1
|
Pulkina A, Vasilyev K, Muzhikyan A, Sergeeva M, Romanovskaya-Romanko E, Shurygina AP, Shuklina M, Vasin A, Stukova M, Egorov A. IgGκ Signal Peptide Enhances the Efficacy of an Influenza Vector Vaccine against Respiratory Syncytial Virus Infection in Mice. Int J Mol Sci 2023; 24:11445. [PMID: 37511205 PMCID: PMC10380829 DOI: 10.3390/ijms241411445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Intranasal vaccination using influenza vectors is a promising approach to developing vaccines against respiratory pathogens due to the activation of the mucosa-associated immune response. However, there is no clear evidence of a vector design that could be considered preferable. To find the optimal structure of an influenza vector with a modified NS genomic segment, we constructed four vector expressing identical transgene sequences inherited from the F protein of the respiratory syncytial virus (RSV). Two vectors were designed aiming at transgene accumulation in the cytosol. Another two were supplemented with an IgGκ signal peptide prior to the transgene for its extracellular delivery. Surprisingly, adding the IgGκ substantially enhanced the T-cell immune response to the CD8 epitope of the transgene. Moreover, this strategy allowed us to obtain a better protection of mice from the RSV challenge after a single intranasal immunization. Protection was achieved without antibodies, mediated by a balanced T-cell immune response including the formation of the RSV specific effector CD8+ IFNγ+/IL10+-producing cells and the accumulation of Treg cells preventing immunopathology in the lungs of infected mice. In addition to the presented method for optimizing the influenza vector, our results highlight the possibility of achieving protection against RSV through a respiratory-associated T-cell immune response alone.
Collapse
Affiliation(s)
- Anastasia Pulkina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Kirill Vasilyev
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Arman Muzhikyan
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Mariia Sergeeva
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Ekaterina Romanovskaya-Romanko
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Marina Shuklina
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Andrey Vasin
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Marina Stukova
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| | - Andrej Egorov
- Smorodintsev Research Institute of Influenza of the Ministry of Health of the Russian Federation, 197022 St. Petersburg, Russia
| |
Collapse
|
2
|
Sher YP, Lin SI, Chai KM, Chen IH, Liu SJ. Endoplasmic reticulum-targeting sequence enhanced the cellular immunity of a tumor-associated antigen L6-based DNA vaccine. Am J Cancer Res 2019; 9:2028-2036. [PMID: 31598403 PMCID: PMC6780668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023] Open
Abstract
Cancer vaccine design to effectively eliminate tumors requires triggering strong immune reactions to elicit long-lasting humoral and cellular immunity and DNA vaccines have been demonstrated to be an attractive immunotherapeutic approach. The tumor-associated antigen L6 (TAL6) is overexpressed on the surface of different cancer cells and promotes cancer progression; therefore, it could be a potential target for cancer treatment. We have revealed that a synthetic peptide containing HLA-A2-restricted cytotoxic T lymphocyte (CTL) and B cell epitope can induce cellular and humoral immunity against TAL6-expressing cancer. To enhance the efficacy of immunotherapy, in this report, we designed an endoplasmic reticulum (ER)-targeting sequence (adenovirus E3/19K protein) at the N-terminus of TAL6 to facilitate MHC class I antigen presentation to CD8+ T cells. Transfection of mammalian cells with the plasmid containing TAL6 fused with the ER-targeting sequence (pEKL6) resulted in higher levels of TAL6 antigens in the ER than transfection with the full-length TAL6 (pL6). The plasmid pEKL6 induced both TAL6-specific CTL responses and antibody titers after intramuscular (IM) immunization with electroporation and it elicited higher levels of antigen-specific CTLs in HLA-A2 transgenic mice. Immunization with pEKL6 induced higher levels of protective antitumor immunity against tumor growth than pL6 immunization in thymoma and melanoma tumor animal models. Notably, pEKL6 elicited long-term anti-tumor immunity against the recurrence of cancers. We found that CD4+ T, CD8+ T, and NK cells are all important for the effector mechanisms of pEKL6 immunization. Thus, cancer therapy using an ER-targeting sequence linked to a tumor antigen holds promise for treating tumors by triggering strong immune reactions.
Collapse
Affiliation(s)
- Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung, Taiwan
- Center for Molecular Medicine, China Medical UniversityTaichung, Taiwan
| | - Su-I Lin
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesZhunan, Miaoli, Taiwan
| | - Kit Man Chai
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesZhunan, Miaoli, Taiwan
| | - I-Hua Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesZhunan, Miaoli, Taiwan
| | - Shih-Jen Liu
- Graduate Institute of Biomedical Sciences, China Medical UniversityTaichung, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research InstitutesZhunan, Miaoli, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
3
|
Enhanced anti-tumor therapeutic efficacy of DNA vaccine by fusing the E7 gene to BAFF in treating human papillomavirus-associated cancer. Oncotarget 2018; 8:33024-33036. [PMID: 28423693 PMCID: PMC5464847 DOI: 10.18632/oncotarget.16032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 02/13/2017] [Indexed: 12/17/2022] Open
Abstract
B-cell-activating factor (BAFF) belongs to the tumor necrosis factor family that not only stimulates B and T cells but also counteracts immune tolerance. BAFF is also a type II membrane protein, which is secreted through the endoplasmic reticulum (ER)–Golgi apparatus pathway. Fusing an antigen to BAFF might enhance the presentation of major histocompatibility complex class I molecules. These characteristics represent an opportunity to enhance the antitumor effects of DNA vaccines. Therefore, we fused BAFF to human papillomavirus type 16 E7 as a DNA vaccine and evaluated its antitumor effects. We found that this vaccine increased E7-specific CD8+ T-cell immune responses, engendered major antitumor effects against E7-expressing tumors, and prolonged the survival of the immunized mice. Interestingly, vaccinating B-cell-deficient mice with BAFF–E7 revealed considerable E7-specific CD8+ T-cell immune responses, suggesting that B cells do not contribute to this immune response. Image analysis through confocal fluorescence microscopy revealed that fusing BAFF to E7 targeted the protein to the ER, but not BAFF lacking 128 N-terminal residues that generated a lower number of E7-specific CD8+ T cells in the vaccinated mice. Our data indicated that the ER-targeting characteristic of BAFF is the main factor improving the potency of DNA vaccines.
Collapse
|
4
|
Memarnejadian A, Meilleur CE, Shaler CR, Khazaie K, Bennink JR, Schell TD, Haeryfar SMM. PD-1 Blockade Promotes Epitope Spreading in Anticancer CD8 + T Cell Responses by Preventing Fratricidal Death of Subdominant Clones To Relieve Immunodomination. THE JOURNAL OF IMMUNOLOGY 2017; 199:3348-3359. [PMID: 28939757 DOI: 10.4049/jimmunol.1700643] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
The interactions between programmed death-1 (PD-1) and its ligands hamper tumor-specific CD8+ T cell (TCD8) responses, and PD-1-based "checkpoint inhibitors" have shown promise in certain cancers, thus revitalizing interest in immunotherapy. PD-1-targeted therapies reverse TCD8 exhaustion/anergy. However, whether they alter the epitope breadth of TCD8 responses remains unclear. This is an important question because subdominant TCD8 are more likely than immunodominant clones to escape tolerance mechanisms and may contribute to protective anticancer immunity. We have addressed this question in an in vivo model of TCD8 responses to well-defined epitopes of a clinically relevant oncoprotein, large T Ag. We found that unlike other coinhibitory molecules (CTLA-4, LAG-3, TIM-3), PD-1 was highly expressed by subdominant TCD8, which correlated with their propensity to favorably respond to PD-1/PD-1 ligand-1 (PD-L1)-blocking Abs. PD-1 blockade increased the size of subdominant TCD8 clones at the peak of their primary response, and it also sustained their presence, thus giving rise to an enlarged memory pool. The expanded population was fully functional as judged by IFN-γ production and MHC class I-restricted cytotoxicity. The selective increase in subdominant TCD8 clonal size was due to their enhanced survival, not proliferation. Further mechanistic studies utilizing peptide-pulsed dendritic cells, recombinant vaccinia viruses encoding full-length T Ag or epitope mingenes, and tumor cells expressing T Ag variants revealed that anti-PD-1 invigorates subdominant TCD8 responses by relieving their lysis-dependent suppression by immunodominant TCD8 To our knowledge, our work constitutes the first report that interfering with PD-1 signaling potentiates epitope spreading in tumor-specific responses, a finding with clear implications for cancer immunotherapy and vaccination.
Collapse
Affiliation(s)
- Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Courtney E Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada
| | | | - Jack R Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Todd D Schell
- Department of Microbiology and Immunology, Pennsylvania State University, Hershey, PA 17033
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario N6A 5C1, Canada; .,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario N6G 5W9, Canada.,Centre for Human Immunology, Western University, London, Ontario N6A 5C1, Canada; and.,Lawson Health Research Institute, London, Ontario N6C 2R5, Canada
| |
Collapse
|
5
|
Rytelewski M, Meilleur CE, Atef Yekta M, Szabo PA, Garg N, Schell TD, Jevnikar AM, Sharif S, Singh B, Haeryfar SMM. Suppression of immunodominant antitumor and antiviral CD8+ T cell responses by indoleamine 2,3-dioxygenase. PLoS One 2014; 9:e90439. [PMID: 24587363 PMCID: PMC3938761 DOI: 10.1371/journal.pone.0090439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/30/2014] [Indexed: 11/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-degrading enzyme known to suppress antitumor CD8+ T cells (TCD8). The role of IDO in regulation of antiviral TCD8 responses is far less clear. In addition, whether IDO controls both immunodominant and subdominant TCD8 is not fully understood. This is an important question because the dominance status of tumor- and virus-specific TCD8 may determine their significance in protective immunity and in vaccine design. We evaluated the magnitude and breadth of cross-primed TCD8 responses to simian virus 40 (SV40) large T antigen as well as primary and recall TCD8 responses to influenza A virus (IAV) in the absence or presence of IDO. IDO−/− mice and wild-type mice treated with 1-methyl-D-tryptophan, a pharmacological inhibitor of IDO, exhibited augmented responses to immunodominant epitopes encoded by T antigen and IAV. IDO-mediated suppression of these responses was independent of CD4+CD25+FoxP3+ regulatory T cells, which remained numerically and functionally intact in IDO−/− mice. Treatment with L-kynurenine failed to inhibit TCD8 responses, indicating that tryptophan metabolites are not responsible for the suppressive effect of IDO in our models. Immunodominant T antigen-specific TCD8 from IDO−/− mice showed increased Ki-67 expression, suggesting that they may have acquired a more vigorous proliferative capacity in vivo. In conclusion, IDO suppresses immunodominant TCD8 responses to tumor and viral antigens. Our work also demonstrates that systemic primary and recall TCD8 responses to IAV are controlled by IDO. Inhibition of IDO thus represents an attractive adjuvant strategy in boosting anticancer and antiviral TCD8 targeting highly immunogenic antigens.
Collapse
MESH Headings
- Animals
- Antigens, Polyomavirus Transforming/immunology
- Antigens, Viral/immunology
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Immune Tolerance/genetics
- Immunity, Innate
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/deficiency
- Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Influenza A virus/immunology
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/immunology
- Kynurenine/pharmacology
- Lymphocyte Activation
- Mice
- Mice, Knockout
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
Collapse
Affiliation(s)
- Mateusz Rytelewski
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Courtney E. Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Maryam Atef Yekta
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Peter A. Szabo
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Nitan Garg
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Todd D. Schell
- Department of Microbiology and Immunology, The Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Anthony M. Jevnikar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Department of Medicine, Western University, London, Ontario, Canada
- Department of Pathology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Fusion of ubiquitin to HIV gag impairs human monocyte-derived dendritic cell maturation and reduces ability to induce gag T cell responses. PLoS One 2014; 9:e88327. [PMID: 24505475 PMCID: PMC3914991 DOI: 10.1371/journal.pone.0088327] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/12/2014] [Indexed: 12/25/2022] Open
Abstract
The efficient induction of CD8 T cell immunity is dependent on the processing and presentation of antigen on MHC class I molecules by professional antigen presenting cells (APC). To develop an improved T cell vaccine for HIV we investigated whether fusing the ubiquitin gene to the N terminus of the HIV gag gene enhanced targeting to the proteasome resulting in better CD8 T cell responses. Human monocyte derived dendritic cells (moDC), transduced with adenovirus vectors carrying either ubiquitinated or non-ubiquitinated gag transgene constructs, were co-cultured with autologous naïve T cells and T cell responses were measured after several weekly cycles of stimulation. Despite targeting of the ubiquitin gag transgene protein to the proteasome, ubiquitination did not increase CD8 T cell immune responses and in some cases diminished responses to gag peptides. There were no marked differences in cytokines produced from ubiquitinated and non-ubiquitinated gag stimulated cultures or in the expression of inhibitory molecules on expanded T cells. However, the ability of moDC transduced with ubiquitinated gag gene to upregulate co-stimulatory molecules was reduced, whilst no difference in moDC maturation was observed with a control ubiquitinated and non-ubiquitinated MART gene. Furthermore moDC transduced with ubiquitinated gag produced more IL-10 than transduction with unmodified gag. Thus failure of gag ubiquitination to enhance CD8 responses may be caused by suppression of moDC maturation. These results indicate that when designing a successful vaccine strategy to target a particular cell population, attention must also be given to the effect of the vaccine on APCs.
Collapse
|
7
|
Karpenko LI, Bazhan SI, Antonets DV, Belyakov IM. Novel approaches in polyepitope T-cell vaccine development against HIV-1. Expert Rev Vaccines 2013; 13:155-73. [PMID: 24308576 DOI: 10.1586/14760584.2014.861748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RV144 clinical trial was modestly effective in preventing HIV infection. New alternative approaches are needed to design improved HIV-1 vaccines and their delivery strategies. One of these approaches is construction of synthetic polyepitope HIV-1 immunogen using protective T- and B-cell epitopes that can induce broadly neutralizing antibodies and responses of cytotoxic (CD8(+) CTL) and helpers (CD4(+) Th) T-lymphocytes. This approach seems to be promising for designing of new generation of vaccines against HIV-1, enables in theory to cope with HIV-1 antigenic variability, focuses immune responses on protective determinants and enables to exclude from the vaccine compound that can induce autoantibodies or antibodies enhancing HIV-1 infectivity. Herein, the authors will focus on construction and rational design of polyepitope T-cell HIV-1 immunogens and their delivery, including: advantages and disadvantages of existing T-cell epitope prediction methods; features of organization of polyepitope immunogens, which can generate high-level CD8(+) and CD4(+) T-lymphocyte responses; the strategies to optimize efficient processing, presentation and immunogenicity of polyepitope constructs; original software to design polyepitope immunogens; and delivery vectors as well as mucosal strategies of vaccination. This new knowledge may bring us a one step closer to developing an effective T-cell vaccine against HIV-1, other chronic viral infections and cancer.
Collapse
Affiliation(s)
- Larisa I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
8
|
Watson AM, Mylin LM, Thompson MM, Schell TD. Modification of a tumor antigen determinant to improve peptide/MHC stability is associated with increased immunogenicity and cross-priming a larger fraction of CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5549-60. [PMID: 23175697 DOI: 10.4049/jimmunol.1102221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Altered peptide ligands (APLs) with enhanced binding to MHC class I can increase the CD8(+) T cell response to native Ags, including tumor Ags. In this study, we investigate the influence of peptide-MHC (pMHC) stability on recruitment of tumor Ag-specific CD8(+) T cells through cross-priming. Among the four known H-2(b)-restricted CD8(+) T cell determinants within SV40 large tumor Ag (TAg), the site V determinant ((489)QGINNLDNL(497)) forms relatively low-stability pMHC and is characteristically immunorecessive. Absence of detectable site V-specific CD8(+) T cells following immunization with wild-type TAg is due in part to inefficient cross-priming. We mutated nonanchor residues within the TAg site V determinant that increased pMHC stability but preserved recognition by both TCR-transgenic and polyclonal endogenous T cells. Using a novel approach to quantify the fraction of naive T cells triggered through cross-priming in vivo, we show that immunization with TAg variants expressing higher-stability determinants increased the fraction of site V-specific T cells cross-primed and effectively overcame the immunorecessive phenotype. In addition, using MHC class I tetramer-based enrichment, we demonstrate for the first time, to our knowledge, that endogenous site V-specific T cells are primed following wild-type TAg immunization despite their low initial frequency, but that the magnitude of T cell accumulation is enhanced following immunization with a site V variant TAg. Our results demonstrate that site V APLs cross-prime a higher fraction of available T cells, providing a potential mechanism for high-stability APLs to enhance immunogenicity and accumulation of T cells specific for the native determinant.
Collapse
Affiliation(s)
- Alan M Watson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
9
|
Wilson JJ, Pack CD, Lin E, Frost EL, Albrecht JA, Hadley A, Hofstetter AR, Tevethia SS, Schell TD, Lukacher AE. CD8 T cells recruited early in mouse polyomavirus infection undergo exhaustion. THE JOURNAL OF IMMUNOLOGY 2012; 188:4340-8. [PMID: 22447978 DOI: 10.4049/jimmunol.1103727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Repetitive Ag encounter, coupled with dynamic changes in Ag density and inflammation, imparts phenotypic and functional heterogeneity to memory virus-specific CD8 T cells in persistently infected hosts. For herpesvirus infections, which cycle between latency and reactivation, recent studies demonstrate that virus-specific T cell memory is predominantly derived from naive precursors recruited during acute infection. Whether functional memory T cells to viruses that persist in a nonlatent, low-level infectious state (smoldering infection) originate from acute infection-recruited naive T cells is not known. Using mouse polyomavirus (MPyV) infection, we previously showed that virus-specific CD8 T cells in persistently infected mice are stably maintained and functionally competent; however, a sizeable fraction of these memory T cells are short-lived. Further, we found that naive anti-MPyV CD8 T cells are primed de novo during persistent infection and contribute to maintenance of the virus-specific CD8 T cell population and its phenotypic heterogeneity. Using a new MPyV-specific TCR-transgenic system, we now demonstrate that virus-specific CD8 T cells recruited during persistent infection possess multicytokine effector function, have strong replication potential, express a phenotype profile indicative of authentic memory capability, and are stably maintained. In contrast, CD8 T cells recruited early in MPyV infection express phenotypic and functional attributes of clonal exhaustion, including attrition from the memory pool. These findings indicate that naive virus-specific CD8 T cells recruited during persistent infection contribute to preservation of functional memory against a smoldering viral infection.
Collapse
Affiliation(s)
- Jarad J Wilson
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Galea I, Stasakova J, Dunscombe MS, Ottensmeier CH, Elliott T, Thirdborough SM. CD8+ T-cell cross-competition is governed by peptide-MHC class I stability. Eur J Immunol 2011; 42:256-63. [PMID: 22002320 PMCID: PMC3744744 DOI: 10.1002/eji.201142010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 09/08/2011] [Accepted: 10/11/2011] [Indexed: 01/11/2023]
Abstract
A major contributing factor to the final magnitude and breadth of CD8+ T-cell responses to complex antigens is immunodomination, where CD8+ T cells recognizing their cognate ligand inhibit the proliferation of other CD8+ T cells engaged with the same APC. In this study, we examined how the half-life of cell surface peptide–MHC class I complexes influences this phenomenon. We found that primary CD8+ T-cell responses to DNA vaccines in mice are shaped by competition among responding CD8+ T cells for nonspecific stimuli early after activation and prior to cell division. The susceptibility of CD8+ T cells to ‘domination’ was a direct correlate of higher kinetic stability of the competing CD8+ T-cell cognate ligand. When high affinity competitive CD8+ T cells were deleted by self-antigen expression, competition was abrogated. These findings show, for the first time to our knowledge, the existence of regulatory mechanisms that direct the responding CD8+ T-cell repertoire toward epitopes with high-stability interactions with MHC class I molecules. They also provide an insight into factors that facilitate CD8+ T-cell coexistence, with important implications for vaccine design and delivery.
Collapse
Affiliation(s)
- Ian Galea
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | |
Collapse
|
11
|
Campbell C, Zhang R, Haley JS, Liu X, Loughran T, Schell TD, Albert R, Thakar J. Why Do CD8+ T Cells become Indifferent to Tumors: A Dynamic Modeling Approach. Front Physiol 2011; 2:32. [PMID: 21808621 PMCID: PMC3135868 DOI: 10.3389/fphys.2011.00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/18/2011] [Indexed: 01/14/2023] Open
Abstract
CD8+ T cells have the potential to influence the outcome of cancer pathogenesis, including complete tumor eradication or selection of malignant tumor escape variants. The Simian virus 40 large T-antigen (Tag) oncoprotein promotes tumor formation in Tag-transgenic mice and also provides multiple target determinants (sites) for responding CD8+ T cells in C57BL/6 (H-2(b)) mice. To understand the in vivo quantitative dynamics of CD8+ T cells after encountering Tag, we constructed a dynamic model from in vivo-generated data to simulate the interactions between Tag-expressing cells and CD8+ T cells in distinct scenarios including immunization of wild-type C57BL/6 mice and of Tag-transgenic mice that develop various tumors. In these scenarios the model successfully reproduces the dynamics of both the Tag-expressing cells and antigen-specific CD8+ T cell responses. The model predicts that the tolerance of the site-specific T cells is dependent on their apoptosis rates and that the net growth of CD8+ T cells is altered in transgenic mice. We experimentally validate both predictions. Our results indicate that site-specific CD8+ T cells have tissue-specific apoptosis rates affecting their tolerance to the tumor antigen. Moreover, the model highlights differences in apoptosis rates that contribute to compromised CD8+ T cell responses and tumor progression, knowledge of which is essential for development of cancer immunotherapy.
Collapse
Affiliation(s)
- Colin Campbell
- Department of Physics, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Ranran Zhang
- Duke-NUS Graduate Medical School SingaporeSingapore
| | - Jeremy S. Haley
- Department of Microbiology and Immunology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Xin Liu
- Penn State Hershey Cancer Institute, The Pennsylvania State University, College of MedicineHershey, PA, USA
| | - Thomas Loughran
- Penn State Hershey Cancer Institute, The Pennsylvania State University, College of MedicineHershey, PA, USA
| | - Todd D. Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of MedicineHershey, PA, USA
| | - Réka Albert
- Department of Physics, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Juilee Thakar
- Department of Physics, The Pennsylvania State UniversityUniversity Park, PA, USA
| |
Collapse
|
12
|
Del Val M, Iborra S, Ramos M, Lázaro S. Generation of MHC class I ligands in the secretory and vesicular pathways. Cell Mol Life Sci 2011; 68:1543-52. [PMID: 21387141 PMCID: PMC11114776 DOI: 10.1007/s00018-011-0661-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 12/13/2022]
Abstract
CD8(+) T lymphocytes screen the surface of all cells in the body to detect pathogen infection or oncogenic transformation. They recognize peptides derived from cellular proteins displayed at the plasma membrane by major histocompatibility complex (MHC) class I molecules. Peptides are mostly by-products of cytosolic proteolytic enzymes. Peptidic ligands of MHC class I molecules are also generated in the secretory and vesicular pathways. Features of protein substrates, of proteases and of available MHC class I molecules for loading peptides in these compartments shape a singular collection of ligands that also contain different, longer, and lower affinity peptides than ligands produced in the cytosol. Especially in individuals who lack the transporters associated with antigen processing, TAP, and in infected and tumor cells where TAP is blocked, which thus have no supply of peptides derived from the cytosol, MHC class I ligands generated in the secretory and vesicular pathways contribute to shaping the CD8(+) T lymphocyte response.
Collapse
Affiliation(s)
- Margarita Del Val
- Unidad de Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Campus Cantoblanco, 28049 Madrid, Spain,
| | | | | | | |
Collapse
|
13
|
Wang X, Zhou K, Huang L, Yan Y. Induction of anti-tumor immunity by dendritic cells pulsed with an endoplasmic reticulum retrieval signal modifies heparanase epitope in mice. Cytotherapy 2010; 12:735-42. [DOI: 10.3109/14653241003615156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Yewdell JW. Designing CD8+ T cell vaccines: it's not rocket science (yet). Curr Opin Immunol 2010; 22:402-10. [PMID: 20447814 PMCID: PMC2908899 DOI: 10.1016/j.coi.2010.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 04/12/2010] [Indexed: 01/09/2023]
Abstract
CD8+ T cells play important roles in clearing viral infections and eradicating tumors. Designing vaccines that elicit effective CD8+ T cell responses requires a thorough knowledge of the pathways of antigen presentation in vivo. Here, I review recent progress in understanding the activation of naïve CD8+ T cells in vivo, with particular emphasis on cross-priming, the presentation of protein antigens acquired by dendritic cells from their environment. With the rapid advances in this area of research, the dawn of rational vaccine design is at hand.
Collapse
|
15
|
Brosi H, Reiser M, Rajasalu T, Spyrantis A, Oswald F, Boehm BO, Schirmbeck R. Processing in the endoplasmic reticulum generates an epitope on the insulin A chain that stimulates diabetogenic CD8 T cell responses. THE JOURNAL OF IMMUNOLOGY 2009; 183:7187-95. [PMID: 19890053 DOI: 10.4049/jimmunol.0901573] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RIP-B7.1 mice express the costimulator molecule B7.1 (CD80) on pancreatic beta cells and are a well-established model for studying de novo induction of diabetogenic CD8 T cells. Immunization of RIP-B7.1 mice with preproinsulin (ppins)-encoding plasmid DNA efficiently induces experimental autoimmune diabetes (EAD). EAD is associated with an influx of CD8 T cells specific for the K(b)/A(12-21) epitope into the pancreatic islets and the subsequent destruction of beta cells. In this study, we used this model to investigate how ppins-derived Ags are expressed and processed to prime diabetogenic, K(b)/A(12-21)-specific CD8 T cells. Targeting the K(b)/A(12-21) epitope, the insulin A chain, or the ppins to the endoplasmic reticulum (ER) (but not to the cytosol and/or nucleus) efficiently elicited K(b)/A(12-21)-specific CD8 T cell responses. The K(b)/A(12-21) epitope represents the COOH terminus of the ppins molecule and, hence, did not require COOH-terminal processing before binding its restriction element in the ER. However, K(b)/A(12-21)-specific CD8 T cells were also induced by COOH-terminally extended ppins-specific polypeptides expressed in the ER, indicating that the epitope position at the COOH terminus is less important for its diabetogenicity than is targeting the Ag to the ER. The K(b)/A(12-21) epitope had a low avidity for K(b) molecules. When epitopes of unrelated Ags were coprimed at the same site of Ag delivery, "strong" K(b)-restricted (but not D(b)-restricted) CD8 T cell responses led to the suppression of K(b)/A(12-21)-specific CD8 T cell priming and reduced EAD. Thus, direct expression and processing of the "weak" K(b)/A(12-21) epitope in the ER favor priming of autoreactive CD8 T cells.
Collapse
Affiliation(s)
- Helen Brosi
- Department of Internal Medicine I, University Hospital of Ulm, Ulm D-89081, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17:1814-21. [PMID: 19603003 DOI: 10.1038/mt.2009.154] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Vesicular stomatitis virus (VSV) has proven to be an effective vaccine vector for immunization against viral infection, but its potential to induce an immune response to a self-tumor antigen has not been investigated. We constructed a recombinant VSV expressing human dopachrome tautomerase (hDCT) and evaluated its immunogenicity in a murine melanoma model. Intranasal delivery of VSV-hDCT activated both CD4(+) and CD8(+) DCT-specific T-cell responses. The magnitude of these responses could be significantly increased by booster immunization with recombinant adenovirus (Ad)-hDCT, which led to enhanced efficacy against B16-F10 melanoma in both prophylactic and therapeutic settings. Notably, the interval of VSV/Ad heterologous vaccination could be shortened to as few as 4 days, making it a potential regimen to rapidly expand antigen-specific effector cells. Furthermore, VSV-hDCT could increase DCT-specific T-cell responses primed by Ad-hDCT, suggesting VSV is efficient for both priming and boosting of the immune response against a self-tumor antigen.
Collapse
|
17
|
Sympathetic nervous system control of anti-influenza CD8+ T cell responses. Proc Natl Acad Sci U S A 2009; 106:5300-5. [PMID: 19286971 DOI: 10.1073/pnas.0808851106] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Despite the longstanding appreciation of communication between the nervous and the immune systems, the nature and significance of these interactions to immunity remain enigmatic. Here, we show that 6-hydroxydopamine-mediated ablation of the mouse peripheral sympathetic nervous system increases primary CD8(+) T cell responses to viral and cellular antigens presented by direct priming or cross-priming. The sympathetic nervous system also suppresses antiviral CD4(+) T cell responses, but this is not required for suppressing CD8(+) T cell responses. Adoptive transfer experiments indicate that enhanced CD8(+) responses do not result from permanent alterations in CD8(+) T cell function in sympathectomized mice. Rather, additional findings suggest that the sympathetic nervous system tempers the capacity of antigen-presenting cells to activate naïve CD8(+) T cells. We also show that antiviral CD8(+) T cell responses are enhanced by administration of a beta(2) (but not beta(1) or alpha) adrenergic antagonist. These findings demonstrate a critical role for the sympathetic nervous system in limiting CD8(+) T cell responses and indicate that CD8(+) T cell responses may be altered in patients using beta-blockers, one of the most widely prescribed classes of drugs.
Collapse
|
18
|
Kim SG, Park MY, Kim CH, Sohn HJ, Kim HS, Park JS, Kim HJ, Oh ST, Kim TG. Modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination. Vaccine 2008; 26:6433-40. [PMID: 18812201 DOI: 10.1016/j.vaccine.2008.08.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 08/20/2008] [Accepted: 08/25/2008] [Indexed: 12/11/2022]
Abstract
Carcinoembryonic antigen (CEA) is expressed on human colon carcinomas, is well characterized, and continues to be a promising target for cancer immunotherapy in humans. To enhance the immunogenecity of CEA, we developed a fusion gene (CRT-TAT-DeltaCEA) of the TAT protein transduction domain (PTD) and calreticulin (CRT) with human CEA devoid of its signal sequences (DeltaCEA) and evaluated anti-tumor immunity using RNA-pulsed dendritic cell (DC) vaccination. Mice vaccinated with DC by electroporation with mRNA encoding TAT-DeltaCEA (DC/TAT-DeltaCEA) and CRT-DeltaCEA (DC/CRT-DeltaCEA) had enhanced induction of tumor-specific cytotoxic T lymphocyte (CTL) and increased numbers of IFN-gamma-secreting T cells by ELISPOT, as compared to mice vaccinated with DC/DeltaCEA. DC/CRT-DeltaCEA and DC/TAT-DeltaCEA vaccines preferentially stimulated CD4+ and CD8+ T cells, respectively. The DC vaccine by electroporation with mRNA encoding CRT-TAT-DeltaCEA (DC/CRT-TAT-DeltaCEA) enhanced both CD4+ and CD8+ T cells. DC/CRT-TAT-DeltaCEA had the additional effects of CRT and TAT PTD and enhanced the anti-tumor effect against CEA-expressing tumors compared to DC/CRT-DeltaCEA or DC/TAT-DeltaCEA. These findings suggest that modification of CEA with both CRT and TAT PTD induces potent anti-tumor immune responses in RNA-pulsed DC vaccination and may be a useful approach for DC-based immunotherapy.
Collapse
Affiliation(s)
- Sung-Guh Kim
- Department of Microbiology and Immunology, Kang-Nam St. Mary's Hospital, The Catholic University of Korea, 505 Banpo-Dong, Seocho-Gu, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tagaram HRS, Watson AM, Lemonnier FA, Staveley-O’Carroll K, Tevethia SS, Schell TD. An SV40 VP1-derived epitope recognized by CD8+ T cells is naturally processed and presented by HLA-A*0201 and cross-reactive with human polyomavirus determinants. Virology 2008; 376:183-90. [PMID: 18402997 PMCID: PMC2464359 DOI: 10.1016/j.virol.2008.02.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 01/29/2008] [Accepted: 02/29/2008] [Indexed: 11/26/2022]
Abstract
The CD8+ T cell responses directed toward the VP1 antigens of human polyomaviruses JC and BK recently were shown to be cross-reactive. Two HLA-A0201-restricted determinants from each virus have been defined and include JCp100-108 (ILMWEAVTL) and BKp108-116 (LLMWEAVTV) as well as JCp36-44 (SITEVECFL) and BKp44-52 (AITEVECFL). We asked whether VP1 from the related SV40 contains similar HLA-A0201-restricted determinants. In this study, we demonstrate that CD8+ T cells specific for SV40 VP1 p110-118 (ILMWEAVTV), but not p46-54 (SFTEVECFL), can be induced in HLA-A0201-transgenic mice and that these CD8+ T cells cross-react with the corresponding determinants from JC and BK virus. The SV40 p110 determinant was found to be processed and presented in SV40-infected cells. These results indicate that the JCp36/BKp44 determinants are distinctive for the human polyomaviruses while the JCp100/BKp108/SVp110 determinants are shared by all three viruses, providing a target for CD8+ T cell cross-reactivity.
Collapse
Affiliation(s)
| | - Alan M. Watson
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | | | - Kevin Staveley-O’Carroll
- Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Satvir S. Tevethia
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Todd D. Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
20
|
Purcell AW, Elliott T. Molecular machinations of the MHC-I peptide loading complex. Curr Opin Immunol 2008; 20:75-81. [PMID: 18243674 DOI: 10.1016/j.coi.2007.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 12/09/2007] [Indexed: 10/22/2022]
Abstract
The acquisition of an optimal peptide ligand by MHC class I molecules is crucial for the generation of immunity to viruses and tumors. This process is orchestrated by a molecular machine known as the peptide loading complex (PLC) that consists of specialized and general ER-resident molecules. These proteins collaborate to ensure the loading of an optimal peptide ligand into the antigen binding cleft of class I molecules. The surprising diversity of peptides bound to MHC class I molecules and recapitulation of class I assembly in vitro have provided new insights into the molecular machinations of peptide loading. Coupled with the extraordinary polymorphism of class I molecules and their differential dependence on various components of the PLC for cell surface expression, a picture of peptide loading at the molecular level has recently emerged and will be discussed herein.
Collapse
Affiliation(s)
- Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Bio21 Institute for Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria 3010, Australia
| | | |
Collapse
|
21
|
Mylin LM, Schell TD, Epler M, Kusuma C, Assis D, Matsko C, Smith A, Allebach A, Tevethia SS. Diversity of escape variant mutations in Simian virus 40 large tumor antigen (SV40 Tag) epitopes selected by cytotoxic T lymphocyte (CTL) clones. Virology 2007; 364:155-68. [PMID: 17368499 PMCID: PMC3866617 DOI: 10.1016/j.virol.2007.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/23/2007] [Accepted: 02/11/2007] [Indexed: 01/22/2023]
Abstract
To better understand the relationship between epitope variation and tumor escape from immune surveillance, SV40 T antigen-transformed B6/K-0 cells were subjected to selection with individual CTL clones specific for the SV40 T antigen H-2D(b)-restricted epitopes I or V. CTL-resistant populations were isolated from a majority of the selection cultures and substituted epitope sequences were identified within most of the resistant populations. Tag sequences deleted of all or portions of the selection-targeted epitope were identified, but in lower numbers compared to epitope sequences bearing single residue substitutions. Relatively few flanking residue substitutions were identified, and only in epitope I-targeted selections. The diversity (numbers and epitope residue locations) of substituted epitope residue positions varied between selections. These findings suggest that the scope of spontaneously occurring mutations that could allow for escape from individual CD8+ T cell clones is large.
Collapse
Affiliation(s)
- Lawrence M. Mylin
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Todd D. Schell
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Melanie Epler
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| | - Carolyn Kusuma
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - David Assis
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Chelsea Matsko
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Alexandra Smith
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - April Allebach
- Department of Biological Sciences, Box 3030, Messiah College, Grantham, PA 17027
| | - Satvir S. Tevethia
- Department of Microbiology and Immunology H107, The Pennsylvania State University College of Medicine, Hershey, PA 17033
| |
Collapse
|
22
|
Blankenstein T. Do autochthonous tumors interfere with effector T cell responses? Semin Cancer Biol 2007; 17:267-74. [PMID: 17659881 DOI: 10.1016/j.semcancer.2007.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/13/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
The assumption that autochthonous tumors interfere with the effector T cell (T(E)) response implies that they first induce functional T cells. However, if T(E) are generated, they usually remain functional, persist life-long as memory cells and prevent tumors. This holds true for some virus-induced tumors and is associated with evolutionary pressure. In contrast, models that allow monitoring of tumor antigen-specific T cells suggest that spontaneous autochthonous tumors either sneak through or induce T(E) too late when the tumor has developed resistance to T(E) or induce tolerance. This can be explained by the absence of evolutionary pressure.
Collapse
Affiliation(s)
- Thomas Blankenstein
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| |
Collapse
|
23
|
Yewdell JW. Confronting complexity: real-world immunodominance in antiviral CD8+ T cell responses. Immunity 2006; 25:533-43. [PMID: 17046682 DOI: 10.1016/j.immuni.2006.09.005] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Antiviral CD8(+) T cells respond to only a minute fraction of the potential peptide determinants encoded by viral genomes. Immunogenic determinants can be ordered into highly reproducible hierarchies based on the magnitude of cognate CD8(+) T cell responses. Until recently, this phenomenon, termed immunodominance, was largely defined and characterized in model systems utilizing a few strains of inbred mice infected with a handful of viruses with limited coding capacity. Here, I review work that has extended immunodominance studies to viruses of greater complexity and to the real world of human antiviral immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland 20892, USA.
| |
Collapse
|
24
|
Otahal P, Schell TD, Hutchinson SC, Knowles BB, Tevethia SS. Early Immunization Induces Persistent Tumor-Infiltrating CD8+T Cells against an Immunodominant Epitope and Promotes Lifelong Control of Pancreatic Tumor Progression in SV40 Tumor Antigen Transgenic Mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:3089-99. [PMID: 16920946 DOI: 10.4049/jimmunol.177.5.3089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to recruit the host's CD8+ T lymphocytes (T(CD8)) against cancer is often limited by the development of peripheral tolerance toward the dominant tumor-associated Ags. Because multiple epitopes derived from a given tumor Ag (T Ag) can be targeted by T(CD8), vaccine approaches should be directed toward those T(CD8) that are more likely to survive under conditions of persistent Ag expression. In this study, we investigated the effect of peripheral tolerance on the endogenous T(CD8) response toward two epitopes, designated epitopes I and IV, from the SV40 large T Ag. Using rat insulin promoter (RIP) 1-Tag4 transgenic mice that express T Ag from the RIP and develop pancreatic insulinomas, we demonstrate that epitope IV- but not epitope I-specific T(CD8) are maintained long term in tumor-bearing RIP1-Tag4 mice. Even large numbers of TCR-transgenic T cells specific for epitope I were rapidly eliminated from RIP1-Tag4 mice after adoptive transfer and recognition of the endogenous T Ag. Importantly, immunization of RIP1-Tag4 mice at 5 wk of age against epitope IV resulted in complete protection from tumor progression over a 2-year period despite continued expression of T Ag in the pancreas. This extensive control of tumor progression was associated with the persistence of functional epitope IV-specific T(CD8) within the pancreas for the lifetime of the mice without the development of diabetes. This study indicates that an equilibrium is reached in which immune surveillance for spontaneous cancer can be achieved for the lifespan of the host while maintaining normal organ function.
Collapse
Affiliation(s)
- Pavel Otahal
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
25
|
Ryan CM, Schell TD. Accumulation of CD8+T Cells in Advanced-Stage Tumors and Delay of Disease Progression following Secondary Immunization against an Immunorecessive Epitope. THE JOURNAL OF IMMUNOLOGY 2006; 177:255-67. [PMID: 16785521 DOI: 10.4049/jimmunol.177.1.255] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-reactive T cells that survive the process of positive and negative selection during thymocyte development represent potential effector cells against tumors that express these same self-Ags. We have previously shown that CD8+ T lymphocytes (T(CD8)) specific for an immunorecessive epitope, designated epitope V, from the SV40 large T Ag (Tag) escape thymic deletion in line SV11 Tag-transgenic mice. In contrast, these mice are tolerant to the three most dominant Tag epitopes. The majority of the residual epitope V-specific T(CD8) have a low avidity for the target epitope, but a prime/boost regimen can expand higher avidity clones in vivo. Whether higher avidity T(CD8) targeting this epitope are affected by Tag-expressing tumors in the periphery or can be recruited for control of tumor progression remains unknown. In the current study, we determined the fate of naive TCR-transgenic T(CD8) specific for Tag epitope V (TCR-V cells) following transfer into SV11 mice bearing advanced-stage choroid plexus tumors. The results indicate that TCR-V cells are rapidly triggered by the endogenous Tag and acquire effector function, but fail to accumulate within the tumors. Primary immunization enhanced TCR-V cell frequency in the periphery and promoted entry into the brain, but a subsequent booster immunization caused a dramatic accumulation of TCR-V T cells within the tumors and inhibited tumor progression. These results indicate that epitope V provides a target for CD8+ T cells against spontaneous tumors in vivo, and suggests that epitopes with similar properties can be harnessed for tumor immunotherapy.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Polyomavirus Transforming/administration & dosage
- Antigens, Polyomavirus Transforming/biosynthesis
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/immunology
- Brain Neoplasms/immunology
- Brain Neoplasms/mortality
- Brain Neoplasms/pathology
- Brain Neoplasms/prevention & control
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- CD8-Positive T-Lymphocytes/transplantation
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Cell Movement/genetics
- Cell Movement/immunology
- Choroid Plexus/immunology
- Choroid Plexus/pathology
- Cytotoxicity Tests, Immunologic
- Disease Progression
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Genes, Recessive/immunology
- Immunization, Secondary/methods
- Lymphocyte Activation/genetics
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasm Staging
- Polyomavirus Infections/immunology
- Polyomavirus Infections/mortality
- Polyomavirus Infections/pathology
- Polyomavirus Infections/prevention & control
- Protein Structure, Tertiary/genetics
- Receptors, Antigen, T-Cell/genetics
- Survival Analysis
- Tumor Virus Infections/immunology
- Tumor Virus Infections/mortality
- Tumor Virus Infections/pathology
- Tumor Virus Infections/prevention & control
Collapse
Affiliation(s)
- Christina M Ryan
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|
26
|
Otahal P, Hutchinson SC, Mylin LM, Tevethia MJ, Tevethia SS, Schell TD. Inefficient cross-presentation limits the CD8+ T cell response to a subdominant tumor antigen epitope. THE JOURNAL OF IMMUNOLOGY 2005; 175:700-12. [PMID: 16002665 DOI: 10.4049/jimmunol.175.2.700] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD8(+) T lymphocytes (T(CD8)) responding to subdominant epitopes provide alternate targets for the immunotherapy of cancer, particularly when self-tolerance limits the response to immunodominant epitopes. However, the mechanisms that promote T(CD8) subdominance to tumor Ags remain obscure. We investigated the basis for the lack of priming against a subdominant tumor epitope following immunization of C57BL/6 (B6) mice with SV40 large tumor Ag (T Ag)-transformed cells. Immunization of B6 mice with wild-type T Ag-transformed cells primes T(CD8) specific for three immunodominant T Ag epitopes (epitopes I, II/III, and IV) but fails to induce T(CD8) specific for the subdominant T Ag epitope V. Using adoptively transferred T(CD8) from epitope V-specific TCR transgenic mice and immunization with T Ag-transformed cells, we demonstrate that the subdominant epitope V is weakly cross-presented relative to immunodominant epitopes derived from the same protein Ag. Priming of naive epitope V-specific TCR transgenic T(CD8) in B6 mice required cross-presentation by host APC. However, robust expansion of these T(CD8) required additional direct presentation of the subdominant epitope by T Ag-transformed cells and was only significant following immunization with T Ag-expressing cells lacking the immunodominant epitopes. These results indicate that limited cross-presentation coupled with competition by immunodominant epitope-specific T(CD8) contributes to the subdominant nature of a tumor-specific epitope. This finding has implications for vaccination strategies targeting T(CD8) responses to cancer.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/genetics
- Adoptive Transfer
- Animals
- Antigens, Viral, Tumor/administration & dosage
- Antigens, Viral, Tumor/biosynthesis
- Antigens, Viral, Tumor/genetics
- Antigens, Viral, Tumor/immunology
- Antigens, Viral, Tumor/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cell Line, Transformed
- Cell Proliferation
- Clone Cells
- Cross-Priming/immunology
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/administration & dosage
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Immunization, Secondary
- Immunodominant Epitopes/administration & dosage
- Immunodominant Epitopes/genetics
- Immunodominant Epitopes/immunology
- Immunodominant Epitopes/metabolism
- Immunologic Memory/immunology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Peptide Fragments/immunology
- Resting Phase, Cell Cycle/genetics
- Resting Phase, Cell Cycle/immunology
- Simian virus 40/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- Pavel Otahal
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bolesta E, Gzyl J, Wierzbicki A, Kmieciak D, Kowalczyk A, Kaneko Y, Srinivasan A, Kozbor D. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens. Virology 2005; 332:467-79. [PMID: 15680412 DOI: 10.1016/j.virol.2004.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 09/02/2004] [Indexed: 11/19/2022]
Abstract
We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K(b) transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8+ T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolDeltaFsDeltaPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8+ T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolDeltaFsDeltaPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses.
Collapse
Affiliation(s)
- Elizabeth Bolesta
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Epitope based minigenes (epigenes) have been under investigation for several years as an experimental approach to vaccination against infectious diseases. The essence of this technology is that short DNA sequences, encoding well-defined cytotoxic T-lymphocyte- (CTL), antibody- (Ab) or helper T-lymphocyte- (HTL) specific epitopes are used as immunogens. Compared to other vaccine strategies, several potential advantages are apparent. These include the increased 'safety' of an immunisation strategy that mimics antigen processing and presentation during natural infections, without actually causing disease, and the 'flexibility' in epitope selection, which allows induction and optimisation of the desired type of immunity. In addition, the 'high immunogenicity' of epitope based constructs relative to constructs based on whole antigenic proteins is an important factor. This paper presents and discusses recent developments in the use of minigenes or multiple epitope genes that allow vaccines to be designed. The preclinical studies available to date clearly demonstrate the great potential of this vaccine approach, in terms of both prophylaxis and therapy.
Collapse
Affiliation(s)
- L L An
- Ixsys, Inc., 3520 Dunhill Street, San Diego, CA, 92121, USA.
| | | |
Collapse
|
29
|
|
30
|
Gallo P, Dharmapuri S, Nuzzo M, Maldini D, Iezzi M, Cavallo F, Musiani P, Forni G, Monaci P. Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int J Cancer 2005; 113:67-77. [PMID: 15386429 DOI: 10.1002/ijc.20536] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The protective efficacy of xenogeneic vaccination with DNA encoding the HER2 oncogene was evaluated in BALB/c mice transgenic for the transforming form of the neu oncogene, which spontaneously develops carcinomas in all mammary glands. Intramuscular injection of either plasmid DNA followed by electrical stimulation (pVIJ-HER2 with ES) or an adenoviral vector (Ad5-HER2), both expressing the HER2 oncogene, was tested. Immunization using pVIJ-HER2 with ES elicited a cell-mediated response that was much lower than that elicited by the immunization with Ad5-HER2, as measured by the frequency of IFN-gamma-secreting spleen cells. The dominant T-cell epitope of the HER2 protein product (p185) in the BALB/c (H-2(d)) genetic background was identified. While the T-cell response elicited was only partially crossreactive with the corresponding rat epitopes because of sequence variations (89% similarity), a cytotoxic T-lymphocyte activity against the rat immunodominant epitope was also evident. The Ad5-HER2 vaccination induced also antibodies against p185, which crossreacted with the rat protein homolog. Both T- and B-cell responses slowly declined with time. Vaccination with Ad5-HER2 at 6 and 9 weeks of age delayed incidence and reduced multiplicity of tumors in neu transgenic mice.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/immunology
- Animals
- Antibodies, Heterophile/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Enzyme-Linked Immunosorbent Assay
- Epitopes, B-Lymphocyte
- Epitopes, T-Lymphocyte
- Female
- Flow Cytometry
- Genes, erbB-2/immunology
- Genetic Vectors/genetics
- Genetic Vectors/immunology
- Immunodominant Epitopes
- Interferon-gamma
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred Strains
- Mice, Transgenic
- Plasmids/genetics
- Plasmids/immunology
- Rats
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Pasquale Gallo
- Molecular and Cell Biology Department, Istituto di Ricerche di Biologia Melecolare P. Angeletti, Pomezia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wang L, Wu YZ, Chen A, Zhang JB, Yang Z, Niu W, Geng M, Ni B, Zhou W, Zou LY, Jiang M. MHC class I-associated presentation of exogenous peptides is not only enhanced but also prolonged by linking with a C-terminal Lys-Asp-Glu-Leu endoplasmic reticulum retrieval signal. Eur J Immunol 2004; 34:3582-94. [PMID: 15495159 DOI: 10.1002/eji.200425215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vaccination with antigenic peptide-pulsed antigen-presenting cells (APC) represents an attractive approach for therapy for cancer and diseases caused by intracellular infections. It has been suggested that sufficient stable MHC/peptide complexes on the surface of APC might play an important role in the generation of antitumor and antiviral immunity in vivo. In this study, we observed that exogenous peptides that were artificially fused with an endoplasmic reticulum (ER) retrieval signal, a C-terminal Lys-Asp-Glu-Leu sequence, could be efficiently presented by intracellular MHC class I molecules in a TAP- and proteasome-independent, but brefeldin A-sensitive manner. The APC retained the capacity to display surface MHC/peptide complexes for a prolonged period. In addition, our results show that vaccination with DC bearing our fusion peptides induced greatly enhanced specific CTL response, and resulted in significant inhibition of tumor growth. Thus, the ER retrieval signal modification can be regarded as a novel method for targeting exogenous peptides into the intracellular MHC class I presentation pathway, and may improve the clinical utility of vaccines based on synthetic peptide pulsed DC.
Collapse
Affiliation(s)
- Li Wang
- Institute of Immunology, PLA, Third Military Medical University, District Shangpingba, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wild J, Bojak A, Deml L, Wagner R. Influence of polypeptide size and intracellular sorting on the induction of epitope-specific CTL responses by DNA vaccines in a mouse model. Vaccine 2004; 22:1732-43. [PMID: 15068857 DOI: 10.1016/j.vaccine.2004.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have analysed the influence of size, intracellular localisation, and sorting of various human immunodeficiency virus type 1 (HIV-1)-derived Gag and Env polypeptides containing well defined H2(d)-restricted cytotoxic T lymphocyte (CTL) epitopes on the induction of a humoral and cellular immune response after DNA vaccination. Thus, expression vectors were generated based on RNA- and codon-optimised genes encoding (i). budding competent full-length Gag, (ii). a myristylation defect mutant GagMyr(-), (iii). the isolated p24 capsid moiety of Gag as well as variants of these proteins, which were C-terminally fused HIV gp120-derived V3 epitope (R10I), respectively. These constructs were compared to different minitopes each encoding one of the H2(d)-restricted Gag epitopes A9I and E10F or the V3 epitope R10I that were directly linked to the C-terminus of an Ad2-E3 protein-derived ER signal peptide. Immunological evaluation of these constructs in BALB/c mice revealed that both, the budding competent as well as the intracellular Gag proteins were-irrespective of their molecular weights-equally efficient in the priming of Gag-specific humoral and cellular immune responses. In addition, the capacity of these constructs to stimulate Gag-specific humoral as well as H2-K(d) and H2-L(d) restricted cellular immune responses was not influenced by C-terminal fusion of the immunodominant H2-D(d) restricted V3 epitope. Chimeric GagV3 polyproteins encoding all three major CTL epitopes within a continuous polyprotein were more efficient to stimulate epitope-specific cellular immune responses than the selected minitopes. In addition, the minitopes failed to induce epitope-specific antibody responses. These results clearly show the advantages of complex polypeptides over minitopes regarding the induction of strong humoral and cellular immune responses.
Collapse
Affiliation(s)
- Jens Wild
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | | | | | | |
Collapse
|
33
|
Yoshimura Y, Yadav R, Christianson GJ, Ajayi WU, Roopenian DC, Joyce S. Duration of Alloantigen Presentation and Avidity of T Cell Antigen Recognition Correlate with Immunodominance of CTL Response to Minor Histocompatibility Antigens. THE JOURNAL OF IMMUNOLOGY 2004; 172:6666-74. [PMID: 15153482 DOI: 10.4049/jimmunol.172.11.6666] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD8 T lymphocytes (CTL) responsive to immunodominant minor histocompatibility (minor H) Ags are thought to play a disproportionate role in allograft rejection in MHC-identical solid and bone marrow transplant settings. Although many studies have addressed the mechanisms underlying immunodominance in models of infectious diseases, cancer immunotherapy, and allograft immunity, key issues regarding the molecular basis of immunodominance remain poorly understood. In this study, we exploit the minor H Ag system to understand the relationship of the various biochemical parameters of Ag presentation and recognition to immunodominance. We show that the duration of individual minor H Ag presentation and the avidity of T cell Ag recognition influence the magnitude and, hence, the immunodominance of the CTL response to minor H Ags. These properties of CTL Ag presentation and recognition that contribute to immunodominance have implications not only for tissue transplantation, but also for autoimmunity and tumor vaccine design.
Collapse
Affiliation(s)
- Yoshitaka Yoshimura
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Schell TD. In vivo expansion of the residual tumor antigen-specific CD8+ T lymphocytes that survive negative selection in simian virus 40 T-antigen-transgenic mice. J Virol 2004; 78:1751-62. [PMID: 14747540 PMCID: PMC369430 DOI: 10.1128/jvi.78.4.1751-1762.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice that express the viral oncoprotein simian virus 40 (SV40) large T antigen (T-Ag) as a transgene provide useful models for the assessment of the state of the host immune response in the face of spontaneous tumor progression. Line SV11 (H2(b)) mice develop rapidly progressing choroid plexus tumors due to expression of full-length T-Ag from the SV40 promoter. In addition, T-Ag expression in the thymus of SV11 mice results in the deletion of CD8(+) T cells specific for the three H2(b)-restricted immunodominant epitopes of T-Ag. Whether CD8(+) T cells specific for the immunorecessive H2-D(b)-restricted epitope V of T-Ag survive negative selection in SV11 mice has not been determined. Immunization of SV11 mice with rVV-ES-V, a recombinant vaccinia virus expressing epitope V as a minigene, resulted in the induction of weak, but reproducible, epitope V-specific cytotoxic T-lymphocyte (CTL) responses. This weak lytic response corresponded with a decreased frequency of epitope V-specific CTL that could be recruited in SV11 mice. In addition, CTL lines derived from rVV-ES-V-immunized SV11 mice had reduced avidities compared to that seen with CTL derived from healthy mice. Despite this initial weak response, significant numbers of epitope V-specific CD8(+) T cells were detected in SV11 mice ex vivo following a priming-boosting approach and these cells demonstrated high avidity for epitope V. The results suggest that low numbers of tumor-reactive CD8(+) T cells with high avidity for epitope V survive negative selection in SV11 mice but can be expanded by specific boosting approaches in the tumor bearing host.
Collapse
Affiliation(s)
- Todd D Schell
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| |
Collapse
|
35
|
Barton LF, Runnels HA, Schell TD, Cho Y, Gibbons R, Tevethia SS, Deepe GS, Monaco JJ. Immune Defects in 28-kDa Proteasome Activator γ-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2004; 172:3948-54. [PMID: 15004203 DOI: 10.4049/jimmunol.172.6.3948] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein complexes of the 28-kDa proteasome activator (PA28) family activate the proteasome and may alter proteasome cleavage specificity. Initial investigations have demonstrated a role for the IFN-gamma-inducible PA28alpha/beta complex in Ag processing. Although the noninducible and predominantly nuclear PA28gamma complex has been implicated in affecting proteasome-dependent signaling pathways, such as control of the mitotic cell cycle, there is no previous evidence demonstrating a role for this structure in Ag processing. We therefore generated PA28gamma-deficient mice and investigated their immune function. PA28gamma(-/-) mice display a slight reduction in CD8+ T cell numbers and do not effectively clear a pulmonary fungal infection. However, T cell responses in two viral infection models appear normal in both magnitude and the hierarchy of antigenic epitopes recognized. We conclude that PA28gamma(-/-) mice, like PA28alpha(-/-)/beta(-/-) mice, are deficient in the processing of only specific Ags.
Collapse
Affiliation(s)
- Lance F Barton
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Del-Val M, López D. Multiple proteases process viral antigens for presentation by MHC class I molecules to CD8(+) T lymphocytes. Mol Immunol 2002; 39:235-47. [PMID: 12200053 DOI: 10.1016/s0161-5890(02)00104-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recognition by CD8(+) cytotoxic T lymphocytes of any intracellular viral protein requires its initial cytosolic proteolytic processing, the translocation of processed peptides to the endoplasmic reticulum via the transporters associated with antigen processing, and their binding to nascent major histocompatibility complex (MHC) class I molecules that then present the antigenic peptides at the infected cell surface. From initial assumptions that the multicatalytic and ubiquitous proteasome is the only protease capable of fully generating peptide ligands for MHC class I molecules, the last few years have seen the identification of a number of alternative proteases that contribute to endogenous antigen processing. Trimming by non-proteasomal proteases of precursor peptides produced by proteasomes is now a well-established fact. In addition, proteases that can process antigens in a fully proteasome-independent fashion have also been identified. The final level of presentation of many viral epitopes is probably the result of interplay between different proteolytic activities. This expands the number of tissues and physiological and pathological situations compatible with antigen presentation, as well as the universe of pathogen-derived sequences available for recognition by CD8(+) T lymphocytes.
Collapse
Affiliation(s)
- Margarita Del-Val
- Centro Nacional de Microbiologi;a, Instituto de Salud Carlos III, Ctra. Pozuelo, Km 2, E-28220 Majadahonda, Madrid, Spain.
| | | |
Collapse
|
37
|
Paster W, Kalat M, Zehetner M, Schweighoffer T. Structural elements of a protein antigen determine immunogenicity of the embedded MHC class I-restricted T cell epitope. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:2937-46. [PMID: 12218107 DOI: 10.4049/jimmunol.169.6.2937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Substantial effort has been invested into optimization of vector structure, DNA formulation, or delivery methods to increase the effectiveness of DNA vaccines. In contrast, it has been only insufficiently explored how the higher order structure of an antigenic protein influences immunogenicity of embedded epitopes in vivo. Potent CD8+ T cell responses specific for a single immunogenic epitope are induced upon electrovaccination with plasmid DNA encoding the full-length heavy chain of the human HLA-Cw3 molecule. Contrary to expectations, a minimal construct, which provoked a substantial release of IFN-gamma from specific CTLs in vitro, did not induce a significant response in vivo. Systematically altered variants of the Cw3 molecule were thus tested both in vivo and in vitro to determine which structural parts are responsible for this discrepancy. In complementation experiments the participation of trans-acting helper epitopes was ruled out. Successive C-terminal truncations, human/mouse domain swap variants, and subdomain modifications defined the alpha3 region of the HLA heavy chain and membrane anchoring as critical elements. Based on these data, refined minimal constructs were engineered that triggered very high in vivo responses. The most advanced variant consisted only of an adenoviral leader, antigenic epitope, alpha3 domain, and 16 aa of the transmembrane domain. When a tumor Ag epitope was incorporated into one of these high performer minimal constructs, protection against melanoma metastases was attained upon vaccination. Thus, structural elements of the Ag can dominantly influence immunogenicity in vivo. These elements can also markedly improve the immunogenicity of unrelated Ags and may form the basis of a new generation of DNA vaccines.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/administration & dosage
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cell Membrane/chemistry
- Cell Membrane/genetics
- Cell Membrane/immunology
- Cytotoxicity, Immunologic/genetics
- Epitopes, T-Lymphocyte/biosynthesis
- Epitopes, T-Lymphocyte/genetics
- Female
- Genetic Complementation Test
- H-2 Antigens/administration & dosage
- H-2 Antigens/chemistry
- H-2 Antigens/immunology
- HLA-C Antigens/administration & dosage
- HLA-C Antigens/chemistry
- HLA-C Antigens/genetics
- HLA-C Antigens/immunology
- Lymphocyte Activation/genetics
- Melanoma, Experimental/chemistry
- Melanoma, Experimental/immunology
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Plasmids/administration & dosage
- Plasmids/chemical synthesis
- Plasmids/immunology
- Protein Engineering/methods
- Protein Structure, Tertiary/genetics
- Sequence Deletion
- Structure-Activity Relationship
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Wolfgang Paster
- Department of NBE Discovery, Boehringer Ingelheim Austria GmbH, Vienna, Austria.
| | | | | | | |
Collapse
|
38
|
Casimiro DR, Tang A, Perry HC, Long RS, Chen M, Heidecker GJ, Davies ME, Freed DC, Persaud NV, Dubey S, Smith JG, Havlir D, Richman D, Chastain MA, Simon AJ, Fu TM, Emini EA, Shiver JW. Vaccine-induced immune responses in rodents and nonhuman primates by use of a humanized human immunodeficiency virus type 1 pol gene. J Virol 2002; 76:185-94. [PMID: 11739684 PMCID: PMC135696 DOI: 10.1128/jvi.76.1.185-194.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A synthetic gene consisting of the reverse transcriptase (RT) and integrase (IN) domains of human immunodeficiency virus type 1 (HIV-1) pol was constructed using codons most frequently used in humans. The humanized pol gave dramatically improved levels of Rev-independent, in vitro protein production in mammalian cells and elicited much stronger cellular immunity in rodents than did virus-derived gene. Specifically, BALB/c mice were immunized with plasmids and/or recombinant vaccinia virus constructs expressing the synthetic gene. High frequencies of Pol-specific T lymphocytes were detected in these animals by the gamma interferon enzyme-linked immunospot assay against pools of short overlapping peptides. Characterization of the stimulatory peptides from these pools indicates that the optimized gene constructs are able to effectively activate both CD4+ and CD8+ T cells. Immunization of rhesus macaques with DNA vaccines expressing the humanized pol coupled to a human tissue plasminogen activator leader sequence led to pronounced in vitro cytotoxic T-lymphocyte killing activities and enhanced levels of circulating Pol-specific T cells, comparable to those observed in HIV-1-infected human subjects. Thus, optimizing the immunogenic properties of HIV-1 Pol at the level of the gene sequence validates it as an antigen and provides an important step toward the construction of a potent pol-based HIV-1 vaccine component.
Collapse
Affiliation(s)
- Danilo R Casimiro
- Department of Virus and Cell Biology, Merck Research Laboratories, Merck and Company, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bramson JL, Wan YH. The efficacy of genetic vaccination is dependent upon the nature of the vector system and antigen. Expert Opin Biol Ther 2002; 2:75-85. [PMID: 11772342 DOI: 10.1517/14712598.2.1.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Genetic immunisation is emerging as a safe and specific means of eliciting prophylactic and therapeutic immune responses. Just as the immune response to various infectious agents will differ based on the aetiology of the infection and nature of antigenic determinants, so does the immune response following genetic immunisation. This review will discuss the impact of vector selection and antigen structure on genetic immunisation. Comparative analyses of plasmid DNA (pDNA), adenovirus (Ad) and vaccinia virus vaccines have demonstrated that each vector system is associated with a unique outcome following immunisation. Similarly, re-targeting cytosolic protein to different cellular compartments can dramatically affect the subsequent immune response. Thus, to design an effective genetic vaccine, one must consider both the biology of the vaccine vector/antigen combination and the biology of the pathogen.
Collapse
Affiliation(s)
- Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Room HSC-4H21B, 1200 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada.
| | | |
Collapse
|
40
|
Schell TD, Tevethia SS. Control of advanced choroid plexus tumors in SV40 T antigen transgenic mice following priming of donor CD8(+) T lymphocytes by the endogenous tumor antigen. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6947-56. [PMID: 11739514 DOI: 10.4049/jimmunol.167.12.6947] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mouse models in which tumors arise spontaneously due to the transgenic expression of an oncoprotein provide an opportunity to test approaches that target the immune-mediated control of tumor progression. In this report we investigated the role of SV40 Tag-specific CD8(+) T cells in the control of advanced choroid plexus tumor progression using large tumor Ag (Tag) transgenic mice. Since mice of the SV11 line are tolerant to the immunodominant SV40 Tag-derived CTL epitopes, mice with advanced stage tumors were reconstituted with naive C57BL/6 spleen cells following a low dose of gamma-irradiation. This led to the priming of CTLs specific for the H2-K(b)-restricted epitope IV by the endogenous Tag and a significant increase in the life span of Tag transgenic mice. Epitope IV-specific CD8(+) T cells accumulated and persisted in the brains and tumors of SV11 mice, as determined by analysis with epitope-specific MHC class I tetramers. Brain-infiltrating epitope IV-specific T cells were capable of producing IFN-gamma as well as lysing syngeneic Tag-transformed cells in vitro. In addition, the adoptive transfer of spleen cells from Tag-immune C57BL/6 mice resulted in a dramatic increase in the control of tumor progression in SV11 mice and was associated with the accumulation of CD8(+) T cells specific for multiple Tag epitopes in the brain. These results indicate that the control of advanced stage spontaneous choroid plexus tumors is associated with the induction of a strong and persistent CD8(+) T cell response to Tag.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/immunology
- Brain/immunology
- Brain/pathology
- Cell Line
- Cell Line, Transformed
- Cells, Cultured
- Choroid Plexus Neoplasms/immunology
- Choroid Plexus Neoplasms/pathology
- Cytotoxicity Tests, Immunologic
- Disease Progression
- Epitopes, T-Lymphocyte/immunology
- Interferon-gamma/biosynthesis
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Spleen/immunology
- Survival Rate
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/transplantation
Collapse
Affiliation(s)
- T D Schell
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
41
|
Chikh GG, Kong S, Bally MB, Meunier JC, Schutze-Redelmeier MP. Efficient delivery of Antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6462-70. [PMID: 11714813 DOI: 10.4049/jimmunol.167.11.6462] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The in vivo induction of a CTL response using Antennapedia homeodomain (AntpHD) fused to a poorly immunogenic CTL epitope requires that the Ag is given in presence of SDS, an unacceptable adjuvant for human use. In the present report, we developed a hybrid CTL epitope delivery system consisting of AntpHD peptide vector formulated in liposomes as an alternative approach to bypass the need for SDS. It is proposed that liposomes will prevent degradation of the Ag in vivo and will deliver AntpHD recombinant peptide to the cytosol of APCs. We show in this work that dendritic cells incubated with AntpHD-fused peptide in liposomes can present MHC class I-restricted peptide and induce CTL response with a minimal amount of Ag. Intracellular processing studies have shown that encapsulated AntpHD recombinant peptide is endocytized before entering the cytosol, where it is processed by the proteasome complex. The processed liposomal peptides are then transported to the endoplasmic reticulum. The increase of the CTL response induced by AntpHD-fused peptide in liposomes correlates with this active transport to the class I-processing pathway. In vivo studies demonstrated that positively charged liposomes increase the immunogenicity of AntpHD-Cw3 when injected s.c. in mice in comparison to SDS. Moreover, addition of CpG oligodeoxynucleotide immunostimulatory sequences further increase the CD8+ T cell response. This strategy combining lipid-based carriers with AntpHD peptide to target poorly immunogenic Ags into the MHC class I processing pathway represents a novel approach for CTL vaccines that may have important applications for development of cancer vaccines.
Collapse
Affiliation(s)
- G G Chikh
- Systemic Therapy Program, Department of Advanced Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | | | | | | |
Collapse
|
42
|
Willis RA, Bowers WJ, Turner MJ, Fisher TL, Abdul-Alim CS, Howard DF, Federoff HJ, Lord EM, Frelinger JG. Dendritic cells transduced with HSV-1 amplicons expressing prostate-specific antigen generate antitumor immunity in mice. Hum Gene Ther 2001; 12:1867-79. [PMID: 11589829 DOI: 10.1089/104303401753153929] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is currently much interest in generating cytotoxic T lymphocyte (CTL) responses against tumor antigens as a therapy for cancer. This work describes a novel gene transfer technique utilizing dendritic cells (DCs), an extremely potent form of antigen-presenting cell (APC), and herpes simplex virus-1 (HSV-1) amplicons. HSV-1 amplicons are plasmid-based viral vectors that are packaged into HSV-1 capsids, but lack viral coding sequences. Amplicon vectors have been constructed that encode the model tumor antigen ovalbumin (HSV-OVA) and human prostate-specific antigen (HSV-PSA), a protein that is expressed specifically in prostate epithelium and prostate carcinoma cells. These amplicons were packaged using a helper virus-free system that produces vector stocks that are devoid of contaminating cytotoxic helper virus. Transduction of DCs with HSV-OVA or HSV-PSA and co-culture with CTL hybridomas results in specific activation, indicating that transduced DCs express these transgenes and process the tumor antigens for class I MHC presentation to CTL. Mice immunized with HSV-PSA-transduced DCs generate a specific CTL response that can be detected in vitro by a (51)Cr-release assay and are protected from challenge with tumors that express PSA. These results indicate that DCs transduced with HSV-1 amplicon vectors may provide a tool for investigation of the biology of CTL activation by DCs and a new modality for immunotherapy of cancer.
Collapse
Affiliation(s)
- R A Willis
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Leifert JA, Lindencrona JA, Charo J, Whitton JL. Enhancing T cell activation and antiviral protection by introducing the HIV-1 protein transduction domain into a DNA vaccine. Hum Gene Ther 2001; 12:1881-92. [PMID: 11589830 DOI: 10.1089/104303401753153938] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Protein transduction domains (PTD), which can transport proteins or peptides across biological membranes, have been identified in several proteins of viral, invertebrate, and vertebrate origin. Here, we evaluate the immunological and biological consequences of including PTD in synthetic peptides and in DNA vaccines that contain CD8(+) T cell epitopes from lymphocytic choriomeningitis virus (LCMV). Synthetic PTD-peptides did not induce detectable CD8(+) T cell responses. However, fusion of an open reading frame encoding a PTD to an epitope minigene caused transfected tissue culture cells to stimulate epitope-specific T cells much more effectively. Kinetic studies indicated that the epitope reached the surface of transfected cells more rapidly and that the number of transfected cells needed to stimulate T cell responses was reduced by 35- to 50-fold when compared to cells transfected with a standard minigene plasmid. The mechanism underlying the effect of PTD linkage is not clear, but transit of the PTD-attached epitope from transfected cells to nontransfected cells (cross presentation) seemed to play, at most, a minimal role. Mice immunized once with the plasmid encoding the PTD-linked epitope showed a markedly accelerated CD8(+) T cell response and, unlike mice immunized with a standard plasmid, were completely protected against a normally lethal LCMV challenge administered only 8 days post-immunization.
Collapse
Affiliation(s)
- J A Leifert
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
44
|
Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001. [PMID: 11544272 DOI: 10.1172/jci200112346] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Antigen-specific cancer immunotherapy and antiangiogenesis have emerged as two attractive strategies for cancer treatment. An innovative approach that combines both mechanisms will likely generate the most potent antitumor effect. We tested this approach using calreticulin (CRT), which has demonstrated the ability to enhance MHC class I presentation and exhibit an antiangiogenic effect. We explored the linkage of CRT to a model tumor antigen, human papilloma virus type-16 (HPV-16) E7, for the development of a DNA vaccine. We found that C57BL/6 mice vaccinated intradermally with CRT/E7 DNA exhibited a dramatic increase in E7-specific CD8(+) T cell precursors and an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with wild-type E7 DNA or CRT DNA. Vaccination of CD4/CD8 double-depleted C57BL/6 mice and immunocompromised (BALB/c nu/nu) mice with CRT/E7 DNA or CRT DNA generated significant reduction of lung tumor nodules compared with wild-type E7 DNA, suggesting that antiangiogenesis may have contributed to the antitumor effect. Examination of microvessel density in lung tumor nodules and an in vivo angiogenesis assay further confirmed the antiangiogenic effect generated by CRT/E7 and CRT. Thus, cancer therapy using CRT linked to a tumor antigen holds promise for treating tumors by combining antigen-specific immunotherapy and antiangiogenesis.
Collapse
Affiliation(s)
- W F Cheng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001; 108:669-78. [PMID: 11544272 PMCID: PMC209378 DOI: 10.1172/jci12346] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antigen-specific cancer immunotherapy and antiangiogenesis have emerged as two attractive strategies for cancer treatment. An innovative approach that combines both mechanisms will likely generate the most potent antitumor effect. We tested this approach using calreticulin (CRT), which has demonstrated the ability to enhance MHC class I presentation and exhibit an antiangiogenic effect. We explored the linkage of CRT to a model tumor antigen, human papilloma virus type-16 (HPV-16) E7, for the development of a DNA vaccine. We found that C57BL/6 mice vaccinated intradermally with CRT/E7 DNA exhibited a dramatic increase in E7-specific CD8(+) T cell precursors and an impressive antitumor effect against E7-expressing tumors compared with mice vaccinated with wild-type E7 DNA or CRT DNA. Vaccination of CD4/CD8 double-depleted C57BL/6 mice and immunocompromised (BALB/c nu/nu) mice with CRT/E7 DNA or CRT DNA generated significant reduction of lung tumor nodules compared with wild-type E7 DNA, suggesting that antiangiogenesis may have contributed to the antitumor effect. Examination of microvessel density in lung tumor nodules and an in vivo angiogenesis assay further confirmed the antiangiogenic effect generated by CRT/E7 and CRT. Thus, cancer therapy using CRT linked to a tumor antigen holds promise for treating tumors by combining antigen-specific immunotherapy and antiangiogenesis.
Collapse
MESH Headings
- Animals
- Antibodies, Neoplasm/biosynthesis
- Antigen Presentation
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Calreticulin
- Cancer Vaccines
- Cells, Cultured
- DNA, Neoplasm/genetics
- Endoplasmic Reticulum/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/secondary
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Neoplasms/immunology
- Neoplasms/pathology
- Neoplasms/therapy
- Neovascularization, Pathologic
- Oncogene Proteins, Viral/genetics
- Oncogene Proteins, Viral/metabolism
- Papillomavirus E7 Proteins
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Cells, Cultured
- Vaccines, DNA
Collapse
Affiliation(s)
- W F Cheng
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Herberts CA, Stittelaar KJ, van der Heeft E, van Gaans-van den Brink J, Poelen MCM, Roholl PJM, van Alphen LJW, Melief CJM, de Jong APJM, van Els CACM. A measles virus glycoprotein-derived human CTL epitope is abundantly presented via the proteasomal-dependent MHC class I processing pathway. J Gen Virol 2001; 82:2131-2142. [PMID: 11514722 DOI: 10.1099/0022-1317-82-9-2131] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Peptides derived from measles virus (MV) are presented by MHC class I molecules at widely divergent levels, but it is currently unknown how functional these levels are. Here, for the first time, we studied the natural occurrence and the underlying processing events of a known MV CTL epitope derived from the fusion glycoprotein (MV-F) and restricted via HLA-B*2705. Using MHC-peptide elution of MV-infected cells followed by sensitive mass spectrometry we determined the naturally occurring sequence to be RRYPDAVYL, corresponding to MV-F(438-446). Its level of expression was enumerated at approximately 1500 copies per cell, which is considered to be abundant, but lies within the range described for other viral CTL epitopes in human MHC class I molecules. We found that processing of the MV-F(438-446) epitope occurs primarily via the classic MHC class I loading pathway, since presentation to CTL depends on both the transporter associated with antigen presentation (TAP) and the proteasome. Even though it is cotranslationally inserted into the ER, a major part of MV-F is located in the cytosol, where it accumulates rapidly in the presence of proteasome inhibitors. We therefore conclude that a substantial cytosolic turnover of MV-F, together with some excellent processing features of MV-F(438-446) precursors, such as precise C-terminal excision by proteasomes, efficient TAP transport and strong HLA binding, dictate the abundant functional expression of the MV-F(438-446) CTL epitope in HLA-B*2705 at the surface of MV-infected cells.
Collapse
Affiliation(s)
- Carla A Herberts
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Koert J Stittelaar
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Ed van der Heeft
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Jacqueline van Gaans-van den Brink
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Martien C M Poelen
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Paul J M Roholl
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Loek J W van Alphen
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands4
| | - Ad P J M de Jong
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Laboratory of Vaccine Research1, Laboratory of Organic Analytical Chemistry2, Laboratory of Pathology and Immunobiology3, National Institute of Public Health and the Environment, PO Box 1, 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
47
|
Norbury CC, Princiotta MF, Bacik I, Brutkiewicz RR, Wood P, Elliott T, Bennink JR, Yewdell JW. Multiple antigen-specific processing pathways for activating naive CD8+ T cells in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:4355-62. [PMID: 11254689 DOI: 10.4049/jimmunol.166.7.4355] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current knowledge of the processing of viral Ags into MHC class I-associated ligands is based almost completely on in vitro studies using nonprofessional APCs (pAPCs). This is two steps removed from real immune responses to pathogens and vaccines, in which pAPCs activate naive CD8(+) T cells in vivo. Rational vaccine design requires answers to numerous questions surrounding the function of pAPCs in vivo, including their abilities to process and present peptides derived from endogenous and exogenous viral Ags. In the present study, we characterize the in vivo dependence of Ag presentation on the expression of TAP by testing the immunogenicity of model Ags synthesized by recombinant vaccinia viruses in TAP1(-/-) mice. We show that the efficiency of TAP-independent presentation in vitro correlates with TAP-independent activation of naive T cells in vivo and provide the first in vivo evidence for proteolytic processing of antigenic peptides in the secretory pathway. There was, however, a clear exception to this correlation; although the presentation of the minimal SIINFEKL determinant from chicken egg OVA in vitro was strictly TAP dependent, it was presented in a TAP-independent manner in vivo. In vivo presentation of the same peptide from a fusion protein retained its TAP dependence. These results show that determinant-specific processing pathways exist in vivo for the generation of antiviral T cell responses. We present additional findings that point to cross-priming as the likely mechanism for these protein-specific differences.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 2
- ATP-Binding Cassette Transporters/administration & dosage
- ATP-Binding Cassette Transporters/biosynthesis
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/physiology
- Adoptive Transfer
- Animals
- Antigen Presentation
- Antigens, Viral/administration & dosage
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/transplantation
- Cells, Cultured
- Cytotoxicity, Immunologic/genetics
- Cytotoxicity, Immunologic/immunology
- Egg Proteins/administration & dosage
- Egg Proteins/genetics
- Egg Proteins/immunology
- Epitopes, T-Lymphocyte/immunology
- Female
- Humans
- Injections, Intravenous
- Interphase/immunology
- Lymphocyte Activation
- Lymphocyte Transfusion
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Ovalbumin/genetics
- Ovalbumin/immunology
- Peptide Fragments/administration & dosage
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Recombination, Genetic/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Viral Core Proteins/administration & dosage
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
Collapse
Affiliation(s)
- C C Norbury
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fu TM, Freed DC, Trigona WL, Guan L, Zhu L, Long R, Persaud NV, Manson K, Dubey S, Shiver JW. Evaluation of cytotoxic T-lymphocyte responses in human and nonhuman primate subjects infected with human immunodeficiency virus type 1 or simian/human immunodeficiency virus. J Virol 2001; 75:73-82. [PMID: 11119575 PMCID: PMC113899 DOI: 10.1128/jvi.75.1.73-82.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2000] [Accepted: 10/02/2000] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T-lymphocyte (CTL) responses have been implicated as playing an important role in control of human immunodeficiency virus (HIV) infection. However, it is technically difficult to demonstrate CTL responses consistently in nonhuman primate and human subjects using traditional cytotoxicity assay methods. In this study, we systematically evaluated culture conditions that may affect the proliferation and expansion of CTL effector cells and presented a sensitive method for detection of cytotoxicity responses with bulk CTL cultures. We confirmed the sensitivity and specificity of this method by demonstration of vigorous CTL responses in a simian-HIV (SHIV)-infected rhesus macaque. The expansion of epitope-specific CTL effector cells was also measured quantitatively by CTL epitope-major histocompatibility complex tetramer complex staining. In addition, two new T-cell determinants in the SIV gag region are identified. Last, we showed the utility of this method for studying CTL responses in chimpanzee and human subjects.
Collapse
Affiliation(s)
- T M Fu
- Department of Virus and Cell Biology, Merck Research Laboratories, West Point, Pennsylvania 19486, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Tirosh B, Fridkin M, Tzehoval E, Vadai E, Lemonnier FA, Eisenbach L. Antigenicity and immunogenicity of an intracellular delivery system of major histocompatibility complex class I epitopes that bypasses proteasome processing. J Immunother 2000; 23:622-30. [PMID: 11186150 DOI: 10.1097/00002371-200011000-00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The development of a cell-free synthetic vaccine to induce an effective cytotoxic T lymphocyte response is an important challenge in T-cell--mediated immunity. Because standard vaccinations with nominal epitopes were found to be only partially effective in vivo, the authors suggest an alternative strategy: the delivery of epitopes directly to the cell cytosol in a proteasome bypass mechanism of processing. Two model peptides, the presentation level on the cell surface of which can be directly assessed, were conjugated via a cross-linker to an internalization peptide derived from an antennapedia homeobox protein. The linker was designed to undergo spontaneous hydrolysis, after which the epitope is subsequently released. The conjugates were shown to enter RMA and P815 cells, where the epitopes were released mainly in cytosol and endogenously loaded on the major histocompatibility complex class I molecules to be presented on the cell surface. Concomitant inhibition of proteasome activity by MG132 significantly increased the presentation level of both model peptides, indicating proteasome-independent processing. This phenomenon was exploited to enhance the immunogenicity of the conjugates. Conjugates were emulsified with MG132 in incomplete Freund's adjuvant and injected into mouse footpads. Analysis of the draining lymph nodes indicated an increase in the percentage of both CD4+ and CD8+ lymphocytes. In vitro cytolytic assays implied significant, albeit moderate, priming only when the proteasome inhibitor was administered with the conjugate. This approach may be useful for the development of efficient synthetic cell-free vaccines.
Collapse
Affiliation(s)
- B Tirosh
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
50
|
Mylin LM, Schell TD, Roberts D, Epler M, Boesteanu A, Collins EJ, Frelinger JA, Joyce S, Tevethia SS. Quantitation of CD8(+) T-lymphocyte responses to multiple epitopes from simian virus 40 (SV40) large T antigen in C57BL/6 mice immunized with SV40, SV40 T-antigen-transformed cells, or vaccinia virus recombinants expressing full-length T antigen or epitope minigenes. J Virol 2000; 74:6922-34. [PMID: 10888631 PMCID: PMC112209 DOI: 10.1128/jvi.74.15.6922-6934.2000] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2000] [Accepted: 05/03/2000] [Indexed: 12/13/2022] Open
Abstract
The cytotoxic T-lymphocyte response to wild-type simian virus 40 large tumor antigen (Tag) in C57BL/6 (H2(b)) mice is directed against three H2-D(b)-restricted epitopes, I, II/III, and V, and one H2-K(b)-restricted epitope, IV. Epitopes I, II/III, and IV are immunodominant, while epitope V is immunorecessive. We investigated whether this hierarchical response was established in vivo or was due to differential expansion in vitro by using direct enumeration of CD8(+) T lymphocytes with Tag epitope/major histocompatibility complex class I tetramers and intracellular gamma interferon staining. The results demonstrate that epitope IV-specific CD8(+) T cells dominated the Tag-specific response in vivo following immunization with full-length Tag while CD8(+) T cells specific for epitopes I and II/III were detected at less than one-third of this level. The immunorecessive nature of epitope V was apparent in vivo, since epitope V-specific CD8(+) T cells were undetectable following immunization with full-length Tag. In contrast, high levels of epitope V-specific CD8(+) T lymphocytes were recruited in vivo following immunization and boosting with a Tag variant in which epitopes I, II/III, and IV had been inactivated. In addition, analysis of the T-cell receptor beta (TCRbeta) repertoire of Tag epitope-specific CD8(+) cells revealed that multiple TCRbeta variable regions were utilized for each epitope except Tag epitope II/III, which was limited to TCRbeta10 usage. These results indicate that the hierarchy of Tag epitope-specific CD8(+) T-cell responses is established in vivo.
Collapse
MESH Headings
- Animals
- Antibodies/immunology
- Antigens, Polyomavirus Transforming/genetics
- Antigens, Polyomavirus Transforming/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cell Line, Transformed/immunology
- Cell Transformation, Viral
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Female
- Histocompatibility Antigens Class I/chemistry
- Histocompatibility Antigens Class I/immunology
- Immunization
- Interferon-gamma/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Simian virus 40/immunology
- Vaccinia virus/genetics
- Vaccinia virus/immunology
- Vaccinia virus/metabolism
Collapse
Affiliation(s)
- L M Mylin
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | |
Collapse
|