jgv.0.000613] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Infection of mice with Sindbis virus (SINV) produces encephalomyelitis and provides a model for examination of the central nervous system (CNS) immune response to alphavirus infection. Clearance of infectious virus is accomplished through a cooperative effort between SINV-specific antibody and IFN-γ, but the regulatory interactions are poorly understood. To determine the effects of IFN-γ on clinical disease and the antiviral immune response, C57BL/6 mice lacking IFN-γ (Ifng-/-) or IFN-γ receptor (Ifngr1-/-) were studied in comparison to WT mice. Maximum production of Ifng mRNA and IFN-γ protein in the CNS of WT and Ifngr1-/- mice occurred 5-7 days after infection, with higher levels of IFN-γ in Ifngr1-/- mice. Onset of clinical disease was earlier in mice with impaired IFN-γ signalling, although Ifngr1-/- mice recovered more rapidly. Ifng-/- and Ifngr1-/- mice maintained body weight better than WT mice, associated with better food intake and lower brain levels of inflammatory cytokines. Clearance of infectious virus from the spinal cords was slower, and CNS, but not serum, levels of SINV-specific IgM, IgG2a and IgG2b were lower in Ifngr1-/- and Ifng-/- mice compared to WT mice. Decreased CNS antiviral antibody was associated with lower expression of mRNAs for B-cell attracting chemokines CXCL9, CXCL10 and CXCL13 and fewer B cells in the CNS. Therefore, IFN-γ signalling increases levels of CNS pro-inflammatory cytokines, leading to clinical disease, but synergistically clears virus with SINV-specific antibody at least in part by increasing chemokine production important for infiltration of antibody-secreting B cells into the CNS.
Collapse
Affiliation(s)
- Victoria K Baxter
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
47
|
Phares TW, DiSano KD, Stohlman SA, Segal BM, Bergmann CC. CXCL13 promotes isotype-switched B cell accumulation to the central nervous system during viral encephalomyelitis. Brain Behav Immun 2016; 54:128-139. [PMID: 26795429 PMCID: PMC4828287 DOI: 10.1016/j.bbi.2016.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/13/2016] [Accepted: 01/16/2016] [Indexed: 11/28/2022] Open
Abstract
Elevated CXCL13 within the central nervous system (CNS) correlates with humoral responses in several neuroinflammatory diseases, yet its role is controversial. During coronavirus encephalomyelitis CXCL13 deficiency impaired CNS accumulation of memory B cells and antibody-secreting cells (ASC) but not naïve/early-activated B cells. However, despite diminished germinal center B cells and follicular helper T cells in draining lymph nodes, ASC in bone marrow and antiviral serum antibody were intact in the absence of CXCL13. The data demonstrate that CXCL13 is not essential in mounting effective peripheral humoral responses, but specifically promotes CNS accumulation of differentiated B cells.
Collapse
Affiliation(s)
- Timothy W Phares
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| | - Krista D DiSano
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA; School of Biomedical Sciences, Kent State University, Kent, OH, USA.
| | - Stephen A Stohlman
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| | - Benjamin M Segal
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Cornelia C Bergmann
- Department of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
48
|
Ritzel RM, Crapser J, Patel AR, Verma R, Grenier JM, Chauhan A, Jellison ER, McCullough LD. Age-Associated Resident Memory CD8 T Cells in the Central Nervous System Are Primed To Potentiate Inflammation after Ischemic Brain Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:3318-30. [PMID: 26962232 PMCID: PMC4868658 DOI: 10.4049/jimmunol.1502021] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/05/2016] [Indexed: 01/17/2023]
Abstract
Aging is associated with an increase in basal inflammation in the CNS and an overall decline in cognitive function and poorer recovery following injury. Growing evidence suggests that leukocyte recruitment to the CNS is also increased with normal aging, but, to date, no systematic evaluation of these age-associated leukocytes has been performed. In this work, the effect of aging on CNS leukocyte recruitment was examined. Aging was associated with more CD45(high) leukocytes, primarily composed of conventional CD8(+) T cells. These results were strain independent and seen in both sexes. Intravascular labeling and immunohistology revealed the presence of parenchymal CD8(+) T cells in several regions of the brain, including the choroid plexus and meninges. These cells had effector memory (CD44(+)CD62L(-)) and tissue-resident phenotypes and expressed markers associated with TCR activation. Analysis of TCRvβ repertoire usage suggested that entry into the CNS is most likely stochastic rather than Ag driven. Correlational analyses revealed a positive association between CD8 T cell numbers and decreased proinflammatory function of microglia. However, the effects of cerebral ischemia and ex vivo stimulation of these cells dramatically increased production of TNF, IFN-γ, and MCP-1/CCL2. Taken together, we identified a novel population of resident memory, immunosurveillant CD8 T cells that represent a hallmark of CNS aging and appear to modify microglia homeostasis under normal conditions, but are primed to potentiate inflammation and leukocyte recruitment following ischemic injury.
Collapse
Affiliation(s)
- Rodney M Ritzel
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Joshua Crapser
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Anita R Patel
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Rajkumer Verma
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Jeremy M Grenier
- Immunology Department, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Anjali Chauhan
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030
| | - Evan R Jellison
- Immunology Department, University of Connecticut Health Center, Farmington, CT 06030; and
| | - Louise D McCullough
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030; Department of Neurology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77370
| |
Collapse
|
49
|
Liba Z, Kayserova J, Elisak M, Marusic P, Nohejlova H, Hanzalova J, Komarek V, Sediva A. Anti-N-methyl-D-aspartate receptor encephalitis: the clinical course in light of the chemokine and cytokine levels in cerebrospinal fluid. J Neuroinflammation 2016; 13:55. [PMID: 26941012 PMCID: PMC4776396 DOI: 10.1186/s12974-016-0507-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 02/10/2016] [Indexed: 12/16/2022] Open
Abstract
Background Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disorder of the central nervous system (CNS). Its immunopathogenesis has been proposed to include early cerebrospinal fluid (CSF) lymphocytosis, subsequent CNS disease restriction and B cell mechanism predominance. There are limited data regarding T cell involvement in the disease. To contribute to the current knowledge, we investigated the complex system of chemokines and cytokines related to B and T cell functions in CSF and sera samples from anti-NMDAR encephalitis patients at different time-points of the disease. One patient in our study group had a long-persisting coma and underwent extraordinary immunosuppressive therapy. Methods Twenty-seven paired CSF/serum samples were collected from nine patients during the follow-up period (median 12 months, range 1–26 months). The patient samples were stratified into three periods after the onset of the first disease symptom and compared with the controls. Modified Rankin score (mRS) defined the clinical status. The concentrations of the chemokines (C-X-C motif ligand (CXCL)10, CXCL8 and C-C motif ligand 2 (CCL2)) and the cytokines (interferon (IFN)γ, interleukin (IL)4, IL7, IL15, IL17A and tumour necrosis factor (TNF)α) were measured with Luminex multiple bead technology. The B cell-activating factor (BAFF) and CXCL13 concentrations were determined via enzyme-linked immunosorbent assay. We correlated the disease period with the mRS, pleocytosis and the levels of all of the investigated chemokines and cytokines. Non-parametric tests were used, a P value <0.05 was considered to be significant. Results The increased CXCL10 and CXCL13 CSF levels accompanied early-stage disease progression and pleocytosis. The CSF CXCL10 and CXCL13 levels were the highest in the most complicated patient. The CSF BAFF levels remained unchanged through the periods. In contrast, the CSF levels of T cell-related cytokines (INFγ, TNFα and IL17A) and IL15 were slightly increased at all of the periods examined. No dynamic changes in chemokine and cytokine levels were observed in the peripheral blood. Conclusions Our data support the hypothesis that anti-NMDAR encephalitis is restricted to the CNS and that chemoattraction of immune cells dominates at its early stage. Furthermore, our findings raise the question of whether T cells are involved in this disease. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0507-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zuzana Liba
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, Prague, 15006, Czech Republic.
| | - Jana Kayserova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martin Elisak
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Petr Marusic
- Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Hana Nohejlova
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, Prague, 15006, Czech Republic.,Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jitka Hanzalova
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,Department of Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Vladimir Komarek
- Department of Pediatric Neurology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, V Uvalu 84, Prague, 15006, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
50
|
The hGFAP-driven conditional TSPO knockout is protective in a mouse model of multiple sclerosis. Sci Rep 2016; 6:22556. [PMID: 26925573 PMCID: PMC4772008 DOI: 10.1038/srep22556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 02/17/2016] [Indexed: 01/04/2023] Open
Abstract
The mitochondrial translocator protein (TSPO) has been implicated in CNS diseases. Here, we sought to determine the specific role of TSPO in experimental autoimmune encephalomyelitis (EAE), the most studied animal model of multiple sclerosis (MS). To fundamentally elucidate the functions of TSPO, we first developed a viable TSPO knockout mouse. A conditional TSPO knockout mouse was generated by utilizing the Cre-Lox system. We generated a TSPO floxed mouse, and then crossed this mouse with a Cre recombinase expressing mouse driven by the human glial fibrillary acidic protein (hGFAP) promoter. The resultant mouse was a neural linage line specific TSPO knockout. The loss of TSPO in the CNS did not result in overt developmental defects or phenotypes. The TSPO−/− mouse showed a decrease in GFAP expression, correlating with a decrease in astrogliosis in response to neural injury during EAE. This decrease in astrogliosis was also witnessed in the lessening of severity of EAE clinical scoring, indicating an in vivo functional role for TSPO in suppressing EAE. The TSPO−/− mouse could be a useful tool in better understanding the role of TSPO in CNS disease, and our results implicate TSPO as a potential therapeutic target in MS.
Collapse
|