1
|
Waldmann TA, Waldmann R, Lin JX, Leonard WJ. The implications of IL-15 trans-presentation on the immune response. Adv Immunol 2022; 156:103-132. [PMID: 36410873 DOI: 10.1016/bs.ai.2022.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Interleukin-15 is a pleiotropic cytokine type I four alpha-helical bundle cytokine that along with IL-2, IL-4, IL-7, IL-9, and IL-21 shares the common cytokine receptor γ chain, γc. IL-15 is vital for the development, survival, and expansion of natural killer cells and for the development of CD8+ memory T cells. Whereas other family γc cytokines signal by directly binding to their target cells, IL-15 is distinctive in that it binds to IL-15Rα, a sushi domain containing binding protein that is expressed on a number of cell types, including monocytes and dendritic cells as well as T cells, and then is trans-presented to responding cells that express IL-2Rβ and γc. This distinctive mechanism for IL-15 relates to its role in signaling in the context of cell-cell interactions and signaling synapses. The actions of IL-15 and ways of manipulating its actions to potential therapeutic benefit are discussed.
Collapse
Affiliation(s)
- Thomas A Waldmann
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | | | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
2
|
Kautzman AM, Mobulakani JMF, Marrero Cofino G, Quenum AJI, Cayarga AA, Asselin C, Fortier LC, Ilangumaran S, Menendez A, Ramanathan S. Interleukin 15 in murine models of colitis. Anat Rec (Hoboken) 2022; 306:1111-1130. [PMID: 35899872 DOI: 10.1002/ar.25044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBDs) are characterized by abnormal, non-antigen specific chronic inflammation of unknown etiology. Genome-wide association studies show that many IBD genetic susceptibility loci map to immune function genes and compelling evidence indicate that environmental factors play a critical role in IBD pathogenesis. Clinical and experimental evidence implicate the pro-inflammatory cytokine IL-15 in the pathogenesis of IBD. IL-15 and IL-15α expression is increased in the inflamed mucosa of IBD patients. IL-15 contributes to the maintenance of different cell subsets in the intestinal mucosa. However, very few studies have addressed the role of IL-15 in pre-clinical models of colitis. In this study, we use three well-characterized models of experimental colitis to determine the contribution of IL-15 to pathological intestinal inflammation.
Collapse
Affiliation(s)
- Alicia Molina Kautzman
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Gisela Marrero Cofino
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Anny Armas Cayarga
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Claude Asselin
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Alfredo Menendez
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,CRCHUS, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Stoy N. Involvement of Interleukin-1 Receptor-Associated Kinase 4 and Interferon Regulatory Factor 5 in the Immunopathogenesis of SARS-CoV-2 Infection: Implications for the Treatment of COVID-19. Front Immunol 2021; 12:638446. [PMID: 33936053 PMCID: PMC8085890 DOI: 10.3389/fimmu.2021.638446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) and interferon regulatory factor 5 (IRF5) lie sequentially on a signaling pathway activated by ligands of the IL-1 receptor and/or multiple TLRs located either on plasma or endosomal membranes. Activated IRF5, in conjunction with other synergistic transcription factors, notably NF-κB, is crucially required for the production of proinflammatory cytokines in the innate immune response to microbial infection. The IRAK4-IRF5 axis could therefore have a major role in the induction of the signature cytokines and chemokines of the hyperinflammatory state associated with severe morbidity and mortality in COVID-19. Here a case is made for considering IRAK4 or IRF5 inhibitors as potential therapies for the "cytokine storm" of COVID-19.
Collapse
Affiliation(s)
- Nicholas Stoy
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Allard-Chamard H, Mishra HK, Nandi M, Mayhue M, Menendez A, Ilangumaran S, Ramanathan S. Interleukin-15 in autoimmunity. Cytokine 2020; 136:155258. [PMID: 32919253 DOI: 10.1016/j.cyto.2020.155258] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Interleukin-15 (IL-15) is a member of the IL-2 family of cytokines, which use receptor complexes containing the common gamma (γc) chain for signaling. IL-15 plays important roles in innate and adaptative immune responses and is implicated in the pathogenesis of several immune diseases. The IL-15 receptor consists of 3 subunits namely, the ligand-binding IL-15Rα chain, the β chain (also used by IL-2) and the γc chain. IL-15 uses a unique signaling pathway whereby IL-15 associates with IL-15Rα during biosynthesis, and this complex is 'trans-presented' to responder cells that expresses the IL-2/15Rβγc receptor complex. IL-15 is subject to post-transcriptional and post-translational regulation, and evidence also suggests that IL-15 cis-signaling can occur under certain conditions. IL-15 has been implicated in the pathology of various autoimmune diseases such as rheumatoid arthritis, autoimmune diabetes, inflammatory bowel disease, coeliac disease and psoriasis. Studies with pre-clinical models have shown the beneficial effects of targeting IL-15 signaling in autoimmunity. Unlike therapies targeting other cytokines, anti-IL-15 therapies have not yet been successful in humans. We discuss the complexities of IL-15 signaling in autoimmunity and explore potential immunotherapeutic approaches to target the IL-15 signaling pathway.
Collapse
Affiliation(s)
- Hugues Allard-Chamard
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada; Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Hemant K Mishra
- Vet & Biomedical Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Madhuparna Nandi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marian Mayhue
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alfredo Menendez
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Subburaj Ilangumaran
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sheela Ramanathan
- Centre de Recherche Clinique, Centre Hospitalier d'Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
5
|
Khaiboullina S, Uppal T, Kletenkov K, St Jeor SC, Garanina E, Rizvanov A, Verma SC. Transcriptome Profiling Reveals Pro-Inflammatory Cytokines and Matrix Metalloproteinase Activation in Zika Virus Infected Human Umbilical Vein Endothelial Cells. Front Pharmacol 2019; 10:642. [PMID: 31249527 PMCID: PMC6582368 DOI: 10.3389/fphar.2019.00642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/17/2019] [Indexed: 12/19/2022] Open
Abstract
The deformities in the newborns infected with Zika virus (ZIKV) present a new potential public health threat to the worldwide community. Although ZIKV infection is mainly asymptomatic in healthy adults, infection during pregnancy can cause microcephaly and other severe brain defects and potentially death of the fetus. The detailed mechanism of ZIKV-associated damage is still largely unknown; however, it is apparent that the virus crosses the placental barrier to reach the fetus. Endothelial cells are the key structural component of the placental barrier. Endothelium integrity as semi-permeable barrier is essential to control the molecules and leukocytes trafficking across the placenta. Damaged endothelium or disruption of adherens junctions could compromise endothelial barrier integrity causing leakage and inflammation. Endothelial cells are often targeted by viruses, including the members of the Flaviviridae family such as dengue virus (DENV) and West Nile virus (WNV); however, little is known about the effects of ZIKV infection of endothelial cell functions. Our transcriptomic data have demonstrated that the large number of cytokines is affected in ZIKV-infected endothelial cells, where significant changes in 13 and 11 cytokines were identified in cells infected with PRVABC59 and IBH30656 ZIKV strains, respectively. Importantly, these cytokines include chemokines attracting mononuclear leukocytes (monocytes and lymphocytes) as well as neutrophils. Additionally, changes in matrix metalloproteinase (MMPs) were detected in ZIKV-infected cells. Furthermore, we for the first time showed that ZIKV infection of human umbilical vein endothelial cells (HUVECs) increases endothelial permeability. We reason that increased endothelial permeability was due to apoptosis of endothelial cells caused by caspase-8 activation in ZIKV-infected cells.
Collapse
Affiliation(s)
- Svetlana Khaiboullina
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| | - Konstatin Kletenkov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Stephen Charles St Jeor
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States.,Genequest LLC, Reno, NV, United States
| | - Ekaterina Garanina
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Department of Exploratory Research, Scientific and Educational Center of Pharmaceutics, Kazan Federal University, Kazan, Russia
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
6
|
Interferon regulatory factor 3 plays a role in macrophage responses to interferon-γ. Immunobiology 2019; 224:565-574. [PMID: 31072630 DOI: 10.1016/j.imbio.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 12/16/2022]
Abstract
IFN-γ produced during viral infections activates the IFN-γ receptor (IFNGR) complex for STAT1 transcriptional activity leading to expression of Interferon Regulatory Factors (IRF). Simultaneous activation of TBK/IKKε via TLR3 during viral infections activates the transcription factor IRF3. Together these transcription factors contributes to expression of intracellular proteins (e.g. ISG49, ISG54) and secreted proteins (e.g. IFN-β, IP-10, IL-15) that are essential to innate antiviral immunity. Here we examined the role of IRF3 in expression of innate anti-viral proteins produced in response to IFN-γ plus TLR3 agonist. Wild-type (WT) and IRF3KO RAW264.7 cells, each with ISG54-promoter-luciferase reporter vectors, were stimulated with IFN-γ, poly I:C, or both together. ISG54 promoter activity was significantly reduced in IRF3KO RAW264.7 cells responding to IFN-γ, poly I:C, or IFN-γ plus poly I:C, compared with WT RAW264.7 cells. These data were confirmed with western blot and qRT-PCR. Primary macrophages and dendritic cells (DCs) from IRF3KO mice also showed decreased ISG54 in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C compared with those from WT mice. Moreover, pharmacological inhibition of TBK/IKKε significantly reduced ISG54 promoter activity in response to IFN-γ, poly I:C, or IFN-γ plus poly I:C. Similarly, expression of ISG49 and IL-15, but not IP-10, was impaired in IRF3KO RAW264.7 cells responding to IFN-γ or poly I:C, which also had impaired STAT1 phosphorylation and IRF1 expression. These data show that IRF3 contributes to IFN-γ/IFNGR signaling for expression of innate anti-viral proteins in macrophages.
Collapse
|
7
|
Mathew NR, Baumgartner F, Braun L, O’Sullivan D, Thomas S, Waterhouse M, Müller TA, Hanke K, Taromi S, Apostolova P, Illert AL, Melchinger W, Duquesne S, Schmitt-Graeff A, Osswald L, Yan KL, Weber A, Tugues S, Spath S, Pfeifer D, Follo M, Claus R, Lübbert M, Rummelt C, Bertz H, Wäsch R, Haag J, Schmidts A, Schultheiss M, Bettinger D, Thimme R, Ullrich E, Tanriver Y, Vuong GL, Arnold R, Hemmati P, Wolf D, Ditschkowski M, Jilg C, Wilhelm K, Leiber C, Gerull S, Halter J, Lengerke C, Pabst T, Schroeder T, Kobbe G, Rösler W, Doostkam S, Meckel S, Stabla K, Metzelder SK, Halbach S, Brummer T, Hu Z, Dengjel J, Hackanson B, Schmid C, Holtick U, Scheid C, Spyridonidis A, Stölzel F, Ordemann R, Müller LP, Sicre-de-Fontbrune F, Ihorst G, Kuball J, Ehlert JE, Feger D, Wagner EM, Cahn JY, Schnell J, Kuchenbauer F, Bunjes D, Chakraverty R, Richardson S, Gill S, Kröger N, Ayuk F, Vago L, Ciceri F, Müller AM, Kondo T, Teshima T, Klaeger S, Kuster B, Kim D(DH, Weisdorf D, van der Velden W, Dörfel D, Bethge W, Hilgendorf I, Hochhaus A, Andrieux G, Börries M, Busch H, Magenau J, Reddy P, Labopin M, Antin JH, et alMathew NR, Baumgartner F, Braun L, O’Sullivan D, Thomas S, Waterhouse M, Müller TA, Hanke K, Taromi S, Apostolova P, Illert AL, Melchinger W, Duquesne S, Schmitt-Graeff A, Osswald L, Yan KL, Weber A, Tugues S, Spath S, Pfeifer D, Follo M, Claus R, Lübbert M, Rummelt C, Bertz H, Wäsch R, Haag J, Schmidts A, Schultheiss M, Bettinger D, Thimme R, Ullrich E, Tanriver Y, Vuong GL, Arnold R, Hemmati P, Wolf D, Ditschkowski M, Jilg C, Wilhelm K, Leiber C, Gerull S, Halter J, Lengerke C, Pabst T, Schroeder T, Kobbe G, Rösler W, Doostkam S, Meckel S, Stabla K, Metzelder SK, Halbach S, Brummer T, Hu Z, Dengjel J, Hackanson B, Schmid C, Holtick U, Scheid C, Spyridonidis A, Stölzel F, Ordemann R, Müller LP, Sicre-de-Fontbrune F, Ihorst G, Kuball J, Ehlert JE, Feger D, Wagner EM, Cahn JY, Schnell J, Kuchenbauer F, Bunjes D, Chakraverty R, Richardson S, Gill S, Kröger N, Ayuk F, Vago L, Ciceri F, Müller AM, Kondo T, Teshima T, Klaeger S, Kuster B, Kim D(DH, Weisdorf D, van der Velden W, Dörfel D, Bethge W, Hilgendorf I, Hochhaus A, Andrieux G, Börries M, Busch H, Magenau J, Reddy P, Labopin M, Antin JH, Henden AS, Hill GR, Kennedy GA, Bar M, Sarma A, McLornan D, Mufti G, Oran B, Rezvani K, Sha O, Negrin RS, Nagler A, Prinz M, Burchert A, Neubauer A, Beelen D, Mackensen A, von Bubnoff N, Herr W, Becher B, Socié G, Caligiuri MA, Ruggiero E, Bonini C, Häcker G, Duyster J, Finke J, Pearce E, Blazar BR, Zeiser R. Sorafenib promotes graft-versus-leukemia activity in mice and humans through IL-15 production in FLT3-ITD-mutant leukemia cells. Nat Med 2018; 24:282-291. [PMID: 29431743 PMCID: PMC6029618 DOI: 10.1038/nm.4484] [Show More Authors] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 01/05/2018] [Indexed: 12/28/2022]
Abstract
Individuals with acute myeloid leukemia (AML) harboring an internal tandem duplication (ITD) in the gene encoding Fms-related tyrosine kinase 3 (FLT3) who relapse after allogeneic hematopoietic cell transplantation (allo-HCT) have a 1-year survival rate below 20%. We observed that sorafenib, a multitargeted tyrosine kinase inhibitor, increased IL-15 production by FLT3-ITD+ leukemia cells. This synergized with the allogeneic CD8+ T cell response, leading to long-term survival in six mouse models of FLT3-ITD+ AML. Sorafenib-related IL-15 production caused an increase in CD8+CD107a+IFN-γ+ T cells with features of longevity (high levels of Bcl-2 and reduced PD-1 levels), which eradicated leukemia in secondary recipients. Mechanistically, sorafenib reduced expression of the transcription factor ATF4, thereby blocking negative regulation of interferon regulatory factor 7 (IRF7) activation, which enhanced IL-15 transcription. Both IRF7 knockdown and ATF4 overexpression in leukemia cells antagonized sorafenib-induced IL-15 production in vitro. Human FLT3-ITD+ AML cells obtained from sorafenib responders following sorafenib therapy showed increased levels of IL-15, phosphorylated IRF7, and a transcriptionally active IRF7 chromatin state. The mitochondrial spare respiratory capacity and glycolytic capacity of CD8+ T cells increased upon sorafenib treatment in sorafenib responders but not in nonresponders. Our findings indicate that the synergism of T cells and sorafenib is mediated via reduced ATF4 expression, causing activation of the IRF7-IL-15 axis in leukemia cells and thereby leading to metabolic reprogramming of leukemia-reactive T cells in humans. Therefore, sorafenib treatment has the potential to contribute to an immune-mediated cure of FLT3-ITD-mutant AML relapse, an otherwise fatal complication after allo-HCT.
Collapse
Affiliation(s)
- Nimitha R. Mathew
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Francis Baumgartner
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Braun
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - David O’Sullivan
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany
| | - Miguel Waterhouse
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tony A. Müller
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathrin Hanke
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University, Freiburg, Germany
| | - Sanaz Taromi
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Petya Apostolova
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna L. Illert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Melchinger
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sandra Duquesne
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Lena Osswald
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kai-Li Yan
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arnim Weber
- Department of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
| | - Sonia Tugues
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sabine Spath
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Dietmar Pfeifer
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Claus
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Rummelt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hartmut Bertz
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ralph Wäsch
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johanna Haag
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Schmidts
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Schultheiss
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Dominik Bettinger
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, D-79106 Freiburg, Germany
| | - Evelyn Ullrich
- University Hospital Frankfurt, Department for Children and Adolescents Medicine, Division of Stem Cell Transplantation and Immunology, Goethe-University, Frankfurt, Germany
| | - Yakup Tanriver
- Department of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
- Department of Nephrology, University Medical Center Freiburg, Freiburg, Germany
| | - Giang Lam Vuong
- Department of Stem Cell Transplantation, Charité University Medicine Berlin, Germany
| | - Renate Arnold
- Department of Stem Cell Transplantation, Charité University Medicine Berlin, Germany
| | - Philipp Hemmati
- Department of Stem Cell Transplantation, Charité University Medicine Berlin, Germany
| | - Dominik Wolf
- Medical Clinic III, Oncology, Hematology, Immunooncology and Rheumatology, University Hospital Bonn (UKB), Bonn, Germany
| | - Markus Ditschkowski
- Department of Bone Marrow Transplantation, West German Cancer Center, University Hospital Essen, Germany
| | - Cordula Jilg
- Department of Urology, University Medical Center Freiburg, Freiburg, Germany
| | - Konrad Wilhelm
- Department of Urology, University Medical Center Freiburg, Freiburg, Germany
| | - Christian Leiber
- Department of Urology, University Medical Center Freiburg, Freiburg, Germany
| | - Sabine Gerull
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Jörg Halter
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Claudia Lengerke
- Division of Hematology, University Hospital Basel, Basel, Switzerland
| | - Thomas Pabst
- Inselspital/Universitätsspital Bern, CH-3010 Bern, Switzerland
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Wolf Rösler
- Department of Hematology and Oncology, University of Erlangen, Germany
| | | | - Stephan Meckel
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
| | - Kathleen Stabla
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, and University Medical Center Giessen and Marburg, Marburg, Germany
| | - Stephan K. Metzelder
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, and University Medical Center Giessen and Marburg, Marburg, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany, Freiburg, Germany
- Center for Biological signaling studies (BIOSS) - University of Freiburg, Germany
| | - Zehan Hu
- Department of Dermatology, Medical Center - University of Freiburg, Germany; and Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Joern Dengjel
- Department of Dermatology, Medical Center - University of Freiburg, Germany; and Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Björn Hackanson
- Interdisziplinäres Cancer Center Augsburg (ICCA), II. Medizinische Klinik, Augsburg, Germany
| | - Christoph Schmid
- Interdisziplinäres Cancer Center Augsburg (ICCA), II. Medizinische Klinik, Augsburg, Germany
| | - Udo Holtick
- Department of Internal Medicine I, University Hospital Cologne, Germany
| | - Christof Scheid
- Department of Internal Medicine I, University Hospital Cologne, Germany
| | | | - Friedrich Stölzel
- Department of Hematology and Oncology, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Germany
| | - Rainer Ordemann
- Department of Hematology and Oncology, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Germany
| | - Lutz P. Müller
- Department of Hematology and Oncology, Universitätsklinikum Halle, Halle, Germany
| | - Flore Sicre-de-Fontbrune
- APHP, Saint Louis Hospital, Hematology Stem cell transplantation, & Inserm UMR 1160, Paris, France
| | - Gabriele Ihorst
- Clinical Trials Unit, Faculty of Medicine and Medical Center - University of Freiburg, Germany
| | - Jürgen Kuball
- Department of Hematology, University Medical Center Utrecht, The Netherlands
| | | | | | - Eva-Maria Wagner
- Dept. of Hematology and Oncology, Universitaetsmedizin Mainz, Mainz, Germany
| | - Jean-Yves Cahn
- Clinique Universitaire Hématologie, Université Grenoble Alpes, France
| | - Jacqueline Schnell
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Donald Bunjes
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Ronjon Chakraverty
- Cancer Institute and Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - Simon Richardson
- Cancer Institute and Institute of Immunity and Transplantation, Royal Free Hospital, London, UK
| | - Saar Gill
- Hospital of the University of Pennsylvania, Smilow Translational Research Center, Philadelphia, PA, USA
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Hospital Hamburg-Eppendorf, Germany
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Unit of Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, and University Vita-Salute San Raffaele Milano, Italy
| | - Fabio Ciceri
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Unit of Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, and University Vita-Salute San Raffaele Milano, Italy
| | - Antonia M. Müller
- Department of Hematology, University Hospital Zurich, Zurich, Switzerland
| | - Takeshi Kondo
- Department of Hematology, Hokkaido University, Sapporo, Japan
| | | | - Susan Klaeger
- German Cancer Consortium (DKTK), partner site Freiburg; and German Cancer Research Center (DKFZ), Heidelberg, Germany, Freiburg, Germany
- Proteomics and Bioanalytics, Technische Universitaet Muenchen, Partner Site of the German Cancer Consortium, Freising, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, Technische Universitaet Muenchen, Partner Site of the German Cancer Consortium, Freising, Germany
| | - Dennis (Dong Hwan) Kim
- Department of Medical Oncology & Hematology, Princess Margaret Cancer Centre, University of Toronto, Ontario, Canada
| | - Daniel Weisdorf
- Hematology, Oncology and Transplantation University of Minnesota, Minneapolis, USA
| | | | - Daniela Dörfel
- Medizinische Klinik II, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Wolfgang Bethge
- Medizinische Klinik II, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Inken Hilgendorf
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Andreas Hochhaus
- Klinik für Innere Medizin II, Universitätsklinikum Jena, Jena, Germany
| | - Geoffroy Andrieux
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Börries
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany. German Cancer Consortium (DKTK), Freiburg, Germany. German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - John Magenau
- Department of Hematology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Pavan Reddy
- Department of Hematology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Myriam Labopin
- EBMT Statistical Unit, Hôpital Saint Antoine Paris, France
| | - Joseph H. Antin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Andrea S. Henden
- Bone Marrow Transplant Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia & Department of Haematology, Royal Brisbane Hospital, Brisbane, Australia
| | - Geoffrey R. Hill
- Bone Marrow Transplant Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia & Department of Haematology, Royal Brisbane Hospital, Brisbane, Australia
- Department of Haematology, Royal Brisbane and Womens Hospital, Brisbane, Australia
| | - Glen A. Kennedy
- Department of Haematology, Royal Brisbane and Womens Hospital, Brisbane, Australia
| | - Merav Bar
- Division of Blood and Marrow Transplantation, Fred Hutchinson Cancer Research Center, University of WA Seattle, USA
| | - Anita Sarma
- Department of Haematological Medicine, King’s College Hospital NHS Foundation Trust, London, UK
| | - Donal McLornan
- Department of Haematological Medicine, King’s College Hospital NHS Foundation Trust, London, UK
| | - Ghulam Mufti
- Department of Haematological Medicine, King’s College Hospital NHS Foundation Trust, London, UK
| | - Betul Oran
- Division of BMT, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Omid Sha
- Division of Blood and Marrow Transplantation, Stanford University Medical School, Stanford, CA, USA
| | - Robert S. Negrin
- Division of Blood and Marrow Transplantation, Stanford University Medical School, Stanford, CA, USA
| | - Arnon Nagler
- Division of Hematology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | - Marco Prinz
- Department of Neuroradiology, University Medical Center Freiburg, Freiburg, Germany
- Center for Biological signaling studies (BIOSS) - University of Freiburg, Germany
| | - Andreas Burchert
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University Freiburg, Germany
| | - Andreas Neubauer
- Institute of Molecular Medicine and Cell Research (IMMZ), Faculty of Medicine, Albert-Ludwigs-University Freiburg, Germany
| | - Dietrich Beelen
- Department of Urology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Nikolas von Bubnoff
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Gerard Socié
- APHP, Saint Louis Hospital, Hematology Stem cell transplantation, & Inserm UMR 1160, Paris, France
| | | | - Eliana Ruggiero
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Unit of Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, and University Vita-Salute San Raffaele Milano, Italy
| | - Chiara Bonini
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, Unit of Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, and University Vita-Salute San Raffaele Milano, Italy
| | - Georg Häcker
- Department of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany
| | - Justus Duyster
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Finke
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Erika Pearce
- Max Planck Institute for Immunobiology and Epigenetics, Freiburg, Germany
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Biological signaling studies (BIOSS) - University of Freiburg, Germany
| |
Collapse
|
8
|
Jonakowski M, Zioło J, Koćwin M, Przemęcka M, Mokros Ł, Panek M, Szemraj J, Kuna P. Role of IL-15 in the modulation of TGF-β1-mediated inflammation in asthma. Exp Ther Med 2017; 14:4533-4540. [PMID: 29104662 DOI: 10.3892/etm.2017.5108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
Transforming growth factor (TGF)-β1 has an essential role in bronchitis and the induction of bronchial remodelling, which are critical processes in the pathogenesis of asthma. However, the role of interleukin (IL)-15 in asthma inflammation remains unclear. The aim of the present study was to evaluate the effect of TGF-β1 mRNA expression on IL-15 mRNA expression in asthmatic patients and to assess the role of IL-15 in the clinical course of asthma. The study included 221 participants, comprising 130 patients with asthma and 91 healthy volunteers. The participants were subjected to testing using spirometry, as well as the Asthma Control Test™ and Borg Scale. The expression of TGF-β1 and IL-15 mRNA was analyzed in blood samples using reverse transcription-quantitative polymerase chain reaction. Statistical analysis indicated that IL-15 and TGF-β1 mRNA expression each differed significantly between the patient and control groups (P=0.0016 and P=0.033, respectively). A significant correlation was identified between IL-15 expression and TGF-β1 expression (R=0.41, P=0.0005). No correlation was observed between IL-15 expression and the degree of asthma severity, the results of spirometric examination or the frequency of asthma exacerbations. Further analysis revealed that IL-15 expression was elevated following the administration of inhaled glucocorticosteroids (iGCs; P=0.024), and reduced following methylxanthine treatment (P<0.001). The occurrence of dyspnoea differed between the study and control groups, and this was not found to be associated with IL-15 expression. Since IL-15 expression was correlated with TGF-β1 expression among asthmatic patients, and IL-15 expression was elevated following iGC administration, the results of the study suggest that IL-15 activity might be associated with the pathogenesis of asthma.
Collapse
Affiliation(s)
- Mateusz Jonakowski
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Jan Zioło
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Marcelina Koćwin
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Marcelina Przemęcka
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Łukasz Mokros
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Michał Panek
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
9
|
NF-κB and IRF1 Induce Endogenous Retrovirus K Expression via Interferon-Stimulated Response Elements in Its 5' Long Terminal Repeat. J Virol 2016; 90:9338-49. [PMID: 27512062 DOI: 10.1128/jvi.01503-16] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023] Open
Abstract
UNLABELLED Thousands of endogenous retroviruses (ERV), viral fossils of ancient germ line infections, reside within the human genome. Evidence of ERV activity has been observed widely in both health and disease. While this is most often cited as a bystander effect of cell culture or disease states, it is unclear which signals control ERV transcription. Bioinformatic analysis suggests that the viral promoter of endogenous retrovirus K (ERVK) is responsive to inflammatory transcription factors. Here we show that one reason for ERVK upregulation in amyotrophic lateral sclerosis (ALS) is the presence of functional interferon-stimulated response elements (ISREs) in the viral promoter. Transcription factor overexpression assays revealed independent and synergistic upregulation of ERVK by interferon regulatory factor 1 (IRF1) and NF-κB isoforms. Tumor necrosis factor alpha (TNF-α) and LIGHT cytokine treatments of human astrocytes and neurons enhanced ERVK transcription and protein levels through IRF1 and NF-κB binding to the ISREs. We further show that in ALS brain tissue, neuronal ERVK reactivation is associated with the nuclear translocation of IRF1 and NF-κB isoforms p50 and p65. ERVK overexpression can cause motor neuron pathology in murine models. Our results implicate neuroinflammation as a key trigger of ERVK provirus reactivation in ALS. These molecular mechanisms may also extend to the pathobiology of other ERVK-associated inflammatory diseases, such as cancers, HIV infection, rheumatoid arthritis, and schizophrenia. IMPORTANCE It has been well established that inflammatory signaling pathways in ALS converge at NF-κB to promote neuronal damage. Our findings suggest that inflammation-driven IRF1 and NF-κB activity promotes ERVK reactivation in neurons of the motor cortex in ALS. Thus, quenching ERVK activity through antiretroviral or immunomodulatory regimens may hinder virus-mediated neuropathology and improve the symptoms of ALS or other ERVK-associated diseases.
Collapse
|
10
|
An activation-induced IL-15 isoform is a natural antagonist for IL-15 function. Sci Rep 2016; 6:25822. [PMID: 27166125 PMCID: PMC4863161 DOI: 10.1038/srep25822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Interleukin 15 (IL-15) expression induces the secretion of inflammatory cytokines, inhibits the apoptosis of activated T cells and prolongs the survival of CD8+ memory T cells. Here we identified an IL-15 isoform lacking exon-6, IL-15ΔE6, generated by alternative splicing events of activated immune cells, including macrophages and B cells. In vitro study showed that IL-15ΔE6 could antagonize IL-15-mediated T cell proliferation. The receptor binding assay revealed that IL-15ΔE6 could bind to IL-15Rα and interfere with the binding between IL-15 and IL-15Rα. Over-expression of IL-15ΔE6 in the murine EAE model ameliorated the EAE symptoms of the mice. The clinical scores were significantly lower in the mice expressing IL-15ΔE6 than the control mice and the mice expressing IL-15. The inflammation and demyelination of the EAE mice expressing IL-15ΔE6 were less severe than the control group. Furthermore, flow cytometry analysis demonstrated that IL-15ΔE6 expression reduced the percentages of inflammatory T cells in the spleen and spinal cord, and inhibited the infiltration of macrophages to the CNS. Our results demonstrated that IL-15ΔE6 could be induced during immune activation and function as a negative feedback mechanism to dampen IL-15-mediated inflammatory events.
Collapse
|
11
|
Homeostatic control of memory cell progenitors in the natural killer cell lineage. Cell Rep 2015; 10:280-91. [PMID: 25578733 DOI: 10.1016/j.celrep.2014.12.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 11/03/2014] [Accepted: 12/11/2014] [Indexed: 01/07/2023] Open
Abstract
Recent studies have demonstrated that natural killer (NK) cells are able to undergo clonal expansion and contraction and to generate self-renewing memory cells after infection with mouse cytomegalovirus (MCMV). It is unclear whether all or only certain subsets preferentially contribute to the generation of memory NK cells. Here, we show that memory NK cells predominantly arise from killer cell lectin-like receptor G1 (KLRG1)-negative NK cell progenitors, whereas KLRG1-positive NK cells have limited capacity for expansion during infection with MCMV. Unexpectedly, the frequency of KLRG1-positive NK cells is significantly affected by the presence of T cells in the host and potentially by the host microbiota. Our findings demonstrate that excessive availability of interleukin (IL)-15 may erode the pool of memory progenitors, resulting in the decreased efficiency of memory generation in the NK cell lineage.
Collapse
|
12
|
Mishra A, Sullivan L, Caligiuri MA. Molecular pathways: interleukin-15 signaling in health and in cancer. Clin Cancer Res 2014; 20:2044-50. [PMID: 24737791 DOI: 10.1158/1078-0432.ccr-12-3603] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-15 (IL-15) is a proinflammatory cytokine involved in the development, survival, proliferation, and activation of multiple lymphocyte lineages utilizing a variety of signaling pathways. IL-15 utilizes three distinct receptor chains in at least two different combinations to signal and exert its effects on the immune system. The binding of IL-15 to its receptor complex activates an "immune-enhancing" signaling cascade in natural killer cells and subsets of T cells, as well as the induction of a number of proto-oncogenes. Additional studies have explored the role of IL-15 in the development and progression of cancer, notably leukemia of large granular lymphocytes, cutaneous T-cell lymphoma, and multiple myeloma. This review provides an overview of the molecular events in the IL-15 signaling pathway and the aberrancies in its regulation that are associated with chronic inflammation and cancer. We briefly explore the potential therapeutic opportunities that have arisen as a result of these studies to further the treatment of cancer. These involve both targeting the disruption of IL-15 signaling as well as IL-15-mediated enhancement of innate and antigen-specific immunity.
Collapse
Affiliation(s)
- Anjali Mishra
- Authors' Affiliation: The Divisions of Dermatology and Hematology, Department of Internal Medicine, The Comprehensive Cancer Center, The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio
| | | | | |
Collapse
|
13
|
Braun M, Björkström NK, Gupta S, Sundström K, Ahlm C, Klingström J, Ljunggren HG. NK cell activation in human hantavirus infection explained by virus-induced IL-15/IL15Rα expression. PLoS Pathog 2014; 10:e1004521. [PMID: 25412359 PMCID: PMC4239055 DOI: 10.1371/journal.ppat.1004521] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022] Open
Abstract
Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15Rα on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention. Hantaviruses cause severe clinical infections with up to 50% case-fatality rates. The diseases represent an important global health problem as no vaccine or specific treatment is available. The most prominent hallmark in patients is strong immune activation, reflected as massive CD8 T and NK cell expansion, accompanied by severe vascular leakage. The mechanisms behind this massive immune activation are still not fully understood. Here, we first assessed the expression of several activation markers and receptors on NK cells derived from hantavirus-infected patients using flow cytometry. High NK cell activation was observed during the acute phase of clinical infection. To address possible underlying mechanisms explaining this NK cell activation, we established an in vitro hantavirus infection model using human primary endothelial cells, the natural in vivo targets of the virus. We demonstrate hantavirus-induced IL-15/IL-15Rα on infected endothelial cells, and show that this results in NK cell activation, similar to the profile found in hantavirus-infected patients. Interestingly, these activated NK cells were able to kill uninfected endothelial cells despite their normal expression of HLA class I. The present data add further insights into hantavirus-induced pathogenesis and suggest possible targets for future therapeutical interventions in these severe diseases.
Collapse
Affiliation(s)
- Monika Braun
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (HGL)
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Liver Immunology Laboratory, Unit for Gastroenterology and Hepatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Shawon Gupta
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Sundström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (HGL)
| |
Collapse
|
14
|
Characterization of the IL-15 niche in primary and secondary lymphoid organs in vivo. Proc Natl Acad Sci U S A 2014; 111:1915-20. [PMID: 24449915 DOI: 10.1073/pnas.1318281111] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-15 is a cytokine critical for development, maintenance, and response of T cells, natural killer (NK) cells, NK T cells, and dendritic cells. However, the identity and distribution of IL-15-expressing cells in lymphoid organs are not well understood. To address these questions, we established and analyzed IL-15-CFP knock-in mice. We found that IL-15 was highly expressed in thymic medulla, and medullary thymic epithelial cells with high MHC class II expression were the major source of IL-15. In bone marrow, IL-15 was detected primarily in VCAM-1(+)PDGFRβ(+)CD31(-)Sca-1(-) stromal cells, which corresponded to previously described CXCL12-abundant reticular cells. In lymph nodes, IL-15-expressing cells were mainly distributed in the T-cell zone and medulla. IL-15 was expressed in some fibroblastic reticular cells and gp38(-)CD31(-) double-negative stromal cells in the T-cell zone. Blood endothelial cells, including all high endothelial venules, also expressed high IL-15 levels in lymph nodes, whereas lymphatic endothelial cells (LECs) lacked IL-15 expression. In spleen, IL-15 was expressed in VCAM-1(+) stromal cells, where its expression increased as mice aged. Finally, IL-15 expression in blood and LECs of peripheral lymphoid organs significantly increased in LPS-induced inflammation. Overall, we have identified and characterized several IL-15-expressing cells in primary and secondary lymphoid organs, providing a unique perspective of IL-15 niche in immune microenvironment. This study also suggests that some stromal cells express IL-7 and IL-15 differentially and suggests a way to functionally classify different stromal cell subsets.
Collapse
|
15
|
IκB kinase ε targets interferon regulatory factor 1 in activated T lymphocytes. Mol Cell Biol 2014; 34:1054-65. [PMID: 24396068 DOI: 10.1128/mcb.01161-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IκB kinase ε (IKK-ε) has an essential role as a regulator of innate immunity, functioning downstream of pattern recognition receptors to modulate NF-κB and interferon (IFN) signaling. In the present study, we investigated IKK-ε activation following T cell receptor (TCR)/CD28 stimulation of primary CD4(+) T cells and its role in the stimulation of a type I IFN response. IKK-ε was activated following TCR/CD28 stimulation of primary CD4(+) T cells; however, in T cells treated with poly(I·C), TCR/CD28 costimulation blocked induction of IFN-β transcription. We demonstrated that IKK-ε phosphorylated the transcription factor IFN regulatory factor 1 (IRF-1) at amino acid (aa) 215/219/221 in primary CD4(+) T cells and blocked its transcriptional activity. At the mechanistic level, IRF-1 phosphorylation impaired the physical interaction between IRF-1 and the NF-κB RelA subunit and interfered with PCAF-mediated acetylation of NF-κB RelA. These results demonstrate that TCR/CD28 stimulation of primary T cells stimulates IKK-ε activation, which in turn contributes to suppression of IFN-β production.
Collapse
|
16
|
Chen J, Feigenbaum L, Awasthi P, Butcher DO, Anver MR, Golubeva YG, Bamford R, Zhang X, St. Claire MB, Thomas CJ, Discepolo V, Jabri B, Waldmann TA. Insulin-dependent diabetes induced by pancreatic beta cell expression of IL-15 and IL-15Rα. Proc Natl Acad Sci U S A 2013; 110:13534-9. [PMID: 23904478 PMCID: PMC3746870 DOI: 10.1073/pnas.1312911110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased serum levels of IL-15 are reported in type 1 diabetes (T1D). Here we report elevated serum soluble IL-15Rα levels in human T1D. To investigate the role of IL-15/IL-15Rα in the pathogenesis of T1D, we generated double transgenic mice with pancreatic β-cell expression of IL-15 and IL-15Rα. The mice developed hyperglycemia, marked mononuclear cell infiltration, β-cell destruction, and anti-insulin autoantibodies that mimic early human T1D. The diabetes in this model was reversed by inhibiting IL-15 signaling with anti-IL2/IL15Rβ (anti-CD122), which blocks IL-15 transpresentation. Furthermore, the diabetes could be reversed by administration of the Janus kinase 2/3 inhibitor tofacitinib, which blocks IL-15 signaling. In an alternative diabetes model, nonobese diabetic mice, IL15/IL-15Rα expression was increased in islet cells in the prediabetic stage, and inhibition of IL-15 signaling with anti-CD122 at the prediabetic stage delayed diabetes development. In support of the view that these observations reflect the conditions in humans, we demonstrated pancreatic islet expression of both IL-15 and IL-15Rα in human T1D. Taken together our data suggest that disordered IL-15 and IL-15Rα may be involved in T1D pathogenesis and the IL-15/IL15Rα system and its signaling pathway may be rational therapeutic targets for early T1D.
Collapse
Affiliation(s)
- Jing Chen
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1374
| | - Lionel Feigenbaum
- Laboratory Animal Sciences Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Parirokh Awasthi
- Laboratory Animal Sciences Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Donna O. Butcher
- Laboratory Animal Sciences Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Miriam R. Anver
- Laboratory Animal Sciences Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | - Yelena G. Golubeva
- Laboratory Animal Sciences Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702
| | | | - Xiaojie Zhang
- Laboratory Animal Science Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | - Mark B. St. Claire
- Laboratory Animal Science Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892
| | - Craig J. Thomas
- National Institutes of Health Chemical Genomics Center, National Human Genome Research Institute, Rockville, MD 20850
| | - Valentina Discepolo
- Department of Pediatrics, University of Chicago, Chicago, IL 60637; and
- Department of Pediatrics, University Federico II, 80131 Naples, Italy
| | - Bana Jabri
- Department of Pediatrics, University of Chicago, Chicago, IL 60637; and
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1374
| |
Collapse
|
17
|
Doyle SL, Shirey KA, McGettrick AF, Kenny EF, Carpenter S, Caffrey BE, Gargan S, Quinn SR, Caamaño JH, Moynagh P, Vogel SN, O'Neill LA. Nuclear factor κB2 p52 protein has a role in antiviral immunity through IκB kinase epsilon-dependent induction of Sp1 protein and interleukin 15. J Biol Chem 2013; 288:25066-25075. [PMID: 23873932 DOI: 10.1074/jbc.m113.469122] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we describe a previously unreported function for NFκB2, an NFκB family transcription factor, in antiviral immunity. NFκB2 is induced in response to poly(I:C), a mimic of viral dsRNA. Poly(I:C), acting via TLR3, induces p52-dependent transactivation of a reporter gene in a manner that requires the kinase activity of IκB kinase ε (IKKε) and the transactivating potential of RelA/p65. We identify a novel NFκB2 binding site in the promoter of the transcription factor Sp1 that is required for Sp1 gene transcription activated by poly(I:C). We show that Sp1 is required for IL-15 induction by both poly(I:C) and respiratory syncytial virus, a response that also requires NFκB2 and IKKε. Our study identifies NFκB2 as a target for IKKε in antiviral immunity and describes, for the first time, a role for NFκB2 in the regulation of gene expression in response to viral infection.
Collapse
Affiliation(s)
- Sarah L Doyle
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland,.
| | - Kari Ann Shirey
- the Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, Maryland 21201
| | - Anne F McGettrick
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Elaine F Kenny
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Susan Carpenter
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Brian E Caffrey
- the Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Siobhan Gargan
- the Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland, and
| | - Susan R Quinn
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Jorge H Caamaño
- the Institute for BioMedical Research-Medical Research Council (IBR-MRC) Centre for Immune Regulation, College of Medicine and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Paul Moynagh
- the Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland, and
| | - Stefanie N Vogel
- the Department of Microbiology and Immunology, University of Maryland, Baltimore, School of Medicine, Baltimore, Maryland 21201
| | - Luke A O'Neill
- From the Immunology Research Centre, Trinity Biomedical Sciences Institute, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
18
|
Castillo EF, Schluns KS. Regulating the immune system via IL-15 transpresentation. Cytokine 2012; 59:479-90. [PMID: 22795955 DOI: 10.1016/j.cyto.2012.06.017] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 02/07/2023]
Abstract
Transpresentation has emerged as an important mechanism mediating IL-15 responses in a subset of lymphocytes during the steady state. In transpresentation, cell surface IL-15, bound to IL-15Rα is delivered to opposing lymphocytes during a cell-cell interaction. The events most dependent on IL-15 include the development and homeostasis of memory CD8 T cells, Natural Killer cells, invariant Natural Killer T cells, and intraepithelial lymphocytes. As lymphocyte development and homeostasis involve multiple steps and mechanisms, IL-15 transpresentation can have diverse roles throughout. Moreover, distinct stages of lymphocyte differentiation require IL-15 transpresented by different cells, which include both hematopoietic and non-hematopoietic cell types. Herein, we will describe the points where IL-15 transpresentation impacts these processes, the specific cells thought to drive IL-15 responses, as well as their role in the course of development and homeostasis.
Collapse
Affiliation(s)
- Eliseo F Castillo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | |
Collapse
|
19
|
Verbist KC, Rose DL, Cole CJ, Field MB, Klonowski KD. IL-15 participates in the respiratory innate immune response to influenza virus infection. PLoS One 2012; 7:e37539. [PMID: 22624047 PMCID: PMC3356330 DOI: 10.1371/journal.pone.0037539] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 04/25/2012] [Indexed: 11/19/2022] Open
Abstract
Following influenza infection, natural killer (NK) cells function as interim effectors by suppressing viral replication until CD8 T cells are activated, proliferate, and are mobilized within the respiratory tract. Thus, NK cells are an important first line of defense against influenza virus. Here, in a murine model of influenza, we show that virally-induced IL-15 facilitates the trafficking of NK cells into the lung airways. Blocking IL-15 delays NK cell entry to the site of infection and results in a disregulated control of early viral replication. By the same principle, viral control by NK cells can be therapeutically enhanced via intranasal administration of exogenous IL-15 in the early days post influenza infection. In addition to controlling early viral replication, this IL-15-induced mobilization of NK cells to the lung airways has important downstream consequences on adaptive responses. Primarily, depletion of responding NK1.1+ NK cells is associated with reduced immigration of influenza-specific CD8 T cells to the site of infection. Together this work suggests that local deposits of IL-15 in the lung airways regulate the coordinated innate and adaptive immune responses to influenza infection and may represent an important point of immune intervention.
Collapse
Affiliation(s)
- Katherine C. Verbist
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - David L. Rose
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Charles J. Cole
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Mary B. Field
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kimberly D. Klonowski
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Porcine reproductive and respiratory syndrome virus induces interleukin-15 through the NF-κB signaling pathway. J Virol 2012; 86:7625-36. [PMID: 22573868 DOI: 10.1128/jvi.00177-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) mainly infects macrophages/dendritic cells and modulates cytokine expression in these cells. Interleukin-15 (IL-15) is a pleiotropic cytokine involved in wide range of biological activities. It has been shown to be essential for the generation, activation, and proliferation of NK and NKT cells and for the survival and activation of CD8(+) effector and memory T cells. In this study, we discovered that PRRSV infection upregulated IL-15 production at both the mRNA and protein levels in porcine alveolar macrophages (PAMs), blood monocyte-derived macrophages (BMo), and monocyte-derived dendritic cells (DCs). We subsequently demonstrated that the NF-κB signaling pathway was essential for PRRSV infection-induced IL-15 production. First, addition of an NF-κB inhibitor drastically reduced PRRSV infection-induced IL-15 production. We then found that NF-κB was indeed activated upon PRRSV infection, as evidenced by IκB phosphorylation and degradation. Moreover, we revealed an NF-κB binding motif in the cloned porcine IL-15 (pIL-15) promoter, deletion of which abrogated the pIL-15 promoter activity in PRRSV-infected alveolar macrophages. In addition, we demonstrated that PRRSV nucleocapsid (N) protein had the ability to induce IL-15 production in porcine alveolar macrophage cell line CRL2843 by transient transfection, which was mediated by its multiple motifs, and it also activated NF-κB. These data indicated that PRRSV infection-induced IL-15 production was likely through PRRSV N protein-mediated NF-κB activation. Our findings provide new insights into the molecular mechanisms underling the IL-15 production induced by PRRSV infection.
Collapse
|
21
|
Colpitts SL, Stoklasek TA, Plumlee CR, Obar JJ, Guo C, Lefrançois L. Cutting edge: the role of IFN-α receptor and MyD88 signaling in induction of IL-15 expression in vivo. THE JOURNAL OF IMMUNOLOGY 2012; 188:2483-7. [PMID: 22327071 DOI: 10.4049/jimmunol.1103609] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-15 plays a multifaceted role in immune homeostasis, but the unreliability of IL-15 detection has stymied exploration of IL-15 regulation in vivo. To visualize IL-15 expression, we created a transgenic mouse expressing emerald-GFP (EmGFP) under IL-15 promoter control. EmGFP/IL-15 was prevalent in innate cells including dendritic cells (DCs), macrophages, and monocytes. However, DC subsets expressed varying levels of EmGFP/IL-15 with CD8(+) DCs constitutively expressing EmGFP/IL-15 and CD8(-) DCs expressing low EmGFP/IL-15 levels. Virus infection resulted in IL-15 upregulation in both subsets. By crossing the transgenic mice to mice deficient in specific elements of innate signaling, we found a cell-intrinsic dependency of DCs and Ly6C(+) monocytes on IFN-α receptor expression for EmGFP/IL-15 upregulation after vesicular stomatitis virus infection. In contrast, myeloid cells did not require the expression of MyD88 to upregulate EmGFP/IL-15 expression. These findings provide evidence of previously unappreciated regulation of IL-15 expression in myeloid lineages during homeostasis and following infection.
Collapse
Affiliation(s)
- Sara L Colpitts
- Department of Immunology, Center for Integrated Immunology and Vaccine Research, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Verbist KC, Cole CJ, Field MB, Klonowski KD. A role for IL-15 in the migration of effector CD8 T cells to the lung airways following influenza infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:174-82. [PMID: 21098221 DOI: 10.4049/jimmunol.1002613] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cytokines generated locally in response to infection play an important role in CD8 T cell trafficking, survival, and effector function, rendering these signals prime candidates for immune intervention. In this paper, we show that localized increases in the homeostatic cytokine IL-15 induced by influenza infection is responsible for the migration of CD8 effector T cells to the site of infection. Moreover, intranasal delivery of IL-15-IL-15Rα soluble complexes (IL-15c) specifically restores the frequency of effector T cells lost in the lung airways of IL-15-deficient animals after influenza infection. Exogenous IL-15c quantitatively augments the respiratory CD8 T cell response, and continued administration of IL-15c throughout the contraction phase of the anti-influenza CD8 T cell response magnifies the resultant CD8 T cell memory generated in situ. This treatment extends the ability of these cells to protect against heterologous infection, immunity that typically depreciates over time. Overall, our studies describe what to our knowledge is a new function for IL-15 in attracting effector CD8 T cells to the lung airways and suggest that adjuvanting IL-15 could be used to prolong anti-influenza CD8 T cell responses at mucosal surfaces to facilitate pathogen elimination.
Collapse
Affiliation(s)
- Katherine C Verbist
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
23
|
Foong YY, Jans DA, Rolph MS, Gahan ME, Mahalingam S. Interleukin-15 mediates potent antiviral responses via an interferon-dependent mechanism. Virology 2009; 393:228-37. [PMID: 19729181 DOI: 10.1016/j.virol.2009.07.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 04/20/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
Abstract
Interleukin-15 (IL-15) is a potent growth factor for activated T and natural killer (NK) cells, stimulator of memory T cells and plays an important role in viral immunity. To investigate mechanisms underlying the antiviral activity of IL-15, a recombinant vaccinia virus (rVV) encoding murine IL-15 (VV-IL-15) was constructed. Following infection of mice with VV-IL-15, virus titres in the ovaries were significantly reduced compared to mice infected with control VV. Growth of VV-IL-15 was also reduced in nude athymic mice, indicating the antiviral activity of IL-15 does not require T cells. Additionally, VV-IL-15 augmented the cytolytic activity of natural NK cells in the spleen and enhanced interferon (IFN) mRNA expression and transcription factors associated with IFN induction. Using knockout mice and antibody depletion studies, we showed for the first time that the control of VV-IL-15 replication in mice is dependent on NK cells and IFNs and, in their absence, the protective role of IL-15 is abolished.
Collapse
Affiliation(s)
- Y Y Foong
- Division of Immunology and Genetics, The John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
24
|
Mattson JD, Haus BM, Desai B, Ott W, Basham B, Agrawal M, Ding W, Hildemann LM, Abitorabi KM, Canfield J, Mak G, Guvenc-Tuncturk S, Malefyt RDW, McClanahan TK, Fick RB, Kuschner WG. Enhanced acute responses in an experimental exposure model to biomass smoke inhalation in chronic obstructive pulmonary disease. Exp Lung Res 2009; 34:631-62. [PMID: 19085563 DOI: 10.1080/01902140802322256] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Chronic obstructive pulmonary diseases (COPD) may increase air pollution-related mortality. The relationship of immune mechanisms to mortality caused by fine particulates in healthy and COPD populations is incompletely understood. The objective of this study was to determine whether fine particulates from a single biomass fuel alter stress and inflammation biomarkers in people with COPD. Healthy and COPD subjects were exposed to smoke in a controlled indoor setting. Immune responses were quantified by measuring cell surface marker expression with flow-cytometric analysis and mRNA levels with quantitative reverse transcriptase-polymerase chain reactions in whole blood before and after exposure. Preexposure COPD subjects had more leukocytes, mainly CD14(+) monocytes and neutrophils, but fewer CD3(+) T cells. Fifty-seven of 186 genes were differentially expressed between healthy and COPD subjects' peripheral blood mononuclear cells (PBMCs). Of these, only nuclear factor (NF)-kappa B1, TIMP-1, TIMP-2, and Duffy genes were up-regulated in COPD subjects. At 4 hours post smoke exposure, monocyte levels decreased only in healthy subjects. Fifteen genes, particular to inflammation, immune response, and cell-to-cell signaling, were differentially expressed in COPD subjects, versus 4 genes in healthy subjects. The authors observed significant differences in subjects' PBMCs, which may elucidate the adverse effects of air pollution particulates on people with COPD.
Collapse
Affiliation(s)
- Jeanine D Mattson
- Department of Experimental Pathology and Pharmacology, Schering-Plough Biopharma, Palo Alto, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Anderson IE, Deane D, Swa S, Thomson J, Campbell I, Buxton D, Wei XQ, Stewart J, Russell G, Haig DM. Production and utilization of interleukin-15 in malignant catarrhal fever. J Comp Pathol 2008; 138:131-44. [PMID: 18331739 DOI: 10.1016/j.jcpa.2008.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 01/08/2008] [Indexed: 11/28/2022]
Abstract
Malignant catarrhal fever (MCF) is an often fatal lymphoproliferative disease of ungulates caused by either alcelaphine herpesvirus-1 (AlHV-1) or ovine herpesvirus-2 (OvHV-2). The pathogenesis of MCF is poorly understood, but appears to involve an auto-destructive pathology whereby cytotoxic lymphocytes destroy areas of a variety of tissues. The cytokine interleukin-15 (IL-15) is involved in the development and maintenance of cytotoxic lymphocytes and may therefore have a role in the pathogenesis of MCF. Virus-infected large granular lymphocytes (LGLs) were obtained from the tissues of rabbits infected with AlHV-1 or OvHV-2. These cells exhibited a similar proliferative response to IL-15 and to IL-2 in culture, but their content of the activated cytotoxic enzyme (BLT-esterase) was maintained at higher levels in the presence of IL-15 compared with IL-2. The LGLs did not express IL-15 mRNA or produce IL-15 protein. By contrast, there was abundant expression of IL-15 mRNA and protein in affected tissues. IL-15 production was associated with necrotic lesions of the mesenteric lymph node and appendix of OvHV-2-infected rabbits, but was not found in the same tissues of rabbits infected with AlHV-1 in which there were no necrotic lesions. The cellular source of the IL-15 was predominantly lymphoid cells that did not express B cell or monocyte-macrophage markers. Only a few IL-15+ cells (<10%) co-localized with pan-T cells or CD8+ T cells. The abundance of IL-15 in tissue with lesions of MCF suggests that this cytokine may have a role in the pathogenesis of MCF.
Collapse
Affiliation(s)
- I E Anderson
- Moredun Research Institute, Edinburgh, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
IRF-1 is required for full NF-kappaB transcriptional activity at the human immunodeficiency virus type 1 long terminal repeat enhancer. J Virol 2008; 82:3632-41. [PMID: 18216101 DOI: 10.1128/jvi.00599-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) gene expression is controlled by a complex interplay between viral and host factors. We have previously shown that interferon-regulatory factor 1 (IRF-1) is stimulated early after HIV-1 infection and regulates promoter transcriptional activity even in the absence of the viral transactivator Tat. In this work we demonstrate that IRF-1 is also required for full NF-kappaB transcriptional activity. We provide evidence that IRF-1 and NF-kappaB form a functional complex at the long terminal repeat (LTR) kappaB sites, which is abolished by specific mutations in the two adjacent kappaB sites in the enhancer region. Silencing IRF-1 with small interfering RNA resulted in impaired NF-kappaB-mediated transcriptional activity and in repressed HIV-1 transcription early in de novo-infected T cells. These data indicate that in early phases of HIV-1 infection or during virus reactivation from latency, when the viral transactivator is absent or present at very low levels, IRF-1 is an additional component of the p50/p65 heterodimer binding the LTR enhancer, absolutely required for efficient HIV-1 replication.
Collapse
|
27
|
Gill N, Ashkar AA. Adaptive immune responses fail to provide protection against genital HSV-2 infection in the absence of IL-15. Eur J Immunol 2007; 37:2529-38. [PMID: 17668897 DOI: 10.1002/eji.200636997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
IL-15 plays a crucial role in innate defense against viral infections. The role of IL-15 in the generation and function of adaptive immunity, following mucosal immunization, against genital HSV-2 has not been studied. Here, we report that immunized IL-15(-/-) mice were able to generate antibody and T cell-mediated immune responses against HSV-2, comparable to those seen in immunized B6 mice. However, immunized IL-15(-/-) mice were not protected against subsequent HSV-2 challenge, compared to B6 immunized mice, even with a ten times lower challenge dose. We then examined if the adaptive immune responses generated in the absence of IL-15 could provide protection against HSV-2 in an IL-15-positive environment. Adoptive transfer of lymphocytes from immunized IL-15(-/-) to naive mice were able to provide protection against HSV-2 challenge similar to protection with immunized cells from control mice. This suggests that the adaptive immune responses raised in the absence of IL-15 are functional in vivo. Reconstitution of the innate components, particularly IL-15, NK cells and NK cell-derived IFN-gamma, in immunized IL-15(-/-) mice restored their protective adaptive immunity against subsequent genital HSV-2 challenge. Our results clearly suggest that innate antiviral activity of IL-15 is necessary for protective adaptive immunity against genital HSV-2 infection.
Collapse
Affiliation(s)
- Navkiran Gill
- Centre for Gene Therapeutics, Department of Pathology and Molecular Medicine, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | |
Collapse
|
28
|
Wang T, Holland JW, Carrington A, Zou J, Secombes CJ. Molecular and Functional Characterization of IL-15 in Rainbow TroutOncorhynchus mykiss:A Potent Inducer of IFN-γ Expression in Spleen Leukocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1475-88. [PMID: 17641013 DOI: 10.4049/jimmunol.179.3.1475] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-15 is a member of the common gamma-chain family of cytokines that possess a heterogeneous repertoire of activities on various cells of the immune system. We report here the first functional characterization of a fish IL-15 in rainbow trout. The trout IL-15 gene is 6-kb long and contains six exons and five introns that transcribe into a 1.2-kb mRNA containing seven out-of-frame AUG initiation codons and translate into a 193-aa peptide. Potential sites for transcriptional activators and repressors have been identified in the trout IL-15 gene. Like IL-15 from other species, trout IL-15 is closely linked to an INPP4B gene, but there is also a BCL10 gene located between the IL-15 and INPP4B genes. Three alternative splicing variants of the trout IL-15 gene have also been identified and their expression in vivo was studied. Trout IL-15 expression is present in all the tissues and cell lines studied. Recombinant trout IFN-gamma selectively increased IL-15 expression but had little effect on other cytokines such as IL-1 beta and IL-11. Recombinant trout IL-15 preferentially stimulated splenic leukocytes from healthy fish, where it induced a large increase in IFN-gamma expression, with little, if any, effect on IL-1 beta expression. This effect was quite long-lived, and was still apparent 24 h poststimulation. Although the exact cell types being affected have still to be determined, it is clear that once produced IL-15 will have a profound affect on the ability of the fish immune system to activate antimicrobial defenses and genes induced themselves by IFN-gamma.
Collapse
Affiliation(s)
- Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | |
Collapse
|
29
|
Romieu-Mourez R, Solis M, Nardin A, Goubau D, Baron-Bodo V, Lin R, Massie B, Salcedo M, Hiscott J. Distinct Roles for IFN Regulatory Factor (IRF)-3 and IRF-7 in the Activation of Antitumor Properties of Human Macrophages. Cancer Res 2006; 66:10576-85. [PMID: 17079482 DOI: 10.1158/0008-5472.can-06-1279] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
When properly activated, macrophages can be tumoricidal, thus making them attractive additions to standard cancer therapies. To this end, tolerance and activity of human autologous IFN-gamma-activated macrophages, produced in large scale for clinical use (MAK cells), have been assessed in pilot trials in cancer patients. In the present study, we tested the hypothesis that activation of IFN regulatory factor (IRF)-3 and IRF-7, with subsequent type I IFN production, may be involved in the acquisition of new antitumor functions by macrophages. Adenoviral vectors were generated for the delivery of constitutively active forms of IRF-3 (Ad-IRF-3) or IRF-7 (Ad-IRF-7) into primary human macrophages. Cell death was observed in Ad-IRF-3-transduced macrophages, whereas Ad-IRF-7-transduced macrophages produced type I IFNs and displayed increased expression of genes encoding tumor necrosis factor (TNF)-related apoptosis-inducing ligand, interleukin (IL)-12, IL-15, and CD80, persisting for at least 96 hours. Expression of iNOS, TNF-alpha, FasL, IL-1, and IL-6 genes was unaltered by Ad-IRF-7 transduction. Interestingly, Ad-IRF-3 or Ad-IRF-7 transduction negatively regulated the transcription of protumorigenic genes encoding vascular endothelial growth factor and matrix metalloproteinase-2. Furthermore, Ad-IRF-7-transduced macrophages exerted a cytostatic activity on different cancer cell lines, including SK-BR-3, MCF-7, and COLO-205; the latter cells were shown previously to be insensitive to MAK cells. In conclusion, transduction of active forms of IRF-3 or IRF-7 differentially modulate the apoptotic and antitumor properties of primary macrophages, with active IRF-7 leading to the acquisition of novel antitumor effector functions.
Collapse
Affiliation(s)
- Raphaëlle Romieu-Mourez
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Yamaji K, Nabeshima S, Murata M, Chong Y, Furusyo N, Ikematsu H, Hayashi J. Interferon-alpha/beta upregulate IL-15 expression in vitro and in vivo: analysis in human hepatocellular carcinoma cell lines and in chronic hepatitis C patients during interferon-alpha/beta treatment. Cancer Immunol Immunother 2006; 55:394-403. [PMID: 16041541 PMCID: PMC11030826 DOI: 10.1007/s00262-005-0005-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2004] [Accepted: 03/25/2005] [Indexed: 01/11/2023]
Abstract
Type I interferon (IFN) possesses antiviral and antitumor activities and also having an immune regulatory effect, activating cellular immune response and upregulating several cytokines. Recent study has shown that type I IFN upregurates the dendritic cell production of IL-15 capable of activating natural killer cells and CD8+ memory T lymphocytes. However, it is still unknown if type I IFN induces IL-15 production in non-immune cells and if type I IFN affects IL-15 production in vivo. The present study investigated the effect of type I IFNs on IL-15 expression in hepatocellular carcinoma (HCC) cell lines in vitro and in patients with chronic hepatitis C in vivo. When three HCC cell lines, Huh7, HepG2, and JHH4 were cultured in vitro, IFN upregulation of IL-15 expression was observed at both the mRNA and protein levels. In experiments using Huh7 cells, upregulation of IL-15 expression occurred within 24 h of the start of IFN stimulation, and both IFN-alpha and -beta dose-dependently increased IL-15 production in the range from 100 U/ml to 10,000 U/ml of concentration. IFN-beta showed stronger activity in IL-15 production induction in vitro than IFN-alpha. For in vivo examination, sera were obtained from 21 chronic hepatitis C patients treated with IFN and 29 healthy individuals, and the serum IL-15 level was quantified by ELISA. The serum IL-15 level of chronic hepatitis C patients before IFN treatment was similar to that of the healthy controls and significantly increased only during the IFN administration period. These results confirm that IFN-alpha/beta induce IL-15 production and also suggest that IL-15 may be associated with type I IFN-induced immune response.
Collapse
Affiliation(s)
- Kouzaburo Yamaji
- Department of General Medicine, Kyushu University Hospital, 3-3-1, Maidashi Higashiku, Fukuoka, 812-8582, Japan.
| | | | | | | | | | | | | |
Collapse
|
31
|
Hiscott J, Grandvaux N, Sharma S, Tenoever BR, Servant MJ, Lin R. Convergence of the NF-κB and Interferon Signaling Pathways in the Regulation of Antiviral Defense and Apoptosis. Ann N Y Acad Sci 2006; 1010:237-48. [PMID: 15033728 DOI: 10.1196/annals.1299.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The ubiquitously expressed interferon regulatory factor 3 (IRF-3) is directly activated following virus infection and functions as a key activator of the immediate-early Type 1 interferon (IFN) genes. Using DNA microarray analysis (8,556 genes) in Jurkat T cells inducibly expressing constitutively active IRF-3, several target genes directly regulated by IRF-3 were identified. Among the genes upregulated by IRF-3 were transcripts for a subset of known IFN-stimulated genes (ISGs), including ISG56, which functions as an inhibitor of translation initiation. Phosphorylation of C-terminal Ser/Thr residues--(382)GGASSLENTVDLHISNSHPLSLTSDQY(408)-is required for IRF-3 activation. Using C-terminal point mutations and a novel phosphospecific antibody, Ser396 was characterized as the minimal phosphoacceptor site required in vivo for IRF-3 activation following Sendai virus (SeV) infection, expression of viral nucleocapsid, or double-stranded RNA (dsRNA) treatment. The identity of the virus-activated kinase (VAK) activity that targets and activates IRF-3 and IRF-7 has remained a critical missing link in the understanding of interferon signaling. We report that the IKK-related kinases-IKKepsilon/TBK-1-are components of VAK that mediate IRF-3 and IRF-7 phosphorylation and thus functionally link the NF-kappaB and IRF pathways in the development of the antiviral response.
Collapse
Affiliation(s)
- John Hiscott
- Lady Davis Institute for Medical Research, Jewish General Hospital, Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Canada H3T 1E2.
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Herpesvirus infection leads to the rapid induction of an innate immune response. A central aspect of this host response is the production and secretion of type I interferon. The current model of virus-mediated interferon production includes three stages: sensitization, induction, and amplification. A key mediator of all three stages is the cellular transcription factor interferon regulatory factor 3 (IRF3). Although the precise details of IRF3 activation and interferon production in response to herpesvirus infection are still being elucidated, viral proteins that block components of the interferon pathway, particularly IRF3, have been identified and characterized. In vivo studies have shown that in addition to type I interferon, interleukin-15 (IL-15) and natural killer (NK) cells also play an important role in mediating resistance to herpesvirus infection. Recent investigations have demonstrated a strong association between IRF3, interferon, IL-15, and NK cells. This review will focus on herpesvirus-mediated induction of innate immunity, the central role of the type I interferon response and mechanisms used by herpesviruses to block host antiviral immunity.
Collapse
Affiliation(s)
- Karen L Mossman
- Department of Pathology and Molecular Medicine, Centre for Gene Therapeutics, McMaster University, Hamilton, Ontario, Canada.
| | | |
Collapse
|
33
|
Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJP, Kenyon L, Visone R, De Martino I, Ciarmiello A, Arra C, Viglietto G, Croce CM, Fusco A. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005; 24:3427-35. [PMID: 15735694 DOI: 10.1038/sj.onc.1208501] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of HMGA1 proteins is a constant feature of human carcinomas. Moreover, rearrangements of this gene have been detected in several human benign tumors of mesenchymal origin. To define the role of these proteins in cell transformation in vivo, we have generated transgenic mice overexpressing ubiquitously the HMGA1 gene. These mice developed mixed growth hormone/prolactin cell pituitary adenomas and natural killer (NK)-T/NK cell lymphomas. The HMGA1-induced expression of IL-2 and IL-15 proteins and their receptors may account for the onset of these lymphomas. At odds with mice overexpressing a wild-type or a truncated HMGA2 protein, adrenal medullar hyperplasia and pancreatic islet cell hyperplasia frequently occurred and no increase in body size and weight was observed in HMGA1 mice. Taken together, these data indicate an oncogenic role of the HMGA1 gene also in vivo.
Collapse
Affiliation(s)
- Monica Fedele
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dubois SP, Waldmann TA, Müller JR. Survival adjustment of mature dendritic cells by IL-15. Proc Natl Acad Sci U S A 2005; 102:8662-7. [PMID: 15932944 PMCID: PMC1150852 DOI: 10.1073/pnas.0503360102] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The survival of CD8+/CD44(hi) memory phenotype T cells depends on an IL-15 activity on nonlymphoid cells. Here, we report that IL-15 and its receptor were induced on dendritic cells (DCs) by a combination of IFN-gamma and NF-kappaB relA inducers. IL-15 conferred in an autocrine loop resistance to apoptosis that accompanied the maturation process in DCs in vitro. As an apparent result in vivo, mice deficient in IL-15 or its receptor harbor few DCs. Injecting DCs into IL-15-/- mice was associated with the appearance of CD8+/CD44(hi) T cells that depended on IL-15 expression but also correlated with the longevity of the DCs. These findings support the hypothesis that DCs mediate the effect of IL-15 on CD8+/CD44(hi) memory phenotype T cells.
Collapse
Affiliation(s)
- Sigrid P Dubois
- Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
35
|
Nishimura H, Fujimoto A, Tamura N, Yajima T, Wajjwalku W, Yoshikai Y. A novel autoregulatory mechanism for transcriptional activation of the IL‐15 gene by a nonsecretable isoform of IL‐15 generated by alternative splicing. FASEB J 2005; 19:19-28. [PMID: 15629891 DOI: 10.1096/fj.04-2633com] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are several isoforms of interleukin (IL) -15 generated by alternating splicing. We reported previously that alternative IL-15 transgenic (Tg) mice expressing an IL-15 cDNA isoform encoding nonsecretable IL-15 protein had an impaired ability to produce IL-15. In this study, we found that expression of endogenous IL-15 mRNA but not tumor necrosis factor alpha mRNA was severely impaired in response to lipopolysaccharide, not only in macrophages from alternative IL-15 Tg mice but also in RAW264.7 cells that had been transfected with alternative IL-15 together with IL-15 receptor alpha (IL-15Ralpha). IL-15 promoter activity was suppressed in the transfected cells. Although nuclear factor-kappaB activation was not impaired, the binding activity of nuclear extracts to the interferon-stimulated response element of the IL-15 promoter region was reduced in RAW264.7 cells, which had been cotransfected with alternative IL-15 and IL-15Ralpha. IL-15 was mainly colocalized with IL-15Ralpha at the cytoplasmic membrane of RAW264.7 cells, which had been cotransfected with normal IL-15, whereas nonsecretable IL-15 was colocalized with IL-15Ralpha in nucleus after cotransfection with alternative IL-15 and IL-15Ralpha. These results suggest that nonsecretable IL-15 generated by alternative splicing suppresses further IL-15 gene transcription, implying a novel autocrine regulatory mechanism for cytokine gene expression by alternative splicing.
Collapse
Affiliation(s)
- Hitoshi Nishimura
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Liu G, Zhai Q, Schaffner D, Bradburne C, Wu A, Hayford A, Popov S, Grene E, Bailey C, Alibek K. IL-15 induces IFN-beta and iNOS gene expression, and antiviral activity of murine macrophage RAW 264.7 cells. Immunol Lett 2004; 91:171-8. [PMID: 15019287 DOI: 10.1016/j.imlet.2003.11.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2003] [Revised: 11/20/2003] [Accepted: 11/27/2003] [Indexed: 01/12/2023]
Abstract
The effects of interleukine-15 (IL-15) on macrophage activation and antiviral activity have been investigated in this study. We have provided evidence that IL-15 stimulates murine macrophage RAW 264.7 cells to release nitric oxide (NO) and inhibit vaccinia virus (VV) replication in bystander human 293 cells in a dose-dependent manner. The IL-15-induced antiviral activity was partially mediated by NO, as blocking NO production by NO synthase (iNOS) inhibitor NG-monomethyl-L-arginine acetate (L-NMA) partially restored the virus replication. Interferon-gamma (IFN-gamma) was not detectable by ELISA in the cell supernatant of IL-15-activated macrophages or in the co-cultures of macrophages and infected bystander cells. Neutralizing anti-IFN-gamma, anti-IFN-gamma receptor R2, anti-TNF-alpha, or anti-IL-12 antibodies had no effect on NO production or antiviral activity. In contrast, neutralizing anti-IFN-alpha/beta antibody completely restored the VV replication and reduced the NO level to one third of that in the control. Elevated mRNA levels of IFN-beta and iNOS genes were detected in IL-15-activated RAW 264.7 cells by RT-PCR. Our data suggest that IL-15 is capable of inducing IFN-beta, which could participate in NO-mediated antiviral effect.
Collapse
Affiliation(s)
- Ge Liu
- Advanced Biosystems Inc., George Mason University, 10900 University Boulevard, MSN 1A8, Manassas, VA 20110, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Lum JJ, Schnepple DJ, Nie Z, Sanchez-Dardon J, Mbisa GL, Mihowich J, Hawley N, Narayan S, Kim JE, Lynch DH, Badley AD. Differential effects of interleukin-7 and interleukin-15 on NK cell anti-human immunodeficiency virus activity. J Virol 2004; 78:6033-42. [PMID: 15141001 PMCID: PMC415792 DOI: 10.1128/jvi.78.11.6033-6042.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Accepted: 01/20/2004] [Indexed: 11/20/2022] Open
Abstract
The ability of interleukin-7 (IL-7) and IL-15 to expand and/or augment effector cell functions may be of therapeutic benefit to human immunodeficiency virus (HIV)-infected patients. The functional effects of these cytokines on innate HIV-specific immunity and their impact on cells harboring HIV are unknown. We demonstrate that both IL-7 and IL-15 augment natural killer (NK) function by using cells (CD3(-) CD16(+) CD56(+)) from both HIV-positive and -negative donors. Whereas IL-7 enhances NK function through upregulation of Fas ligand, the effect of IL-15 is mediated through upregulation of tumor necrosis factor-related apoptosis-inducing ligand. The difference in these effector mechanisms is reflected by the ability of IL-15-treated but not IL-7-treated NK cells to reduce the burden of replication-competent HIV in autologous peripheral blood mononuclear cells (PBMC) (infectious units per million for control NK cells, 6.79; for IL-7-treated NK cells, 236.17; for IL-15-treated cells, 1.01; P = 0.01 versus control). In addition, the treatment of PBMC with IL-15-treated but not IL-7-treated NK cells causes undetectable HIV p24 (five of five cases), HIV RNA (five of five cases), or HIV DNA (three of five cases). These results support the concept of adjuvant immunotherapy of HIV infection with either IL-7 or IL-15 but suggest that the NK-mediated antiviral effect of IL-15 may be superior.
Collapse
Affiliation(s)
- Julian J Lum
- Program in Translational Immunovirology and Biodefense, Division of Infectious Diseases, Mayo Clinic and Foundation, 200 First St. NW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mention JJ, Ben Ahmed M, Bègue B, Barbe U, Verkarre V, Asnafi V, Colombel JF, Cugnenc PH, Ruemmele FM, McIntyre E, Brousse N, Cellier C, Cerf-Bensussan N. Interleukin 15: a key to disrupted intraepithelial lymphocyte homeostasis and lymphomagenesis in celiac disease. Gastroenterology 2003; 125:730-45. [PMID: 12949719 DOI: 10.1016/s0016-5085(03)01047-3] [Citation(s) in RCA: 327] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS The mechanism of intraepithelial lymphocyte hyperplasia, a hallmark of celiac disease, is unknown. We have investigated the role of epithelium-derived interleukin (IL)-15 in the alterations of epithelial homeostasis in refractory celiac sprue, a privileged situation to study the first step of lymphoid transformation and the contribution of intraepithelial lymphocytes to villous atrophy in celiac disease. METHODS IL-15 expression was assessed in biopsy specimens and isolated enterocytes by combining immunohistochemistry, flow cytometry, and real-time quantitative polymerase chain reaction. The ability of IL-15 to induce growth and survival of clonal intraepithelial lymphocytes lacking surface CD3 and to induce their cytotoxicity and secretion of interferon gamma was tested using soluble IL-15 and coculture in the presence of epithelial cell lines expressing membrane IL-15. RESULTS IL-15 was massively overexpressed not only in lamina propria but also in the intestinal epithelium of patients with active celiac disease and refractory celiac sprue. IL-15 was not secreted but delivered at the surface of enterocytes. IL-15 specifically induced the expansion and survival of the clonal abnormal intraepithelial lymphocytes that characterize refractory celiac sprue and triggered their secretion of interferon gamma and their cytotoxicity against intestinal epithelial cells. Comparable activating signals could be delivered by IL-15 expressed at the membrane of the T84 enterocyte cell line. CONCLUSIONS These data provide strong evidence that uncontrolled overexpression of IL-15 in refractory celiac sprue perpetuates epithelial damage and promotes the emergence of T-cell clonal proliferations. Blocking IL-15 might prove useful to treat this severe complication of celiac disease.
Collapse
|
39
|
Servant MJ, Grandvaux N, tenOever BR, Duguay D, Lin R, Hiscott J. Identification of the minimal phosphoacceptor site required for in vivo activation of interferon regulatory factor 3 in response to virus and double-stranded RNA. J Biol Chem 2003; 278:9441-7. [PMID: 12524442 DOI: 10.1074/jbc.m209851200] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ubiquitously expressed latent interferon regulatory factor (IRF) 3 transcription factor is activated in response to virus infection by phosphorylation events that target a cluster of Ser/Thr residues, (382)GGASSLENTVDLHISNSHPLSLTSDQY(408) at the C-terminal end of the protein. To delineate the minimal phosphoacceptor sites required for IRF-3 activation, several point mutations were generated and tested for transactivation potential and cAMP-response element-binding protein-binding protein/p300 coactivator association. Expression of the IRF-3 S396D mutant alone was sufficient to induce type I IFN beta, IFNalpha1, RANTES, and the interferon-stimulated gene 561 promoters. Using SDS-PAGE and immunoblotting with a novel phosphospecific antibody, we show for the first time that, in vivo, IRF-3 is phosphorylated on Ser(396) following Sendai virus infection, expression of viral nucleocapsid, and double-stranded RNA treatment. These results demonstrate that Ser(396) within the C-terminal Ser/Thr cluster is targeted in vivo for phosphorylation following virus infection and plays an essential role in IRF-3 activation. The inability of the phosphospecific antibody to detect Ser(396) phosphorylation in lipopolysaccharide-treated cells suggests that other major pathways may be involved in IRF-3 activation following Toll-like receptor 4 stimulation.
Collapse
Affiliation(s)
- Marc J Servant
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research and the Departments of Microbiology & Immunology and Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Byers AM, Kemball CC, Andrews NP, Lukacher AE. Regulation of antiviral CD8+ T cells by inhibitory natural killer cell receptors. Microbes Infect 2003; 5:169-77. [PMID: 12650775 DOI: 10.1016/s1286-4579(02)00086-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates that CD8(+) T cells express natural killer cell receptors that constrain the range and magnitude of their activities. For virus-specific CD8(+) T cells, upregulation of these receptors serves to control infection, while concurrently minimizing bystander pathology. Dysregulated expression of these receptors, however, may foster the establishment of persistent virus infection.
Collapse
Affiliation(s)
- Anthony M Byers
- Department of Pathology and Laboratory Medicine, Woodruff Memorial Research Building, Rm. 7307, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
41
|
Lodolce JP, Burkett PR, Koka RM, Boone DL, Ma A. Regulation of lymphoid homeostasis by interleukin-15. Cytokine Growth Factor Rev 2002; 13:429-39. [PMID: 12401478 DOI: 10.1016/s1359-6101(02)00029-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Interleukin (IL)-15 is a member of the common gamma chain family of cytokines, and is closely related to IL-2. While these two cytokines share several important biological functions in vitro, recent mouse models have demonstrated unique roles for these two cytokines in supporting lymphoid homeostasis in vivo. IL-15 has been shown to regulate the homeostasis of both innate and adaptive immune cells, and this review will discuss several ways in which this pleiotropic cytokine may support lymphoid homeostasis.
Collapse
Affiliation(s)
- James P Lodolce
- Department of Medicine, Ben May Institute for Cancer Research, University of Chicago, 5841 S Maryland Ave MC 6084, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
42
|
Lodolce J, Burkett P, Koka R, Boone D, Chien M, Chan F, Madonia M, Chai S, Ma A. Interleukin-15 and the regulation of lymphoid homeostasis. Mol Immunol 2002; 39:537-44. [PMID: 12431387 DOI: 10.1016/s0161-5890(02)00211-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Interleukin-15 (IL-15) is a cytokine that plays unique roles in both innate and adaptive immune cell homeostasis. While early studies suggested that IL-15 resembled IL-2, more recent work suggests that IL-15 may play multiple unique roles in immune homeostasis befitting its pleiotropic expression pattern. This review will focus on recent studies that highlight some of these functions.
Collapse
Affiliation(s)
- James Lodolce
- Department of Medicine and the Ben May Institute for Cancer Research, University of Chicago, 5841 S. Maryland Avenue MC 6084, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Croy BA, Chantakru S, Esadeg S, Ashkar AA, Wei Q. Decidual natural killer cells: key regulators of placental development (a review). J Reprod Immunol 2002; 57:151-68. [PMID: 12385840 DOI: 10.1016/s0165-0378(02)00005-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Establishment of pregnancy initiates a dynamic and predictable series of changes in the uterus. In rodents, the trophectoderm of the blastocyst develops through the stage of an ectoplacental cone to become the placenta. The inner cell mass becomes the fetus and its associated extra-embryonic ectoderm and mesoderm. Maternal changes support development of the conceptus. These begin in the uterine stroma, which undergoes a process known as decidualization, and progress to include dilation and elongation of the uteroplacental arteries and activation and proliferation of specialized large granulated lymphocytes in the decidua basalis. This review focuses on these pregnancy-associated lymphocytes, known as uterine Natural Killer (uNK) cells and on their interactions with the other tissues that form the mesometrial aspect of the mouse maternal-fetal interface. Analogous lymphocytes are present in the decidualized human uterus. Understanding of uNK cell biology has advanced significantly through histological studies of implantation sites in immune deficient mice. Here, we summarize the key studies in lymphocyte-, cytokine- and cytokine receptor-deficient mice and in four enhanced models of gestation in these mice that incorporate transplantation or therapy with biologically active molecules.
Collapse
Affiliation(s)
- B Anne Croy
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Ont., Canada.
| | | | | | | | | |
Collapse
|
44
|
Abstract
An array of inhibitory and activating receptors initially identified on NK cells are also expressed by conventional CD8+ alphabeta T cells. New evidence strongly implicates these 'NK cell receptors' in modulating NK cell and virus-specific CD8+ T cell responses against a variety of viral infections. Precise regulation of NK cell and T cell responses by these receptors optimizes antiviral immunity while preventing immunological bystander pathology and autoimmunity.
Collapse
Affiliation(s)
- Janice M Moser
- Department of Pathology, Woodruff Memorial Research Building, Emory University School of Medicine, 1639 Pierce Drive, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
45
|
Reiss CS, Chesler DA, Hodges J, Ireland DDC, Chen N. Innate immune responses in viral encephalitis. Curr Top Microbiol Immunol 2002; 265:63-94. [PMID: 12014196 DOI: 10.1007/978-3-662-09525-6_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The innate immune system is multifaceted, comprised of preformed factors, cells, and many proteins and lipid mediators produced by those cells. In the CNS these are critical in initiation and amplification of the inflammatory response and in the subsequent elicitation of the specific T cell response to viral encephalitis. Cells that are resident in brain parenchyma and peripheral cells that are recruited both play key roles in the hosts's responses. Unlike the peripheral compartments, in the CNS, non-cytolytic means of eliminating viral infections have been critical, since, in contrast to columnar epithelial cells, neurons are non-renewing. When the innate immune responses are inefficient or absent in viral encephalitis, pathology is more likely. Much more work remains to elucidate all of the critical cells and their mediators, as well as to develop new therapies for infections of the CNS.
Collapse
Affiliation(s)
- C S Reiss
- Biology Department, New York University, 100 Washington Square East, New York, NY 10003-6688, USA
| | | | | | | | | |
Collapse
|
46
|
Grandvaux N, Servant MJ, tenOever B, Sen GC, Balachandran S, Barber GN, Lin R, Hiscott J. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J Virol 2002; 76:5532-9. [PMID: 11991981 PMCID: PMC137057 DOI: 10.1128/jvi.76.11.5532-5539.2002] [Citation(s) in RCA: 430] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ubiquitously expressed interferon regulatory factor 3 (IRF-3) is directly activated after virus infection and functions as a key activator of the immediate-early alpha/beta interferon (IFN) genes, as well as the RANTES chemokine gene. In the present study, a tetracycline-inducible expression system expressing a constitutively active form of IRF-3 (IRF-3 5D) was combined with DNA microarray analysis to identify target genes regulated by IRF-3. Changes in mRNA expression profiles of 8,556 genes were monitored after Tet-inducible expression of IRF-3 5D. Among the genes upregulated by IRF-3 were transcripts for several known IFN-stimulated genes (ISGs). Subsequent analysis revealed that IRF-3 directly induced the expression of ISG56 in an IFN-independent manner through the IFN-stimulated responsive elements (ISREs) of the ISG56 promoter. These results demonstrate that, in addition to its role in the formation of a functional immediate-early IFN-beta enhanceosome, IRF-3 is able to discriminate among ISRE-containing genes involved in the establishment of the antiviral state as a direct response to virus infection.
Collapse
Affiliation(s)
- Nathalie Grandvaux
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec H3T 1E2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Mariner JM, Mamane Y, Hiscott J, Waldmann TA, Azimi N. IFN regulatory factor 4 participates in the human T cell lymphotropic virus type I-mediated activation of the IL-15 receptor alpha promoter. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5667-74. [PMID: 12023365 DOI: 10.4049/jimmunol.168.11.5667] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-15Ralpha mRNA and protein levels are increased in human T cell lymphotropic virus type-I (HTLV-I)-associated adult T cell leukemia. Previously, we demonstrated that IL-15Ralpha expression was activated by HTLV-I Tax, in part, through the action of NF-kappaB. However, there appeared to be additional motifs within the IL-15Ralpha promoter that were responsive to HTLV-I Tax. In this study, we demonstrated that IL-15Ralpha mRNA expression was activated in human monocytes by IFN treatment, suggesting a role for IFN regulatory factors (IRFs) in IL-15Ralpha transcription. In addition, an IRF element within the Tax-responsive element of the IL-15Ralpha promoter was necessary for maximal Tax-induced activation of this promoter. Furthermore, we demonstrated that IRF-4, a transcription factor known to be elevated in HTLV-I-infected cells, activated the IL-15Ralpha promoter. Inhibition of IRF-4 action lead to reduced Tax-induced activation of the IL-15Ralpha promoter, while inhibition of both IRF-4 and NF-kappaB severely inhibited the Tax-induced activation of this promoter. These findings suggest a role for both NF-kappaB and IRF-4 in the transcriptional regulation of IL-15Ralpha by HTLV-I Tax. It is possible that the HTLV-I Tax-mediated induction of IL-15Ralpha and IL-15 may lead to an autocrine cytokine-mediated stimulatory loop leading to the proliferation of HTLV-I infected cells. This loop of proliferation may facilitate viral propagation and play a role in HTLV-I-mediated disease progression.
Collapse
Affiliation(s)
- Jennifer M Mariner
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
48
|
tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J. Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 2002; 76:3659-69. [PMID: 11907205 PMCID: PMC136070 DOI: 10.1128/jvi.76.8.3659-3669.2002] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms of cellular recognition for virus infection remain poorly understood despite the wealth of information regarding the signaling events and transcriptional responses that ensue. Host cells respond to viral infection through the activation of multiple signaling cascades, including the activation of NF-kappaB, c-Jun/ATF-2 (AP-1), and the interferon regulatory factors (IRFs). Although viral products such as double-stranded RNA (dsRNA) and the processes of viral binding and fusion have been implicated in the activation of NF-kappaB and AP-1, the mechanism(s) of IRF-1, IRF-3, and IRF-7 activation has yet to be fully elucidated. Using recombinant measles virus (MeV) constructs, we now demonstrate that phosphorylation-dependent IRF-3 activation represents a novel cellular detection system that recognizes the MeV nucleocapsid structure. At low multiplicities of infection, IRF-3 activation is dependent on viral transcription, since UV cross-linking and a deficient MeV containing a truncated polymerase L gene failed to induce IRF-3 phosphorylation. Expression of the MeV nucleocapsid (N) protein, without the requirement for any additional viral proteins or the generation of dsRNA, was sufficient for IRF-3 activation. In addition, the nucleocapsid protein was found to associate with both IRF-3 and the IRF-3 virus-activated kinase, suggesting that it may aid in the colocalization of the kinase and the substrate. Altogether, this study suggests that IRF-3 recognizes nucleocapsid structures during the course of an MeV infection and triggers the induction of interferon production.
Collapse
Affiliation(s)
- Benjamin R tenOever
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | |
Collapse
|
49
|
Abstract
Because oncogenic DNA viruses establish persistent infections in humans, continuous immunosurveillance for neoplastic cells is required to prevent virus-induced tumors. Antigen-specific CD8+ T lymphocytes are critical in vivo effectors for eliminating virus-infected and virus-transformed cells. Investigation into the induction, regulation, and maintenance of CD8+ T cells specific for these viruses is hindered by the lack of tractable animal models that mimic natural infection. Resistance to tumors induced by polyoma virus, a persistent natural mouse DNA virus, is mediated by polyoma-specific CD8+ T cells. Mice susceptible to polyoma virus tumorigenesis mount a smaller, albeit still considerable, expansion of anti-polyoma CD8+ T cells; importantly, these antiviral CD8+ T cells lack cytotoxic activity while retaining the phenotype of cytotoxic T lymphocyte (CTL) effectors. In this review, we will discuss potential in vivo mechanisms that regulate the functional competence of anti-polyoma CD8+ T cells, particularly in the context of chronic antigenic stimulation provided by persistent viral infections and tumors.
Collapse
Affiliation(s)
- J M Moser
- Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
50
|
Moser JM, Gibbs J, Jensen PE, Lukacher AE. CD94-NKG2A receptors regulate antiviral CD8(+) T cell responses. Nat Immunol 2002; 3:189-95. [PMID: 11812997 DOI: 10.1038/ni757] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
CD8(+) T lymphocytes mediate immunosurveillance against persistent virus infections and virus-induced neoplasia. Polyoma virus, a highly oncogenic natural mouse DNA virus, establishes persistent infection, but only a few mice are highly susceptible to tumors induced by the virus. Mature antiviral CD8(+) T cells expand in tumor-susceptible mice, but their cytotoxic effector activity is nonfunctional in vivo. Here we show that the natural killer cell inhibitory receptor, CD94-NKG2A, is up-regulated by antiviral CD8(+) T cells during acute polyoma infection and is responsible for down-regulating their antigen-specific cytotoxicity during both viral clearance and virus-induced oncogenesis.
Collapse
Affiliation(s)
- Janice M Moser
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|