1
|
Raharinantoanina J, Joffret ML, Bessaud M, Rakoto DAD, Dussart P, Lacoste V, Razafindratsimandresy R. Wide circulation of type 1 vaccine-derived poliovirus strains in clinical specimens from suspected cases of poliomyelitis, their contacts and in wastewater in Madagascar since late 2020. Virology 2024; 600:110253. [PMID: 39357254 DOI: 10.1016/j.virol.2024.110253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
Madagascar has faced three major outbreaks of vaccine-derived polioviruses (VDPVs) in recent decades, with VDPV type 1 reemerging in late 2020. Here, we report the molecular characterization of these cVDPV1 strains. WHO protocols were used for poliovirus detection in stool and wastewater samples. Molecular genotyping was based on the 5' non-coding (5'NC), VP1, and 3Dpol regions. From 2020 to 2022, 92 of 5690 stool samples and 129 of 1046 wastewater samples tested positive for cVDPV1. Genetic analysis of the VP1 gene revealed 1.3%-6.1% variability compared to the Sabin strain. Most sequences showed mutations at neurovirulence attenuation sites. Phylogenetic analysis distributed strains into four genogroups originating from Southern Madagascar. All analyzed cVDPV1 strains were recombinant, containing mutated oral polio vaccine sequences in VP1 and type C enterovirus sequences in other regions. This study demonstrated that all strains were closely related during this epidemic.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France; Laboratoire Associé Au Centre National de Référence Entérovirus/Paréchovirus, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus Sensing and Signaling Unit, Paris, France; Laboratoire Associé Au Centre National de Référence Entérovirus/Paréchovirus, France
| | - Danielle Aurore Doll Rakoto
- Ecole D'Enseignement Supérieure, Sciences de La Vie et de L'Environnement, Université D'Antananarivo, Antananarivo, Madagascar
| | - Philippe Dussart
- Unité de Virologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Vincent Lacoste
- Unité de Virologie, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | |
Collapse
|
2
|
Chesnais M, Bujaki E, Filhol T, Caval V, Joffret ML, Martin J, Jouvenet N, Bessaud M. Opening a 60-year time capsule: sequences of historical poliovirus cold variants shed a new light on a contemporary strain. Virus Evol 2024; 10:veae063. [PMID: 39170726 PMCID: PMC11336667 DOI: 10.1093/ve/veae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Polioviruses (PVs) are positive strand RNA viruses responsible for poliomyelitis. Many PVs have been isolated and phenotypically characterized in the 1940s-50s for the purpose of identifying attenuated strains that could be used as vaccine strains. Among these historical PVs, only few are genetically characterized. We report here the sequencing of four PV strains stored for more than 60 years in a sealed box. These PVs are cold variants that were selected by Albert Sabin based on their capacity to multiply at relatively low temperatures. Inoculation of permissive cells at 25°C showed that two of the four historical virus stocks still contained infectious particles. Both viruses reached titres that were higher at 25°C than at 37°C, thus demonstrating that they were genuine cold variants. We obtained sequences that span virtually all the genome for three out of the four strains; a short sequence that partly covers the 5' untranslated region was recovered for the last one. Unexpectedly, the genome of one historical cold variant (which derives from PV-3 Glenn) displayed a very high nucleotide identity (above 95%) with that of a PV strain (PV-3 strain WIV14) sampled in China in 2014 and then classified as a highly evolved vaccine-derived PV. Our analyses made this hypothesis very unlikely and strongly suggested that Glenn and WIV14 shared a very recent common ancestor with one another. Some strains used to produce the inactivated polio vaccine were also very close to Glenn and WIV14 in the capsid-encoding region, but they had not been sequenced beyond the capsid. We therefore sequenced one of these strains, Saukett A, which was available in our collection. Saukett A and WIV14 featured an identity higher than 99% at the nucleotide level. This work provides original data on cold variants that were produced and studied decades ago. It also highlights that sequences of historical PV strains could be crucial to reliably characterize contemporary PVs in case of release from a natural reservoir or from a facility, which is of highest importance for the PV eradication program.
Collapse
Affiliation(s)
- Morgane Chesnais
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
- Laboratoire associé au Centre national de référence pour les entérovirus & paréchovirus, 28 rue du Dr Roux, Paris 75 015, France
| | - Erika Bujaki
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Typhaine Filhol
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
| | - Vincent Caval
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
| | - Marie-Line Joffret
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
- Laboratoire associé au Centre national de référence pour les entérovirus & paréchovirus, 28 rue du Dr Roux, Paris 75 015, France
| | - Javier Martin
- Division of Vaccines, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, United Kingdom
| | - Nolwenn Jouvenet
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
| | - Maël Bessaud
- Institut Pasteur, Université de Paris Cité, CNRS UMR 3569, Virus sensing and signaling Unit, 28 rue du Dr Roux, Paris 75 015, France
- Laboratoire associé au Centre national de référence pour les entérovirus & paréchovirus, 28 rue du Dr Roux, Paris 75 015, France
| |
Collapse
|
3
|
Virulence of Enterovirus A71 Fluctuates Depending on the Phylogenetic Clade Formed in the Epidemic Year and Epidemic Region. J Virol 2021; 95:e0151521. [PMID: 34523967 DOI: 10.1128/jvi.01515-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although epidemics of hand, foot, and mouth disease (HFMD) caused by enterovirus A71 (EV-A71) have occurred worldwide, the Asia-Pacific region has seen large sporadic outbreaks with many severe neurological cases. This suggests that the virulence of the circulating viruses fluctuates in each epidemic and that HFMD outbreaks with many severe cases occur when highly virulent viruses are circulating predominantly, which has not been experimentally verified. Here, we analyzed 32 clinically isolated strains obtained in Japan from 2002 to 2013, along with 27 Vietnamese strains obtained from 2015 to 2016 that we characterized previously using human SCARB2 transgenic mice. Phylogenetic analysis of the P1 region classified them into five clades belonging to subgenogroup B5 (B5-I to B5-V) and five clades belonging to subgenogroup C4 (C4-I to C4-V) according to the epidemic year and region. Interestingly, clades B5-I and B5-II were very virulent, while clades B5-III, B5-IV, and B5-V were less virulent. Clades C4-II, C4-III, C4-IV, and C4-V were virulent, while clade C4-I was not. The result experimentally showed for the first time that several clades with different virulence levels emerged one after another. The experimental virulence evaluation of circulating viruses using SCARB2 transgenic mice is helpful to assess potential risks of circulating viruses. These results also suggest that a minor nucleotide or amino acid substitution in the EV-A71 genome during circulation causes fluctuations in virulence. The data presented here may increase our understanding of the dynamics of viral virulence during epidemics. IMPORTANCE Outbreaks of hand, foot, and mouth disease (HFMD) with severe enterovirus A71 (EV-A71) cases have occurred repeatedly, mainly in Asia. In severe cases, central nervous system complications can lead to death, making it an infectious disease of importance to public health. An unanswered question about this disease is why outbreaks of HFMD with many severe cases sometimes occur. Here, we collected EV-A71 strains that were prevalent in Japan and Vietnam over the past 20 years and evaluated their virulence in a mouse model of EV-A71 infection. This method clearly revealed that viruses belonging to different clades have different virulence, indicating that the method is powerful to assess the potential risks of the circulating viruses. The results also suggested that factors in the virus genome cause an outbreak with many severe cases and that further studies facilitate the prediction of large epidemics of EV-A71 in the future.
Collapse
|
4
|
Korotkova E, Laassri M, Zagorodnyaya T, Petrovskaya S, Rodionova E, Cherkasova E, Gmyl A, Ivanova OE, Eremeeva TP, Lipskaya GY, Agol VI, Chumakov K. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications. Viruses 2017; 9:v9110353. [PMID: 29165333 PMCID: PMC5707560 DOI: 10.3390/v9110353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/15/2017] [Accepted: 11/20/2017] [Indexed: 11/29/2022] Open
Abstract
Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing) of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These “weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.
Collapse
Affiliation(s)
- Ekaterina Korotkova
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Majid Laassri
- US Food and Drug Administration, Silver Spring, MD 20993, USA.
| | | | | | | | - Elena Cherkasova
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20895, USA.
| | - Anatoly Gmyl
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- IM Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Olga E Ivanova
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
- IM Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Tatyana P Eremeeva
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | - Galina Y Lipskaya
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
| | - Vadim I Agol
- AN Belozersky Institute of Physical-Chemical Biology, MV Lomonosov Moscow State University, Moscow 119899, Russia.
- Institute of Poliomyelitis and Viral Encephalitides of MP Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, Moscow 108819, Russia.
| | | |
Collapse
|
5
|
Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase. Viruses 2015; 7:5571-86. [PMID: 26516899 PMCID: PMC4632402 DOI: 10.3390/v7102894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/17/2015] [Accepted: 10/18/2015] [Indexed: 12/17/2022] Open
Abstract
The Sabin I poliovirus live, attenuated vaccine strain encodes for four amino acid changes (i.e., D53N, Y73H, K250E, and T362I) in the RNA-dependent RNA polymerase (RdRp). We have previously shown that the T362I substitution leads to a lower fidelity RdRp, and viruses encoding this variant are attenuated in a mouse model of poliovirus. Given these results, it was surprising that the nucleotide incorporation rate and nucleobase fidelity of the Sabin I RdRp is similar to that of wild-type enzyme, although the Sabin I RdRp is less selective against nucleotides with modified sugar groups. We suggest that the other Sabin amino acid changes (i.e., D53N, Y73H, K250E) help to re-establish nucleotide incorporation rates and nucleotide discrimination near wild-type levels, which may be a requirement for the propagation of the virus and its efficacy as a vaccine strain. These results also suggest that the nucleobase fidelity of the Sabin I RdRp likely does not contribute to viral attenuation.
Collapse
|
6
|
Prusa J, Missak J, Kittrell J, Evans JJ, Tapprich WE. Major alteration in coxsackievirus B3 genomic RNA structure distinguishes a virulent strain from an avirulent strain. Nucleic Acids Res 2014; 42:10112-21. [PMID: 25074382 PMCID: PMC4150801 DOI: 10.1093/nar/gku706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Coxsackievirus B3 (CV-B3) is a cardiovirulent enterovirus that utilizes a 5′ untranslated region (5′UTR) to complete critical viral processes. Here, we directly compared the structure of a 5′UTR from a virulent strain with that of a naturally occurring avirulent strain. Using chemical probing analysis, we identified a structural difference between the two 5′UTRs in the highly substituted stem-loop II region (SLII). For the remainder of the 5′UTR, we observed conserved structure. Comparative sequence analysis of 170 closely related enteroviruses revealed that the SLII region lacks conservation. To investigate independent folding and function, two chimeric CV-B3 strains were created by exchanging nucleotides 104–184 and repeating the 5′UTR structural analysis. Neither the parent SLII nor the remaining domains of the background 5′UTR were structurally altered by the exchange, supporting an independent mechanism of folding and function. We show that the attenuated 5′UTR lacks structure in the SLII cardiovirulence determinant.
Collapse
Affiliation(s)
- Jerome Prusa
- Biology Department, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Johanna Missak
- Department of Family Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeff Kittrell
- Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - John J Evans
- Department of Pathology, University of Colorado Anshutz Medical Campus, Denver, CO 80045, USA
| | - William E Tapprich
- Biology Department, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
7
|
Kant Upadhyay R. Biomarkers in Japanese encephalitis: a review. BIOMED RESEARCH INTERNATIONAL 2013; 2013:591290. [PMID: 24455705 PMCID: PMC3878288 DOI: 10.1155/2013/591290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/16/2013] [Accepted: 10/21/2013] [Indexed: 12/11/2022]
Abstract
JE is a flavivirus generated dreadful CNS disease which causes high mortality in various pediatric groups. JE disease is currently diagnosed by measuring the level of viral antigens and virus neutralization IgM antibodies in blood serum and CSF by ELISA. However, it is not possible to measure various disease-identifying molecules, structural and molecular changes occurred in tissues, and cells by using such routine methods. However, few important biomarkers such as cerebrospinal fluid, plasma, neuro-imaging, brain mapping, immunotyping, expression of nonstructural viral proteins, systematic mRNA profiling, DNA and protein microarrays, active caspase-3 activity, reactive oxygen species and reactive nitrogen species, levels of stress-associated signaling molecules, and proinflammatory cytokines could be used to confirm the disease at an earlier stage. These biomarkers may also help to diagnose mutant based environment specific alterations in JEV genotypes causing high pathogenesis and have immense future applications in diagnostics. There is an utmost need for the development of new more authentic, appropriate, and reliable physiological, immunological, biochemical, biophysical, molecular, and therapeutic biomarkers to confirm the disease well in time to start the clinical aid to the patients. Hence, the present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of JE disease and its related disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D. D. U. Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| |
Collapse
|
8
|
Liu X, Yang X, Lee CA, Moustafa IM, Smidansky ED, Lum D, Arnold JJ, Cameron CE, Boehr DD. Vaccine-derived mutation in motif D of poliovirus RNA-dependent RNA polymerase lowers nucleotide incorporation fidelity. J Biol Chem 2013; 288:32753-32765. [PMID: 24085299 DOI: 10.1074/jbc.m113.484428] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
All viral RNA-dependent RNA polymerases (RdRps) have a conserved structural element termed motif D. Studies of the RdRp from poliovirus (PV) have shown that a conformational change of motif D leads to efficient and faithful nucleotide addition by bringing Lys-359 into the active site where it serves as a general acid. The RdRp of the Sabin I vaccine strain has Thr-362 changed to Ile. Such a drastic change so close to Lys-359 might alter RdRp function and contribute in some way to the attenuated phenotype of Sabin type I. Here we present our characterization of the T362I RdRp. We find that the T362I RdRp exhibits a mutator phenotype in biochemical experiments in vitro. Using NMR, we show that this change in nucleotide incorporation fidelity correlates with a change in the structural dynamics of motif D. A recombinant PV expressing the T362I RdRp exhibits normal growth properties in cell culture but expresses a mutator phenotype in cells. For example, the T362I-containing PV is more sensitive to the mutagenic activity of ribavirin than wild-type PV. Interestingly, the T362I change was sufficient to cause a statistically significant reduction in viral virulence. Collectively, these studies suggest that residues of motif D can be targeted when changes in nucleotide incorporation fidelity are desired. Given the observation that fidelity mutants can serve as vaccine candidates, it may be possible to use engineering of motif D for this purpose.
Collapse
Affiliation(s)
| | | | - Cheri A Lee
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ibrahim M Moustafa
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Eric D Smidansky
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | - Jamie J Arnold
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Craig E Cameron
- the Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | |
Collapse
|
9
|
Kant Upadhyay R. Japanese Encephalitis Virus Generated Neurovirulence, Antigenicity, and Host Immune Responses. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/830396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In response to a JE virus attack, infected body cells start secretion of different cytokines and activate innate immune response. Virus starts neuronal invasion by entering into nerve cells and inflecting the central nervous system. It avoids exposure of body’s natural immunity and generates neurotrophic effects. Virus causes acute susceptibility to CNS and establishes encephalitis syndrome that results in very high fatality in children. In survivors, JEV inhibits the growth and proliferation of NCPs and imposes permanent neuronal disorders like cognitive, motor, and behavioral impairments. However, body cells start TCR mediated interactions, to recognize viral antigens with class I MHC complex on specific target cells, and operate mass killing of virus infected cells by increased CTL activity. Thus, both cell mediated and antibody interactions plays a central role in protection against JEV. In the present review article virus generated neurovirulence, antigenicity, and host immune responses are described in detail. More emphasis is given on diagnosis, clinical care, and active immunization with well-designed potential antiflavivirus vaccines. Further, for achieving an elite success against JEV, global eradication strategies are to be needed for making vaccination program more responsible and effective in endemic areas.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, D D U Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
10
|
Duintjer Tebbens RJ, Pallansch MA, Kim JH, Burns CC, Kew OM, Oberste MS, Diop OM, Wassilak SGF, Cochi SL, Thompson KM. Oral poliovirus vaccine evolution and insights relevant to modeling the risks of circulating vaccine-derived polioviruses (cVDPVs). RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:680-702. [PMID: 23470192 PMCID: PMC7890645 DOI: 10.1111/risa.12022] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The live, attenuated oral poliovirus vaccine (OPV) provides a powerful tool for controlling and stopping the transmission of wild polioviruses (WPVs), although the risks of vaccine-associated paralytic polio (VAPP) and circulating vaccine-derived poliovirus (cVDPV) outbreaks exist as long as OPV remains in use. Understanding the dynamics of cVDPV emergence and outbreaks as a function of population immunity and other risk factors may help to improve risk management and the development of strategies to respond to possible outbreaks. We performed a comprehensive review of the literature related to the process of OPV evolution and information available from actual experiences with cVDPV outbreaks. Only a relatively small fraction of poliovirus infections cause symptoms, which makes direct observation of the trajectory of OPV evolution within a population impractical and leads to significant uncertainty. Despite a large global surveillance system, the existing genetic sequence data largely provide information about transmitted virulent polioviruses that caused acute flaccid paralysis, and essentially no data track the changes that occur in OPV sequences as the viruses transmit largely asymptomatically through real populations with suboptimal immunity. We updated estimates of cVDPV risks based on actual experiences and identified the many limitations in the existing data on poliovirus transmission and immunity and OPV virus evolution that complicate modeling. Modelers should explore the space of potential model formulations and inputs consistent with the available evidence and future studies should seek to improve our understanding of the OPV virus evolution process to provide better information for policymakers working to manage cVDPV risks.
Collapse
|
11
|
Sutter RW, Kew OM, Cochi SL, Aylward RB. Poliovirus vaccine—live. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
12
|
Pliaka V, Kyriakopoulou Z, Tsakogiannis D, Ruether IGA, Gartzonika C, Levidiotou-Stefanou S, Krikelis A, Markoulatos P. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains. Eur J Clin Microbiol Infect Dis 2010; 29:1513-23. [DOI: 10.1007/s10096-010-1033-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 08/04/2010] [Indexed: 12/01/2022]
|
13
|
Abstract
Over the past decade, Human enterovirus (HEV)71 has emerged as a highly significant cause of viral encephalitis in the south-east Asian region. A pattern of increased epidemic activity has been observable since 1997, the cause of which is unclear. Ongoing investigations into the molecular basis of HEV71 infection and virulence, in particular viral translation and replication, have confirmed similarities between HEV71 and other enteroviruses, including the prototype species Poliovirus, but more work is required in this field. Although several putative receptors for HEV71 have been identified, it remains likely that other, as yet unidentified, receptors exist. Work in several established animal models for HEV71 infection has confirmed the protective efficacy of several inactivated vaccines. As more information emerges regarding the molecular processes involved in HEV71 infection, further advances may lead to the development of more effective antiviral treatments and, ultimately, a vaccine protection strategy.
Collapse
Affiliation(s)
- Emily J Bek
- Infectious Diseases & Immunology, Sydney Medical School, Blackburn Building D06, The University of Sydney, NSW 2006, Australia
| | | |
Collapse
|
14
|
Pliaka V, Dedepsidis E, Kyriakopoulou Z, Papadi G, Tsakogiannis D, Pratti A, Levidiotou-Stefanou S, Markoulatos P. Growth kinetic analysis of bi-recombinant poliovirus vaccine strains. Virus Genes 2010; 40:200-11. [PMID: 20091423 DOI: 10.1007/s11262-010-0448-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Accepted: 01/08/2010] [Indexed: 12/13/2022]
Abstract
Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and in rare cases may cause vaccine-associated paralytic poliomyelitis (VAPP). Mutations at specific sites of the genome and recombination between Sabin strains may result in the loss of the attenuated phenotype of OPV (Oral Poliovirus Vaccine) strains and the acquisition of traits characteristic of wild polioviruses, such as increased neurovirulence and loss of temperature sensitivity. In this study, we determined the phenotypic traits such as temperature sensitivity and growth kinetics of eight OPV isolates (six bi-recombinant and two non-recombinant). The growth phenotype of each isolate as well as of Sabin vaccine strains in Hep2 cell line at two different temperatures (37 and 40 degrees C) was evaluated using two different assays, RCT test (Reproductive Capacity at different Temperatures) and one-step growth curve analysis. Moreover, the nucleotide and amino acid positions in the genomes of the isolates that have been identified as being involved in the attenuated and thermo sensitive phenotype of Sabin vaccine strains were investigated. Mutations that result in loss of the attenuated and thermo sensitive phenotype of Sabin vaccine strains were identified in the genomes of all isolates. Both mutations and recombination events correlated well with the reverted phenotypic traits of OPV-derivatives. In the post-eradication era of wild polioviruses, the identification and the characterization (genomic and phenotypic) of vaccine-derived polioviruses become increasingly important in order to prevent cases or even outbreaks of paralytic poliomyelitis caused by neurovirulent strains.
Collapse
Affiliation(s)
- Vaia Pliaka
- Department of Biochemistry & Biotechnology, Microbiology-Virology Laboratory, School of Health Sciences, University of Thessaly, Ploutonos 26 & Aiolou, 41221 Larissa, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Introduction of a strong temperature-sensitive phenotype into enterovirus 71 by altering an amino acid of virus 3D polymerase. Virology 2010; 396:1-9. [DOI: 10.1016/j.virol.2009.10.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 12/04/2008] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
|
16
|
Dynamics: the missing link between structure and function of the viral RNA-dependent RNA polymerase? Curr Opin Struct Biol 2009; 19:768-74. [PMID: 19910183 PMCID: PMC2787719 DOI: 10.1016/j.sbi.2009.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 10/13/2009] [Accepted: 10/20/2009] [Indexed: 12/11/2022]
Abstract
The structural basis for nucleotide incorporation fidelity remains an open question for all nucleic acid polymerases. Addressing this question for the viral RNA-dependent RNA polymerase (RdRp) is of particular, practical significance because it is a determinant of sensitivity to antiviral nucleosides and may be a determinant of viral virulence. All polymerases are thought to employ the same catalytic mechanism, but the rate of nucleotide incorporation can vary substantially. Here we review some of the recent work with the RdRp that leads us to suggest that structure provides only a partial understanding of RdRp function and dynamics may be the missing link.
Collapse
|
17
|
Burns CC, Campagnoli R, Shaw J, Vincent A, Jorba J, Kew O. Genetic inactivation of poliovirus infectivity by increasing the frequencies of CpG and UpA dinucleotides within and across synonymous capsid region codons. J Virol 2009; 83:9957-69. [PMID: 19605476 PMCID: PMC2747992 DOI: 10.1128/jvi.00508-09] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 07/09/2009] [Indexed: 01/16/2023] Open
Abstract
Replicative fitness of poliovirus can be modulated systematically by replacement of preferred capsid region codons with synonymous unpreferred codons. To determine the key genetic contributors to fitness reduction, we introduced different sets of synonymous codons into the capsid coding region of an infectious clone derived from the type 2 prototype strain MEF-1. Replicative fitness in HeLa cells, measured by plaque areas and virus yields in single-step growth experiments, decreased sharply with increased frequencies of the dinucleotides CpG (suppressed in higher eukaryotes and most RNA viruses) and UpA (suppressed nearly universally). Replacement of MEF-1 capsid codons with the corresponding codons from another type 2 prototype strain (Lansing), a randomization of MEF-1 synonymous codons, increased the %G+C without increasing CpG, and reductions in the effective number of codons used had much smaller individual effects on fitness. Poliovirus fitness was reduced to the threshold of viability when CpG and UpA dinucleotides were saturated within and across synonymous codons of a capsid region interval representing only approximately 9% of the total genome. Codon replacements were associated with moderate decreases in total virion production but large decreases in the specific infectivities of intact poliovirions and viral RNAs. Replication of codon replacement viruses, but not MEF-1, was temperature sensitive at 39.5 degrees C. Synthesis and processing of viral intracellular proteins were largely unaltered in most codon replacement constructs. Replacement of natural codons with synonymous codons with increased frequencies of CpG and UpA dinucleotides may offer a general approach to the development of attenuated vaccines with well-defined antigenicities and very high genetic stabilities.
Collapse
Affiliation(s)
- Cara C Burns
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Jegouic S, Joffret ML, Blanchard C, Riquet FB, Perret C, Pelletier I, Colbere-Garapin F, Rakoto-Andrianarivelo M, Delpeyroux F. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses. PLoS Pathog 2009; 5:e1000412. [PMID: 19412342 PMCID: PMC2669712 DOI: 10.1371/journal.ppat.1000412] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 04/06/2009] [Indexed: 11/30/2022] Open
Abstract
Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3′ half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3′ half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3′ portion of the cVDPV genome was replaced by the 3′ half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence. Following intense vaccination campaigns with Sabin's trivalent live-attenuated oral poliovirus vaccine, poliomyelitis caused by wild polioviruses has disappeared from large parts of the world. However, poliomyelitis outbreaks due to pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in countries with low vaccine coverage. Most of these cVDPVs seem to be recombinants of mutated vaccine strains and undetermined coxsackieviruses. We have previously shown a cVDPV isolated during an outbreak in Madagascar to be co-circulating with coxsackievirus A17 (CA17) strains with 3′ genomic sequences related to those of the cVDPV. In this study, we determined whether these CA17 isolates can act as recombination partners of poliovirus. Using genetic engineering techniques, we constructed a variety of recombinant viruses derived from a CA17 isolate, the cVDPV and the corresponding original vaccine strain. Our results showed that poliovirus/CA17 recombinants are viable. Moreover, the recombinant virus resulting from the replacement of the 3′ half of the cVDPV genome by that of the CA17 genome was almost as pathogenic as the cVDPV. This supports the notion that co-circulation and co-evolution through the recombination of polioviruses and coxsackieviruses contribute to the emergence of epidemic cVDPVs. This constitutes an interesting model of viral evolution and emergence.
Collapse
Affiliation(s)
- Sophie Jegouic
- Institut Pasteur, Unité de Biologie des Virus Entériques, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Environmental poliovirus surveillance during oral poliovirus vaccine and inactivated poliovirus vaccine use in Córdoba Province, Argentina. Appl Environ Microbiol 2009; 75:1395-401. [PMID: 19124585 DOI: 10.1128/aem.02201-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study compares the presence of environmental poliovirus in two Argentinean populations using oral poliovirus vaccine (OPV) or inactivated poliovirus vaccine (IPV). From January 2003 to December 2005, Córdoba City used IPV in routine infant immunizations, with the exception of intermittent OPV use in August 2005. Between May 2005 and April 2006, we collected weekly wastewater samples in Córdoba City and the province's three major towns, which continued OPV use at all times. Wastewater samples were processed and analyzed for the presence of poliovirus according to WHO guidelines. During the months of IPV use in Córdoba City, the overall proportion of poliovirus-positive samples was 19%. During an intermittent switch from IPV to OPV, this proportion increased to 100% within 2 months. During the 3 months when IPV was reintroduced to replace OPV, a substantial proportion of samples (25%) remained positive for poliovirus. In the OPV-using sites, on average, 54% of samples were poliovirus positive. Seventy-seven percent of poliovirus isolates showed at least one mutation in the VP1-encoding sequence; the maximum genetic divergence from the Sabin strain was 0.7%. Several isolates showed mutations on attenuation markers in the VP1-encoding sequence. The frequency or type of virus mutation did not differ between periods of IPV and OPV use or by virus serotypes. This study indicates that the sustained transmission of OPV viruses was limited during IPV use in a middle-income country with a temperate climate. The continued importation of poliovirus and genetic instability of vaccine strains even in the absence of sustained circulation suggest that high poliovirus vaccine coverage has to be maintained for all countries until the risk of reintroduction of either wild or vaccine-derived poliovirus is close to zero worldwide.
Collapse
|
20
|
Odoom JK, Yunus Z, Dunn G, Minor PD, Martín J. Changes in population dynamics during long-term evolution of sabin type 1 poliovirus in an immunodeficient patient. J Virol 2008; 82:9179-90. [PMID: 18596089 PMCID: PMC2546908 DOI: 10.1128/jvi.00468-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/29/2008] [Indexed: 11/20/2022] Open
Abstract
The evolution of the Sabin strain of type 1 poliovirus in a hypogammaglobulinemia patient for a period of 649 days is described. Twelve poliovirus isolates from sequential stool samples encompassing days 21 to 649 after vaccination with Sabin 1 were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin 1 strain. Poliovirus isolates from the immunodeficient patient evolved gradually toward non-temperature-sensitive and neurovirulent phenotypes, accumulating mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. Analysis of plaque-purified viruses from stool samples revealed complex genetic and evolutionary relationships between the poliovirus strains. The generation of various coevolving genetic lineages incorporating different mutations was observed at early stages of virus excretion. The main driving force for genetic diversity appeared to be the selection of mutations at attenuation sites, particularly in the 5' noncoding region and the VP1 BC loop. Recombination between virus strains from the two main lineages was observed between days 63 and 88. Genetic heterogeneity among plaque-purified viruses at each time point seemed to decrease with time, and only viruses belonging to a unique genotypic lineage were seen from day 105 after vaccination. The relevance of vaccine-derived poliovirus strains for disease surveillance and future polio immunization policies is discussed in the context of the Global Polio Eradication Initiative.
Collapse
Affiliation(s)
- John K Odoom
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN63QG, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Riquet FB, Blanchard C, Jegouic S, Balanant J, Guillot S, Vibet MA, Rakoto-Andrianarivelo M, Delpeyroux F. Impact of exogenous sequences on the characteristics of an epidemic type 2 recombinant vaccine-derived poliovirus. J Virol 2008; 82:8927-32. [PMID: 18579607 PMCID: PMC2519664 DOI: 10.1128/jvi.00239-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 06/09/2008] [Indexed: 11/20/2022] Open
Abstract
Pathogenic circulating vaccine-derived polioviruses (cVDPVs) have become a major obstacle to the successful completion of the global polio eradication program. Most cVDPVs are recombinant between the oral poliovirus vaccine (OPV) and human enterovirus species C (HEV-C). To study the role of HEV-C sequences in the phenotype of cVDPVs, we generated a series of recombinants between a Madagascar cVDPV isolate and its parental OPV type 2 strain. Results indicated that the HEV-C sequences present in this cVDPV contribute to its characteristics, including pathogenicity, suggesting that interspecific recombination contributes to the phenotypic biodiversity of polioviruses and may favor the emergence of cVDPVs.
Collapse
Affiliation(s)
- Franck B Riquet
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
In the last 30 years, the study of virus evolution has undergone a transformation. Originally concerned with disease and its emergence, virus evolution had not been well integrated into the general study of evolution. This chapter reviews the developments that have brought us to this new appreciation for the general significance of virus evolution to all life. We now know that viruses numerically dominate all habitats of life, especially the oceans. Theoretical developments in the 1970s regarding quasispecies, error rates, and error thresholds have yielded many practical insights into virus–host dynamics. The human diseases of HIV-1 and hepatitis C virus cannot be understood without this evolutionary framework. Yet recent developments with poliovirus demonstrate that viral fitness can be the result of a consortia, not one fittest type, a basic Darwinian concept in evolutionary biology. Darwinian principles do apply to viruses, such as with Fisher population genetics, but other features, such as reticulated and quasispecies-based evolution distinguish virus evolution from classical studies. The available phylogenetic tools have greatly aided our analysis of virus evolution, but these methods struggle to characterize the role of virus populations. Missing from many of these considerations has been the major role played by persisting viruses in stable virus evolution and disease emergence. In many cases, extreme stability is seen with persisting RNA viruses. Indeed, examples are known in which it is the persistently infected host that has better survival. We have also recently come to appreciate the vast diversity of phage (DNA viruses) of prokaryotes as a system that evolves by genetic exchanges across vast populations (Chapter 10). This has been proposed to be the “big bang” of biological evolution. In the large DNA viruses of aquatic microbes we see surprisingly large, complex and diverse viruses. With both prokaryotic and eukaryotic DNA viruses, recombination is the main engine of virus evolution, and virus host co-evolution is common, although not uniform. Viral emergence appears to be an unending phenomenon and we can currently witness a selective sweep by retroviruses that infect and become endogenized in koala bears.
Collapse
|
23
|
|
24
|
Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model. J Virol 2007; 82:1787-97. [PMID: 18057246 DOI: 10.1128/jvi.01798-07] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.
Collapse
|
25
|
De Jesus NH. Epidemics to eradication: the modern history of poliomyelitis. Virol J 2007; 4:70. [PMID: 17623069 PMCID: PMC1947962 DOI: 10.1186/1743-422x-4-70] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 07/10/2007] [Indexed: 11/13/2022] Open
Abstract
Poliomyelitis has afflicted humankind since antiquity, and for nearly a century now, we have known the causative agent, poliovirus. This pathogen is an enterovirus that in recent history has been the source of a great deal of human suffering. Although comparatively small, its genome is packed with sufficient information to make it a formidable pathogen. In the last 20 years the Global Polio Eradication Initiative has proven successful in greatly diminishing the number of cases worldwide but has encountered obstacles in its path which have made halting the transmission of wild polioviruses a practical impossibility. As we begin to realize that a change in strategy may be crucial in achieving success in this venture, it is imperative that we critically evaluate what is known about the molecular biology of this pathogen and the intricacies of its interaction with its host so that in future attempts we may better equipped to more effectively combat this important human pathogen.
Collapse
Affiliation(s)
- Nidia H De Jesus
- Department of Molecular Genetics & Microbiology, Stony Brook University School of Medicine, Stony Brook, New York, USA.
| |
Collapse
|
26
|
Arita M, Nagata N, Iwata N, Ami Y, Suzaki Y, Mizuta K, Iwasaki T, Sata T, Wakita T, Shimizu H. An attenuated strain of enterovirus 71 belonging to genotype a showed a broad spectrum of antigenicity with attenuated neurovirulence in cynomolgus monkeys. J Virol 2007; 81:9386-95. [PMID: 17567701 PMCID: PMC1951441 DOI: 10.1128/jvi.02856-06] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also sometimes associated with serious neurological disorders. In this study, we characterized the antigenicity and tissue specificity of an attenuated strain of EV71 [EV71(S1-3')], which belongs to genotype A, in a monkey infection model. Three cynomolgus monkeys were inoculated with EV71(S1-3'), followed by lethal challenge with the parental virulent strain EV71(BrCr-TR) via an intravenous route on day 45 postinoculation of EV71(S1-3'). Monkeys inoculated with EV71(S1-3') showed a mild neurological symptom (tremor) but survived lethal challenge by virulent EV71(BrCr-TR) without exacerbation of the symptom. The immunized monkey sera showed a broad spectrum of neutralizing activity against different genotypes of EV71, including genotypes A, B1, B4, C2, and C4. For the strains examined, the sera showed the highest neutralization activity against the homotype (genotype A) and the lowest neutralization activity against genotype C2. The order of decreasing neutralization activity of sera was as follows: A > B1 > C4 > B4 > C2. To examine the tissue specificity of EV71(S1-3'), two monkeys were intravenously inoculated with EV71(S1-3'), followed by examination of virus distribution in the central nervous system (CNS) and extraneural tissues. In the CNS, EV71(S1-3') was isolated only from the spinal cord. These results indicate that EV71(S1-3') acts as an effective antigen, although this attenuated strain was still neurotropic when inoculated via the intravenous route.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Combiescu M, Guillot S, Persu A, Baicus A, Pitigoi D, Balanant J, Oprisan G, Crainic R, Delpeyroux F, Aubert-Combiescu A. Circulation of a type 1 recombinant vaccine-derived poliovirus strain in a limited area in Romania. Arch Virol 2007; 152:727-38. [PMID: 17195957 DOI: 10.1007/s00705-006-0884-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/01/2006] [Indexed: 01/14/2023]
Abstract
After intensive immunisation campaigns with the oral polio vaccine (OPV) as part of the Global Polio Eradication Initiative, poliomyelitis due to wild viruses has disappeared from most parts of the world, including Europe. Here, we report the characterization of a serotype 1 vaccine-derived poliovirus (VDPV) isolated from one acute flaccid paralysis (AFP) case with tetraplegia and eight healthy contacts belonging to the same small socio-cultural group having a low vaccine coverage living in a small town in Romania. The genomes of the isolated strains appeared to be tripartite type 1/type 2/type 1 vaccine intertypic recombinant genomes derived from a common ancestor strain. The presence of 1.2% nucleotide substitutions in the VP1 capsid protein coding region of most of the strains indicated a circulation time of about 14 months. These VDPVs were thermoresistant and, in transgenic mice expressing the human poliovirus receptor, appeared to have lost the attenuated phenotype. These results suggest that small populations with low vaccine coverage living in globally well-vaccinated countries can be the origin of VDPV emergence and circulation. These results reaffirm the importance of active surveillance for acute flaccid paralysis and poliovirus in both polio-free and polio-endemic countries.
Collapse
Affiliation(s)
- M Combiescu
- Cantacuzino National Institute of Research-Development for Microbiology and Immunology, Bucharest, Romania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kew OM, Sutter RW, de Gourville EM, Dowdle WR, Pallansch MA. VACCINE-DERIVED POLIOVIRUSES AND THE ENDGAME STRATEGY FOR GLOBAL POLIO ERADICATION. Annu Rev Microbiol 2005; 59:587-635. [PMID: 16153180 DOI: 10.1146/annurev.micro.58.030603.123625] [Citation(s) in RCA: 479] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the global eradication of wild poliovirus nears, the World Health Organization (WHO) is addressing challenges unprecedented in public health. The live, attenuated oral poliovirus vaccine (OPV), used for more than four decades to interrupt poliovirus transmission, and the vaccine of choice for developing countries, is genetically unstable. Reversion of the small number of substitutions conferring the attenuated phenotype frequently occurs during OPV replication in humans and is the underlying cause of the rare cases of vaccine-associated paralytic poliomyelitis (VAPP) in OPV recipients and their close contacts. Whereas VAPP has long been recognized, two other adverse events have been identified more recently: (a) long-term excretion of highly evolved vaccine-derived polioviruses (VDPVs) in persons with primary immunodeficiencies, and (b) polio outbreaks associated with circulating VDPVs in areas with low rates of OPV coverage. Developing a posteradication strategy to minimize the risks of VDPV emergence and spread has become an urgent WHO priority.
Collapse
Affiliation(s)
- Olen M Kew
- Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | |
Collapse
|
29
|
Chan YF, AbuBakar S. Human enterovirus 71 subgenotype B3 lacks coxsackievirus A16-like neurovirulence in mice infection. Virol J 2005; 2:74. [PMID: 16122396 PMCID: PMC1215528 DOI: 10.1186/1743-422x-2-74] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 08/26/2005] [Indexed: 11/26/2022] Open
Abstract
Background At least three different EV-71 subgenotypes were identified from an outbreak in Malaysia in 1998. The subgenotypes C2 and B4 were associated with the severe and fatal infections, whereas the B3 virus was associated with mild to subclinical infections. The B3 virus genome sequences had ≥85% similarity at the 3' end to CV-A16. This offers opportunities to examine if there are characteristic similarities and differences in virulence between CV-A16, EV-71 B3 and EV-71 B4 and to determine if the presence of the CV-A16-liked genes in EV-71 B3 would also confer the virus with a CV-A16-liked neurovirulence in mice model infection. Results Analysis of human enterovirus 71 (EV-71) subgenotype B3 genome sequences revealed that the 3D RNA polymerase and domain Z of the 3'-untranslating region RNA secondary structure had high similarity to CV-A16. Intracerebral inoculation of one-day old mice with the virus resulted in 16% of the mice showing swollen hind limbs and significantly lower weight gain in comparison to EV-71 B4-infected mice. None of the mice presented with hind leg paralysis typical in all the CV-A16 infected mice. CV-A16 genome sequences were amplified from the CV-A16-infected mice brain but no amplification was obtained from all the EV-71-inoculated mice suggesting that no replication had taken place in the suckling mice brain. Conclusion The findings presented here suggest that EV-71 B3 viruses had CV-A16-liked non-structural gene features at the 3'-end of the genome. Their presence could have affected virulence by affecting the mice general health but was insufficient to confer the EV-71 B3 virus a CV-A16-liked neurovirulence in mice model infection.
Collapse
Affiliation(s)
- Yoke-Fun Chan
- Sime Darby Technology Centre, 2, Jalan Tandang, 46050 Petaling Jaya, Selangor, Malaysia
| | - Sazaly AbuBakar
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
30
|
Dan M, Chantler JK. A genetically engineered attenuated coxsackievirus B3 strain protects mice against lethal infection. J Virol 2005; 79:9285-95. [PMID: 15994822 PMCID: PMC1168767 DOI: 10.1128/jvi.79.14.9285-9295.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is a common human pathogen that is endemic throughout the world. There is currently no vaccine available, although the virus is known to be highly lethal to newborns and has been associated with heart disease and pancreatitis in older children and adults. Previously, we showed that the virulence of CVB3 is reduced by a lysine-to-arginine substitution in the capsid protein VP2 (K2168R) or a glutamic acid-to-glycine substitution in VP3 (E3060G). In this report, we show that the double mutant virus CVB3(KR/EG) displays additional attenuation, particularly for the pancreas, in A/J mice. In addition, two other attenuating mutations have been identified in the capsid protein VP1. When either the aspartic acid residue D1155 was replaced with glutamic acid or the proline residue P1126 was replaced with methionine, the resulting mutant also possessed an attenuated phenotype. Moreover, when either of these mutations was incorporated into CVB3(KR/EG), the resulting triple mutant viruses, CVB3(KR/EG/DE) and CVB3(KR/EG/PM), were completely noncardiovirulent and caused only small foci of damage to the pancreas, even at a high dose. Both triple mutants were found to be immunogenic, and a single injection of young A/J mice with either was found to protect them from a subsequent lethal challenge with wild-type CVB3. These findings indicate that the triple mutants could be exploited for the development of a live attenuated vaccine against CVB3.
Collapse
Affiliation(s)
- M Dan
- Department of Pathology and Laboratory Medicine, University of British Columbia, #318, BCRICWH, 950 West 28th Ave., Vancouver, British Columbia, Canada V5Z4H4
| | | |
Collapse
|
31
|
Arita M, Shimizu H, Nagata N, Ami Y, Suzaki Y, Sata T, Iwasaki T, Miyamura T. Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol 2005; 86:1391-1401. [PMID: 15831951 DOI: 10.1099/vir.0.80784-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Enterovirus 71 (EV71) is one of the major causative agents of hand, foot and mouth disease and is sometimes associated with serious neurological disorders. In this study, an attempt was made to identify molecular determinants of EV71 attenuation of neurovirulence in a monkey infection model. An infectious cDNA clone of the virulent strain of EV71 prototype BrCr was constructed; temperature-sensitive (ts) mutations of an attenuated strain of EV71 or of poliovirus (PV) Sabin vaccine strains were then introduced into the infectious clone. In vitro and in vivo phenotypes of the parental and mutant viruses were analysed in cultured cells and in cynomolgus monkeys, respectively. Mutations in 3D polymerase (3D(pol)) and in the 3' non-translated region (NTR), corresponding to ts determinants of Sabin 1, conferred distinct temperature sensitivity to EV71. An EV71 mutant [EV71(S1-3')] carrying mutations in the 5' NTR, 3D(pol) and in the 3' NTR showed attenuated neurovirulence, resulting in limited spread of virus in the central nervous system of monkeys. These results indicate that EV71 and PV1 share common genetic determinants of neurovirulence in monkeys, despite the distinct properties in their original pathogenesis.
Collapse
Affiliation(s)
- Minetaro Arita
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroyuki Shimizu
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yasushi Ami
- Division of Experimental Animals Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yuriko Suzaki
- Division of Experimental Animals Research, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Tetsutaro Sata
- Department of Pathology, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Takuya Iwasaki
- Division of Clinical Investigation, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Tatsuo Miyamura
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
32
|
Martín J, Odoom K, Tuite G, Dunn G, Hopewell N, Cooper G, Fitzharris C, Butler K, Hall WW, Minor PD. Long-term excretion of vaccine-derived poliovirus by a healthy child. J Virol 2004; 78:13839-47. [PMID: 15564492 PMCID: PMC533926 DOI: 10.1128/jvi.78.24.13839-13847.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A child was found to be excreting type 1 vaccine-derived poliovirus (VDPV) with a 1.1% sequence drift from Sabin type 1 vaccine strain in the VP1 coding region 6 months after he was immunized with oral live polio vaccine. Seventeen type 1 poliovirus isolates were recovered from stools taken from this child during the following 4 months. Contrary to expectation, the child was not deficient in humoral immunity and showed high levels of serum neutralization against poliovirus. Selected virus isolates were characterized in terms of their antigenic properties, virulence in transgenic mice, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin type 1 strain. The VDPV isolates showed mutations at key nucleotide positions that correlated with the observed reversion to biological properties typical of wild polioviruses. A number of capsid mutations mapped at known antigenic sites leading to changes in the viral antigenic structure. Estimates of sequence evolution based on the accumulation of nucleotide changes in the VP1 coding region detected a "defective" molecular clock running at an apparent faster speed of 2.05% nucleotide changes per year versus 1% shown in previous studies. Remarkably, when compared to several type 1 VDPV strains of different origins, isolates from this child showed a much higher proportion of nonsynonymous versus synonymous nucleotide changes in the capsid coding region. This anomaly could explain the high VP1 sequence drift found and the ability of these virus strains to replicate in the gut for a longer period than expected.
Collapse
Affiliation(s)
- Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, Potters Bar, Hertfordshire EN6 3QG, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Martín J, Samoilovich E, Dunn G, Lackenby A, Feldman E, Heath A, Svirchevskaya E, Cooper G, Yermalovich M, Minor PD. Isolation of an intertypic poliovirus capsid recombinant from a child with vaccine-associated paralytic poliomyelitis. J Virol 2002; 76:10921-8. [PMID: 12368335 PMCID: PMC136614 DOI: 10.1128/jvi.76.21.10921-10928.2002] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 07/22/2002] [Indexed: 11/20/2022] Open
Abstract
The isolation of a capsid intertypic poliovirus recombinant from a child with vaccine-associated paralytic poliomyelitis is described. Virus 31043 had a Sabin-derived type 3-type 2-type 1 recombinant genome with a 5'-end crossover point within the capsid coding region. The result was a poliovirus chimera containing the entire coding sequence for antigenic site 3a derived from the Sabin type 2 strain. The recombinant virus showed altered antigenic properties but did not acquire type 2 antigenic characteristics. The significance of the presence in nature of such poliovirus chimeras and the consequences for the current efforts to detect potentially dangerous vaccine-derived poliovirus strains are discussed in the context of the global polio eradication initiative.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Capsid/immunology
- Child, Preschool
- Crossing Over, Genetic
- Humans
- Male
- Mice
- Mice, Transgenic
- Neutralization Tests
- Paralysis/immunology
- Paralysis/virology
- Poliomyelitis/immunology
- Poliomyelitis/virology
- Poliovirus/genetics
- Poliovirus/immunology
- Poliovirus Vaccine, Oral/adverse effects
- Poliovirus Vaccine, Oral/genetics
- Poliovirus Vaccine, Oral/immunology
- Sequence Analysis, DNA
- Temperature
- Tumor Cells, Cultured
- Virulence
Collapse
Affiliation(s)
- Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nishino Y, Kobasa D, Rubin SA, Pletnikov MV, Carbone KM. Enhanced neurovirulence of borna disease virus variants associated with nucleotide changes in the glycoprotein and L polymerase genes. J Virol 2002; 76:8650-8. [PMID: 12163584 PMCID: PMC136970 DOI: 10.1128/jvi.76.17.8650-8658.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV) infection produces a variety of clinical diseases, from behavioral illnesses to classical fatal encephalitis (i.e., Borna disease [BD]). Since the genomes of most BDV isolates differ by less than 5%, host factors are believed responsible for much of the reported variability in disease expression. The contribution of BDV genomic differences to variation in BD expression is largely unexplored. Here we compared the clinical outcomes of rats infected with one of two related BDV variants, CRP3 or CRNP5. Compared to rats inoculated with CRP3, adult and newborn Lewis rats inoculated with CRNP5 had more severe and rapidly fatal neurological disease, with increased damage to the hippocampal pyramidal neurons and rapid infection of brain stem neurons. To identify possible virus-specific contributions to the observed variability in disease outcome, the genomes of CRP3 and CRNP5 were sequenced. Compared to CRP3, there were four nucleotide changes in the CRNP5 variant, two each in the G protein and in the L polymerase, resulting in four amino acid changes. These results suggest that small numbers of genomic differences between BDV variants in the G protein and/or L polymerase can contribute to the variability in BD outcomes.
Collapse
Affiliation(s)
- Yoshii Nishino
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
35
|
Cherkasova EA, Korotkova EA, Yakovenko ML, Ivanova OE, Eremeeva TP, Chumakov KM, Agol VI. Long-term circulation of vaccine-derived poliovirus that causes paralytic disease. J Virol 2002; 76:6791-9. [PMID: 12050392 PMCID: PMC136293 DOI: 10.1128/jvi.76.13.6791-6799.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2001] [Accepted: 04/03/2002] [Indexed: 11/20/2022] Open
Abstract
Successful implementation of the global poliomyelitis eradication program raises the problem of vaccination against poliomyelitis in the posteradication era. One of the options under consideration envisions completely stopping worldwide the use of the Sabin vaccine. This strategy is based on the assumption that the natural circulation of attenuated strains and their derivatives is strictly limited. Here, we report the characterization of a highly evolved derivative of the Sabin vaccine strain isolated in a case of paralytic poliomyelitis from a 7-month-old immunocompetent baby in an apparently adequately immunized population. Analysis of the genome of this isolate showed that it is a double (type 1-type 2-type 1) vaccine-derived recombinant. The number of mutations accumulated in both the type 1-derived and type 2-derived portions of the recombinant genome suggests that both had diverged from their vaccine predecessors approximately 2 years before the onset of the illness. This fact, along with other recent observations, points to the possibility of long-term circulation of Sabin vaccine strain derivatives associated with an increase in their neurovirulence. Comparison of genomic sequences of this and other evolved vaccine-derived isolates reveals some general features of natural poliovirus evolution. They include a very high preponderance and nonrandom distribution of synonymous substitutions, conservation of secondary structures of important cis-acting elements of the genome, and an apparently adaptive character of most of the amino acid mutations, with only a few of them occurring in the antigenic determinants. Another interesting feature is a frequent occurrence of tripartite intertypic recombinants with either type 1 or type 3 homotypic genomic ends.
Collapse
Affiliation(s)
- Elena A Cherkasova
- A. N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, Moscow 119899
| | | | | | | | | | | | | |
Collapse
|
36
|
Martín J, Minor PD. Characterization of CHAT and Cox type 1 live-attenuated poliovirus vaccine strains. J Virol 2002; 76:5339-49. [PMID: 11991962 PMCID: PMC137059 DOI: 10.1128/jvi.76.11.5339-5349.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2001] [Accepted: 03/07/2002] [Indexed: 01/28/2023] Open
Abstract
CHAT and Cox type 1 live-attenuated poliovirus strains were developed in the 1950s to be used as vaccines for humans. This paper describes their characterization with respect to virulence, sensitivity for growth at high temperatures, and complete nucleotide and amino acid sequences. The results are compared to those for their common parental wild virus, the Mahoney strain, and to those for two other poliovirus strains derived from Mahoney, the Sabin 1 vaccine strain and the mouse-adapted LS-a virus. Analysis of four isolates from cases of vaccine-associated paralytic poliomyelitis related to the CHAT vaccine revealed genetic and phenotypic properties of the CHAT strain following replication in the human gut. CHAT-VAPP strain 134 contained a genome highly evolved from that of CHAT (1.1% nucleotide differences), suggesting long-term circulation of a vaccine-derived strain in the human population. The molecular mechanisms of attenuation and evolution of poliovirus in humans are discussed in the context of the global polio eradication initiative.
Collapse
Affiliation(s)
- Javier Martín
- Division of Virology, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire, United Kingdom.
| | | |
Collapse
|
37
|
McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 2002; 26:91-107. [PMID: 12007645 DOI: 10.1111/j.1574-6976.2002.tb00601.x] [Citation(s) in RCA: 573] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
Collapse
Affiliation(s)
- Peter C McMinn
- Division of Virology, TVW Telethon Institute for Child Health Research, 100 Roberts Road, Subiaco, WA 6008, Australia.
| |
Collapse
|
38
|
Paul AV, Mugavero J, Yin J, Hobson S, Schultz S, van Boom JH, Wimmer E. Studies on the attenuation phenotype of polio vaccines: poliovirus RNA polymerase derived from Sabin type 1 sequence is temperature sensitive in the uridylylation of VPg. Virology 2000; 272:72-84. [PMID: 10873750 DOI: 10.1006/viro.2000.0354] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Determinants of temperature sensitivity and/or attenuation in Sabin type 1 poliovirus reside in the 5' NTR and coding sequences of the capsid proteins and viral RNA polymerase, 3D(pol). Previous studies have implicated at least two mutations in 3D(pol) of Sabin 1 vaccine strain [PV1(S)], including a Y73H change, as contributing to these phenotypes. We have used an in vitro assay to test the first step in RNA synthesis, the uridylylation of the terminal protein VPg with 3D(pol) isolated from PV1(S). Wt and two mutant 3D(pol) proteins (Y73H, D53N/Y73H) were expressed in Escherichia coli and were purified, and their activities were measured in the synthesis of VPgpU(pU) and of VPg-linked poly(U) at 30 and 39.5 degrees C. Our results show that at 39.5 degrees C the Y73H mutation leads to a defect in the synthesis of VPgpUp(U) and of VPg-poly(U) but not in the elongation of a (dT)(15) primer. The double mutant protein had the same activities as Y73H 3D(pol). Using the yeast two-hybrid assay, we detected a reduced interaction between 3D(pol) molecules carrying either the single or double mutations. Tyrosine-73 maps to the finger domain in the three-dimensional structure of 3D(pol). A model will be presented in which a change of Y73 to H73 may interfere with an interaction between two polymerase molecules that, in turn, may interfere with VPg uridylylation. Alternative explanations, however, cannot be excluded at the present time.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- DNA-Directed RNA Polymerases/chemistry
- DNA-Directed RNA Polymerases/genetics
- DNA-Directed RNA Polymerases/isolation & purification
- DNA-Directed RNA Polymerases/metabolism
- HeLa Cells
- Humans
- Hydrogen Bonding
- Models, Molecular
- Molecular Sequence Data
- Mutation/genetics
- Phenotype
- Poliovirus/enzymology
- Poliovirus/genetics
- Poliovirus Vaccine, Oral/chemistry
- Poliovirus Vaccine, Oral/genetics
- Poly U/biosynthesis
- Poly U/genetics
- Poly U/metabolism
- Protein Binding
- Protein Biosynthesis
- Protein Conformation
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- RNA, Viral/metabolism
- RNA-Dependent RNA Polymerase
- Temperature
- Transcription, Genetic/genetics
- Two-Hybrid System Techniques
- Vaccines, Attenuated/chemistry
- Vaccines, Attenuated/genetics
- Viral Core Proteins/genetics
- Viral Core Proteins/metabolism
- Viral Plaque Assay
Collapse
Affiliation(s)
- A V Paul
- Department of Molecular Genetics and Microbiology, State University of New York, Stony Brook, New York 11790, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The discovery of viruses heralded an exciting new era for research in the medical and biological sciences. It has been realized that the cellular receptor guiding a virus to a target cell cannot be the sole determinant of a virus's pathogenic potential. Comparative analyses of the structures of genomes and their products have placed the picornaviruses into a large “picorna-like” virus family, in which they occupy a prominent place. Most human picornavirus infections are self-limiting, yet the enormously high rate of picornavirus infections in the human population can lead to a significant incidence of disease complications that may be permanently debilitating or even fatal. Picornaviruses employ one of the simplest imaginable genetic systems: they consist of single-stranded RNA that encodes only a single multidomain polypeptide, the polyprotein. The RNA is packaged into a small, rigid, naked, and icosahedral virion whose proteins are unmodified except for a myristate at the N-termini of VP4. The RNA itself does not contain modified bases. The key to ultimately understanding picornaviruses may be to rationalize the huge amount of information about these viruses from the perspective of evolution. It is possible that the replicative apparatus of picornaviruses originated in the precellular world and was subsequently refined in the course of thousands of generations in a slowly evolving environment. Picornaviruses cultivated the art of adaptation, which has allowed them to “jump” into new niches offered in the biological world.
Collapse
|
40
|
Muir P, Kämmerer U, Korn K, Mulders MN, Pöyry T, Weissbrich B, Kandolf R, Cleator GM, van Loon AM. Molecular typing of enteroviruses: current status and future requirements. The European Union Concerted Action on Virus Meningitis and Encephalitis. Clin Microbiol Rev 1998; 11:202-27. [PMID: 9457433 PMCID: PMC121380 DOI: 10.1128/cmr.11.1.202] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human enteroviruses have traditionally been typed according to neutralization serotype. This procedure is limited by the difficulty in culturing some enteroviruses, the availability of antisera for serotyping, and the cost and technical complexity of serotyping procedures. Furthermore, the impact of information derived from enterovirus serotyping is generally perceived to be low. Enteroviruses are now increasingly being detected by PCR rather than by culture. Classical typing methods will therefore no longer be possible in most instances. An alternative means of enterovirus typing, employing PCR in conjunction with molecular genetic techniques such as nucleotide sequencing or nucleic acid hybridization, would complement molecular diagnosis, may overcome some of the problems associated with serotyping, and would provide additional information regarding the epidemiology and biological properties of enteroviruses. We argue the case for developing a molecular typing system, discuss the genetic basis of such a system, review the literature describing attempts to identify or classify enteroviruses by molecular methods, and suggest ways in which the goal of molecular typing may be realized.
Collapse
Affiliation(s)
- P Muir
- Department of Virology, United Medical School of Guy's Hospital, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Georgescu MM, Balanant J, Macadam A, Otelea D, Combiescu M, Combiescu AA, Crainic R, Delpeyroux F. Evolution of the Sabin type 1 poliovirus in humans: characterization of strains isolated from patients with vaccine-associated paralytic poliomyelitis. J Virol 1997; 71:7758-68. [PMID: 9311861 PMCID: PMC192128 DOI: 10.1128/jvi.71.10.7758-7768.1997] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Attenuated strains of the Sabin oral poliovirus vaccine replicate in the human gut and in rare cases cause vaccine-associated paralytic poliomyelitis (VAPP). Reversion of vaccine strains toward a pathogenic phenotype is probably one of the main causes of VAPP, a disease most frequently associated with type 3 and type 2 strains and more rarely with the type 1 (Sabin 1) strain. To identify the determinants and mechanisms of safety versus pathogenicity of the Sabin 1 strain, we characterized the genetic and phenotypic changes in six Sabin 1-derived viruses isolated from immunocompetent patients with VAPP. The genomes of these strains carried either few or numerous mutations from the original Sabin 1 genome. As assessed in transgenic mice carrying the human poliovirus receptor (PVR-Tg mice), all but one strain had lost the attenuated phenotype. Four strains presented only a moderate neurovirulent phenotype, probably due at least in part to reversions to the wild-type genotype, which were detected in the 5' noncoding region of the genome. The reversions found in most strains at nucleotide position 480, are known to be associated with an increase in neurovirulence. The construction and characterization of Sabin 1 mutants implicated a reversion at position 189, found in one strain, in the phenotypic change. The presence of 71 mutations in one neurovirulent strain suggests that a vaccine-derived strain can survive for a long time in humans. Surprisingly, none of the strains analyzed were as neurovirulent to PVR-Tg mice as was the wild-type parent of Sabin 1 (Mahoney) or a previously identified neurovirulent Sabin 1 mutant selected at a high temperature in cultured cells. Thus, in the human gut, the Sabin 1 strain does not necessarily evolve toward the genetic characteristics and high neuropathogenicity of its wild-type parent.
Collapse
Affiliation(s)
- M M Georgescu
- Epidémiologie Moléculaire des Entérovirus, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- V R Racaniello
- Department of Microbiology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
43
|
McGoldrick A, Macadam AJ, Dunn G, Rowe A, Burlison J, Minor PD, Meredith J, Evans DJ, Almond JW. Role of mutations G-480 and C-6203 in the attenuation phenotype of Sabin type 1 poliovirus. J Virol 1995; 69:7601-5. [PMID: 7494267 PMCID: PMC189699 DOI: 10.1128/jvi.69.12.7601-7605.1995] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Of the 55 point mutations which distinguish the type 1 poliovirus vaccine strain (Sabin 1) from its neurovirulent progenitor (P1/Mahoney), two have been strongly implicated by previous studies as determinants of the attenuation phenotype. A change of an A to a G at position 480, located within the 5' noncoding region, has been suggested to be the major attenuating mutation, analogous to the mutations at positions 481 and 472 in poliovirus types 2 and 3, respectively. In addition, the change of a U to a C at position 6203, resulting in an amino acid change in the polymerase protein 3D, has also been implicated as a determinant of attenuation, albeit to a lesser extent. To assess the contributions of these mutations to attenuation and temperature sensitivity, reciprocal changes were generated at these positions in infectious cDNA clones of Sabin 1 and P1/Mahoney. Assays in tissue culture and primates indicated that the two mutations make some contribution to the temperature sensitivity of the Sabin 1 strain but that neither is a strong determinant of attenuation.
Collapse
Affiliation(s)
- A McGoldrick
- School of Animal and Microbial Sciences, University of Reading, Whiteknigts, Reading, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Georgescu MM, Tardy-Panit M, Guillot S, Crainic R, Delpeyroux F. Mapping of mutations contributing to the temperature sensitivity of the Sabin 1 vaccine strain of poliovirus. J Virol 1995; 69:5278-86. [PMID: 7636970 PMCID: PMC189363 DOI: 10.1128/jvi.69.9.5278-5286.1995] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The temperature-sensitive and attenuated phenotypes of the Sabin type 1 vaccine strain of poliovirus result from numerous point mutations which occurred in the virulent Mahoney virus parent. One of these mutations is located in a 3D polymerase (3Dpol) codon (U-6203-->C, Tyr-73-->His) and is involved in attenuation in common mice (M. Tardy-Panit, B. Blondel, A. Martin, F. Tekaia, F. Horaud, and F. Delpeyroux, J. Virol. 67:4630-4638, 1993). This mutation also appears to contribute to temperature sensitivity, in association with at least 1 other of the 10 mutations of the 3'-terminal part of the genome including the 3Dpol coding and 3' noncoding regions. To map the other mutation(s), we constructed poliovirus mutants by mutagenesis and recombination of Mahoney and Sabin 1 cDNAs. Characterization of these poliovirus mutants showed that a second mutation in a 3Dpol codon (C-7071-->U, Thr-362-->Ile) contributes to temperature sensitivity. A mutation in the 3' noncoding region of the genome (A-7441-->G), alone or linked to another mutation (U-7410-->C), also appeared to be involved in this phenotype. The temperature-sensitive effect associated with the 3'-terminal part of the Sabin 1 genome results from the cumulative and/or synergistic effects of at least three genetic determinants, i.e., the His-73 and Ile-362 codons of 3Dpol and nucleotide G-7441. Sequence analysis of strains isolated from patients with vaccine-associated paralytic poliomyelitis showed that these genetic determinants are selected against in vivo, although the Ile-362 codon appeared to be more stable than either the His-73 codon or G-7441. These genetic determinants may contribute to the safety of Sabin 1 in vaccines.
Collapse
Affiliation(s)
- M M Georgescu
- Laboratoire d'Epidémiologie Moléculaire des Entérovirus, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
45
|
Bouchard MJ, Lam DH, Racaniello VR. Determinants of attenuation and temperature sensitivity in the type 1 poliovirus Sabin vaccine. J Virol 1995; 69:4972-8. [PMID: 7609067 PMCID: PMC189313 DOI: 10.1128/jvi.69.8.4972-4978.1995] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To identify determinants of attenuation in the poliovirus type 1 Sabin vaccine strain, a series of recombinant viruses were constructed by using infectious cDNA clones of the virulent type 1 poliovirus P1/Mahoney and the attenuated type 1 vaccine strain P1/Sabin. Intracerebral inoculation of these viruses into transgenic mice which express the human receptor for poliovirus identified regions of the genome that conferred reduced neurovirulence. Exchange of smaller restriction fragments and site-directed mutagenesis were used to identify the nucleotide changes responsible for attenuation. P1/Sabin mutations at nucleotides 935 of VP4, 2438 of VP3, and 2795 and 2879 of VP1 were all shown to be determinants of attenuation. The recombinant viruses and site-directed mutants were also used to identify the nucleotide changes which are involved in the temperature sensitivity of P1/Sabin. Determinants of this phenotype in HeLa cells were mapped to changes at nucleotides 935 of VP4, 2438 of VP3, and 2741 of VP1. The 3Dpol gene of P1/Sabin, which contains three amino acid differences from its parent P1/Mahoney, also contributes to the temperature sensitivity of P1/Sabin; however, mutants containing individual amino acid changes grew as well as P1/Mahoney at elevated temperatures, suggesting that either some combination or all three changes are required for temperature sensitivity. In addition, the 3'-noncoding region of P1/Sabin augments the temperature-sensitive phenotype conferred by 3Dpol. Although nucleotide 2741, 3Dpol, and the 3'-noncoding region of P1/Sabin contribute to the temperature sensitivity of P1/Sabin, they do not contribute to attenuation in transgenic mice expressing the poliovirus receptor, demonstrating that determinants of attenuation and temperature sensitivity can be genetically separated.
Collapse
Affiliation(s)
- M J Bouchard
- Department of Microbiology, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | |
Collapse
|
46
|
Georgescu MM, Delpeyroux F, Tardy-Panit M, Balanant J, Combiescu M, Combiescu AA, Guillot S, Crainic R. High diversity of poliovirus strains isolated from the central nervous system from patients with vaccine-associated paralytic poliomyelitis. J Virol 1994; 68:8089-101. [PMID: 7966599 PMCID: PMC237273 DOI: 10.1128/jvi.68.12.8089-8101.1994] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
To establish the etiology of vaccine-associated paralytic poliomyelitis (VAPP), isolates from the central nervous system (CNS) from eight patients with VAPP were compared with stool isolates from the same patients. The vaccine (Sabin) origin was checked for all of the available isolates. Unique and similar strains were recovered from paired stool and CNS samples for five of the eight VAPP cases and the three wild-type cases included in the study. In the remaining three VAPP cases, the stool samples and, in one case, the CNS samples contained mixtures of strains. In two of these cases an equivalent of the CNS isolate was found among the strains separated by plaque purification from stool mixtures, and in one case different strains were isolated from CNS and stool. This shows that the stool isolate in VAPP might not be always representative of the etiologic agent of the neurological disease. A wide variety of poliovirus vaccine genomic structures appeared to be implicated in the etiology of VAPP. Of nine CNS vaccine-derived strains, four were nonrecombinant and five were recombinant (vaccine/vaccine or even vaccine/nonvaccine). The neuropathogenic potential of the isolates was evaluated in transgenic mice sensitive to poliovirus. All of the CNS-isolated strains lost the attenuated phenotype of the Sabin strains. However, for half of them, the neurovirulence was lower than expected, suggesting that the degree of neurovirulence for transgenic mice is not necessarily correlated with the neuropathogenicity in humans.
Collapse
|