1
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Aghamohamadi N, Shahba F, Zarezadeh Mehrabadi A, Khorramdelazad H, Karimi M, Falak R, Emameh RZ. Age-dependent immune responses in COVID-19-mediated liver injury: focus on cytokines. Front Endocrinol (Lausanne) 2023; 14:1139692. [PMID: 37654571 PMCID: PMC10465349 DOI: 10.3389/fendo.2023.1139692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is potentially pathogenic and causes severe symptoms; in addition to respiratory syndromes, patients might experience other severe conditions such as digestive complications and liver complications injury. The abnormality in the liver is manifested by hepatobiliary dysfunction and enzymatic elevation, which is associated with morbidity and mortality. The direct cytopathic effect, immune dysfunction, cytokine storm, and adverse effects of therapeutic regimens have a crucial role in the severity of liver injury. According to aging and immune system alterations, cytokine patterns may also change in the elderly. Moreover, hyperproduction of cytokines in the inflammatory response to SARS-CoV-2 can lead to multi-organ dysfunction. The mortality rate in elderly patients, particularly those with other comorbidities, is also higher than in adults. Although the pathogenic effect of SARS-CoV-2 on the liver has been widely studied, the impact of age and immune-mediated responses at different ages remain unclear. This review discusses the association between immune system responses in coronavirus disease 2019 (COVID-19) patients of different ages and liver injury, focusing on cytokine alterations.
Collapse
Affiliation(s)
- Nazanin Aghamohamadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Faezeh Shahba
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zarezadeh Mehrabadi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
3
|
Savino W, Durães J, Maldonado-Galdeano C, Perdigon G, Mendes-da-Cruz DA, Cuervo P. Thymus, undernutrition, and infection: Approaching cellular and molecular interactions. Front Nutr 2022; 9:948488. [PMID: 36225882 PMCID: PMC9549110 DOI: 10.3389/fnut.2022.948488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Undernutrition remains a major issue in global health. Low protein-energy consumption, results in stunting, wasting and/or underweight, three deleterious forms of malnutrition that affect roughly 200 million children under the age of five years. Undernutrition compromises the immune system with the generation of various degrees of immunodeficiency, which in turn, renders undernourished individuals more sensitive to acute infections. The severity of various infectious diseases including visceral leishmaniasis (VL), influenza, and tuberculosis is associated with undernutrition. Immunosuppression resulting from protein-energy undernutrition severely impacts primary and secondary lymphoid organs involved in the response to related pathogens. The thymus-a primary lymphoid organ responsible for the generation of T lymphocytes-is particularly compromised by both undernutrition and infectious diseases. In this respect, we will discuss herein various intrathymic cellular and molecular interactions seen in undernutrition alone or in combination with acute infections. Many examples illustrated in studies on humans and experimental animals clearly revealed that protein-related undernutrition causes thymic atrophy, with cortical thymocyte depletion. Moreover, the non-lymphoid microenvironmental compartment of the organ undergoes important changes in thymic epithelial cells, including their secretory products such as hormones and extracellular matrix proteins. Of note, deficiencies in vitamins and trace elements also induce thymic atrophy. Interestingly, among the molecular interactions involved in the control of undernutrition-induced thymic atrophy is a hormonal imbalance with a rise in glucocorticoids and a decrease in leptin serum levels. Undernutrition also yields a negative impact of acute infections upon the thymus, frequently with the intrathymic detection of pathogens or their antigens. For instance, undernourished mice infected with Leishmania infantum (that causes VL) undergo drastic thymic atrophy, with significant reduction in thymocyte numbers, and decreased levels of intrathymic chemokines and cytokines, indicating that both lymphoid and microenvironmental compartments of the organ are affected. Lastly, recent data revealed that some probiotic bacteria or probiotic fermented milks improve the thymus status in a model of malnutrition, thus raising a new field for investigation, namely the thymus-gut connection, indicating that probiotics can be envisioned as a further adjuvant therapy in the control of thymic changes in undernutrition accompanied or not by infection.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Jonathan Durães
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carolina Maldonado-Galdeano
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriela Perdigon
- Laboratory of Immunology, Reference Center for Lactobacilli Centro de Referencia para Lactobacilos-Consejo Nacional de Investigaciones Científicas y Técnicas (CERELA-CONICET), San Miguel de Tucumán, Argentina
- Laboratory of Immunology, Faculty of Biochemistry, Chemistry and Pharmacy, National University of Tucumán, San Miguel de Tucumán, Argentina
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Brazilian National Institute of Science and Technology on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - Patricia Cuervo
- Rio de Janeiro Research Network on Neuroinflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Alhazmi A, Nekoua MP, Michaux H, Sane F, Halouani A, Engelmann I, Alidjinou EK, Martens H, Jaidane H, Geenen V, Hober D. Effect of Coxsackievirus B4 Infection on the Thymus: Elucidating Its Role in the Pathogenesis of Type 1 Diabetes. Microorganisms 2021; 9:microorganisms9061177. [PMID: 34072590 PMCID: PMC8229779 DOI: 10.3390/microorganisms9061177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
The thymus gland is a primary lymphoid organ for T-cell development. Various viral infections can result in disturbance of thymic functions. Medullary thymic epithelial cells (mTECs) are important for the negative selection of self-reactive T-cells to ensure central tolerance. Insulin-like growth factor 2 (IGF2) is the dominant self-peptide of the insulin family expressed in mTECs and plays a crucial role in the intra-thymic programing of central tolerance to insulin-secreting islet β-cells. Coxsackievirus B4 (CVB4) can infect and persist in the thymus of humans and mice, thus hampering the T-cell maturation and differentiation process. The modulation of IGF2 expression and protein synthesis during a CVB4 infection has been observed in vitro and in vivo in mouse models. The effect of CVB4 infections on human and mouse fetal thymus has been studied in vitro. Moreover, following the inoculation of CVB4 in pregnant mice, the thymic function in the fetus and offspring was disturbed. A defect in the intra-thymic expression of self-peptides by mTECs may be triggered by CVB4. The effects of viral infections, especially CVB4 infection, on thymic cells and functions and their possible role in the pathogenesis of type 1 diabetes (T1D) are presented.
Collapse
Affiliation(s)
- Abdulaziz Alhazmi
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Microbiology and Parasitology Department, College of Medicine, Jazan University, Jazan 82911, Saudi Arabia
| | - Magloire Pandoua Nekoua
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Hélène Michaux
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Famara Sane
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Aymen Halouani
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Ilka Engelmann
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Enagnon Kazali Alidjinou
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
| | - Henri Martens
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Hela Jaidane
- Laboratoire des Maladies Transmissibles et Substances Biologiquement Actives LR99ES27, Université de Monastir, 5000 Monastir, Tunisia; (A.H.); (H.J.)
| | - Vincent Geenen
- GIGA-I3 Center of Immunoendocrinology, GIGA Research Institute, University of Liège, 4000 Liège, Belgium; (H.M.); (H.M.); (V.G.)
| | - Didier Hober
- Laboratoire de Virologie ULR3610, Université de Lille, CHU Lille, F-59000 Lille, France; (A.A.); (M.P.N.); (F.S.); (I.E.); (E.K.A.)
- Correspondence: ; Tel.: +33-(0)3-20-44-66-88
| |
Collapse
|
5
|
Luo M, Xu L, Qian Z, Sun X. Infection-Associated Thymic Atrophy. Front Immunol 2021; 12:652538. [PMID: 34113341 PMCID: PMC8186317 DOI: 10.3389/fimmu.2021.652538] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/07/2021] [Indexed: 12/17/2022] Open
Abstract
The thymus is a vital organ of the immune system that plays an essential role in thymocyte development and maturation. Thymic atrophy occurs with age (physiological thymic atrophy) or as a result of viral, bacterial, parasitic or fungal infection (pathological thymic atrophy). Thymic atrophy directly results in loss of thymocytes and/or destruction of the thymic architecture, and indirectly leads to a decrease in naïve T cells and limited T cell receptor diversity. Thus, it is important to recognize the causes and mechanisms that induce thymic atrophy. In this review, we highlight current progress in infection-associated pathogenic thymic atrophy and discuss its possible mechanisms. In addition, we discuss whether extracellular vesicles/exosomes could be potential carriers of pathogenic substances to the thymus, and potential drugs for the treatment of thymic atrophy. Having acknowledged that most current research is limited to serological aspects, we look forward to the possibility of extending future work regarding the impact of neural modulation on thymic atrophy.
Collapse
Affiliation(s)
- Mingli Luo
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingxin Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhengyu Qian
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
6
|
Ayasoufi K, Pfaller CK, Evgin L, Khadka RH, Tritz ZP, Goddery EN, Fain CE, Yokanovich LT, Himes BT, Jin F, Zheng J, Schuelke MR, Hansen MJ, Tung W, Parney IF, Pease LR, Vile RG, Johnson AJ. Brain cancer induces systemic immunosuppression through release of non-steroid soluble mediators. Brain 2020; 143:3629-3652. [PMID: 33253355 PMCID: PMC7954397 DOI: 10.1093/brain/awaa343] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/08/2020] [Accepted: 08/11/2020] [Indexed: 01/09/2023] Open
Abstract
Immunosuppression of unknown aetiology is a hallmark feature of glioblastoma and is characterized by decreased CD4 T-cell counts and downregulation of major histocompatibility complex class II expression on peripheral blood monocytes in patients. This immunosuppression is a critical barrier to the successful development of immunotherapies for glioblastoma. We recapitulated the immunosuppression observed in glioblastoma patients in the C57BL/6 mouse and investigated the aetiology of low CD4 T-cell counts. We determined that thymic involution was a hallmark feature of immunosuppression in three distinct models of brain cancer, including mice harbouring GL261 glioma, B16 melanoma, and in a spontaneous model of diffuse intrinsic pontine glioma. In addition to thymic involution, we determined that tumour growth in the brain induced significant splenic involution, reductions in peripheral T cells, reduced MHC II expression on blood leucocytes, and a modest increase in bone marrow resident CD4 T cells. Using parabiosis we report that thymic involution, declines in peripheral T-cell counts, and reduced major histocompatibility complex class II expression levels were mediated through circulating blood-derived factors. Conversely, T-cell sequestration in the bone marrow was not governed through circulating factors. Serum isolated from glioma-bearing mice potently inhibited proliferation and functions of T cells both in vitro and in vivo. Interestingly, the factor responsible for immunosuppression in serum is non-steroidal and of high molecular weight. Through further analysis of neurological disease models, we determined that the immunosuppression was not unique to cancer itself, but rather occurs in response to brain injury. Non-cancerous acute neurological insults also induced significant thymic involution and rendered serum immunosuppressive. Both thymic involution and serum-derived immunosuppression were reversible upon clearance of brain insults. These findings demonstrate that brain cancers cause multifaceted immunosuppression and pinpoint circulating factors as a target of intervention to restore immunity.
Collapse
Affiliation(s)
| | - Christian K Pfaller
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Langen, Germany
| | - Laura Evgin
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Roman H Khadka
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Zachariah P Tritz
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Emma N Goddery
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Cori E Fain
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Lila T Yokanovich
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Benjamin T Himes
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Fang Jin
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Jiaying Zheng
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Matthew R Schuelke
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
- Department of Immunology, Mayo Clinic Medical Scientist Training Program, Rochester, Minnesota, USA
| | | | - Wesley Tung
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Ian F Parney
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Neurologic Surgery, Rochester, MN, USA
| | - Larry R Pease
- Mayo Clinic Department of Immunology, Rochester, MN, USA
| | - Richard G Vile
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
| | - Aaron J Johnson
- Mayo Clinic Department of Immunology, Rochester, MN, USA
- Mayo Clinic Department of Molecular Medicine, Rochester, MN, USA
- Mayo Clinic Department of Neurology, Rochester, MN, USA
| |
Collapse
|
7
|
Jafarzadeh A, Jafarzadeh S, Nozari P, Mokhtari P, Nemati M. Lymphopenia an important immunological abnormality in patients with COVID-19: Possible mechanisms. Scand J Immunol 2020; 93:e12967. [PMID: 32875598 DOI: 10.1111/sji.12967] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
The lymphopenia as a major immunological abnormality occurs in the majority of severe COVID-19 patients, which is strongly associated with mortality rate. A low proportion of lymphocytes may express the main receptor for SARS-CoV-2, called angiotensin-converting enzyme 2 (ACE2). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can also use ACE2-independent pathways to enter lymphocytes. Both SARS-CoV-2- and immune-mediated mechanisms may contribute to the occurrence of lymphopenia through influencing the lymphocyte production, survival or tissue re-distribution. The metabolic and biochemical changes can also affect the production and survival of lymphocytes in COVID-19 patients. Lymphopenia can cause general immunosuppression and promote cytokine storm, both of them play an important role in the viral persistence, viral replication, multi-organ failure and eventually death. Here, a comprehensive view concerning the possible mechanisms that may lead to the lymphocyte reduction in COVID-19 patients is provided, while highlighting the potential intervention approaches to prevent lymphopenia.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Parvin Nozari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Pejman Mokhtari
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
8
|
Abstract
Understanding the pathogenesis of certain viral agents is essential for developing new treatments and obtaining a clinical cure. With the onset of the new coronavirus (SARS-CoV-2) pandemic in the beginning of 2020, a rush to conduct studies and develop drugs has led to the publication of articles that seek to address knowledge gaps and contribute to the global scientific research community. There are still no reports on the infectivity or repercussions of SARS-CoV-2 infection on the central lymphoid organ, the thymus, nor on thymocytes or thymic epithelial cells. In this brief review, we present a hypothesis about lymphopenia observed in SARS patients and the probable pathological changes that the thymus may undergo due to this new virus.
Collapse
Affiliation(s)
- Marvin Paulo Lins
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Salete Smaniotto
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas - Maceió/AL, Brazil.,Brazilian National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Duhalde Vega M, Aparicio JL, Mandour MF, Retegui LA. The autoimmune response elicited by mouse hepatitis virus (MHV-A59) infection is modulated by liver tryptophan-2,3-dioxygenase (TDO). Immunol Lett 2019; 217:25-30. [PMID: 31726186 DOI: 10.1016/j.imlet.2019.11.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 11/03/2019] [Accepted: 11/10/2019] [Indexed: 01/27/2023]
Abstract
In a previous work we demonstrated that inhibition of mouse indoleamine 2,3-dioxygenase (IDO) by methyltryptophan (MT) exacerbated the pathological actions of mouse hepatitis virus (MHV-A59) infection, suggesting that tryptophan (TRP) catabolism was involved in viral effects. Since there is a second enzyme that dioxygenates TRP, tryptophan-2, 3-dioxygenase (TDO), which is mainly located in liver, we decided to study its role in our model of MHV-infection. Results showed that in vivo TDO inhibition by LM10, a derivative of 3-(2-(pyridyl) ethenyl) indole, resulted in a decrease of anti- MHV Ab titers induced by the virus infection. Besides, a reduction of some alarmin release, i.e, uric acid and high-mobility group box1 protein (HMGB1), was observed. Accordingly, since alarmin liberation was related to the expression of autoantibodies (autoAb) to fumarylacetoacetate hydrolase (FAH), these autoAb also diminished. Moreover, PCR results indicated that TDO inhibition did not abolish viral replication. Furthermore, histological liver examination did not reveal strong pathologies, whereas mouse survival was hundred percent in control as well as in MHV-infected mice treated with LM10. Data presented in this work indicate that in spite of the various TDO actions already described, specific TDO blockage could also restrain some MHV actions, mainly suppressing autoimmune reactions. Such results should prompt further experiments with various viruses to confirm the possible use of a TDO inhibitor such as LM-10 to treat either viral infections or even autoimmune diseases triggered by a viral infection.
Collapse
Affiliation(s)
- Maite Duhalde Vega
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina.
| | - José L Aparicio
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Mohamed F Mandour
- Unit of Experimental Medicine, Christian de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Lilia A Retegui
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| |
Collapse
|
10
|
Radaelli E, Santagostino SF, Sellers RS, Brayton CF. Immune Relevant and Immune Deficient Mice: Options and Opportunities in Translational Research. ILAR J 2019; 59:211-246. [PMID: 31197363 PMCID: PMC7114723 DOI: 10.1093/ilar/ily026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/03/2018] [Indexed: 12/29/2022] Open
Abstract
In 1989 ILAR published a list and description of immunodeficient rodents used in research. Since then, advances in understanding of molecular mechanisms; recognition of genetic, epigenetic microbial, and other influences on immunity; and capabilities in manipulating genomes and microbiomes have increased options and opportunities for selecting mice and designing studies to answer important mechanistic and therapeutic questions. Despite numerous scientific breakthroughs that have benefitted from research in mice, there is debate about the relevance and predictive or translational value of research in mice. Reproducibility of results obtained from mice and other research models also is a well-publicized concern. This review summarizes resources to inform the selection and use of immune relevant mouse strains and stocks, aiming to improve the utility, validity, and reproducibility of research in mice. Immune sufficient genetic variations, immune relevant spontaneous mutations, immunodeficient and autoimmune phenotypes, and selected induced conditions are emphasized.
Collapse
Affiliation(s)
- Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara F Santagostino
- Department of Safety Assessment, Genentech, Inc., South San Francisco, California
| | | | - Cory F Brayton
- Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
11
|
Poon IKH, Parkes MAF, Jiang L, Atkin-Smith GK, Tixeira R, Gregory CD, Ozkocak DC, Rutter SF, Caruso S, Santavanond JP, Paone S, Shi B, Hodge AL, Hulett MD, Chow JDY, Phan TK, Baxter AA. Moving beyond size and phosphatidylserine exposure: evidence for a diversity of apoptotic cell-derived extracellular vesicles in vitro. J Extracell Vesicles 2019; 8:1608786. [PMID: 31069027 PMCID: PMC6493268 DOI: 10.1080/20013078.2019.1608786] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 04/08/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
Apoptosis is a form of programmed cell death that occurs throughout life as part of normal development as well as pathologic processes including chronic inflammation and infection. Although the death of a cell is often considered as the only biological outcome of a cell committed to apoptosis, it is becoming increasingly clear that the dying cell can actively communicate with other cells via soluble factors as well as membrane-bound extracellular vesicles (EVs) to regulate processes including cell clearance, immunity and tissue repair. Compared to EVs generated from viable cells such as exosomes and microvesicles, apoptotic cell-derived EVs (ApoEVs) are less well defined and the basic criteria for ApoEV characterization have not been established in the field. In this study, we will examine the current understanding of ApoEVs, in particular, the ApoEV subtype called apoptotic bodies (ApoBDs). We described that a subset of ApoBDs can be larger than 5 μm and smaller than 1 μm based on flow cytometry and live time-lapse microscopy analysis, respectively. We also described that a subset of ApoBDs can expose a relatively low level of phosphatidylserine on its surface based on annexin A5 staining. Furthermore, we characterized the presence of caspase-cleaved proteins (in particular plasma membrane-associated or cytoplasmic proteins) in samples enriched in ApoBDs. Lastly, using a combination of biochemical-, live imaging- and flow cytometry-based approaches, we characterized the progressive lysis of ApoBDs. Taken together, these results extended our understanding of ApoBDs.
Collapse
Affiliation(s)
- Ivan K H Poon
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Michael A F Parkes
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Lanzhou Jiang
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Georgia K Atkin-Smith
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Rochelle Tixeira
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Christopher D Gregory
- MRC Centre for inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Dilara C Ozkocak
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Stephanie F Rutter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Sarah Caruso
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jascinta P Santavanond
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Stephanie Paone
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Bo Shi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Amy L Hodge
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mark D Hulett
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jenny D Y Chow
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Thanh Kha Phan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Amy A Baxter
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
12
|
Kong Y, Li Y, Zhang W, Yuan S, Winkler R, Kröhnert U, Han J, Lin T, Zhou Y, Miao P, Wang B, Zhang J, Yu Z, Zhang Y, Kosan C, Zeng H. Sepsis-Induced Thymic Atrophy Is Associated with Defects in Early Lymphopoiesis. Stem Cells 2016; 34:2902-2915. [PMID: 27422171 DOI: 10.1002/stem.2464] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 12/24/2022]
Abstract
Impaired T lymphopoiesis is associated with immunosuppression of the adaptive immune response and plays a role in the morbidity and mortality of patients and animal models of sepsis. Although previous studies examined several intrathymic mechanisms that negatively affect T lymphopoiesis, the extrathymic mechanisms remain poorly understood. Here, we report a dramatic decrease in the percentage of early T lineage progenitors (ETPs) in three models of sepsis in mice (cecal ligation and puncture, lipopolysaccharide continuous injection, and poly I:C continuous injection). However, septic mice did not show a decrease in the number of bone marrow (BM) precursor cells. Instead, the BM progenitors for ETPs expressed reduced mRNA levels of CC chemokine receptor (CCR) 7, CCR9 and P-selectin glycoprotein ligand 1, and exhibited impaired homing capacity in vitro and in vivo. Furthermore, RNA-Seq analysis and real-time PCR showed a marked downregulation of several lymphoid-related genes in hematopoietic stem and progenitor cells. Hematopoietic stem and progenitor cells differentiated into myeloid cells but failed to generate T lymphocytes in vitro and in vivo. Our results indicate that the depletion of ETPs in septic mice might be a consequence of an impaired migration of BM progenitors to the thymus, as well as a defect in lymphoid lineage commitment. Stem Cells 2016;34:2902-2915.
Collapse
Affiliation(s)
- Yaxian Kong
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yajie Li
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Weimei Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Shaoxin Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - René Winkler
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Ulrike Kröhnert
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Junyan Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Tao Lin
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Peng Miao
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Beibei Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jianping Zhang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Zhengya Yu
- Department of Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology (Ministry of Health), Peking University Health Science Center, Beijing, China
| | - Christian Kosan
- Department of Biochemistry, Center for Molecular Biomedicine (CMB), Friedrich-Schiller-University, Jena, Germany
| | - Hui Zeng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| |
Collapse
|
13
|
Morrot A, Villar SR, González FB, Pérez AR. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease? Front Microbiol 2016; 7:704. [PMID: 27242726 PMCID: PMC4876113 DOI: 10.3389/fmicb.2016.00704] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/28/2016] [Indexed: 12/16/2022] Open
Abstract
Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.
Collapse
Affiliation(s)
- Alexandre Morrot
- Institute of Microbiology, Federal University of Rio de Janeiro Rio de Janeiro, Brazil
| | - Silvina R Villar
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Florencia B González
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| | - Ana R Pérez
- Institute of Clinical and Experimental Immunology of Rosario, CONICET, National University of RosarioRosario, Argentina; Faculty of Medical Sciences, National University of RosarioRosario, Argentina
| |
Collapse
|
14
|
Immune Evasion Strategies of Trypanosoma cruzi. J Immunol Res 2015; 2015:178947. [PMID: 26240832 PMCID: PMC4512591 DOI: 10.1155/2015/178947] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 01/03/2023] Open
Abstract
Microbes have evolved a diverse range of strategies to subvert the host immune system. The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, provides a good example of such adaptations. This parasite targets a broad spectrum of host tissues including both peripheral and central lymphoid tissues. Rapid colonization of the host gives rise to a systemic acute response which the parasite must overcome. The parasite in fact undermines both innate and adaptive immunity. It interferes with the antigen presenting function of dendritic cells via an action on host sialic acid-binding Ig-like lectin receptors. These receptors also induce suppression of CD4(+) T cells responses, and we presented evidence that the sialylation of parasite-derived mucins is required for the inhibitory effects on CD4 T cells. In this review we highlight the major mechanisms used by Trypanosoma cruzi to overcome host immunity and discuss the role of parasite colonization of the central thymic lymphoid tissue in chronic disease.
Collapse
|
15
|
Duhalde Vega M, Aparício JL, Retegui LA. Levo-1-methyl tryptophan aggravates the effects of mouse hepatitis virus (MHV-A59) infection. Int Immunopharmacol 2015; 24:377-382. [DOI: 10.1016/j.intimp.2014.12.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/04/2014] [Accepted: 12/22/2014] [Indexed: 11/27/2022]
|
16
|
Yang Z, Du J, Chen G, Zhao J, Yang X, Su L, Cheng G, Tang H. Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice. Virol Sin 2014; 29:393-402. [PMID: 25547683 PMCID: PMC7090691 DOI: 10.1007/s12250-014-3530-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 12/10/2014] [Indexed: 12/21/2022] Open
Abstract
It remains challenging to develop animal models of lung infection and severe pneumonia by severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome cornavirus (MERS-CoV) without high level of containment. This inevitably hinders understanding of virushost interaction and development of appropriate countermeasures. Here we report that intranasal inoculation of sublethal doses of murine coronavirus mouse hepatitis virus A-59 (MHV-A59), a hepatic and neuronal tropic coronavirus, can induce acute pneumonia and severe lung injuries in C57BL/6 mice. Inflammatory leukocyte infiltrations, hemorrhages and fibrosis of alveolar walls can be observed 2–11 days after MHV-A59 infection. This pathological manifestation is associated with dramatical elevation of tissue IP-10 and IFN-γ and moderate increase of TNF-α and IL-1β, but inability of anti-viral type I interferon response. These results suggest that intranasal infection of MHV-A59 would serve as a surrogate mouse model of acute respiratory distress syndrome by SARS-CoV and MERS-CoV infections.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Key Laboratory of Infection and Immunity (CASKLII), Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Deobagkar-Lele M, Victor ES, Nandi D. c-Jun NH2 -terminal kinase is a critical node in the death of CD4+ CD8+ thymocytes during Salmonella enterica serovar Typhimurium infection. Eur J Immunol 2013; 44:137-49. [PMID: 24105651 DOI: 10.1002/eji.201343506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/15/2013] [Accepted: 09/13/2013] [Indexed: 12/13/2022]
Abstract
Thymic atrophy, due to the depletion of CD4(+) CD8(+) thymocytes, is observed during infections with numerous pathogens. Several mechanisms, such as glucocorticoids and inflammatory cytokines, are known to be involved in this process; however, the roles of intracellular signaling molecules have not been investigated. In this study, the functional role of c-Jun NH2 -terminal kinase (JNK) during infection-induced thymic atrophy was addressed. The levels of phosphorylated JNK in immature CD4(+) CD8(+) thymocytes from C57BL/6 (Nramp-deficient) and 129/SvJ (Nramp-sufficient) mice were increased upon oral infection of mice with Salmonella enterica serovar Typhimurium (S. typhimurium). Furthermore, inhibition of JNK signaling, but not ERK or p38 MAPK, prevented the in vitro death of infected thymocytes. Importantly, the in vivo inhibition of JNK signaling with SP600125 protected C57BL/6 CD4(+) CD8(+) thymocytes from depletion via multiple mechanisms as follows: lower intracellular ROS, inflammatory cytokines, Bax and caspase 3 activity, increase in Bcl-xL amounts, and prevention of the loss in mitochondrial membrane potential. Notably, thymic architecture was preserved in infected mice treated with SP600125. Overall, this study identifies a novel role for JNK as a crucial regulator of the death of CD4(+) CD8(+) thymocytes during S. typhimurium infection.
Collapse
Affiliation(s)
- Mukta Deobagkar-Lele
- Department of Biochemistry and Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | | | | |
Collapse
|
18
|
Tolerance has its limits: how the thymus copes with infection. Trends Immunol 2013; 34:502-10. [PMID: 23871487 DOI: 10.1016/j.it.2013.06.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 06/17/2013] [Indexed: 01/11/2023]
Abstract
The thymus is required for T cell differentiation; a process that depends on which antigens are encountered by thymocytes, the environment surrounding the differentiating cells, and the thymic architecture. These features are altered by local infection of the thymus and by the inflammatory mediators that accompany systemic infection. Although once believed to be an immune privileged site, it is now known that antimicrobial responses are recruited to the thymus. Resolving infection in the thymus is important because chronic persistence of microbes impairs the differentiation of pathogen-specific T cells and diminishes resistance to infection. Understanding how these mechanisms contribute to disease susceptibility, particularly in infants with developing T cell repertoires, requires further investigation.
Collapse
|
19
|
Deobagkar-Lele M, Chacko SK, Victor ES, Kadthur JC, Nandi D. Interferon-γ- and glucocorticoid-mediated pathways synergize to enhance death of CD4(+) CD8(+) thymocytes during Salmonella enterica serovar Typhimurium infection. Immunology 2013. [PMID: 23186527 DOI: 10.1111/imm.12047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Thymic atrophy is known to occur during infections; however, there is limited understanding of its causes and of the cross-talk between different pathways. This study investigates mechanisms involved in thymic atrophy during a model of oral infection by Salmonella enterica serovar Typhimurium (S. typhimurium). Significant death of CD4(+) CD8(+) thymocytes, but not of single-positive thymocytes or peripheral lymphocytes, is observed at later stages during infection with live, but not heat-killed, bacteria. The death of CD4(+) CD8(+) thymocytes is Fas-independent as shown by infection studies with lpr mice. However, apoptosis occurs with lowering of mitochondrial potential and higher caspase-3 activity. The amounts of cortisol, a glucocorticoid, and interferon-γ (IFN-γ), an inflammatory cytokine, increase upon infection. To investigate the functional roles of these molecules, studies were performed using Ifnγ(-/-) mice together with RU486, a glucocorticoid receptor antagonist. Treatment of C57BL/6 mice with RU486 does not affect colony-forming units (CFU), amounts of IFN-γ and mouse survival; however, there is partial rescue in thymocyte death. Upon infection, Ifnγ(-/-) mice display higher CFU and lower survival but more surviving thymocytes are recovered. However, there is no difference in cortisol amounts in C57BL/6 and Ifnγ(-/-) mice. Importantly, the number of CD4(+) CD8(+) thymocytes is significantly higher in Ifnγ(-/-) mice treated with RU486 along with lower caspase-3 activity and mitochondrial damage. Hence, endogenous glucocorticoid and IFN-γ-mediated pathways are parallel but synergize in an additive manner to induce death of CD4(+) CD8(+) thymocytes during S. typhimurium infection. The implications of this study for host responses during infection are discussed.
Collapse
|
20
|
Ross EA, Coughlan RE, Flores-Langarica A, Lax S, Nicholson J, Desanti GE, Marshall JL, Bobat S, Hitchcock J, White A, Jenkinson WE, Khan M, Henderson IR, Lavery GG, Buckley CD, Anderson G, Cunningham AF. Thymic function is maintained during Salmonella-induced atrophy and recovery. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:4266-74. [PMID: 22993205 PMCID: PMC3912538 DOI: 10.4049/jimmunol.1200070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Thymic atrophy is a frequent consequence of infection with bacteria, viruses, and parasites and is considered a common virulence trait between pathogens. Multiple reasons have been proposed to explain this atrophy, including premature egress of immature thymocytes, increased apoptosis, or thymic shutdown to prevent tolerance to the pathogen from developing. The severe loss in thymic cell number can reflect an equally dramatic reduction in thymic output, potentially reducing peripheral T cell numbers. In this study, we examine the relationship between systemic Salmonella infection and thymic function. During infection, naive T cell numbers in peripheral lymphoid organs increase. Nevertheless, this occurs despite a pronounced thymic atrophy caused by viable bacteria, with a peak 50-fold reduction in thymocyte numbers. Thymic atrophy is not dependent upon homeostatic feedback from peripheral T cells or on regulation of endogenous glucocorticoids, as demonstrated by infection of genetically altered mice. Once bacterial numbers fall, thymocyte numbers recover, and this is associated with increases in the proportion and proliferation of early thymic progenitors. During atrophy, thymic T cell maturation is maintained, and single-joint TCR rearrangement excision circle analysis reveals there is only a modest fall in recent CD4(+) thymic emigrants in secondary lymphoid tissues. Thus, thymic atrophy does not necessarily result in a matching dysfunctional T cell output, and thymic homeostasis can constantly adjust to systemic infection to ensure that naive T cell output is maintained.
Collapse
Affiliation(s)
- Ewan A. Ross
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth E. Coughlan
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adriana Flores-Langarica
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sian Lax
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Julia Nicholson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Guillaume E. Desanti
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jennifer L. Marshall
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Saeeda Bobat
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jessica Hitchcock
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrea White
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William E. Jenkinson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mahmood Khan
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ian R. Henderson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gareth G. Lavery
- Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Christopher D. Buckley
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Graham Anderson
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Adam F. Cunningham
- MRC centre for Immune Regulation, School of Immunity and Infection, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
21
|
Dooley J, Liston A. Molecular control over thymic involution: from cytokines and microRNA to aging and adipose tissue. Eur J Immunol 2012; 42:1073-9. [PMID: 22539280 DOI: 10.1002/eji.201142305] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The thymus is the primary organ for T-cell differentiation and maturation. Unlike other major organs, the thymus is highly dynamic, capable of undergoing multiple rounds of almost complete atrophy followed by rapid restoration. The process of thymic atrophy, or involution, results in decreased thymopoiesis and emigration of naïve T cells to the periphery. Multiple processes can trigger transient thymic involution, including bacterial and viral infection(s), aging, pregnancy and stress. Intense investigations into the mechanisms that underlie thymic involution have revealed diverse cellular and molecular mediators, with elaborate control mechanisms. This review outlines the disparate pathways through which involution can be mediated, from the transient infection-mediated pathway, tightly controlled by microRNA, to the chronic changes that occur through aging.
Collapse
Affiliation(s)
- James Dooley
- Autoimmune Genetics Laboratory, VIB and University of Leuven, Belgium.
| | | |
Collapse
|
22
|
Coppieters KT, Wiberg A, Tracy SM, von Herrath MG. Immunology in the clinic review series: focus on type 1 diabetes and viruses: the role of viruses in type 1 diabetes: a difficult dilemma. Clin Exp Immunol 2012; 168:39-46. [PMID: 22385231 DOI: 10.1111/j.1365-2249.2011.04558.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Convincing evidence now indicates that viruses are associated with type 1 diabetes (T1D) development and progression. Human enteroviruses (HEV) have emerged as prime suspects, based on detection frequencies around clinical onset in patients and their ability to rapidly hyperglycaemia trigger in the non-obese diabetic (NOD) mouse. Whether or not HEV can truly cause islet autoimmunity or, rather, act by accelerating ongoing insulitis remains a matter of debate. In view of the disease's globally rising incidence it is hypothesized that improved hygiene standards may reduce the immune system's ability to appropriately respond to viral infections. Arguments in favour of and against viral infections as major aetiological factors in T1D will be discussed in conjunction with potential pathological scenarios. More profound insights into the intricate relationship between viruses and their autoimmunity-prone host may lead ultimately to opportunities for early intervention through immune modulation or vaccination.
Collapse
Affiliation(s)
- K T Coppieters
- Type 1 Diabetes Center, The La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
23
|
Thymus atrophy and double-positive escape are common features in infectious diseases. J Parasitol Res 2012; 2012:574020. [PMID: 22518275 PMCID: PMC3307005 DOI: 10.1155/2012/574020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/20/2011] [Indexed: 11/21/2022] Open
Abstract
The thymus is a primary lymphoid organ in which bone marrow-derived T-cell precursors undergo differentiation, leading to migration of positively selected thymocytes to the T-cell-dependent areas of secondary lymphoid organs. This organ can undergo atrophy, caused by several endogenous and exogenous factors such as ageing, hormone fluctuations, and infectious agents. This paper will focus on emerging data on the thymic atrophy caused by infectious agents. We present data on the dynamics of thymus lymphocytes during acute Trypanosoma cruzi infection, showing that the resulting thymus atrophy comprises the abnormal release of thymic-derived T cells and may have an impact on host immune response.
Collapse
|
24
|
Abstract
Viral infections of laboratory mice have considerable impact on research results, and prevention of such infections is therefore of crucial importance. This chapter covers infections of mice with the following viruses: herpesviruses, mousepox virus, murine adenoviruses, polyomaviruses, parvoviruses, lactate dehydrogenase-elevating virus, lymphocytic choriomeningitis virus, mammalian orthoreovirus serotype 3, murine hepatitis virus, murine norovirus, murine pneumonia virus, murine rotavirus, Sendai virus, and Theiler’s murine encephalomyelitis virus. For each virus, there is a description of the agent, epizootiology, clinical symptoms, pathology, methods of diagnosis and control, and its impact on research.
Collapse
|
25
|
Aparicio JL, Peña C, Retegui LA. Autoimmune hepatitis-like disease in C57BL/6 mice infected with mouse hepatitis virus A59. Int Immunopharmacol 2011; 11:1591-8. [PMID: 21635973 PMCID: PMC7106302 DOI: 10.1016/j.intimp.2011.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
Mouse hepatitis virus A59 (MHV A59) induces autoantibodies (autoAb) to fumarylacetoacetate hydrolase (FAH), a soluble cytosolic enzyme present in the liver and kidneys, in various mouse strains. The aim of this work was to amplify and diversify the autoimmune response restricted to FAH through the use of the exogenous adjuvant called PADRE. Accordingly, C57BL/6 mice were chosen, because these animals respond to PADRE better than other mouse strains. Results presented herein indicate that, surprisingly, C57BL/6 mice developed signs of autoimmune hepatitis-like disease (AIH), including transient hypergammaglobulinemia, elevated transaminases, autoAb directed against different liver proteins and hepatic cellular infiltrates, indicating that a new model of experimental AIH could be generated by a viral inoculation. Furthermore, PADRE administration amplified the MHV effect, extending the duration of hypergammaglobulinemia and increasing the binding of autoAb as well as the degree of hepatic infiltrates. However, the adjuvant did not expand the time of the symptoms. Additionally, since plasmatic uric acid and high-mobility group box protein 1 (HGMB1) concentrations augmented in MHV- and/or PADRE-treated mice, it is suggested that both alarmins were probably involved in the spreading of the immune response induced by the viral infection and the adjuvant administration.
Collapse
Affiliation(s)
- José L Aparicio
- Instituto de Química y Fisicoquímica Biológicas UBA-CONICET, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | |
Collapse
|
26
|
Marinaro M, Mari V, Bellacicco AL, Tarsitano E, Elia G, Losurdo M, Rezza G, Buonavoglia C, Decaro N. Prolonged depletion of circulating CD4+ T lymphocytes and acute monocytosis after pantropic canine coronavirus infection in dogs. Virus Res 2010; 152:73-8. [PMID: 20558216 PMCID: PMC7114409 DOI: 10.1016/j.virusres.2010.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/07/2010] [Accepted: 06/09/2010] [Indexed: 02/08/2023]
Abstract
A hypervirulent strain (CB/05) of canine coronavirus was employed to infect oronasally 11-week-old pups. Peripheral blood monocytes (CD14+), T lymphocytes (CD4+ and CD8+) and B lymphocytes (CD21+) were studied by flow cytometry within 5 days post-infection (p.i.) and at later time points. Infection with CB/05 resulted in a profound depletion of T cells and a slight loss of B cells in the first week p.i. In particular, while the CD8+ and the B lymphocytes returned to baseline levels by day 7 p.i., the CD4+ T cells remained significantly low until day 30 p.i. and recovered completely only at day 60 p.i. Monocytosis was also observed after CB/05 infection with a peak at day 5 p.i. The prolonged depletion of peripheral CD4+ T cells did not alter the levels of serum IgG or IgM. The impact of CB/05 infection on the immune performance of infected pups is discussed.
Collapse
Affiliation(s)
- Mariarosaria Marinaro
- Department of Infectious, Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Thirion G, Feliu AA, Coutelier JP. CD66a (CEACAM1) expression by mouse natural killer cells. Immunology 2008; 125:535-40. [PMID: 18492055 DOI: 10.1111/j.1365-2567.2008.02867.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CD66a (CEACAM1), an adhesion molecule that has regulatory function on T lymphocytes, was found to be expressed on a minority of mouse natural killer (NK) cells, especially in the liver. CD66a expression on NK cells depended on their differentiation stage, with highest levels on immature CD49b(-)NK cells. Expression of CD66a on NK cells was strongly enhanced by in vitro activation with interleukin-12 (IL-12) and IL-18. However, in vivo NK cell stimulation by infection with lactate dehydrogenase-elevating virus did not lead to strong CD66a expression, even on activated interferon--gamma-producing NK cells. These results indicate that CD66a expression is differently regulated, depending on the NK cell activation pathway, which may lead to distinct regulatory mechanisms of the functional subpopulations of these cells.
Collapse
Affiliation(s)
- Gaëtan Thirion
- Unit of Experimental Medicine, Christian de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
28
|
Priming of CD8+ T cells during central nervous system infection with a murine coronavirus is strain dependent. J Virol 2008; 82:6150-60. [PMID: 18417581 DOI: 10.1128/jvi.00106-08] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virus-specific CD8(+) T cells are critical for protection against neurotropic coronaviruses; however, central nervous system (CNS) infection with the recombinant JHM (RJHM) strain of mouse hepatitis virus (MHV) elicits a weak CD8(+) T-cell response in the brain and causes lethal encephalomyelitis. An adoptive transfer model was used to elucidate the kinetics of CD8(+) T-cell priming during CNS infection with RJHM as well as with two MHV strains that induce a robust CD8(+) T-cell response (RA59 and SJHM/RA59, a recombinant A59 virus expressing the JHM spike). While RA59 and SJHM/RA59 infections resulted in CD8(+) T-cell priming within the first 2 days postinfection, RJHM infection did not lead to proliferation of naïve CD8(+) T cells. While all three viruses replicated efficiently in the brain, only RA59 and SJHM/RA59 replicated to appreciable levels in the cervical lymph nodes (CLN), the site of T-cell priming during acute CNS infection. RJHM was unable to suppress the CD8(+) T-cell response elicited by RA59 in mice simultaneously infected with both strains, suggesting that RJHM does not cause generalized immunosuppression. RJHM was also unable to elicit a secondary CD8(+) T-cell response in the brain following peripheral immunization against a viral epitope. Notably, the weak CD8(+) T-cell response elicited by RJHM was unique to CNS infection, since peripheral inoculation induced a robust CD8(+) T-cell response in the spleen. These findings suggest that the failure of RJHM to prime a robust CD8(+) T-cell response during CNS infection is likely due to its failure to replicate in the CLN.
Collapse
|
29
|
Sommereyns C, Paul S, Staeheli P, Michiels T. IFN-lambda (IFN-lambda) is expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. PLoS Pathog 2008; 4:e1000017. [PMID: 18369468 PMCID: PMC2265414 DOI: 10.1371/journal.ppat.1000017] [Citation(s) in RCA: 640] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 01/30/2008] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFN) exert antiviral, immunomodulatory and cytostatic activities. IFN-alpha/beta (type I IFN) and IFN-lambda (type III IFN) bind distinct receptors, but regulate similar sets of genes and exhibit strikingly similar biological activities. We analyzed to what extent the IFN-alpha/beta and IFN-lambda systems overlap in vivo in terms of expression and response. We observed a certain degree of tissue specificity in the production of IFN-lambda. In the brain, IFN-alpha/beta was readily produced after infection with various RNA viruses, whereas expression of IFN-lambda was low in this organ. In the liver, virus infection induced the expression of both IFN-alpha/beta and IFN-lambda genes. Plasmid electrotransfer-mediated in vivo expression of individual IFN genes allowed the tissue and cell specificities of the responses to systemic IFN-alpha/beta and IFN-lambda to be compared. The response to IFN-lambda correlated with expression of the alpha subunit of the IFN-lambda receptor (IL-28R alpha). The IFN-lambda response was prominent in the stomach, intestine and lungs, but very low in the central nervous system and spleen. At the cellular level, the response to IFN-lambda in kidney and brain was restricted to epithelial cells. In contrast, the response to IFN-alpha/beta was observed in various cell types in these organs, and was most prominent in endothelial cells. Thus, the IFN-lambda system probably evolved to specifically protect epithelia. IFN-lambda might contribute to the prevention of viral invasion through skin and mucosal surfaces.
Collapse
Affiliation(s)
- Caroline Sommereyns
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, Brussels, Belgium
| | - Sophie Paul
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, Brussels, Belgium
| | - Peter Staeheli
- Department of Virology, University of Freiburg, Freiburg, Germany
| | - Thomas Michiels
- Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, Brussels, Belgium
| |
Collapse
|
30
|
Pérez AR, Roggero E, Nicora A, Palazzi J, Besedovsky HO, Del Rey A, Bottasso OA. Thymus atrophy during Trypanosoma cruzi infection is caused by an immuno-endocrine imbalance. Brain Behav Immun 2007; 21:890-900. [PMID: 17412557 DOI: 10.1016/j.bbi.2007.02.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 02/16/2007] [Accepted: 02/20/2007] [Indexed: 02/02/2023] Open
Abstract
C57BL/6 mice infected with Trypanosoma cruzi, the causal agent of Chagas' disease, develop severe thymocyte depletion paralleled by an inflammatory syndrome mediated by tumor necrosis factor-alpha (TNF-alpha). The exacerbated inflammatory reaction induces the activation of hypothalamus-pituitary-adrenal (HPA) axis with the consequent release of corticosterone (CT) into the circulation as a protective response. Thymocyte apoptosis has been related to a rise in TNF-alpha and CT levels, and both mediators are increased in T. cruzi-infected C57BL/6 mice. The depletion of immature CD4(+)CD8(+) thymocytes by apoptosis following infection with the parasite was still present in mice defective in both types of TNF-receptors (double knockout). However, thymic atrophy was prevented by adrenalectomy combined with RU486 administration, demonstrating that this is a CT-driven phenomenon. Our results put emphasis on the importance of an appropriated immuno-endocrine balance during T. cruzi infection and show that functional deviations in the immuno-endocrine equilibrium have profound effects on the thymus and disease outcome.
Collapse
Affiliation(s)
- Ana Rosa Pérez
- Instituto de Inmunología, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Santa Fe 3100 (2000) Rosario, Argentina
| | | | | | | | | | | | | |
Collapse
|
31
|
Hayasaka D, Ennis FA, Terajima M. Pathogeneses of respiratory infections with virulent and attenuated vaccinia viruses. Virol J 2007; 4:22. [PMID: 17326843 PMCID: PMC1810241 DOI: 10.1186/1743-422x-4-22] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Accepted: 02/27/2007] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Respiratory infection with the neurovirulent vaccinia virus (VV) strain Western Reserve (WR) results in an acute infection of the lung followed by dissemination of the virus to other organs and causes lethality in mice. The mechanisms of lethality are not well-understood. In this study, we analyzed virus replication and host immune responses after intranasal infection with lethal and non-lethal doses of VV using the WR strain and the less virulent Wyeth strain. RESULTS The WR strain replicated more vigorously in the lung and in the brain than the Wyeth strain. There were, however, no differences between the virus titers in the brains of mice infected with the higher lethal dose and the lower non-lethal dose of WR strain, suggesting that the amount of virus replication in the brain is unlikely to be the sole determining factor of lethality. The WR strain grew better in primary mouse lung cells than the Wyeth strain. Lethal infection with WR strain was associated with a reduced number of lymphocytes and an altered phenotype of the T cells in the lung compared to non-lethal infections with the WR or Wyeth strains. Severe thymus atrophy with a reduction of CD4 and CD8 double positive T cells was also observed in the lethal infection. CONCLUSION These results suggest that the lethality induced by intranasal infection with a high dose of the WR strain is caused by the higher replication of virus in lung cells and immune suppression during the early phase of the infection, resulting in uncontrolled virus replication in the lung.
Collapse
Affiliation(s)
- Daisuke Hayasaka
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Francis A Ennis
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Masanori Terajima
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, MA 01655, USA
| |
Collapse
|
32
|
Szretter KJ, Gangappa S, Lu X, Smith C, Shieh WJ, Zaki SR, Sambhara S, Tumpey TM, Katz JM. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J Virol 2006; 81:2736-44. [PMID: 17182684 PMCID: PMC1866007 DOI: 10.1128/jvi.02336-06] [Citation(s) in RCA: 310] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Highly pathogenic avian H5N1 influenza viruses are now widespread in poultry in Asia and have recently spread to some African and European countries. Interspecies transmission of these viruses to humans poses a major threat to public health. To better understand the basis of pathogenesis of H5N1 viruses, we have investigated the role of proinflammatory cytokines in transgenic mice deficient in interleukin-6 (IL-6), macrophage inflammatory protein 1 alpha (MIP-1alpha), IL-1 receptor (IL-1R), or tumor necrosis factor receptor 1 (TNFR1) by the use of two avian influenza A viruses isolated from humans, A/Hong Kong/483/97 (HK/483) and A/Hong Kong/486/97 (HK/486), which exhibit high and low lethality in mice, respectively. The course of disease and the extent of virus replication and spread in IL-6- and MIP-1alpha-deficient mice were not different from those observed in wild-type mice during acute infection with 1,000 50% mouse infective doses of either H5N1 virus. However, with HK/486 virus, IL-1R-deficient mice exhibited heightened morbidity and mortality due to infection, whereas no such differences were observed with the more virulent HK/483 virus. Furthermore, TNFR1-deficient mice exhibited significantly reduced morbidity following challenge with either H5N1 virus but no difference in viral replication and spread or ultimate disease outcome compared with wild-type mice. These results suggest that TNF-alpha may contribute to morbidity during H5N1 influenza virus infection, while IL-1 may be important for effective virus clearance in nonlethal H5N1 disease.
Collapse
MESH Headings
- Animals
- Chemokine CCL3
- Chemokine CCL4
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunohistochemistry
- Influenza A Virus, H5N1 Subtype/growth & development
- Influenza A Virus, H5N1 Subtype/pathogenicity
- Interleukin-6/deficiency
- Interleukin-6/genetics
- Interleukin-6/immunology
- Kinetics
- Macrophage Inflammatory Proteins/deficiency
- Macrophage Inflammatory Proteins/genetics
- Macrophage Inflammatory Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Mice, Transgenic
- Neutralization Tests
- Orthomyxoviridae Infections/immunology
- Orthomyxoviridae Infections/mortality
- Orthomyxoviridae Infections/virology
- Receptors, Interleukin-1/deficiency
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Kristy J Szretter
- Influenza Branch MS G-16, Division of Viral and Ricksettial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Infectious disease immunology has largely focused on the effector immune response, changes in the blood and peripheral lymphoid organs of infected individuals, and vaccine development. Studies of the thymus in infected individuals have been neglected, although this is progressively changing. The thymus is a primary lymphoid organ, able to generate mature T cells that eventually colonize secondary lymphoid organs, and is therefore essential for peripheral T cell renewal. Recent data show that normal thymocyte development and export can be altered as a result of an infectious disease. One common feature is the severe atrophy of the infected organ, mainly due to the apoptosis-related depletion of immature CD4+CD8+ thymocytes. Additionally, thymocyte proliferation is frequently diminished. The microenvironmental compartment of the thymus is also affected, particularly in acute infectious diseases, with a densification of the epithelial network and an increase in the deposition of extracellular matrix. In the murine model of Chagas disease, intrathymic chemokine production is also enhanced, and thymocytes from Trypanosoma cruzi-infected mice exhibit greater numbers of cell migration-related receptors for chemokines and extracellular matrix, as well as increased migratory responses to the corresponding ligands. This profile is correlated with the appearance of potentially autoreactive thymus-derived immature CD4+CD8+ T cells in peripheral organs of infected animals. A variety of infectious agents—including viruses, protozoa, and fungi—invade the thymus, raising the hypothesis of the generation of central immunological tolerance for at least some of the infectious agent-derived antigens. It seems clear that the thymus is targeted in a variety of infections, and that such targeting may have consequences on the behavior of peripheral T lymphocytes. In this context, thymus-centered immunotherapeutic approaches potentially represent a new tool for the treatment of severe infectious diseases.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory on Thymus Research, Department of Immunology, Oswaldo Cruz Institute, Inserm-Fiocruz Associated Laboratory of Immunology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
Chen W, Kuolee R, Austin JW, Shen H, Che Y, Conlan JW. Low dose aerosol infection of mice with virulent type A Francisella tularensis induces severe thymus atrophy and CD4+CD8+ thymocyte depletion. Microb Pathog 2005; 39:189-96. [PMID: 16257504 PMCID: PMC1564440 DOI: 10.1016/j.micpath.2005.08.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 08/22/2005] [Accepted: 08/23/2005] [Indexed: 12/24/2022]
Abstract
Francisella tularensis is a gram-negative facultative intracellular bacterium and the causative agent of tularemia. Two subspecies (type A and B strains) of the pathogen exist, the former being much more virulent than the latter for humans and other higher mammals. In this study, we examined the effect of virulent strains of F. tularensis infection on the thymus and thymocytes and the potential mechanisms involved. Low-dose aerosol exposure of C57BL/6 mice with type A, but not type B, F. tularensis caused severe reduction in thymus weight and destruction of thymocytes, particularly CD4+CD8+ thymocytes, by day 4 after infection. The depletion of thymocytes was accompanied by a significant increase in circulating cortisone levels and could be partially prevented by adrenalectomy. Moreover, thymus atrophy and thymocyte depletion following infection were abolished in mice deficient in tumor necrosis factor receptors 1 and 2, but not in FasL-deficient mice. The severe destruction of the thymus and selective depletion of immature thymocytes during type A F. tularensis infection may represent a key pathogenic mechanism in tularemia and could hinder the development of an effective primary immune response against this highly virulent pathogen.
Collapse
Affiliation(s)
- Wangxue Chen
- Institute for Biological Sciences, National Research Council Canada, 100 Sussex Drive, Ottawa, Ont., Canada K1A 0R6.
| | | | | | | | | | | |
Collapse
|
35
|
Mathieu PA, Gómez KA, Coutelier JP, Retegui LA. Sequence similarity and structural homologies are involved in the autoimmune response elicited by mouse hepatitis virus A59. J Autoimmun 2005; 23:117-26. [PMID: 15324930 PMCID: PMC7127313 DOI: 10.1016/j.jaut.2004.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 05/26/2004] [Accepted: 05/28/2004] [Indexed: 11/20/2022]
Abstract
The features of autoantibodies (autoAb) to liver fumarylacetoacetate hydrolase (FAH) elicited in mice infected with mouse hepatitis virus (MHV) were studied by ELISA and western-blot competition assays. All sera tested contained Ab to cryptic FAH epitopes according with results from western-blot tests, whereas ELISA data indicated that some of these same sera did recognize native epitopes of the autoantigen (autoAg). Such differences were detected in individual sera from various mouse strains, and were ascribed to the fact that proteins insolubilized on solid supports expose a variety of conformational and cryptic antigenic determinants. On the other hand, whereas results from both experimental protocols showed that anti-MHV Ab did not cross-react with the soluble autoAg, the opposite situation did not show analogous results. Thus, binding of autoAb to insolubilized FAH could be inhibited by MHV depending on the mouse serum or the experimental protocol used. Additionally, a set of synthetic homologous peptides from mouse FAH and various viral proteins was employed to analyze the Ab repertoire of MHV-infected mice. Results indicated that two homologous peptides were recognized by most Ab: the N-terminal sequences (1–10) from FAH and the nucleocapside, both sharing 50% of identity, and sequence 2317–2326 of the RNA polymerase, a peptide showing 30% of identity with FAH 11–20. Results indicated that MHV-infection triggers at least three distinct Ab populations: anti-MHV, anti-FAH and cross-reacting Ab. This cross-reaction implies either sequential or conformational epitopes from both the viral proteins and the autoAg and may differ between individuals.
Collapse
Affiliation(s)
- Patricia A. Mathieu
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina
| | - Karina A. Gómez
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina
| | - Jean-Paul Coutelier
- Unit of Experimental Medicine, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | - Lilia A. Retegui
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Junín 956, 1113 Buenos Aires, Argentina
- Corresponding author. Tel.: +54-11-4964-8289; fax: +54-11-4962-5457.
| |
Collapse
|
36
|
Stanziale SF, Petrowsky H, Adusumilli PS, Ben-Porat L, Gonen M, Fong Y. Infection with oncolytic herpes simplex virus-1 induces apoptosis in neighboring human cancer cells: a potential target to increase anticancer activity. Clin Cancer Res 2004; 10:3225-32. [PMID: 15131064 DOI: 10.1158/1078-0432.ccr-1083-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The antitumor efficacy of a herpes simplex virus (HSV)-1 oncolytic virus depends on the cytotoxic effect of the virus, but also on viral replication and spread within the tumor. Apoptosis is considered a defense mechanism of infected cells that minimizes the spread of viral progeny by limiting cellular production of virus. We sought to determine whether oncolytic HSV-1 infection induces apoptosis in neighboring, uninfected cells and whether manipulation of apoptosis can increase viral replication and cytotoxicity. EXPERIMENTAL DESIGN NV1066 is an oncolytic HSV-1 mutant that contains the marker gene for enhanced green fluorescent protein. OCUM human gastric cancer cells were infected with NV1066 in vitro and inspected for apoptosis by Hoechst and terminal deoxynucleotidyltransferase-mediated nick end labeling staining and for infection by expression of green fluorescence. RESULTS A significant increase in apoptosis was seen in cells infected by NV1066. More interestingly, a significant percentage (10%) of uninfected cells also proceeded to apoptosis. After NV1066 infection, cells were also treated with N-acetylcysteine (NAC), an inhibitor of apoptosis. By day 4 after infection, 2.7x more NV1066 was produced in cells exposed to NAC than in those not exposed to NV1066 (P = 0.04). NAC also increased tumor kill when administered with virus. CONCLUSIONS These data suggest that NV1066 induces apoptosis in uninfected cocultured cells, potentially hindering propagation of viral progeny and concomitant tumor kill. Inhibition of apoptosis may improve the efficacy of oncolytic HSV-1 therapy.
Collapse
Affiliation(s)
- Stephen F Stanziale
- Department of Surgery, Hepatobiliary Division, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
37
|
Mantuano-Barradas M, Henriques-Pons A, Araújo-Jorge TC, Di Virgilio F, Coutinho-Silva R, Persechini PM. Extracellular ATP induces cell death in CD4+/CD8+ double-positive thymocytes in mice infected with Trypanosoma cruzi. Microbes Infect 2004; 5:1363-71. [PMID: 14670449 DOI: 10.1016/j.micinf.2003.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the acute phase of Trypanosoma cruzi infection, there is dramatic atrophy of the thymus. However, the pathways involved in this change have not yet been identified. This event is mainly characterized by a massive loss of cortical CD4+/CD8+ double-positive cells, but also by other structural and functional alterations in the organ. A number of molecules, including extracellular ATP, have been suggested to play a role in the selective processes that take place in the thymus. ATP and analogues trigger many different cellular responses in thymocytes and other cell types, such as the opening of plasma membrane cation channels and a pore that may induce cell death. Herein, we investigated the possible involvement of extracellular ATP in thymus atrophy induced by infection with T. cruzi. We observed that ATP induces an increase in plasma membrane permeabilization and cellular death in CD4+/CD8+ double-positive thymocytes collected from infected mice during the atrophy phase. No differences were observed prior to the atrophy phase or during the chronic phase. Our results indicate that P2Z/P2X7 receptors may play a central role in thymus atrophy during T. cruzi infection.
Collapse
Affiliation(s)
- Marcio Mantuano-Barradas
- Laboratório de Imunobiofísica, Instituto de Biofísica Carlos Chagas Filho, UFRJ, Bloco G do CCS, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Feng WH, Tompkins MB, Xu JS, Brown TT, Laster SM, Zhang HX, McCaw MB. Thymocyte and peripheral blood T lymphocyte subpopulation changes in piglets following in utero infection with porcine reproductive and respiratory syndrome virus. Virology 2002; 302:363-72. [PMID: 12441080 DOI: 10.1006/viro.2002.1650] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Piglets infected in utero with porcine reproductive and respiratory syndrome virus (PRRSV) are born severely immunocompromised. In this article we more closely examine the effects of in utero PRRSV infection on circulating and thymic T cell populations. Numbers of CD4+, CD8+, and dual-positive lymphocytes were quantitated in circulation and in the thymus during the 2 weeks following birth. At birth we found that the number of circulating lymphocytes was suppressed by 60%. Lymphocyte numbers were also suppressed by 42% at day 7, but by day 14 the number of lymphocytes had rebounded and was actually 47% greater than controls. At birth and day 7, a drop in the number of CD4+ cells could partially explain the suppression we observed, while the rebound in total lymphocyte numbers seen at day 14 was due to a nearly fourfold increase in the number of circulating CD8+ cells. As a result, the normal CD4+:CD8+ ratio of between 1.4 and 2.2 for neonatal pigs was reduced to 0.1-0.5. The thymuses of infected piglets were found to be 50% smaller than those of control pigs and were characterized by cortical involution and severe cortical depletion of thymocytes. Analysis of the population of thymocytes revealed that double-positive thymocytes were suppressed to a greater degree than either single positive subpopulation. In addition, we show that the number of thymocytes undergoing apoptosis was increased twofold in piglets infected with PRRSV. Taken together, these results help explain the dramatic immunosuppression observed in neonatal animals infected in utero with PRRSV.
Collapse
Affiliation(s)
- Wen-hai Feng
- Department of Farm Animal Health and Resource Management, College of Veterinary Medicine, North Carolina State University, Raleigh, 27606, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Vidalain PO, Laine D, Zaffran Y, Azocar O, Servet-Delprat C, Wild TF, Rabourdin-Combe C, Valentin H. Interferons mediate terminal differentiation of human cortical thymic epithelial cells. J Virol 2002; 76:6415-24. [PMID: 12050353 PMCID: PMC136281 DOI: 10.1128/jvi.76.13.6415-6424.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In the thymus, epithelial cells comprise a heterogeneous population required for the generation of functional T lymphocytes, suggesting that thymic epithelium disruption by viruses may compromise T-cell lymphopoiesis in this organ. In a previous report, we demonstrated that in vitro, measles virus induced differentiation of cortical thymic epithelial cells as characterized by (i) cell growth arrest, (ii) morphological and phenotypic changes, and (iii) apoptotis as a final step of this process. In the present report, we have analyzed the mechanisms involved. First, measles virus-induced differentiation of thymic epithelial cells is shown to be strictly dependent on beta interferon (IFN-beta) secretion. In addition, transfection with double-stranded RNA, a common intermediate of replication for a broad spectrum of viruses, is reported to similarly mediate thymic epithelial cell differentiation through IFN-beta induction. Finally, we demonstrated that recombinant IFN-alpha, IFN-beta, or IFN-gamma was sufficient to induce differentiation and apoptosis of uninfected thymic epithelial cells. These observations suggested that interferon secretion by either infected cells or activated leukocytes, such as plasmacytoid dendritic cells or lymphocytes, may induce thymic epithelium disruption in a pathological context. Thus, we have identified a new mechanism that may contribute to thymic atrophy and altered T-cell lymphopoiesis associated with many infections.
Collapse
Affiliation(s)
- Pierre-Olivier Vidalain
- Laboratoire d'Immunobiologie Fondamentale et Clinique, INSERM U503, 21 Avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Most murine hepatitis virus (MHV) strains, as their name suggests, infect the liver. However, several murine strains are tropic for the central nervous system (CNS) and cause encephalitis with subsequent CNS demyelination. The CNS demyelination shares pathological similarities with human CNS demyelinating diseases such as multiple sclerosis (MS). These viruses are, therefore, used to study the role of the immune system in viral clearance from the CNS, in CNS demyelination, and in remyelination. Nevertheless, it is still unclear exactly how MHV induces demyelination and to what extent the immune system plays a role in this pathology. Here we review this field in the context of the immune response to MHV in the liver and the CNS focusing on studies that have been published in the past 5 years.
Collapse
Affiliation(s)
- A. E. Matthews
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
| | - S. R. Weiss
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
| | - Y. Paterson
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania USA
- University of Pennsylvania, 323 Johnson Pavilion, 3610 Hamilton Walk, 19104-6076 Philadelphia, PA USA
| |
Collapse
|
42
|
Affiliation(s)
- B Stockinger
- Division of Molecular Immunology, National Institute for Medical Research, London, United Kingdom
| |
Collapse
|
43
|
Godfraind C, Holmes KV, Coutelier JP. Role of mouse hepatitis virus-A59 receptor Bgp1a expression in virus-induced pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 440:569-74. [PMID: 9782331 DOI: 10.1007/978-1-4615-5331-1_74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Expression of Bgp1a, a glycoprotein that serves as receptor for mouse hepatitis virus-A59 has been analyzed in various mouse tissues and correlated with the pathogenicity that this virus induces in the corresponding organs. Expression of Bgp1a was observed in many cells of epithelial origin, including hepatocytes and endothelial cells. It was also shown on macrophages and B lymphocytes. Bgp1a localization may easily explain infection and lysis of some cell types like hepatocytes. In contrast, other cell types that express the viral receptor are not infected after in vivo inoculation with mouse hepatitis virus-A59, which may be due to inaccessibility of the receptor to the virus during mouse infection, or to resistance to this virus in some cell types. This may account for the ability of the blood-brain barrier to prevent mouse hepatitis virus-A59 spreading into the central nervous system. In other organs, the virus may induce pathogenesis indirectly, resulting in the destruction of cells that do not express Bgp1a, like thymic lymphocytes, or else impair cell functions such as cytokine and immunoglobulin production by macrophages and B lymphocytes, respectively.
Collapse
Affiliation(s)
- C Godfraind
- Laboratory of Pathology, Catholic University of Louvain, Bruxelles, Belgium
| | | | | |
Collapse
|
44
|
Kanda T, Utsugi T, Kawazu S, Wilson JE, Yang D, Suarez A, McManus BM, Nagai R, Kobayashi I. Induction of virus-induced IDDM in virus resistant mice without lymphocyte maturation. Life Sci 1998; 63:33-40. [PMID: 9667762 DOI: 10.1016/s0024-3205(98)00233-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The role of lymphocytes in the pathogenesis of viral-induced insulin dependent diabetes mellitus (IDDM) is controversial. To better understand how a virus-induced IDDM depends on the infiltrating lymphocytes, encephalomyocarditis virus (EMCV) was inoculated intraperitoneally into three kinds of mice; virus-susceptible C57BL/6, virus-resistant 129/SV and recombination activity gene-2 (Rag2) knockout 129/SV mice. Pancreatic inflammation and beta cell necrosis were evaluated after EMCV, D variant (10(3) pfu/mouse) inoculation. On post-inoculation day 14, the lethal rates of C57BL/6, 129/SV and Rag2 knockout mice were 52, 10 and 100%, respectively. The blood glucose in Rag2KO mice on day 8 was significantly elevated as compared with 129SV mice (231 +/- 49 vs 169 +/- 32 mg/dl, P<0.05). In situ hybridization demonstrated the EMCV genome in the pancreas of Rag2 knockout and C57BL/6 mice, but not in 129/SV mice. Beta cell necrosis were more severe in Rag-2 knockout mice than in wild type 129/SV mice, but lymphocyte infiltration was less severe than C57BL/6. Pancreas in Rag2 knockout mice infected with virus were affected more severely than the virus-resistant strain of mice. Diabetogenic virus induced IDDM in virus-resistant mice without mature lymphocytes.
Collapse
Affiliation(s)
- T Kanda
- Department of Laboratory Medicine, Gunma University School of Medicine, Gunma University, Maebashi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baker DG. Natural pathogens of laboratory mice, rats, and rabbits and their effects on research. Clin Microbiol Rev 1998; 11:231-66. [PMID: 9564563 PMCID: PMC106832 DOI: 10.1128/cmr.11.2.231] [Citation(s) in RCA: 218] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Laboratory mice, rats, and rabbits may harbor a variety of viral, bacterial, parasitic, and fungal agents. Frequently, these organisms cause no overt signs of disease. However, many of the natural pathogens of these laboratory animals may alter host physiology, rendering the host unsuitable for many experimental uses. While the number and prevalence of these pathogens have declined considerably, many still turn up in laboratory animals and represent unwanted variables in research. Investigators using mice, rats, and rabbits in biomedical experimentation should be aware of the profound effects that many of these agents can have on research.
Collapse
Affiliation(s)
- D G Baker
- Division of Laboratory Animal Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70810, USA.
| |
Collapse
|
46
|
Verinaud L, Da Cruz-Höfling MA, Sakurada JK, Rangel HA, Vassallo J, Wakelin D, Sewell HF, Camargo IJ. Immunodepression induced by Trypanosoma cruzi and mouse hepatitis virus type 3 is associated with thymus apoptosis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1998; 5:186-91. [PMID: 9521141 PMCID: PMC121356 DOI: 10.1128/cdli.5.2.186-191.1998] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Trypanosoma cruzi-infected mice show disturbance in the peripheral immune system such as polyclonal lymphocyte activation, autoantibody production, and immunosuppression of T lymphocytes. Previous observations in our laboratory showed that some stocks of T. cruzi can be contaminated with mouse hepatitis virus type 3 (MHV-3). Literature has shown that MHV-3 infection induces immunologic disorders characterized by thymic involution with marked cell depletion. However, the effects of interactions between MHV-3 and the parasite on the immune system are not well understood. In the present study specific-pathogen-free CBA mice were inoculated with MHV-3, alone or associated with different stocks of T. cruzi. Concurrent murine virus infection resulted in increased pathogenicity of T. cruzi infection shown by profound thymic atrophy; loss of cortical thymocytes; depletion of Thy1.2+, CD4+, and CD8+ cells; enhancement of in situ labeling of nuclear DNA fragmentation; and eventually, death of the animals. Such lines of evidence show that the mechanism underlying this thymic atrophy is associated with apoptosis. These results also suggest that MHV-3 can account for the increased immunosuppression observed during experimental infection with the parasite.
Collapse
Affiliation(s)
- L Verinaud
- Department of Microbiology and Immunology, UNICAMP, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
47
|
San Gil F, Turner B, Mullbacher A, Walker MJ, Djordjevic SP, Eamens GJ, Chin JC. Flow cytometric analysis of cellular changes in mice after intradermal inoculation with a liposome-iscom adjuvanted vaccine. Scand J Immunol 1998; 47:243-53. [PMID: 9519863 DOI: 10.1046/j.1365-3083.1998.00304.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As it is not known what changes to leucocyte homeostasis are mandatory for effective adjuvant action, the biological relevance of systemic changes elicited by different vaccine formulations can only be interpreted in the context of the immunological outcomes. We used flow cytometry to quantify the changes in leucocyte subsets induced in mice intradermally immunized with SAMA4 (adjuvant group), outer membrane proteins (OMP) purified from Actinobacillus pleuropneumoniae (OMP antigen group), SAMA4 adjuvanted OMP (OMP vaccine group), or phosphate-buffered saline (PBS: control group). This approach allowed direct comparisons to be made between the effects of antigen, adjuvant or antigen-adjuvant complexes on immune effector cell populations. Antigens complexed with the liposome-iscom hybrid adjuvant, SAMA4, generated strong antibody responses and cytotoxic T-cell activity in animals immunized intradermally, reflecting remobilization and recruitment of specific cell populations. Splenomegaly, due to granulocytosis, monocytosis and megakaryocytosis, was most prominent in the OMP vaccine group. Histological examination of spleen sections confirmed that these changes were due primarily to splenic haematopoiesis. Circulating numbers of granulocytes and monocytes increased significantly (P < 0.05) in the blood of the OMP vaccine group, as did granulocyte numbers in the lungs (P < 0.05). No changes in T- and B-cell numbers were detected by flow cytometry in the spleens, lungs or blood over the 28-day period in any treatment group. Thymocyte numbers (predominantly CD4+CD8+ cells) in the OMP vaccine group fell by 95% within 3 days of immunization. Identical cellular responses were obtained when an innocuous antigen, ovalbumin, was complexed with SAMA4 instead of OMP, thus demonstrating that the adjuvant effects of SAMA4 were due to synergistic interaction between antigen and adjuvant and not due to the presence of toxic components. The association of strong adaptive immune responses with such complex changes in leucocyte homeostasis induced by complexing adjuvant and antigen suggested that the changes were important for effective vaccination and were not purely circumstantial.
Collapse
Affiliation(s)
- F San Gil
- NSW Agriculture, Elizabeth Macarthur Agricultural Institute, Camden, Australia
| | | | | | | | | | | | | |
Collapse
|
48
|
Martin S, Bevan MJ. Antigen-specific and nonspecific deletion of immature cortical thymocytes caused by antigen injection. Eur J Immunol 1997; 27:2726-36. [PMID: 9368633 DOI: 10.1002/eji.1830271037] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Analysis of antigen-induced negative selection of thymocytes in T cell receptor (TCR)-transgenic mice is complicated by the presence of an antigen-responsive peripheral T cell compartment. Our experiments address the question of whether and how peripheral T cell activation can affect immature thymocytes. Following three daily injections of peptide antigen into mice expressing a peptide-specific transgenic TCR and deficient for TAP1, we and others have found profound deletion of the CD4+CD8+ (DP) thymocyte subset. However, our work shows that even though mature CD8+ T cells are inefficiently selected in TAP1-deficient mice, there was a striking degree of peripheral expansion and activation of CD8+ peripheral T cells. Furthermore, when cells from TCR-transgenic mice were adoptively transferred, we found that deletion of nontransgenic DP thymocytes occurred in Thy-1-congenic and even more efficiently in TAP1-deficient recipients after repeated peptide injection resulting in peripheral T cell activation. In the adoptive transfer experiments the degree of deletion of immature bystander thymocytes was decreased upon blocking of TNF. These data show that deletion of DP thymocytes can result from excessive peripheral T cell activation and identify TNF as an important effector molecule for this process. When steps are taken to avoid peripheral T cell activation, peptide antigen can induce TCR-mediated thymocyte deletion, presumably in the thymus cortex, since injection of TAP1-deficient TCR-transgenic mice resulted in deletion of immature DP thymocytes prior to detectable peripheral T cell expansion and activation. This effect was not blocked by inhibiting tumor necrosis factor activity. In addition, DP depletion was seen in the absence of peripheral T cell activation when antibody-mediated depletion of CD8+ T cells was performed. Our work clearly shows that two mechanisms for deletion of DP thymocytes exist: deletion induced by antigen presentation in the thymus and deletion as a consequence of repeated stimulation of mature peripheral T cells.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Adoptive Transfer
- Animals
- Antigens/administration & dosage
- Antigens/immunology
- Clonal Deletion/drug effects
- Dexamethasone/antagonists & inhibitors
- Dexamethasone/pharmacology
- H-2 Antigens/immunology
- Injections, Intraperitoneal
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Mifepristone/pharmacology
- Ovalbumin/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Glucocorticoid/antagonists & inhibitors
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- S Martin
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, Seattle 98195-7370, USA
| | | |
Collapse
|
49
|
Affiliation(s)
- J M Hardwick
- Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland 21205, USA
| |
Collapse
|
50
|
Haagmans BL, Egberink HF, Horzinek MC. Apoptosis and T-cell depletion during feline infectious peritonitis. J Virol 1996; 70:8977-83. [PMID: 8971027 PMCID: PMC190995 DOI: 10.1128/jvi.70.12.8977-8983.1996] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cats that have succumbed to feline infectious peritonitis, an immune-mediated disease caused by variants of feline coronaviruses, show apoptosis and T-cell depletion in their lymphoid organs. The ascitic fluid that develops in the course of the condition causes apoptosis in vitro but only in activated T cells. Since feline infectious peritonitis virus does not infect T cells, and viral proteins did not inhibit T-cell proliferation, we postulate that soluble mediators released during the infection cause apoptosis and T-cell depletion.
Collapse
Affiliation(s)
- B L Haagmans
- Department of Infectious Diseases and Immunology, Veterinary Faculty, Utrecht University, The Netherlands.
| | | | | |
Collapse
|