1
|
Son B, Yoon H, Ryu J, Lee H, Joo J, Park HH, Park TH. Enhanced efficiency of generating human-induced pluripotent stem cells using Lin28-30Kc19 fusion protein. Front Bioeng Biotechnol 2022; 10:911614. [PMID: 35935494 PMCID: PMC9354855 DOI: 10.3389/fbioe.2022.911614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have intrinsic properties, such as self-renewal ability and pluripotency, which are also shown in embryonic stem cells (ESCs). The challenge of improving the iPSC generation efficiency has been an important issue and there have been many attempts to develop iPSC generation methods. In this research, we added Lin28, known as one of the reprogramming factors, in the form of a soluble recombinant protein from E. coli to improve the efficiency of human iPSC (hiPSC) generation, in respect of alkaline phosphatase (AP)-positive colonies. To deliver Lin28 inside the cells, we generated a soluble Lin28-30Kc19 fusion protein, with 30Kc19 at the C-terminal domain of Lin28. 30Kc19, a silkworm hemolymph-derived protein, was fused due to its cell-penetrating and protein-stabilizing properties. The Lin28-30Kc19 was treated to human dermal fibroblasts (HDFs), in combination with four defined reprogramming factors (Oct4, Sox2, c-Myc, and Klf4). After 14 days of cell culture, we confirmed the generated hiPSCs through AP staining. According to the results, the addition of Lin28-30Kc19 increased the number and size of generated AP-positive hiPSC colonies. Through this research, we anticipate that this recombinant protein would be a valuable material for increasing the efficiency of hiPSC generation and for enhancing the possibility as a substitute of the conventional method.
Collapse
Affiliation(s)
- Boram Son
- Department of Bioengineering, Hanyang University, Seoul, South Korea
| | - Hyungro Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Jina Ryu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, South Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, South Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, South Korea
- *Correspondence: Hee Ho Park, ; Tai Hyun Park,
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, South Korea
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, South Korea
- *Correspondence: Hee Ho Park, ; Tai Hyun Park,
| |
Collapse
|
2
|
Hou Y, Gan T, Fang T, Zhao Y, Luo Q, Liu X, Qi L, Zhang Y, Jia F, Han J, Li S, Wang S, Wang F. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3070-3082. [PMID: 35258624 PMCID: PMC8989551 DOI: 10.1093/nar/gkac151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/23/2022] Open
Abstract
Pyridostatin (PDS) is a well-known G-quadruplex (G4) inducer and stabilizer, yet its target genes have remained unclear. Herein, applying MS proteomics strategy, we revealed PDS significantly downregulated 22 proteins but upregulated 16 proteins in HeLa cancer cells, of which the genes both contain a number of G4 potential sequences, implying that PDS regulation on gene expression is far more complicated than inducing/stabilizing G4 structures. The PDS-downregulated proteins consequently upregulated 6 proteins to activate cyclin and cell cycle regulation, suggesting that PDS itself is not a potential anticancer agent, at least toward HeLa cancer cells. Importantly, SUB1, which encodes human positive cofactor and DNA lesion sensor PC4, was downregulated by 4.76-fold. Further studies demonstrated that the downregulation of PC4 dramatically promoted the cytotoxicity of trans-[PtCl2(NH3)(thiazole)] (trans-PtTz) toward HeLa cells to a similar level of cisplatin, contributable to retarding the repair of 1,3-trans-PtTz crosslinked DNA lesion mediated by PC4. These findings not only provide new insights into better understanding on the biological functions of PDS but also implicate a strategy for the rational design of novel multi-targeting platinum anticancer drugs via conjugation of PDS as a ligand to the coordination scaffold of transplatin for battling drug resistance to cisplatin.
Collapse
Affiliation(s)
- Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Tieliang Gan
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Tiantian Fang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Yao Zhao
- Correspondence may also be addressed to Yao Zhao. Tel: +86 010 62529069;
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
- College of Chemical Science, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, 100049 Beijing, P.R. China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Feifei Jia
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Shumu Li
- Beijing National Laboratory for Molecular Sciences; CAS Key Laboratory of Analytical Chemistry for Living Biosystems; National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun North First Street, Haidian District, 100190 Beijing, P.R. China
| | - Shijun Wang
- Correspondence may also be addressed to Shijun Wang. Tel: +86 0531 89628750;
| | - Fuyi Wang
- To whom correspondence should be addressed. Tel: +86 010 62529069;
| |
Collapse
|
3
|
Deprey K, Becker L, Kritzer J, Plückthun A. Trapped! A Critical Evaluation of Methods for Measuring Total Cellular Uptake versus Cytosolic Localization. Bioconjug Chem 2019; 30:1006-1027. [PMID: 30882208 PMCID: PMC6527423 DOI: 10.1021/acs.bioconjchem.9b00112] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomolecules have many properties that make them promising for intracellular therapeutic applications, but delivery remains a key challenge because large biomolecules cannot easily enter the cytosol. Furthermore, quantification of total intracellular versus cytosolic concentrations remains demanding, and the determination of delivery efficiency is thus not straightforward. In this review, we discuss strategies for delivering biomolecules into the cytosol and briefly summarize the mechanisms of uptake for these systems. We then describe commonly used methods to measure total cellular uptake and, more selectively, cytosolic localization, and discuss the major advantages and drawbacks of each method. We critically evaluate methods of measuring "cell penetration" that do not adequately distinguish total cellular uptake and cytosolic localization, which often lead to inaccurate interpretations of a molecule's cytosolic localization. Finally, we summarize the properties and components of each method, including the main caveats of each, to allow for informed decisions about method selection for specific applications. When applied correctly and interpreted carefully, methods for quantifying cytosolic localization offer valuable insight into the bioactivity of biomolecules and potentially the prospects for their eventual development into therapeutics.
Collapse
Affiliation(s)
- Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Lukas Becker
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joshua Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
4
|
Wong K, Briddon SJ, Holliday ND, Kerr ID. Plasma membrane dynamics and tetrameric organisation of ABCG2 transporters in mammalian cells revealed by single particle imaging techniques. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:19-29. [DOI: 10.1016/j.bbamcr.2015.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/17/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
5
|
Liu X, Zhao Q, Peng X, Xia S, Shen W, Zong Y, Cheng J, Wu W, Zhang M, Du F, Xu W, Qian H, Shao Q. PTD-mediated intracellular delivery of mutant NFAT minimum DNA binding domain inhibited the proliferation of T cells. Int Immunopharmacol 2014; 19:110-8. [DOI: 10.1016/j.intimp.2014.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 12/31/2013] [Accepted: 01/03/2014] [Indexed: 12/01/2022]
|
6
|
O'Leary VB, Ovsepian SV, Bodeker M, Dolly JO. Improved lentiviral transduction of ALS motoneurons in vivo via dual targeting. Mol Pharm 2013; 10:4195-206. [PMID: 24066863 DOI: 10.1021/mp400247t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Treatment of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease, is hampered by its complex etiology and lack of efficient means for targeted transfer of therapeutics into motoneurons. The objective of this research was engineering of a versatile motoneuron targeting adapter--a full-length atoxic tetanus toxin fused to core-streptavidin (CS-TeTIM)--for retro-axonal transduction of viral vectors; validation of the targeting efficiency of CS-TeTIM in vivo, by expression of green fluorescence protein (GFP) reporter in motoneurons of presymptomatic and symptomatic ALS-like SOD1(G93A) mice, and comparison with age-matched controls; and appraisal of lentiviral transduction with CS-TeTIM relative to (1) a HC binding fragment of tetanus toxin CS-TeTx(HC), (2) rabies glycoprotein (RG), and (3) a CS-TeTIM-RG dual targeting approach. CS-TeTIM and CS-TeTx(HC) were engineered using recombinant technology and site-directed mutagenesis. Biotinylated vectors, pseudotyped with vesicular stomatitis virus glycoprotein (VSV-G) or RG, were linked to these adaptors and injected intraperitoneally (ip) into presymptomatic (12 weeks old), symptomatic SOD1(G93A) (22 weeks old) or wild type control mice, followed by monitoring of GFP expression in the spinal cord and supraspinal motor structures with quantitative PCR and immuno-histochemistry. Transcripts were detected in the spinal cord and supraspinal motor structures of all mice 2 weeks after receiving a single ip injection, although in symptomatic SOD1(G93A) animals reporter RNA levels were lower compared to presymptomatic and wild-type controls irrespective of the targeting approach. GFP transduction with CS-TeTIM proved more efficient than CS-TeTx(HC) across all groups while CS-TeTIM-RG dual-targeted vectors yielded the highest transcript numbers. Importantly, in both wild-type and presymptomatic SOD1(G93A) mice strong colabeling of choline-acetyltransferase (ChAT) and GFP was visualized in neurons of the brain stem and spinal cord. CS-TeTIM, a versatile adaptor protein for targeted lentiviral transduction of motoneurons, has been engineered and its competence assessed relative to CS-TeTx(HC) and RG. Evidence has been provided that highlights the potential usefulness of this novel recombinant tool for basic research with implications for improved transfer of therapeutic candidates into motoneurons for the amelioration of ALS and related diseases.
Collapse
Affiliation(s)
- Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University , Dublin 9, Ireland
| | | | | | | |
Collapse
|
7
|
Gabanyi I, Lojudice FH, Kossugue PM, Rebelato E, Demasi MA, Sogayar MC. VP22 herpes simplex virus protein can transduce proteins into stem cells. Braz J Med Biol Res 2013; 46:121-7. [PMID: 23369972 PMCID: PMC3854363 DOI: 10.1590/1414-431x20122148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/02/2012] [Indexed: 12/02/2022] Open
Abstract
The type I herpes simplex virus VP22 tegument protein is abundant and well known
for its ability to translocate proteins from one cell to the other. In spite of
some reports questioning its ability to translocate proteins by attributing the
results observed to fixation artifacts or simple attachment to the cell
membrane, VP22 has been used to deliver several proteins into different cell
types, triggering the expected cell response. However, the question of the
ability of VP22 to enter stem cells has not been addressed. We investigated
whether VP22 could be used as a tool to be applied in stem cell research and
differentiation due to its capacity to internalize other proteins without
altering the cell genome. We generated a VP22.eGFP construct to evaluate whether
VP22 could be internalized and carry another protein with it into two different
types of stem cells, namely adult human dental pulp stem cells and mouse
embryonic stem cells. We generated a VP22.eGFP fusion protein and demonstrated
that, in fact, it enters stem cells. Therefore, this system may be used as a
tool to deliver various proteins into stem cells, allowing stem cell research,
differentiation and the generation of induced pluripotent stem cells in the
absence of genome alterations.
Collapse
Affiliation(s)
- I Gabanyi
- Universidade de São Paulo, Centro de Terapia Celular e Molecular, Departamento de Bioquímica, Instituto de Química, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
8
|
Tobaly-Tapiero J, Zamborlini A, Bittoun P, Saïb A. Investigating the intercellular spreading properties of the foamy virus Gag protein. PLoS One 2012; 7:e31108. [PMID: 22393357 PMCID: PMC3290618 DOI: 10.1371/journal.pone.0031108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/02/2012] [Indexed: 01/08/2023] Open
Abstract
Small regions called protein transduction domains (PTDs), identified in cellular and viral proteins, have been reported to efficiently cross biological membranes. Here we show that the structural Gag protein of the prototypic foamy virus (PFV) is apparently able to move from cell to cell and to transport the green fluorescent protein (GFP) from few transfected cells to the nuclei of the entire monolayer. Deletion studies showed that this property lies within the second glycine/arginine (GRII) box in the C-terminus of the protein. We also found that uptake and nuclear accumulation of Gag GRII expressed as GFP-fusion protein in recipient cells was observed only following methanol fixation, but never in living cells or when cells were fixed with glutaraldehyde or treated with trichloroacetic acid prior to methanol fixation. Absence of intercellular spreading in vivo was further confirmed using a sensitive luciferase activity assay based on transactivation of the PFV long terminal repeats. Thus, we conclude that intercellular spreading of PFV Gag represents an artificial diffusion event occurring during cell fixation, followed by nuclear retention mediated by the chromatin-binding sequence within the Gag GRII box. In light of these results, we advise caution before defining a peptide as PTD on the basis of intercellular spreading observed by fluorescence microscopy.
Collapse
Affiliation(s)
- Joelle Tobaly-Tapiero
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
| | - Alessia Zamborlini
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| | - Patricia Bittoun
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
| | - Ali Saïb
- Institut Universitaire d'Hématologie, CNRS UMR7212-Inserm U944-Université Paris Diderot-Paris7, Paris, France
- Conservatoire National des Arts et Métiers, Paris, France
| |
Collapse
|
9
|
Jin GS, Zhu GD, Zhao ZG, Liu FS. VP22 enhances the expression of glucocerebrosidase in human Gaucher II fibroblast cells mediated by lentiviral vectors. Clin Exp Med 2011; 12:135-43. [DOI: 10.1007/s10238-011-0152-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/29/2011] [Indexed: 01/17/2023]
|
10
|
Zaichick SV, Bohannon KP, Smith GA. Alphaherpesviruses and the cytoskeleton in neuronal infections. Viruses 2011; 3:941-81. [PMID: 21994765 PMCID: PMC3185784 DOI: 10.3390/v3070941] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 12/13/2022] Open
Abstract
Following infection of exposed peripheral tissues, neurotropic alphaherpesviruses invade nerve endings and deposit their DNA genomes into the nuclei of neurons resident in ganglia of the peripheral nervous system. The end result of these events is the establishment of a life-long latent infection. Neuroinvasion typically requires efficient viral transmission through a polarized epithelium followed by long-distance transport through the viscous axoplasm. These events are mediated by the recruitment of the cellular microtubule motor proteins to the intracellular viral particle and by alterations to the cytoskeletal architecture. The focus of this review is the interplay between neurotropic herpesviruses and the cytoskeleton.
Collapse
Affiliation(s)
- Sofia V Zaichick
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
11
|
Efficient secretion of the herpes simplex virus tegument protein VP22 from living mammalian cells. Arch Virol 2008; 153:1191-5. [DOI: 10.1007/s00705-008-0094-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 03/17/2008] [Indexed: 11/25/2022]
|
12
|
Rodighiero S, Bazzini C, Ritter M, Fürst J, Botta G, Meyer G, Paulmichl M. Fixation, mounting and sealing with nail polish of cell specimens lead to incorrect FRET measurements using acceptor photobleaching. Cell Physiol Biochem 2008; 21:489-98. [PMID: 18453757 DOI: 10.1159/000129642] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2008] [Indexed: 11/19/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) is a technique used for the study of functional interactions between molecules. The intimate vicinity between two fluorescent molecules (FRET-pair; donor and acceptor) allows for an energy transfer, which can be directly calculated as the so called FRET efficiency. This technique is used in fixed as well as living cells. Here we show first, measured by the FRET technique, that the ICln ion channel is transposed from the cytosol towards the cellular membrane in HEK cells after swelling, and second, that the calculation of the FRET efficiency by de-quenching the donor cyan-fluorescent-protein (CFP) emission due to acceptor-photobleaching leads to erroneous estimate of the FRET efficiency in fixed, mounted and sealed specimens. The acceptor photobleaching leads to a modification of the donor cyan-fluorescent-protein, which shows then a strong emission, thus mimicking functional interaction between CFP (donor) and yellow-fluorescent-protein (YFP; acceptor). Moreover, the procedure of acceptor photobleaching masks physiological (non random) interaction between molecules within the fixed, mounted and sealed cell. We show that no artifactual CFP modifications arise when using the acceptor photobleaching technique under in vivo conditions, and we offer strategies to minimize erroneous FRET efficiency calculations if cells need to be fixed.
Collapse
|
13
|
Sciortino MT, Taddeo B, Giuffrè-Cuculletto M, Medici MA, Mastino A, Roizman B. Replication-competent herpes simplex virus 1 isolates selected from cells transfected with a bacterial artificial chromosome DNA lacking only the UL49 gene vary with respect to the defect in the UL41 gene encoding host shutoff RNase. J Virol 2007; 81:10924-32. [PMID: 17670820 PMCID: PMC2045545 DOI: 10.1128/jvi.01239-07] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To generate a null U(L)49 gene mutant of herpes simplex virus 1 (HSV-1), we deleted from the viral DNA, encoded as a bacterial artificial chromosome (BAC), the U(L)49 open reading frame and, in a second step, restored it. Upon transfection into Vero cells, the BAC-DeltaU(L)49 DNA yielded foci of degenerated cells that could not be expanded and a few replication-competent clones. The replication-competent viral clones derived from independent transfections yielded viruses that expressed genes with some delay, produced smaller plaques, and gave lower yields than wild-type virus. A key finding is that the independently derived replication-competent viruses lacked the virion host shutoff (vhs) activity expressed by the RNase encoded by the U(L)41 gene. One mutant virus expressed no vhs protein, whereas two others, derived from independent transfections, produced truncated vhs proteins consistent with the spontaneous in-frame deletion. In contrast, cells infected with the virus recovered upon transfection of the BAC-U(L)49R DNA (R-U(L)49) accumulated a full-length vhs protein, indicating that in the parental BAC-DeltaU(L)49 DNA, the U(L)41 gene was intact. We conclude that expression of the vhs protein in the absence of U(L)49 protein is lethal, a conclusion bolstered by the evidence reported elsewhere that in transfected cells vhs requires both VP16 and VP22, the product of U(L)49, to be neutralized.
Collapse
Affiliation(s)
- Maria Teresa Sciortino
- University of Chicago, Viral Oncology Laboratory, 910 East 58th St., Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lemken ML, Wolf C, Wybranietz WA, Schmidt U, Smirnow I, Bühring HJ, Mack AF, Lauer UM, Bitzer M. Evidence for intercellular trafficking of VP22 in living cells. Mol Ther 2007; 15:310-9. [PMID: 17235309 DOI: 10.1038/sj.mt.6300013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The intercellular trafficking property of the herpes simplex virus type 1 tegument protein VP22 makes it a promising tool for overcoming low transduction efficiencies in gene therapy. However, recent reports suggest not only that VP22 cannot facilitate intercellular spreading and that trafficking of VP22 fusion proteins results from artifacts of cell fixation only. To provide direct evidence for the presence or absence of VP22-mediated intercellular trafficking, we generated an adenoviral vector with a dual expression cassette for VP22 fused to green fluorescent protein (VP22 GFP) and DsRed under the control of distinct human cytomegalovirus immediate-early enhancer/promoter regions. Using this vector, we were able to distinguish clearly between primary transduced cells and cells taking up VP22GFP by intercellular trafficking. To our knowledge, for the first time, we could demonstrate by live-cell confocal fluorescence microscopy that VP22GFP can be found intracellularly in unfixed recipient cells. The extent of VP22 spread was similar in paraformaldehyde-fixed cells and unfixed cells as demonstrated by fluorescence-activated cell sorting analysis. We thus confirmed the ability of VP22-mediated intercellular trafficking in live unfixed cells.
Collapse
Affiliation(s)
- Marie-Luise Lemken
- Department of Internal Medicine I, University Clinic Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Chen H, Song C, Qin A, Zhang C. Expression and intercellular trafficking of the VP22 protein of CVI988/Rispens vaccine strain of Marek’s disease virus. ACTA ACUST UNITED AC 2007; 50:75-9. [PMID: 17393086 DOI: 10.1007/s11427-007-2038-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Accepted: 03/28/2006] [Indexed: 11/30/2022]
Abstract
The viral protein 22 (VP22) in the tegument of Marek's disease virus serotype 1 (MDV-1) plays an important role in cell-to-cell spread and viral propagation. Antiserum against the carboxyl terminus of VP22 was prepared by immunizing mice with recombinant VP22 expressed in E. coli, and used to investigate its expression in chicken embryo fibroblast (CEF) cells infected with different MDV-1 strains. At an infection dose of PFU=50, intercellular trafficking of the VP22 into the nuclei of the surrounding receipt cells was detected as early as 3 hours post infection. By 6 hours after infection (before viral plague formation), the protein was detected in the whole nuclei of the recipient cells with no difference among MDV-1 strains CVI988/Rispens, GA and RB1B. Intra-nuclear accumulation of the VP22 protein was further increased when the viral plagues started to form. These results indicate that, albeit the existence of the 201TKSERT206 deletion, the VP22 of the CVI988/Rispens vaccine strain has also intercellular-trafficking function, which might serve as a potential alternative delivering protein instead of virulent strains VP22.
Collapse
Affiliation(s)
- HongJun Chen
- Key Lab of Jiangsu Preventive Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | | | | | | |
Collapse
|
16
|
Choi SH, Kim SY, An JJ, Lee SH, Kim DW, Ryu HJ, Lee NI, Yeo SI, Jang SH, Won MH, Kang TC, Kwon HJ, Cho SW, Kim J, Lee KS, Park J, Eum WS, Choi SY. Human PEP-1-ribosomal protein S3 protects against UV-induced skin cell death. FEBS Lett 2006; 580:6755-62. [PMID: 17140567 DOI: 10.1016/j.febslet.2006.11.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 10/29/2006] [Accepted: 11/08/2006] [Indexed: 11/15/2022]
Abstract
The consequences of ultraviolet (UV) exposure are implicated in skin aging and cell death. The ribosomal protein S3 (rpS3) is one of the major proteins by which cells counteract the deleterious effects of UV and it plays a role in the repair of damaged DNA. In the present study, we investigated the protective effects of PEP-1-rpS3 fusion protein after UV-induced cell injury. A human rpS3 gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-rpS3 fusion protein. The expressed and purified fusion proteins were efficiently transduced into skin cells in a time- and dose-dependent manner. Once inside the cells, transduced PEP-1-rpS3 fusion protein was stable for 48h. We showed that transduced PEP-1-rpS3 fusion protein increased cell viability and dramatically reduced DNA lesions in the UV exposed skin cells. Immunohistochemical analysis revealed that PEP-1-rpS3 fusion protein efficiently penetrated the epidermis as well as the dermis of the subcutaneous layer when sprayed on animal skin. These results suggest that PEP-1-rpS3 fusion protein can be used in protein therapy for various disorders related to UV, including skin aging and cancer.
Collapse
Affiliation(s)
- Soo Hyun Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chunchon 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cilloniz C, Jackson W, Grose C, Czechowski D, Hay J, Ruyechan WT. The varicella-zoster virus (VZV) ORF9 protein interacts with the IE62 major VZV transactivator. J Virol 2006; 81:761-74. [PMID: 17079304 PMCID: PMC1797441 DOI: 10.1128/jvi.01274-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The varicella-zoster virus (VZV) ORF9 protein is a member of the herpesvirus UL49 gene family but shares limited identity and similarity with the UL49 prototype, herpes simplex virus type 1 VP22. ORF9 mRNA is the most abundantly expressed message during VZV infection; however, little is known concerning the functions of the ORF9 protein. We have found that the VZV major transactivator IE62 and the ORF9 protein can be coprecipitated from infected cells. Yeast two-hybrid analysis localized the region of the ORF9 protein required for interaction with IE62 to the middle third of the protein encompassing amino acids 117 to 186. Protein pull-down assays with GST-IE62 fusion proteins containing N-terminal IE62 sequences showed that amino acids 1 to 43 of the acidic transcriptional activation domain of IE62 can bind recombinant ORF9 protein. Confocal microscopy of transiently transfected cells showed that in the absence of other viral proteins, the ORF9 protein was localized in the cytoplasm while IE62 was localized in the nucleus. In VZV-infected cells, the ORF9 protein was localized to the cytoplasm whereas IE62 exhibited both nuclear and cytoplasmic localization. Cotransfection of plasmids expressing ORF9, IE62, and the viral ORF66 kinase resulted in significant colocalization of ORF9 and IE62 in the cytoplasm. Coimmunoprecipitation experiments with antitubulin antibodies indicate the presence of ORF9-IE62-tubulin complexes in infected cells. Colocalization of ORF9 and tubulin in transfected cells was visualized by confocal microscopy. These data suggest a model for ORF9 protein function involving complex formation with IE62 and possibly other tegument proteins in the cytoplasm at late times in infection.
Collapse
Affiliation(s)
- Cristian Cilloniz
- Department of Microbiology, Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, SUNY, Buffalo, NY 14214, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chen H, Puhl HL, Koushik SV, Vogel SS, Ikeda SR. Measurement of FRET efficiency and ratio of donor to acceptor concentration in living cells. Biophys J 2006; 91:L39-41. [PMID: 16815904 PMCID: PMC1544280 DOI: 10.1529/biophysj.106.088773] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 06/06/2006] [Indexed: 11/18/2022] Open
Abstract
Measurement of fluorescence resonance energy transfer (FRET) efficiency and the relative concentration of donor and acceptor fluorophores in living cells using the three-filter cube approach requires the determination of two constants: 1), the ratio of sensitized acceptor emission to donor fluorescence quenching (G factor) and 2), the ratio of donor/acceptor fluorescence intensity for equimolar concentrations in the absence of FRET (k factor). We have developed a method to determine G and k that utilizes two donor-acceptor fusion proteins with differing FRET efficiencies-the value of which need not be known. We validated the method by measuring the FRET efficiency and concentration ratio of the fluorescent proteins Cerulean and Venus in mammalian cells expressing a series of fusion proteins with varying stoichiometries. The method greatly simplifies quantitative FRET measurement in living cells as it does not require cell fixation, acceptor photobleaching, protein purification, or specialized equipment for determining fluorescence spectra or lifetime.
Collapse
Affiliation(s)
- Huanmian Chen
- Laboratory of Molecular Physiology, Section on Transmitter Signaling and Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | |
Collapse
|
19
|
Hudecz F, Bánóczi Z, Csík G. Medium-sized peptides as built in carriers for biologically active compounds. Med Res Rev 2006; 25:679-736. [PMID: 15952174 DOI: 10.1002/med.20034] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A growing number of oligopeptides of natural and/or synthetic origin have been described and considered as targeting structures for delivery bioactive compounds into various cell types. This review will outline the discovery of peptide sequences and the corresponding mid-sized oligopeptides with membrane translocating properties and also summarize de novo designed structures possessing similar features. Conjugates and chimera constructs derived from these sequences with covalently attached bioactive peptide, epitope, oligonucleotide, PNA, drug, reporter molecule will be reviewed. A brief note will refer to the present understanding on the uptake mechanism at the end of each section.
Collapse
Affiliation(s)
- Ferenc Hudecz
- Research Group of Peptide Chemistry, Hungarian Academy of Sciences, Eötvös Loránd University, Budapest 112, POB 32, Hungary H-1518. hudecz@szerves,chem.elte.hu
| | | | | |
Collapse
|
20
|
Zheng CF, Brownlie R, Huang DY, Babiuk LA, van Drunen Littel-van den Hurk S. Intercellular trafficking of the major tegument protein VP22 of bovine herpesvirus-1 and its application to improve a DNA vaccine. Arch Virol 2005; 151:985-93. [PMID: 16374718 DOI: 10.1007/s00705-005-0694-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Accepted: 11/16/2005] [Indexed: 10/25/2022]
Abstract
Intercellular spread of bovine herpesvirus-1 (BHV-1) VP22 was demonstrated in living COS-7 cells transfected with a plasmid expressing VP22-YFP (yellow fluorescence protein) and CFP (cyan fluorescence protein) bicistronically. The intercellular trafficking property of VP22 was localized to the C-terminal portion of the molecule (amino acids 121-258; VP22-C). Plasmids encoding a truncated form of BHV-1 glycoprotein D (tgD) fused to VP22, VP22-C, or the N-terminal portion of VP22 (amino acids 1-120; VP22-N) were constructed. Mice immunized with plasmid encoding tgD-VP22 or tgD-VP22-C developed stronger immune responses when compared to animals immunized with plasmid encoding tgD or tgD fused to tgD-VP22-N.
Collapse
Affiliation(s)
- C F Zheng
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
21
|
Hakkarainen T, Wahlfors T, Meriläinen O, Loimas S, Hemminki A, Wahlfors J. VP22 does not significantly enhance enzyme prodrug cancer gene therapy as a part of a VP22-HSVTk-GFP triple fusion construct. J Gene Med 2005; 7:898-907. [PMID: 15759279 DOI: 10.1002/jgm.737] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND VP22 is a herpes simplex virus type 1 (HSV-1) tegument protein that has been suggested to spread from cell to cell, alone or as a part of fusion proteins. Creating controversy, some reports indicate that VP22 cannot facilitate significant intercellular spreading. To study the capacity of VP22 to cause spreading and enhance thymidine kinase/ganciclovir cancer gene therapy, we constructed a novel triple fusion protein containing VP22, HSV thymidine kinase and green fluorescent protein (VP22-Tk-GFP). This fusion protein has three functional domains in the same polypeptide, thus making it possible to reliably compare the causality between transduction rate and cell killing efficiency in vitro and in vivo. METHODS VP22-Tk-GFP was cloned into lenti- and adenoviral vectors and used for expression studies, analyses for VP22-mediated protein spreading, and to study the effect of VP22 to thymidine kinase/ganciclovir-mediated cytotoxicity. The function of VP22-Tk-GFP was also investigated in vivo. RESULTS The triple fusion protein was expressed correctly in vitro, but intercellular trafficking was not observed in any of the studied cell lines. However, under certain conditions, VP22-Tk-GFP sensitized cells more efficiently to ganciclovir than Tk-GFP. In vivo there was a trend for increased inhibition of tumor growth with VP22-Tk-GFP when ganciclovir was present, but the difference with Tk-GFP was not statistically significant. CONCLUSIONS Based on our results, VP22 fusion proteins do not seem to traffic intercellularly at detectable levels in most tumor cell types. Even though VP22 enhanced cytotoxicity in one cell line in vitro, the effect in vivo was modest. Therefore, our results do not support the utility of VP22 as an enhancer of enzyme prodrug cancer gene therapy.
Collapse
Affiliation(s)
- Tanja Hakkarainen
- A. I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio, FIN-70211 Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
22
|
Zheng C, Babiuk LA, van Drunen Littel-van den Hurk S. Bovine herpesvirus 1 VP22 enhances the efficacy of a DNA vaccine in cattle. J Virol 2005; 79:1948-53. [PMID: 15650221 PMCID: PMC544085 DOI: 10.1128/jvi.79.3.1948-1953.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
For this study, the intercellular trafficking ability of bovine herpesvirus 1 (BHV-1) VP22 was applied to improve the efficacy of a DNA vaccine in calves. A plasmid encoding a truncated version of glycoprotein D (tgD) fused to VP22 was constructed. The plasmid encoding tgD-VP22 elicited significantly enhanced and more balanced immune responses than those induced by a plasmid encoding tgD. Furthermore, protection against a BHV-1 challenge was obtained in calves immunized with the plasmid encoding tgD-VP22, as shown by significant reductions in viral excretion. However, less significant protection was observed for animals vaccinated with the tgD-expressing plasmid, correlating with the lower level of immunity observed prechallenge. This is the first report of the use of VP22 as a transport molecule in the context of a DNA vaccine for a large animal species.
Collapse
Affiliation(s)
- Chunfu Zheng
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Rd., Saskatoon, SK S7N 5E3, Canada
| | | | | |
Collapse
|
23
|
Qiu Z, Zhu J, Harms JS, Friedrichsen J, Splitter GA. Bovine Herpesvirus VP22 Induces Apoptosis in Neuroblastoma Cells by Upregulating the Expression Ratio of Bax to Bcl-2. Hum Gene Ther 2005; 16:101-8. [PMID: 15703493 DOI: 10.1089/hum.2005.16.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herpesvirus tegument protein VP22 has been shown to have biotherapeutic potential in tumor gene therapy. Some studies indicate that VP22 may enhance the transfer efficiency of therapeutic proteins by delivering them to more cells while trafficking. Our previous study showed that bovine herpesvirus VP22 (BVP22) enhanced equine herpesvirus thymidine kinase-ganciclovir (Etk-GCV) suicide gene therapy by an unknown intracellular effect. In this study, the interaction between BVP22 and host tumor cells was studied in neuroblastoma NXS2 cells. Cell cycle analysis was performed to determine whether BVP22 possesses biotherapeutic potential by altering the cell cycle, making cells more sensitive to therapeutic genes. As a result, the cell cycle was not affected by the transfection of BVP22 into NXS2 cells. However, cytotoxicity induced by BVP22 was observed in NXS2 cells on the second and third days after transient transfection. Further, analyses of caspase-3 activity and apoptosis suggested that BVP22 induces apoptosis in host tumor cells by upregulating the expression ratio of Bax to Bcl-2.
Collapse
Affiliation(s)
- Zhaohua Qiu
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
24
|
Eum WS, Kim DW, Hwang IK, Yoo KY, Kang TC, Jang SH, Choi HS, Choi SH, Kim YH, Kim SY, Kwon HY, Kang JH, Kwon OS, Cho SW, Lee KS, Park J, Won MH, Choi SY. In vivo protein transduction: biologically active intact pep-1-superoxide dismutase fusion protein efficiently protects against ischemic insult. Free Radic Biol Med 2004; 37:1656-69. [PMID: 15477017 DOI: 10.1016/j.freeradbiomed.2004.07.028] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 07/22/2004] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species (ROS) are implicated in reperfusion injury after transient focal cerebral ischemia. The antioxidant enzyme Cu,Zn-superoxide dismutase (SOD) is one of the major means by which cells counteract the deleterious effects of ROS after ischemia. Recently, we reported that denatured Tat-SOD fusion protein is transduced into cells and skin tissue. Moreover, PEP-1 peptide, which has 21 amino acid residues, is a known carrier peptide that delivers full-length native proteins in vitro and in vivo. In the present study, we investigated the protective effects of PEP-1-SOD fusion protein after ischemic insult. A human SOD gene was fused with PEP-1 peptide in a bacterial expression vector to produce a genetic in-frame PEP-1-SOD fusion protein. The expressed and purified fusion proteins were efficiently transduced both in vitro and in vivo with a native protein structure. Immunohistochemical analysis revealed that PEP-1-SOD injected intraperitoneally (i.p.) into mice can have access into brain neurons. When i.p.-injected into gerbils, PEP-1-SOD fusion proteins prevented neuronal cell death in the hippocampus caused by transient forebrain ischemia. These results suggest that the biologically active intact forms of PEP-1-SOD provide a more efficient strategy for therapeutic delivery in various human diseases related to this antioxidant enzyme or to ROS, including stroke.
Collapse
Affiliation(s)
- Won Sik Eum
- Department of Genetic Engineering, Research Institute for Bioscience and Biotechnology, Hallym University, 1-1 Okchon-Dong, Chunchon, Kangwon-Do, Korea, 200-702, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tréhin R, Merkle HP. Chances and pitfalls of cell penetrating peptides for cellular drug delivery. Eur J Pharm Biopharm 2004; 58:209-23. [PMID: 15296950 DOI: 10.1016/j.ejpb.2004.02.018] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 02/24/2004] [Indexed: 11/17/2022]
Abstract
Over the past decade, several classes and/or prototypes of cell penetrating peptides (CPP) have been identified and investigated in multiple aspects. CPP represent peptides, which show the ability to cross the plasma membrane of mammalian cells, and may thus give rise to the intracellular delivery of problematic therapeutic cargos, such as peptides, proteins, oligonucleotides, plasmids and even nanometer-sized particles, which otherwise cannot cross the plasma membrane. Most of the currently recognized CPP are of cationic nature and derived from viral, insect or mammalian proteins endowed with membrane translocation properties. The exact mechanisms underlying the translocation of CPP across the cellular membrane are still poorly understood. However, several similarities in translocation can be found. Early studies on CPP translocation mechanisms tended to suggest that the internalization of these peptides was neither significantly inhibited by low temperature, depletion of the cellular adenosine triphosphate (ATP) pool, nor by inhibitors of endocytosis. Moreover, chemical modification of the peptide sequence, such as the synthesis of retro-, enantio- or retroenantio-analogs, appeared not to affect the internalization properties. Therefore, translocation was concluded to result from direct, physical transfer through the lipid bilayer of the cell membrane. Later studies, however, showed convincing evidence for the involvement of endocytosis as the dominating mechanism for cellular internalization. In addition to describing the general properties of the commonly recognized classes of CPP, in this review we will also point out some limitations and typical pitfalls of CPP as carriers for therapeutics. In particular we will comment on emerging discrepancies with the current dogma, on cell-to-cell variability, biological barrier permeability, metabolic fate, toxicity and immunogenicity of CPP.
Collapse
Affiliation(s)
- Rachel Tréhin
- Center for Molecular Imaging Research (CMIR), Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | |
Collapse
|
26
|
Leifert JA, Rodriguez-Carreno MP, Rodriguez F, Whitton JL. Targeting plasmid-encoded proteins to the antigen presentation pathways. Immunol Rev 2004; 199:40-53. [PMID: 15233725 DOI: 10.1111/j.0105-2896.2004.0135.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The antigen presentation pathways constitute a fulcrum on which adaptive immunity is balanced, and their manipulation should allow us to induce designer immune responses. The ease and rapidity with which DNA vaccines can be constructed and altered make them ideal candidates with which to test the various targeting strategies that have been conceived to date. These approaches and the mechanisms that may (or may not) underlie their success are reviewed in this article.
Collapse
Affiliation(s)
- Jens A Leifert
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
27
|
Qiu Z, Harms JS, Zhu J, Splitter GA. Bovine herpesvirus tegument protein VP22 enhances thymidine kinase/ganciclovir suicide gene therapy for neuroblastomas compared to herpes simplex virus VP22. J Virol 2004; 78:4224-33. [PMID: 15047837 PMCID: PMC374295 DOI: 10.1128/jvi.78.8.4224-4233.2004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 12/12/2003] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus tegument protein VP22 can enhance the effect of therapeutic proteins in gene therapy, such as thymidine kinase (tk) and p53; however, the mechanism is unclear or controversial. In this study, mammalian expression vectors carrying bovine herpesvirus 1 (BHV-1) VP22 (BVP22) or herpes simplex virus type 1 (HSV-1) VP22 (HVP22) and equine herpesvirus type 4 (EHV-4) tk (Etk) were constructed in order to evaluate and compare the therapeutic potentials of BVP22 and HVP22 to enhance Etk/ganciclovir (Etk/GCV) suicide gene therapy for neuroblastomas by GCV cytotoxicity assays and noninvasive bioluminescent imaging in vitro and in vivo. BVP22 enhanced Etk/GCV cytotoxicity compared to that with HVP22 both in vitro and in vivo. However, assays utilizing a mixture of parental and stably transfected cells indicated that the enhancement was detected only in transfected cells. Thus, the therapeutic potential of BVP22 and HVP22 in Etk/GCV suicide gene therapy in this tumor system is not due to VP22 delivery of Etk into surrounding cells but rather is likely due to an enhanced intracellular effect.
Collapse
Affiliation(s)
- Zhaohua Qiu
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
28
|
Leifert JA, Holler PD, Harkins S, Kranz DM, Whitton JL. The cationic region from HIV tat enhances the cell-surface expression of epitope/MHC class I complexes. Gene Ther 2003; 10:2067-73. [PMID: 14595379 DOI: 10.1038/sj.gt.3302115] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The potential of genetic immunization has been acknowledged for almost a decade, but disappointing immunogenicity in humans has delayed its introduction into the clinical arena. To try to increase the potency of genetic immunization, we and others have evaluated 'translocatory' proteins, which are thought to exit living cells by an uncharacterized pathway, and enter neighboring cells in an energy-independent manner. Several laboratories, including our own, have begun to question these remarkable properties. Our previous studies showed that the ability of an epitope to induce major histocompatibility complex (MHC) class I restricted CD8(+) T cells was, indeed, enhanced by its being attached to the proposed translocatory sequence of the HIV-1 tat protein. However, we found little evidence that the increased immunogenicity resulted from transfer of the fusion peptide between living cells, and we proposed that it resulted instead from an increased epitope/MHC expression on the surface of transfected cells. Here, we directly test this hypothesis. We show that cells cotransfected with plasmids encoding an epitope, and the relevant MHC class I allele, can stimulate epitope-specific T cells, and that attachment of the epitope to a putative translocatory sequence - which we term herein an 'integral cationic region' (ICR) - leads to a marked increase in stimulatory activity. This elevated stimulatory capacity does not result from a nonspecific increase in MHC class I expression. We use a high-affinity T-cell receptor (TcR) specific for the epitope/MHC combination to quantitate directly the cell-surface expression of the immunogenic complex, and we show that the attachment of the tat ICR to an epitope results in a substantial enhancement of its cell-surface presentation. These data suggest an alternative explanation for the immune enhancement seen with ICRs.
Collapse
Affiliation(s)
- J A Leifert
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
29
|
Rutjes SA, Bosma PJ, Rohn JL, Noteborn MHM, Wesseling JG. Induction of insolubility by herpes simplex virus VP22 precludes intercellular trafficking of N-terminal Apoptin-VP22 fusion proteins. J Mol Med (Berl) 2003; 81:558-65. [PMID: 12879152 DOI: 10.1007/s00109-003-0457-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2003] [Accepted: 05/23/2003] [Indexed: 10/26/2022]
Abstract
The herpes simplex virus protein VP22 has the intriguing ability to deliver proteins from an expressing cell to neighboring cells. Fusion of VP22 to Apoptin, a protein that induces apoptosis in tumor cells but not in normal cells, might enhance the delivery of Apoptin. To analyze this hypothesis two fusion proteins of VP22 and full-length Apoptin were constructed, namely VP22-VP3 and VP3-VP22, and their apoptosis-inducing ability and intercellular spreading behavior were analyzed by transfection in tumor cells. While both of the Apoptin-VP22 fusion proteins retained the capacity to kill tumor cells, neither of them showed intercellular trafficking. To determine whether the presence of a nuclear localization signal in the C-terminus of Apoptin caused nuclear retention of the fusion protein and the subsequent lack of intercellular spreading, VP22 was fused to the biologically active N-terminal part (residues 1-69) of Apoptin (VP3n), which lacks the nuclear localization signal. However, analysis of the VP3n-VP22 fusion constructs gave no evidence of intercellular transport. A more careful inspection of different fractions of cell lysates expressing Apoptin with or without fusion to VP22 revealed that both the full-length Apoptin protein and its fusion with VP22 are insoluble. Despite the fact that VP3n was found to be soluble on its own, which could make it amenable to transport by VP22, the VP3n-VP22 fusion proteins were present exclusively in the insoluble fraction. We hypothesize that the N-terminal multimerization domain of Apoptin cooperates with VP22 to facilitate aggregation with cellular proteins, thereby inducing insolubility. From these results we conclude that, depending on the fusion partner, VP22 can have a negative effect on the solubility of fusion proteins, which consequently precludes intercellular trafficking. Such properties should be taken into account when establishing new VP22-mediated protein transduction systems.
Collapse
Affiliation(s)
- Saskia A Rutjes
- Academic Medical Center, Laboratory of Experimental Hepatology, AMC Liver Center, Meibergdreef 69-71, 1105 BK, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Leifert JA, Whitton JL. "Translocatory proteins" and "protein transduction domains": a critical analysis of their biological effects and the underlying mechanisms. Mol Ther 2003; 8:13-20. [PMID: 12842424 DOI: 10.1016/s1525-0016(03)00151-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
It has been suggested that several proteins, termed "translocatory" or "messenger" proteins, can move between living cells-exiting the cell of synthesis via an uncharacterized secretory pathway and entering adjacent cells by a nonendocytic mechanism that is active even at 4 degrees C. These activities, which have been mapped to short, highly basic regions termed "protein transduction domains" (PTDs), have engendered considerable interest in the gene therapy and vaccine research communities. If these proteins, and PTDs, are to be used in human or veterinary medicine, it is vital that the mechanisms underlying their effects be understood. This article presents a critical evaluation of the current literature and describes recent findings that indicate that the effects of these sequences might be explained by well-established biological principles.
Collapse
Affiliation(s)
- Jens A Leifert
- Department of Neuropharmacology, CVN-9, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
31
|
Cashman SM, Morris DJ, Kumar-Singh R. Evidence of protein transduction but not intercellular transport by proteins fused to HIV tat in retinal cell culture and in vivo. Mol Ther 2003; 8:130-42. [PMID: 12842436 DOI: 10.1016/s1525-0016(03)00131-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The human immunodeficiency virus type-1 Tat protein is known to exit virally infected cells and enter the nucleus of adjacent uninfected cells. This property has been mapped to an 11-amino-acid protein transduction domain (PTD). When the PTD of Tat is fused to heterologous proteins and added exogenously to cells, the fusion peptide is able to demonstrate protein transduction across plasma membranes. Recent reports indicate that endogenously expressed Tat fusion peptides can demonstrate intercellular transport and improve biodistribution of therapeutic protein in the context of adenovirus vectors. Intercellular transport and protein transduction have not been observed in some studies and in the former have been attributed to an artifact of fixation. We have attempted to resolve these studies using an approach that unambiguously distinguishes cells that express Tat fusion protein from those that receive it from their environment. We find no evidence of intercellular transport in the context of an adenovirus vector in cell culture or in vivo. Instead, we find that Tat fusion peptides are down regulated in terms of expression not only in the context of adenovirus vectors, but also when expressed from transfected plasmid DNA. However, when Tat fusion peptides are released from cells by degradation of the plasma membrane, the fusion peptides demonstrate protein transduction without the need for cell fixation, indicating a unidirectional transport of Tat fusion proteins across the plasma membrane. Our data are consistent with previously reported studies and help to explain the apparently different results obtained from several different laboratories.
Collapse
Affiliation(s)
- Siobhan M Cashman
- Department of Ophthalmology and Visual Sciences and Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112-5330, USA
| | | | | |
Collapse
|
32
|
Lundberg M, Wikström S, Johansson M. Cell surface adherence and endocytosis of protein transduction domains. Mol Ther 2003; 8:143-50. [PMID: 12842437 DOI: 10.1016/s1525-0016(03)00135-7] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein transduction domains (PTD), such as the HIV TAT and the herpes simplex virus VP22 proteins, are reported to translocate across the membranes of mammalian cells. The mechanism of PTD membrane translocation has largely remained elusive, but recent studies suggest that the reported PTD translocation is due to a fixation artifact. We have constructed and expressed the PTDs VP22, TAT, polyarginine, and polylysine fused to the green fluorescent protein to visualize these proteins in both living and fixed cells. The investigated PTDs strongly adhered to the surface of living cells and were internalized by constitutive endocytosis. No cytosolic or nuclear import of the proteins was detected. In contrast, the PTD-GFP fusion proteins were redistributed to the cytosol and nucleus directly after fixation. Our findings suggest that the PTDs only mediate cell surface adherence, a property shared with many other positively charged macromolecules. The cell surface adherence results in endocytosis and accumulation of proteins in endosomes. We suggest that the biological effects observed for PTD fusion proteins are due to cell surface interactions and internalization of the proteins into cells by classical endocytosis.
Collapse
Affiliation(s)
- Mathias Lundberg
- Division of Clinical Virology F68, Karolinska Institute, Huddinge University Hospital, S-14186, Stockholm, Sweden
| | | | | |
Collapse
|
33
|
Namiki S, Tomida T, Tanabe M, Iino M, Hirose K. Intracellular delivery of glutathione S-transferase into mammalian cells. Biochem Biophys Res Commun 2003; 305:592-7. [PMID: 12763035 DOI: 10.1016/s0006-291x(03)00807-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Protein transduction domains (PTDs) derived from human immunodeficiency virus Tat protein and herpes simplex virus VP22 protein are useful for the delivery of non-membrane-permeating polar or large molecules into living cells. In the course of our study aiming at evaluating PTD, we unexpectedly found that the fluorescent-dye-labeled glutathione S-transferase (GST) from Schistosoma japonicum without known PTDs was delivered into COS7 cells. The intracellular transduction of GST was also observed in HeLa, NIH3T3, and PC12 cells, as well as in hippocampal primary neurons, indicating that a wide range of cell types is permissive for GST transduction. Furthermore, we showed that the immunosuppressive peptide VIVIT fused with GST successfully inhibits NFAT activation. These results suggest that GST is a novel PTD which may be useful in the intracellular delivery of biologically active molecules, such as small-molecule drugs, bioactive peptides, or proteins.
Collapse
Affiliation(s)
- Shigeyuki Namiki
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
34
|
Kretz A, Wybranietz WA, Hermening S, Lauer UM, Isenmann S. HSV-1 VP22 augments adenoviral gene transfer to CNS neurons in the retina and striatum in vivo. Mol Ther 2003; 7:659-69. [PMID: 12718909 DOI: 10.1016/s1525-0016(03)00062-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
One of the obstacles to efficient vector-mediated gene transfer to the CNS is limited transduction of target neurons. The VP22 tegument protein of HSV-1 can cross biological membranes and translocate the VP22 protein from primarily transfected cells to many surrounding cells in vitro. Here, we employed an adenoviral vector coding for a VP22-GFP fusion protein driven by a CMV promoter to test its capability of transducing CNS neurons in vivo. Intraocular administration of Ad.VP22-GFP in the rat doubled both the retinal area containing transduced, GFP-expressing cells and the absolute number of GFP-expressing retinal neurons compared to Ad.GFP transduction. Following injection of Ad.VP22-GFP into the mouse brain, the transduced striatal area was increased by a factor of 7 compared to intracerebral injection of Ad.GFP. In both retina and striatum, GFP-expressing cells were identified as mainly neurons. Thus, VP22 greatly augments adenovirus-mediated transgene delivery to CNS neuronsin vivo, making VP22 a promising tool for enhancing the efficacy of adenoviral gene transfer of protective factors to the CNS.
Collapse
Affiliation(s)
- A Kretz
- Department of Neurology, Neuroregeneration Laboratory, Tübingen, Germany
| | | | | | | | | |
Collapse
|
35
|
Brignati MJ, Loomis JS, Wills JW, Courtney RJ. Membrane association of VP22, a herpes simplex virus type 1 tegument protein. J Virol 2003; 77:4888-98. [PMID: 12663795 PMCID: PMC152156 DOI: 10.1128/jvi.77.8.4888-4898.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tegument proteins of herpes simplex virus type 1 (HSV-1) are hypothesized to contain the functional information required for the budding or envelopment process proposed to occur at cytoplasmic compartments of the host cell. One of the most abundant tegument proteins of HSV-1 is the U(L)49 gene product, VP22, a 38-kDa protein of unknown function. To study its subcellular localization, a VP22-green fluorescent protein chimera was expressed in transfected human melanoma (A7) cells. In the absence of other HSV-1 proteins, VP22 localizes to acidic compartments of the cell that may include the trans-Golgi network (TGN), suggesting that this protein is membrane associated. Membrane pelleting and membrane flotation assays confirmed that VP22 partitions with the cellular membrane fraction. Through truncation mutagenesis, we determined that the membrane association of VP22 is a property attributed to amino acids 120 to 225 of this 301-amino-acid protein. The above results demonstrate that VP22 contains specific information required for targeting to membranes of acidic compartments of the cell which may be derived from the TGN, suggesting a potential role for VP22 during tegumentation and/or final envelopment.
Collapse
Affiliation(s)
- Michael J Brignati
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
36
|
Zavaglia D, Favrot MC, Eymin B, Tenaud C, Coll JL. Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein. Gene Ther 2003; 10:314-25. [PMID: 12595890 DOI: 10.1038/sj.gt.3301904] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
VP22, a structural protein from herpes simplex virus type I, exhibits the unique property of intercellular trafficking. This protein is exported from primary expressing cells and subsequently imported into neighbouring cells. This property is conserved when VP22 is genetically fused to a protein, making it a promising tool to enhance the delivery of a gene product. We chose to study the intercellular transport and biological effect of a fusion protein between the putative tumour suppressor gene p27(Kip1) and VP22. We show that in vitro, P27VP22 is able to spread as efficiently as VP22. Functionality of the P27VP22 protein was demonstrated by its ability to inhibit cyclin/CDK2 complexes activity. In proliferation and clonogenicity assays, transfection with the P27VP22 plasmid resulted in a stronger cell growth inhibition when compared to transfection with the p27(Kip1) vector. In vivo, sub cutaneous tumours established in nude mice were injected with naked DNA encoding P27 or P27VP22. Our results show that P27VP22 can spread in vivo and that injections of the P27VP22 plasmid resulted in a significantly greater antitumour activity than injections of the P27 plasmid. This study confirms the usefulness of VP22-mediated delivery and suggests that P27VP22 may have applications in cancer gene therapy.
Collapse
Affiliation(s)
- D Zavaglia
- Groupe de Recherche sur le Cancer du Pumon, Equipe INSERM 9924, Institut Albert Bonnoit, La Tronche cedex, France
| | | | | | | | | |
Collapse
|
37
|
Bearer EL, Satpute-Krishnan P. The role of the cytoskeleton in the life cycle of viruses and intracellular bacteria: tracks, motors, and polymerization machines. CURRENT DRUG TARGETS. INFECTIOUS DISORDERS 2002; 2:247-64. [PMID: 12462128 PMCID: PMC3616324 DOI: 10.2174/1568005023342407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent advances in microbiology implicate the cytoskeleton in the life cycle of some pathogens, such as intracellular bacteria, Rickettsia and viruses. The cellular cytoskeleton provides the basis for intracellular movements such as those that transport the pathogen to and from the cell surface to the nuclear region, or those that produce cortical protrusions that project the pathogen outwards from the cell surface towards an adjacent cell. Transport in both directions within the neuron is required for pathogens such as the herpesviruses to travel to and from the nucleus and perinuclear region where replication takes place. This trafficking is likely to depend on cellular motors moving on a combination of microtubule and actin filament tracks. Recently, Bearer et al. reconstituted retrograde transport of herpes simplex virus (HSV) in the giant axon of the squid. These studies identified the tegument proteins as the viral proteins most likely to recruit retrograde motors for the transport of HSV to the neuronal nucleus. Similar microtubule-based intracellular movements are part of the biological behavior of vaccinia, a poxvirus, and of adenovirus. Pathogen-induced surface projections and motility within the cortical cytoplasm also play a role in the life cycle of intracellular pathogens. Such motility is driven by pathogen-mediated actin polymerization. Virulence depends on this actin-based motility, since virulence is reduced in Listeria ActA mutants that lack the ability to recruit Arp2/3 and polymerize actin and in vaccinia virus mutants that cannot stimulate actin polymerization. Inhibition of intracellular movements provides a potential strategy to limit pathogenicity. The host cell motors and tracks, as well as the pathogen factors that interact with them, are potential targets for novel antimicrobial therapy.
Collapse
Affiliation(s)
- E L Bearer
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, RI 02912, USA.
| | | |
Collapse
|
38
|
Sciortino MT, Taddeo B, Poon APW, Mastino A, Roizman B. Of the three tegument proteins that package mRNA in herpes simplex virions, one (VP22) transports the mRNA to uninfected cells for expression prior to viral infection. Proc Natl Acad Sci U S A 2002; 99:8318-23. [PMID: 12060774 PMCID: PMC123065 DOI: 10.1073/pnas.122231699] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An earlier report has shown that herpes simplex virus 1 virions package RNA. Experiments designed to reveal the identity of the virion proteins capable of binding the RNA and to show whether the mRNA carried in the newly infected cells was expressed showed the following: (i) (32)P-labeled riboprobe generated by in vitro transcription of the U(S)8.5 ORF bound three proteins identified as the products of U(S)11, U(L)47, and U(L)49 (VP22) genes. (ii) Viral RNA was bound to U(L)47 or U(S)11 proteins immune precipitated from cells transduced with baculoviruses expressing U(L)47 or U(S)11 and then superinfected with HSV-1 under conditions that blocked DNA synthesis and assembly of virions. (iii) Virions were purified from cells transduced with a baculovirus encoding a U(S)8.5 protein fused to green fluorescent protein and superinfected with an HSV-1 mutant lacking the U(S)8-12 genes. HEp-2 cells infected with these virions expressed the chimeric protein in approximately 1% of infected cells. (iv) In mixed cultures, untreated Vero cells acquired the mRNA encoding the green fluorescent-U(S)8.5 chimeric protein from HEp-2 cells doubly transduced with the genes encoding VP22 and the chimeric protein. The transfer was RNase sensitive and VP22 dependent, indicating that the RNA encoded by the chimeric gene was transferred to Vero cells as mRNA. We conclude that (i) three virion proteins are capable of binding RNA; (ii) the packaged RNA can be expressed in newly infected cells; and (iii) the U(L)47 protein was earlier reported to shuttle from nucleus to the cytoplasm and may transport RNA. VP22 thus appears to be a member of a new class of viral proteins whose major function is to bind and transport infected cell mRNA to uninfected cells to create the environment for effective initiation of infection.
Collapse
Affiliation(s)
- Maria Teresa Sciortino
- The Marjorie B. Kovler Viral Oncology Laboratories, University of Chicago, 910 East 58th Street, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
39
|
Lundberg M, Johansson M. Positively charged DNA-binding proteins cause apparent cell membrane translocation. Biochem Biophys Res Commun 2002; 291:367-71. [PMID: 11846414 DOI: 10.1006/bbrc.2002.6450] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several positively charged DNA-binding proteins such as the human immunodeficiency virus Tat protein, the Antennapedia (Antp) homeobox protein, and the herpes simplex virus VP22 protein have been reported to translocate across cell membranes and accumulate in cell nuclei. The import occurs by a poorly understood mechanism that appears to be receptor- and energy-independent. We showed that both VP22 and the positively charged histone H1 adhered to the cell membrane of living cells and were not removed by extensive washing. However, after fixation the proteins relocated to the cell nucleus. The nuclear accumulation of VP22 and histone H1 after fixation shows that positively charged proteins may appear to translocate across the cell membrane because of a fixation artifact. The majority of studies on "membrane permeable" proteins and peptides have been performed using fixation techniques, and our study shows that influx of these proteins may occur during fixation rather than in living cells.
Collapse
Affiliation(s)
- Mathias Lundberg
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
40
|
del Rio T, Werner HC, Enquist LW. The pseudorabies virus VP22 homologue (UL49) is dispensable for virus growth in vitro and has no effect on virulence and neuronal spread in rodents. J Virol 2002; 76:774-82. [PMID: 11752167 PMCID: PMC136827 DOI: 10.1128/jvi.76.2.774-782.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tegument of herpesvirus virions is a distinctive structure whose assembly and function are not well understood. The herpes simplex virus type 1 VP22 tegument protein encoded by the UL49 gene is conserved among the alphaherpesviruses. Using cell biology and viral genetics, we provide an initial characterization of the pseudorabies virus (PRV) VP22 homologue. We identified three isoforms of VP22 present in PRV-infected cells that can be resolved by polyacrylamide gel electrophoresis. The predominant form is not phosphorylated and is present in virions, while the other two species are phosphorylated and excluded from virions. VP22 localized to the nucleus by 6 h postinfection, as determined by immunofluorescence and cell fractionation. VP22 immunofluorescence in the nucleus was both diffuse and in punctate structures. The punctate nuclear localization was the most pronounced form of staining and did not localize exclusively to sites of viral DNA replication. Unexpectedly, a VP22 null mutant had no obvious phenotypes during tissue culture infections and was similar to the wild type in all respects. Moreover, the VP22 null mutant was as virulent and neuroinvasive as the wild-type virus after infection of the rodent eye and spread to the brain using both anterograde and retrograde neuronal circuits.
Collapse
Affiliation(s)
- T del Rio
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
41
|
Blouin A, Blaho JA. Assessment of the subcellular localization of the herpes simplex virus structural protein VP22 in the absence of other viral gene products. Virus Res 2001; 81:57-68. [PMID: 11682125 DOI: 10.1016/s0168-1702(01)00355-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously demonstrated that the herpes simplex virus type 1 (HSV-1) structural protein VP22 exists in the cytoplasm early in infection and migrates to and accumulates in the nucleus late in infection (J. Virol. 73(8) (1999) 6769). The goal of this study is to document the behavior of VP22 in cells in the absence of other viral polypeptides. We characterized the effects of various indirect immunofluorescence sample preparation conditions on the localization of VP22 in cells and have determined the following. (i) Fixing with formaldehyde and permeabilizing with acetone maintains the structure of microtubules in cells, in as much as we observed classic microtubule organizing centers. (ii) Acetone or methanol alone did not completely fix the cells. (iii) Triton X-100 decreased tubulin immunofluorescence signals in our system. (iv) VP22 predominated in the nucleus of cells that were fixed with formaldehyde. Based on our results, we conclude the following. (v) Due to the partial fixation by acetone or methanol alone, microtubules form diffuse irregular shapes. (vi) VP22 is detected in the cytoplasm of cells fixed with acetone or methanol only due to its seepage from the nucleus. Taken together, these findings indicate that (vii) the nuclear localization of VP22 does not require additional viral factors.
Collapse
Affiliation(s)
- A Blouin
- Department of Microbiology, Mount Sinai School of Medicine, Box 1124, One Gustave L. Levy Place, New York, NY 10029-6574, USA
| | | |
Collapse
|
42
|
Fischer PM, Krausz E, Lane DP. Cellular delivery of impermeable effector molecules in the form of conjugates with peptides capable of mediating membrane translocation. Bioconjug Chem 2001; 12:825-41. [PMID: 11716670 DOI: 10.1021/bc0155115] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Most molecules that are not actively imported by living cells are impermeable to cell membranes, including practically all macromolecules and even many small molecules whose physicochemical properties prevent passive membrane diffusion. The use of peptide vectors capable of transporting such molecules into cells in the form of covalent conjugates has become an increasingly attractive solution to this problem. Not only has this technology permitted the study of modulating intracellular target proteins, but it has also gained importance as an alternative to conventional cellular transfection with oligonucleotides. Peptide vectors derived from viral, bacterial, insect, and mammalian proteins endowed with membrane translocation properties have now been proposed as delivery vectors. These are discussed comprehensively and critically in terms of relative utility, applications to compound classes and specific molecules, and relevant conjugation chemistry. Although in most cases the mechanisms of membrane translocation are still unclear, physicochemical studies have been carried out with a number of peptide delivery vectors. Unifying and distinguishing mechanistic features of the various vectors are discussed. Until a few years ago speculations that it might be possible to deliver peptides, proteins, oligonucleotides, and impermeable small molecules with the aid of cellular delivery peptides not only to target cells in vitro, but in vivo, was received with scepticism. However, the first studies showing pharmacological applications of conjugates between macromolecules and peptide delivery vectors are now being reported, and therapies based on such conjugates are beginning to appear feasible.
Collapse
Affiliation(s)
- P M Fischer
- Cyclacel Limited, Dundee Technopole, James Lindsay Place, Dundee DD1 5JJ, Scotland, UK.
| | | | | |
Collapse
|
43
|
Vermeij J, Zeinoun Z, Neyns B, Teugels E, Bourgain C, De Grève J. Transduction of ovarian cancer cells: a recombinant adeno-associated viral vector compared to an adenoviral vector. Br J Cancer 2001; 85:1592-9. [PMID: 11720450 PMCID: PMC2363936 DOI: 10.1054/bjoc.2001.2082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vectors have emerged as vehicles for gene therapy. In addition, anti-neoplastic properties have been attributed to wild-type AAV. To take advantage of both features and to overcome technical problems associated with rAAV preparation, we developed a production method in which rAAV particles are amplified in an infectious cycle in the presence of wtAAV. This results in a 10(3)-10(4)-fold amplification of rAAV input particles. rAAV-GFP particles generated by this method were used to transduce ovarian cancer cell lines to evaluate their potential in ovarian cancer gene therapy, in comparison to a rAd-GFP vector. The transduction efficiency of NIH-OVCAR3, MDAH 2774 and SKOV3 cells with rAAV-GFP particles was low (< 1%) and did not improve by increasing the number of particles/cell. Repeated administration and continued exposure of NIH-OVCAR3 and MDAH 2774 improved transduction to over 3%. In contrast, these cell lines were more efficiently transduced by rAAV-GFP in the presence of adenovirus (approximately 15%) and by rAd-GFP (> 50%). These results indicate that in contrast to rAd vectors, rAAV particles are not suitable for therapeutic gene transfer in ovarian cancer cells unless efficient help can be provided to mediate ss to ds DNA conversion.
Collapse
Affiliation(s)
- J Vermeij
- Laboratory of Medical and Molecular Oncology and Oncology Center, Akademisch Ziekenhuis Vrije Universiteit, Brussel, Belgium
| | | | | | | | | | | |
Collapse
|
44
|
Wybranietz WA, Gross CD, Phelan A, O'Hare P, Spiegel M, Graepler F, Bitzer M, Stähler P, Gregor M, Lauer UM. Enhanced suicide gene effect by adenoviral transduction of a VP22-cytosine deaminase (CD) fusion gene. Gene Ther 2001; 8:1654-64. [PMID: 11895004 DOI: 10.1038/sj.gt.3301564] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The low transduction efficiency of viral and nonviral vectors is a major limitation in tumour gene therapy. The HSV-1 tegument protein VP22 has been shown to exhibit a novel intercellular transport property. VP22 wild-type as well as VP22 fusion proteins efficiently spread from the original expressing cell to numerous neighbouring cells, so that protein transport by VP22 chimaeric polypeptides into the surrounding cells offers a possible compensation for the inadequate gene transfer efficiencies. To improve the therapeutic efficacy of the E. coli cytosine deaminase (CD) suicide gene we made use of the VP22 transport property in CD transducing adenoviral (Ad) vectors. C- and N-terminal fusions of CD linked in-frame with VP22 were generated and cloned into recombinant adenoviral vectors. Following in vitro transduction immunofluorescence analysis of Ad-transduced producer cells coplated with naive cells confirmed that the characteristic foci pattern of central producer and adjoining neighbour cells displaying nuclear staining was retained. After transduction of rat hepatoma cells with adenoviral vectors and subsequent incubation with the prodrug 5-FC, we observed enhanced cell cytotoxicity when comparing the CD-VP22 fusion (Ad-CD-VP22) with Ad-vectors expressing the CD gene only (Ad-CD). Thereby employment of Ad-vectors encoding VP22 fusion proteins opens up new possibilities to potentiate the efficiency of suicide gene therapy for the treatment of solid tumours.
Collapse
Affiliation(s)
- W A Wybranietz
- Internal Medicine I, Medical University Clinic Tübingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ren X, Harms JS, Splitter GA. Tyrosine phosphorylation of bovine herpesvirus 1 tegument protein VP22 correlates with the incorporation of VP22 into virions. J Virol 2001; 75:9010-7. [PMID: 11533164 PMCID: PMC114469 DOI: 10.1128/jvi.75.19.9010-9017.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tyrosine phosphorylation has been shown to play a role in the replication of several herpesviruses. In this report, we demonstrate that bovine herpesvirus 1 infection triggered tyrosine phosphorylation of proteins with molecular masses similar to those of phosphorylated viral structural proteins. One of the tyrosine-phosphorylated viral structural proteins was the tegument protein VP22. A tyrosine 38-to-phenylalanine mutation totally abolished the phosphorylation of VP22 in transfected cells. However, construction of a VP22 tyrosine 38-to-phenylalanine mutant virus demonstrated that VP22 was still phosphorylated but that the phosphorylation site may change to the C terminus rather than be in the N terminus as in wild-type VP22. In addition, the loss of VP22 tyrosine phosphorylation correlated with reduced incorporation of VP22 compared to that of envelope glycoprotein D in the mutant viruses but not with the amount of VP22 produced during virus infection. Our data suggest that tyrosine phosphorylation of VP22 plays a role in virion assembly.
Collapse
Affiliation(s)
- X Ren
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706-1581, USA
| | | | | |
Collapse
|
46
|
Wills KN, Atencio IA, Avanzini JB, Neuteboom S, Phelan A, Philopena J, Sutjipto S, Vaillancourt MT, Wen SF, Ralston RO, Johnson DE. Intratumoral spread and increased efficacy of a p53-VP22 fusion protein expressed by a recombinant adenovirus. J Virol 2001; 75:8733-41. [PMID: 11507218 PMCID: PMC115118 DOI: 10.1128/jvi.75.18.8733-8741.2001] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vitro experiments have demonstrated intercellular trafficking of the VP22 tegument protein of herpes simplex virus type 1 from infected cells to neighboring cells, which internalize VP22 and transport it to the nucleus. VP22 also can mediate intercellular transport of fusion proteins, providing a strategy for increasing the distribution of therapeutic proteins in gene therapy. Intercellular trafficking of the p53 tumor suppressor protein was demonstrated in vitro using a plasmid expressing full-length p53 fused in-frame to full-length VP22. The p53-VP22 chimeric protein induced apoptosis both in transfected tumor cells and in neighboring cells, resulting in a widespread cytotoxic effect. To evaluate the anti-tumor activity of p53-VP22 in vivo, we constructed recombinant adenoviruses expressing either wild-type p53 (FTCB) or a p53-VP22 fusion protein (FVCB) and compared their effects in p53-resistant tumor cells. In vitro, treatment of tumor cells with FVCB resulted in enhanced p53-specific apoptosis compared to treatment with equivalent doses of FTCB. However, in normal cells there was no difference in the dose-related cytotoxicity of FVCB compared to that of FTCB. In vivo, treatment of established tumors with FVCB was more effective than equivalent doses of FTCB. The dose-response curve to FVCB was flatter than that to FTCB; maximal antitumor responses could be achieved using FVCB at doses 1 log lower than those obtained with FTCB. Increased antitumor efficacy was correlated with increased distribution of p53 protein in FVCB-treated tumors. This study is the first demonstration that VP22 can enhance the in vivo distribution of therapeutic proteins and improve efficacy in gene therapy.
Collapse
Affiliation(s)
- K N Wills
- Canji, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ren X, Harms JS, Splitter GA. Bovine herpesvirus 1 tegument protein VP22 interacts with histones, and the carboxyl terminus of VP22 is required for nuclear localization. J Virol 2001; 75:8251-8. [PMID: 11483770 PMCID: PMC115069 DOI: 10.1128/jvi.75.17.8251-8258.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bovine herpesvirus 1 (BHV-1) UL49 gene encodes a viral tegument protein termed VP22. UL49 homologs are conserved among alphaherpesviruses. Interestingly, the BHV-1 VP22 deletion mutant virus is asymptomatic and avirulent in infected cattle but produces only a slight reduction in titer in vitro. Attenuation of the BHV-1 VP22 deletion mutant virus in vivo suggests that VP22 plays a functional role in BHV-1 replication. In herpes simplex virus type 1, the VP22 homolog was previously shown to interact with another tegument protein,VP16, the alpha-transinducing factor in vitro. In this report, we show that (i) the nuclear targeting of VP22 is independent of other viral factors, (ii) the carboxyl terminus of VP22 is required for its nuclear localization, (iii) VP22 associates with histones and nucleosomes, (iv) an antihistone monoclonal antibody cross-reacts with VP22, and (v) acetylation of histone H4 is decreased in VP22-expressing cells as well as virus-infected cells. Our data suggest that VP22 may have a modulatory function during BHV-1 infection.
Collapse
Affiliation(s)
- X Ren
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706-1581, USA
| | | | | |
Collapse
|
48
|
|
49
|
|
50
|
Aints A, Güven H, Gahrton G, Smith CI, Dilber MS. Mapping of herpes simplex virus-1 VP22 functional domains for inter- and subcellular protein targeting. Gene Ther 2001; 8:1051-6. [PMID: 11526452 DOI: 10.1038/sj.gt.3301493] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 04/20/2001] [Indexed: 11/10/2022]
Abstract
The herpes simplex virus 1 (HSV-1) tegument protein VP22 has been utilised as a vehicle for trafficking proteins. It has a remarkable property of exiting the cell that is producing it and entering the neighbouring cells, which has been used to deliver therapeutic proteins, p53 and herpes simplex virus thymidine kinase (tk). It has a complex pattern of expression and subcellular localisation. Functions of VP22 include intercellular transport, binding to and bundling of microfilaments, inducing cytoskeleton collapse, nuclear translocation during mitosis, and binding to chromatin and nuclear membrane. The regions of VP22 which contain each of these functions have not been characterised. Finding the region carrying the property of intercellular spread would facilitate enhancement of transport function. By constructing a series of deletion constructs of VP22 tagged by the green fluorescent protein (GFP) we have mapped the functions of VP22 to specific regions in the polypeptide as follows: intercellular transport - aa 81-195; binding and reorganisation of cytoskeleton - aa 159-267; nuclear targeting, inhibition of cytoskeleton collapse - aa 81-121; and nuclear targeting and facilitation of intercellular transport - aa 267-301. Separation of VP22 functions enables focus on the mechanism of VP22-mediated transport and improve the transportation efficiency of VP22.
Collapse
Affiliation(s)
- A Aints
- Department of Medicine, Clinical Research Centre, Huddinge University Hospital, Karolinska Institutet, Huddinge, Sweden
| | | | | | | | | |
Collapse
|