1
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
2
|
Marquez-Martinez S, Salisch N, Serroyen J, Zahn R, Khan S. Peak transgene expression after intramuscular immunization of mice with adenovirus 26-based vector vaccines correlates with transgene-specific adaptive immune responses. PLoS One 2024; 19:e0299215. [PMID: 38626093 PMCID: PMC11020485 DOI: 10.1371/journal.pone.0299215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/07/2024] [Indexed: 04/18/2024] Open
Abstract
Non-replicating adenovirus-based vectors have been broadly used for the development of prophylactic vaccines in humans and are licensed for COVID-19 and Ebola virus disease prevention. Adenovirus-based vectored vaccines encode for one or more disease specific transgenes with the aim to induce protective immunity against the target disease. The magnitude and duration of transgene expression of adenovirus 5- based vectors (human type C) in the host are key factors influencing antigen presentation and adaptive immune responses. Here we characterize the magnitude, duration, and organ biodistribution of transgene expression after single intramuscular administration of adenovirus 26-based vector vaccines in mice and evaluate the differences with adenovirus 5-based vector vaccine to understand if this is universally applicable across serotypes. We demonstrate a correlation between peak transgene expression early after adenovirus 26-based vaccination and transgene-specific cellular and humoral immune responses for a model antigen and SARS-CoV-2 spike protein, independent of innate immune activation. Notably, the memory immune response was similar in mice immunized with adenovirus 26-based vaccine and adenovirus 5-based vaccine, despite the latter inducing a higher peak of transgene expression early after immunization and a longer duration of transgene expression. Together these results provide further insights into the mode of action of adenovirus 26-based vector vaccines.
Collapse
Affiliation(s)
| | - Nadine Salisch
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Jan Serroyen
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V, Leiden, CN, The Netherlands
| |
Collapse
|
3
|
Marquez-Martinez S, Vijayan A, Khan S, Zahn R. Cell entry and innate sensing shape adaptive immune responses to adenovirus-based vaccines. Curr Opin Immunol 2023; 80:102282. [PMID: 36716578 DOI: 10.1016/j.coi.2023.102282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/30/2023]
Abstract
Nonreplicating adenovirus-based vectors have been successfully implemented as prophylactic vaccines against infectious viral diseases and induce protective cellular and humoral responses. Differences in the mechanisms of cellular entry or endosomal escape of these vectors contribute to differences in innate immune sensing between adenovirus species. Innate immune responses to adenovirus-based vaccines, such as interferon signaling, have been reported to affect the development of adaptive responses in preclinical studies, although limited data are available in humans. Understanding the mechanisms of these early events is critical for the development of vaccines that elicit effective and durable adaptive immune responses while maintaining an acceptable reactogenicity profile.
Collapse
Affiliation(s)
- Sonia Marquez-Martinez
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands.
| | - Aneesh Vijayan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Selina Khan
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| | - Roland Zahn
- Janssen Vaccines & Prevention B.V., Archimedesweg 4-6, Leiden South Holland 2333 CN, the Netherlands
| |
Collapse
|
4
|
Li Q, He S, Zou Y, Yue H, Tang C, Liu J. Pathogenicity of a novel bovine adenovirus type 3 with a natural deletion partial fiber gene in BALB/c mice. Front Vet Sci 2023; 10:1138159. [PMID: 37035797 PMCID: PMC10076824 DOI: 10.3389/fvets.2023.1138159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Objective A novel Bovine adenovirus type 3 (BAdV-3) with a natural deletion partial fiber gene was isolated in 2020 and named BO/YB24/17/CH. The objective of this study was to understand the pathogenicity of this virus. Methods Thiry-two 3-week-old BALB/c mice were divided into three experimental groups and a control group. Mice in the experimental groups were intranasally inoculated with virus, and mice in the control group were inoculated with MDBK cell supernatant. Mice were weighed and clinically examined daily for appearance of any clinical signs. Three infected mice and one control mouse were euthanized at 1, 3, 5, 7, 9, 11, 13, and 15 days after inoculation. Tissue samples were collected for histopathological examination, immunohistochemical staining, and detection of the replication dynamics of virus. Results All infected mice developed mild clinical signs such as lethargy, weight loss, loss of appetite, and a rough hair coat, and gross lesions were observed as pulmonary punctate hemorrhage, lobular atrophy and splenomegaly. Histopathological examination revealed thickening of alveolar septa and mildly dilated splenic nodules and blurred red-white medullary demarcation in the spleen. Immunohistochemical results further confirmed that the production of the above lesions was due to viral infection. Importantly, unlike previously reported BAdV-3 detection only in the lungs and trachea, this isolate could be detected in multiple organs such as the heart, liver, spleen, kidney, and even blood by virus isolation and titration and real-time PCR methods. Clinical significance This study provides further insight into the pathogenicity of the fiber region deletion strain BO/YB24/17/CH in BALB/c mice, which provides a reference for the prevention and control of BAdV-3 as well as the development of vaccines.
Collapse
Affiliation(s)
- Qian Li
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Shufan He
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Yuantong Zou
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
| | - Hua Yue
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
| | - Cheng Tang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
| | - Jie Liu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu, Sichuan, China
- *Correspondence: Jie Liu
| |
Collapse
|
5
|
Richter M, Wang H, Lieber A. Role of Fiber Shaft Length in Tumor Targeting with Ad5/3 Vectors. Genes (Basel) 2022; 13:2056. [PMID: 36360292 PMCID: PMC9690795 DOI: 10.3390/genes13112056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/28/2024] Open
Abstract
Desmoglein 2 (DSG2) is overexpressed in many epithelial cancers and therefore represents a target receptor for oncolytic viruses, including Ad5/3-based viruses. For most Ad serotypes, the receptor-binding fiber is composed of tail, shaft, and knob domains. Here, we investigated the role of the fiber shaft in Ad5/3 tumor transduction in vitro and in human DSG2-transgenic mice carrying human DSG2high tumors. DSG2tg mice express DSG2 in a pattern similar to humans. We constructed Ad5/3L (with the "long" Ad5 shaft) and Ad5/3S (with the "short" Ad3 shaft) expressing GFP or luciferase. In in vitro studies we found that coagulation factor X, which is known to mediate undesired hepatocyte transduction of Ad5, enhances the transduction of Ad5/3(L), but not the transduction of Ad5/3(S). We therefore hypothesized that Ad5/3(S) would target DSG2high tumors while sparing the liver after intravenous injection. In vivo imaging studies for luciferase and analysis of luciferase activity in isolated organs, showed that Ad5/3(L) vectors efficiently transduced DSG2high tumors and liver but not normal epithelial tissues after intravenous injection. Ad5/3(S) showed minimal liver transduction, however it failed to transduce DSG2high tumors. Further modifications of the Ad5/3(S) capsid are required to compensate for the lower infectivity of Ad5/3(S) vectors.
Collapse
Affiliation(s)
| | | | - André Lieber
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Immunotherapy by mesenchymal stromal cell delivery of oncolytic viruses for treating metastatic tumors. Mol Ther Oncolytics 2022; 25:78-97. [PMID: 35434272 PMCID: PMC8989711 DOI: 10.1016/j.omto.2022.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as a very promising anti-cancer therapeutic strategy in the past decades. However, despite their pre-clinical promise, many OV clinical evaluations for cancer therapy have highlighted the continued need for their improved delivery and targeting. Mesenchymal stromal cells (MSCs) have emerged as excellent candidate vehicles for the delivery of OVs due to their tumor-homing properties and low immunogenicity. MSCs can enhance OV delivery by protecting viruses from rapid clearance following administration and also by more efficiently targeting tumor sites, consequently augmenting the therapeutic potential of OVs. MSCs can function as “biological factories,” enabling OV amplification within these cells to promote tumor lysis following MSC-OV arrival at the tumor site. MSC-OVs can promote enhanced safety profiles and therapeutic effects relative to OVs alone. In this review we explore the general characteristics of MSCs as delivery tools for cancer therapeutic agents. Furthermore, we discuss the potential of OVs as immune therapeutics and highlight some of the promising applications stemming from combining MSCs to achieve enhanced delivery and anti-tumor effectiveness of OVs at different pre-clinical and clinical stages. We further provide potential pitfalls of the MSC-OV platform and the strategies under development for enhancing the efficacy of these emerging therapeutics.
Collapse
|
7
|
Wang Z, Zhang X. Adenovirus vector-attributed hepatotoxicity blocks clinical application in gene therapy. Cytotherapy 2021; 23:1045-1052. [PMID: 34548241 DOI: 10.1016/j.jcyt.2021.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023]
Abstract
Adenoviruses (Ads), common self-limiting pathogens in humans and animals, usually cause conjunctivitis, mild upper respiratory tract infection or gastroenteritis in humans and hepatotoxicity syndrome in chickens and dogs, posing great threats to public health and livestock husbandry. Artificially modified Ads, which wipe out virulence-determining genes, are the most frequently used viral vectors in gene therapy, and some Ad vector (AdV)-related medicines and vaccines have been licensed and applied. Inherent liver tropism enables AdVs to specifically deliver drugs/genes to the liver; however, AdVs are closely associated with acute hepatotoxicity in immunocompromised individuals, and the side effects of AdVs, which stimulate a strong inflammatory reaction in the liver and cause acute hepatotoxicity, have largely limited clinical application. Therefore, this review systematically elucidates the intimate relationship between AdVs and hepatotoxicity in terms of virus and host and precisely illustrates the accumulated understanding in this field over the past decades. This review demonstrates the liver tropism of AdVs and molecular mechanism of AdV-induced hepatotoxicity and looks at the studies on AdV-mediated animal hepatotoxicity, which will undoubtedly deepen the understanding of AdV-caused liver injury and be of benefit in the further safe development of AdVs.
Collapse
Affiliation(s)
- Zeng Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Xiaozhan Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
8
|
Daussy CF, Pied N, Wodrich H. Understanding Post Entry Sorting of Adenovirus Capsids; A Chance to Change Vaccine Vector Properties. Viruses 2021; 13:1221. [PMID: 34202573 PMCID: PMC8310329 DOI: 10.3390/v13071221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Adenovirus vector-based genetic vaccines have emerged as a powerful strategy against the SARS-CoV-2 health crisis. This success is not unexpected because adenoviruses combine many desirable features of a genetic vaccine. They are highly immunogenic and have a low and well characterized pathogenic profile paired with technological approachability. Ongoing efforts to improve adenovirus-vaccine vectors include the use of rare serotypes and non-human adenoviruses. In this review, we focus on the viral capsid and how the choice of genotypes influences the uptake and subsequent subcellular sorting. We describe how understanding capsid properties, such as stability during the entry process, can change the fate of the entering particles and how this translates into differences in immunity outcomes. We discuss in detail how mutating the membrane lytic capsid protein VI affects species C viruses' post-entry sorting and briefly discuss if such approaches could have a wider implication in vaccine and/or vector development.
Collapse
Affiliation(s)
| | | | - Harald Wodrich
- Microbiologie Fondamentale et Pathogénicité, MFP CNRS UMR 5234, University of Bordeaux, 146 rue Leo Saignat, CEDEX, 33076 Bordeaux, France; (C.F.D.); (N.P.)
| |
Collapse
|
9
|
Baker AT, Davies JA, Bates EA, Moses E, Mundy RM, Marlow G, Cole DK, Bliss CM, Rizkallah PJ, Parker AL. The Fiber Knob Protein of Human Adenovirus Type 49 Mediates Highly Efficient and Promiscuous Infection of Cancer Cell Lines Using a Novel Cell Entry Mechanism. J Virol 2021; 95:e01849-20. [PMID: 33268514 PMCID: PMC7851562 DOI: 10.1128/jvi.01849-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
The human adenovirus (HAdV) phylogenetic tree is diverse, divided across seven species and comprising over 100 individual types. Species D HAdV are rarely isolated with low rates of preexisting immunity, making them appealing for therapeutic applications. Several species D vectors have been developed as vaccines against infectious diseases, where they induce robust immunity in preclinical models and early phase clinical trials. However, many aspects of the basic virology of species D HAdV, including their basic receptor usage and means of cell entry, remain understudied. Here, we investigated HAdV-D49, which previously has been studied for vaccine and vascular gene transfer applications. We generated a pseudotyped HAdV-C5 presenting the HAdV-D49 fiber knob protein (HAdV-C5/D49K). This pseudotyped vector was efficient at infecting cells devoid of all known HAdV receptors, indicating HAdV-D49 uses an unidentified cellular receptor. Conversely, a pseudotyped vector presenting the fiber knob protein of the closely related HAdV-D30 (HAdV-C5/D30K), differing in four amino acids from HAdV-D49, failed to demonstrate the same tropism. These four amino acid changes resulted in a change in isoelectric point of the knob protein, with HAdV-D49K possessing a basic apical region compared to a more acidic region in HAdV-D30K. Structurally and biologically we demonstrate that HAdV-D49 knob protein is unable to engage CD46, while potential interaction with coxsackievirus and adenovirus receptor (CAR) is extremely limited by extension of the DG loop. HAdV-C5/49K efficiently transduced cancer cell lines of pancreatic, breast, lung, esophageal, and ovarian origin, indicating it may have potential for oncolytic virotherapy applications, especially for difficult to transduce tumor types.IMPORTANCE Adenoviruses are powerful tools experimentally and clinically. To maximize efficacy, the development of serotypes with low preexisting levels of immunity in the population is desirable. Consequently, attention has focused on those derived from species D, which have proven robust vaccine platforms. This widespread usage is despite limited knowledge in their basic biology and cellular tropism. We investigated the tropism of HAdV-D49, demonstrating that it uses a novel cell entry mechanism that bypasses all known HAdV receptors. We demonstrate, biologically, that a pseudotyped HAdV-C5/D49K vector efficiently transduces a wide range of cell lines, including those presenting no known adenovirus receptor. Structural investigation suggests that this broad tropism is the result of a highly basic electrostatic surface potential, since a homologous pseudotyped vector with a more acidic surface potential, HAdV-C5/D30K, does not display a similar pantropism. Therefore, HAdV-C5/D49K may form a powerful vector for therapeutic applications capable of infecting difficult to transduce cells.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James A Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Emily A Bates
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Elise Moses
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Rosie M Mundy
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gareth Marlow
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - David K Cole
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Carly M Bliss
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Pierre J Rizkallah
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Alan L Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
10
|
Cunliffe TG, Bates EA, Parker AL. Hitting the Target but Missing the Point: Recent Progress towards Adenovirus-Based Precision Virotherapies. Cancers (Basel) 2020; 12:E3327. [PMID: 33187160 PMCID: PMC7696810 DOI: 10.3390/cancers12113327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 12/23/2022] Open
Abstract
More people are surviving longer with cancer. Whilst this can be partially attributed to advances in early detection of cancers, there is little doubt that the improvement in survival statistics is also due to the expansion in the spectrum of treatments available for efficacious treatment. Transformative amongst those are immunotherapies, which have proven effective agents for treating immunogenic forms of cancer, although immunologically "cold" tumour types remain refractive. Oncolytic viruses, such as those based on adenovirus, have great potential as anti-cancer agents and have seen a resurgence of interest in recent years. Amongst their many advantages is their ability to induce immunogenic cell death (ICD) of infected tumour cells, thus providing the alluring potential to synergise with immunotherapies by turning immunologically "cold" tumours "hot". Additionally, enhanced immune mediated cell killing can be promoted through the local overexpression of immunological transgenes, encoded from within the engineered viral genome. To achieve this full potential requires the development of refined, tumour selective "precision virotherapies" that are extensively engineered to prevent off-target up take via native routes of infection and targeted to infect and replicate uniquely within malignantly transformed cells. Here, we review the latest advances towards this holy grail within the adenoviral field.
Collapse
Affiliation(s)
| | | | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; (T.G.C.); (E.A.B.)
| |
Collapse
|
11
|
Zhang Y, Liu Z. Oncolytic Virotherapy for Malignant Tumor: Current Clinical Status. Curr Pharm Des 2020; 25:4251-4263. [PMID: 31682207 DOI: 10.2174/1381612825666191104090544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022]
Abstract
Oncolytic viruses, as novel biological anti-tumor agents, provide anti-tumor therapeutic effects by different mechanisms including directly selective tumor cell lysis and secondary systemic anti-tumor immune responses. Some wide-type and genetically engineered oncolytic viruses have been applied in clinical trials. Among them, T-Vec has a significant therapeutic effect on melanoma patients and received the approval of the US Food and Drug Administration (FDA) as the first oncolytic virus to treat cancer in the US. However, the mechanisms of virus interaction with tumor and immune systems have not been clearly elucidated and there are still no "gold standards" for instructions of virotherapy in clinical trials. This Review collected the recent clinical trials data from 2005 to summarize the basic oncolytic viruses biology, describe the application in recent clinical trials, and discuss the challenges in the application of oncolytic viruses in clinical trials.
Collapse
Affiliation(s)
- Yuhui Zhang
- Department of Spine Surgery, Renji Hospital, Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Zhuoming Liu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
12
|
Barry MA, Rubin JD, Lu SC. Retargeting adenoviruses for therapeutic applications and vaccines. FEBS Lett 2020; 594:1918-1946. [PMID: 31944286 PMCID: PMC7311308 DOI: 10.1002/1873-3468.13731] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/29/2022]
Abstract
Adenoviruses (Ads) are robust vectors for therapeutic applications and vaccines, but their use can be limited by differences in their in vitro and in vivo pharmacologies. This review emphasizes that there is not just one Ad, but a whole virome of diverse viruses that can be used as therapeutics. It discusses that true vector targeting involves not only retargeting viruses, but importantly also detargeting the viruses from off-target cells.
Collapse
Affiliation(s)
- Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Department of Immunology, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeffrey D Rubin
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| | - Shao-Chia Lu
- Virology and Gene Therapy Graduate Program, Mayo Graduate School, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Shen Y, Liu J, Zhang Y, Ma X, Yue H, Tang C. Prevalence and characteristics of a novel bovine adenovirus type 3 with a natural deletion fiber gene. INFECTION GENETICS AND EVOLUTION 2020; 83:104348. [PMID: 32380313 DOI: 10.1016/j.meegid.2020.104348] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/29/2022]
Abstract
Bovine adenovirus type 3 (BAdV-3) is an important pathogen causing bovine respiratory disease complex (BRDC). From Jun 2016 to Jun 2018, 108 nose swab samples were collected from cattle with BRDC from 11 farms in five cities, and 78.7% (85/108) samples were detected as BAdV-3 positive by Real-time PCR. Interestingly, the sequences of 7/10 fiber (852 bp) and hexon (785 bp) fragments cloned from 10 positive samples from eight farms were clustered into a single branch of the evolutionary tree. A BAdV-3 strain (BO/YB24/17/CH) was successfully isolated. The isolate caused pathological changes of lung, trachea and spleen in BALB/c mice. Notably, 79 amino acid deletions in the shaft domain and 74 unique amino acid mutations were found in the fiber gene of the isolate compared with the available complete sequences for fiber genes in the GenBank database. These characteristics indicated that the isolate may represent a novel fiber genotype of BAdV-3. A pair of specific primers covering the deletion region in the fiber gene was designed to screen the prevalence of BAdV-3 encoding the novel fiber gene. The results showed that 7 of the 10 strains possessed the novel fiber gene, and these novel fiber strains were detected from six farms in which calves were just imported from five provinces, indicating that this BAdV-3 with the natural deletion fiber gene has a wide geographical distribution in China. In conclusion, our results reveal that BAdV-3 is widespread in China and a pathogenic BAdV-3 strain with a novel fiber gene has been detected at high frequency, which is beneficial to understand the prevalence and genetic evolution of BAdV-3.
Collapse
Affiliation(s)
- Yan Shen
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Jie Liu
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| | - Yinghui Zhang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Xiaoyu Ma
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hua Yue
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China
| | - Cheng Tang
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China; Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Chengdu, China.
| |
Collapse
|
14
|
Yoon AR, Hong J, Li Y, Shin HC, Lee H, Kim HS, Yun CO. Mesenchymal Stem Cell-Mediated Delivery of an Oncolytic Adenovirus Enhances Antitumor Efficacy in Hepatocellular Carcinoma. Cancer Res 2019; 79:4503-4514. [PMID: 31289131 DOI: 10.1158/0008-5472.can-18-3900] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/01/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
Oncolytic virotherapy is a promising alternative to conventional treatment, yet systemic delivery of these viruses to tumors remains a major challenge. In this regard, mesenchymal stem cells (MSC) with well-established tumor-homing property could serve as a promising systemic delivery tool. We showed that MSCs could be effectively infected by hepatocellular carcinoma (HCC)-targeted oncolytic adenovirus (HCC-oAd) through modification of the virus' fiber domain and that the virus replicated efficiently in the cell carrier. HCC-targeting oAd loaded in MSCs (HCC-oAd/MSC) effectively lysed HCC cells in vitro under both normoxic and hypoxic conditions as a result of the hypoxia responsiveness of HCC-oAd. Importantly, systemically administered HCC-oAd/MSC, which were initially infected with a low viral dose, homed to HCC tumors and resulted in a high level of virion accumulation in the tumors, ultimately leading to potent tumor growth inhibition. Furthermore, viral dose reduction and tumor localization of HCC-oAd/MSC prevented the induction of hepatotoxicity by attenuating HCC-oAd hepatic accumulation. Taken together, these results demonstrate that MSC-mediated systemic delivery of oAd is a promising strategy for achieving synergistic antitumor efficacy with improved safety profiles. SIGNIFICANCE: Mesenchymal stem cells enable delivery of an oncolytic adenovirus specifically to the tumor without posing any risk associated with systemic administration of naked virions to the host.
Collapse
Affiliation(s)
- A-Rum Yoon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South).,Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea (South)
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South).,GeneMedicine CO., Ltd., Seoul, Republic of Korea (South)
| | - Yan Li
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South)
| | - Ha Chul Shin
- Pharmicell Co., Ltd., Gangnam-gu, Seoul, Republic of Korea (South)
| | - Hyunah Lee
- Pharmicell Co., Ltd., Gangnam-gu, Seoul, Republic of Korea (South)
| | - Hyun Soo Kim
- Pharmicell Co., Ltd., Gangnam-gu, Seoul, Republic of Korea (South)
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, Republic of Korea (South). .,Institute of Nano Science and Technology (INST), Hanyang University, Seoul, Republic of Korea (South).,GeneMedicine CO., Ltd., Seoul, Republic of Korea (South)
| |
Collapse
|
15
|
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N, Betapudi V. Gene Therapy Leaves a Vicious Cycle. Front Oncol 2019; 9:297. [PMID: 31069169 PMCID: PMC6491712 DOI: 10.3389/fonc.2019.00297] [Citation(s) in RCA: 233] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The human genetic code encrypted in thousands of genes holds the secret for synthesis of proteins that drive all biological processes necessary for normal life and death. Though the genetic ciphering remains unchanged through generations, some genes get disrupted, deleted and or mutated, manifesting diseases, and or disorders. Current treatment options—chemotherapy, protein therapy, radiotherapy, and surgery available for no more than 500 diseases—neither cure nor prevent genetic errors but often cause many side effects. However, gene therapy, colloquially called “living drug,” provides a one-time treatment option by rewriting or fixing errors in the natural genetic ciphering. Since gene therapy is predominantly a viral vector-based medicine, it has met with a fair bit of skepticism from both the science fraternity and patients. Now, thanks to advancements in gene editing and recombinant viral vector development, the interest of clinicians and pharmaceutical industries has been rekindled. With the advent of more than 12 different gene therapy drugs for curing cancer, blindness, immune, and neuronal disorders, this emerging experimental medicine has yet again come in the limelight. The present review article delves into the popular viral vectors used in gene therapy, advances, challenges, and perspectives.
Collapse
Affiliation(s)
- Reena Goswami
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Gayatri Subramanian
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Liliya Silayeva
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Isabelle Newkirk
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Deborah Doctor
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Karan Chawla
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Dhyan Chandra
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Nageswararao Chilukuri
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States
| | - Venkaiah Betapudi
- Neuroscience Branch, Research Division, United States Army Medical Research Institute of Chemical Defense, Aberdeen, MD, United States.,Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
16
|
αvβ3 Integrin Is Required for Efficient Infection of Epithelial Cells with Human Adenovirus Type 26. J Virol 2018; 93:JVI.01474-18. [PMID: 30333171 DOI: 10.1128/jvi.01474-18] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 09/30/2018] [Indexed: 11/20/2022] Open
Abstract
Human adenoviruses (HAdVs) are being explored as vectors for gene transfer and vaccination. Human adenovirus type 26 (HAdV26), which belongs to the largest subgroup of adenoviruses, species D, has a short fiber and a so-far-unknown natural tropism. Due to its low seroprevalence, HAdV26 has been considered a promising vector for the development of vaccines. Despite the fact that the in vivo safety and immunogenicity of HAdV26 have been extensively studied, the basic biology of the virus with regard to receptor use, cell attachment, internalization, and intracellular trafficking is poorly understood. In this work, we investigated the roles of the coxsackievirus and adenovirus receptor (CAR), CD46, and αv integrins in HAdV26 infection of human epithelial cell lines. By performing different gain- and loss-of-function studies, we found that αvβ3 integrin is required for efficient infection of epithelial cells by HAdV26, while CAR and CD46 did not increase the transduction efficiency of HAdV26. By studying intracellular trafficking of fluorescently labeled HAdV26 in A549 cells and A549-derived cell clones with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and that increased αvβ3 integrin enhances internalization of HAdV26. Thus, we conclude that HAdV26 uses αvβ3 integrin as a receptor for infecting epithelial cells. These results give us new insight into the HAdV26 infection pathway and will be helpful in further defining HAdV-based vector manufacturing and vaccination strategies.IMPORTANCE Adenovirus-based vectors are used today for gene transfer and vaccination. HAdV26 has emerged as a promising candidate vector for development of vaccines due to its relatively low seroprevalence and its ability to induce potent immune responses against inserted transgenes. However, data regarding the basic biology of the virus, like receptor usage or intracellular trafficking, are limited. In this work, we found that efficient infection of human epithelial cell lines by HAdV26 requires the expression of the αvβ3 integrin. By studying intracellular trafficking of fluorescently labeled HAdV26 in a cell clone with stably increased expression of αvβ3 integrin, we observed that HAdV26 colocalizes with αvβ3 integrin and confirmed that αvβ3 integrin expression facilitates efficient HAdV26 internalization. These results will allow further improvement of HAdV26-based vectors for gene transfer and vaccination.
Collapse
|
17
|
Stepanenko AA, Chekhonin VP. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257:40-51. [PMID: 30125593 DOI: 10.1016/j.virusres.2018.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/09/2023]
Abstract
The cellular internalization (infection of cells) of adenovirus 5 (Ad5) is mediated by the initial attachment of the globular knob domain of the capsid fiber protein to the cell surface coxsackievirus and adenovirus receptor (CAR), then followed by the interaction of the virus penton base proteins with cellular integrins. In tumors, there is a substantial intra- and intertumoral variability in CAR expression. The CAR-negative cells generally exhibit very low infectability. Since the fiber knob is a primary mediator of Ad5 binding to the cell surface, improved infectivity of Ad5-based vectors as oncolytic agents may be achieved via genetic modifications of this domain. The strategies to modify or broaden tropism and increase transduction efficiency of Ad5-based vectors include: 1) an incorporation of a targeting peptide into the fiber knob domain (the HI loop and/or C-terminus); 2) fiber knob serotype switching, or pseudotyping, by constructing chimeric fibers consisting of the knob domain derived from an alternate serotype (e.g., Ad5/3 or Ad5/35 chimeras), which binds to receptor(s) other than CAR (e.g., desmoglein 2/DSG2 and/or CD46); 3) "fiber complex mosaicism", an approach of combining serotype chimerism with peptide ligand(s) incorporation (e.g., Ad5/3-RGD); 4) "dual fiber mosaicism" by expressing two separate fibers with distinct receptor-binding capabilities on the same viral particle (e.g., Ad5-5/3 or Ad5-5/σ1); 5) fiber xenotyping by replacing the knob and shaft domains of wild-type Ad5 fiber protein with fibritin trimerization domain of T4 bacteriophage or σ1 attachment protein of reovirus. Other genetic approaches to increase the CAR-independent transduction efficiency include insertion of a targeting peptide into the hypervariable region of the capsid protein hexon or fusion to the C-terminus of pIX. Finally, we consider a yet unsolved molecular mechanism of liver targeting by Ad5-based vectors (CAR-, integrin-, fiber shaft KKTK motif-, and hepatic heparan sulfate glycosaminoglycans-independent, but fiber-, hexon- and blood factor X-dependent).
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
18
|
Serratia proteamaculans Strain AGR96X Encodes an Antifeeding Prophage (Tailocin) with Activity against Grass Grub (Costelytra giveni) and Manuka Beetle (Pyronota Species) Larvae. Appl Environ Microbiol 2018; 84:AEM.02739-17. [PMID: 29549100 DOI: 10.1128/aem.02739-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 03/08/2018] [Indexed: 11/20/2022] Open
Abstract
A highly virulent Serratia proteamaculans strain, AGR96X, exhibiting specific pathogenicity against larvae of the New Zealand grass grub (Costelytra giveni; Coleoptera: Scarabaeidae) and the New Zealand manuka beetle (Pyronota festiva and P. setosa; Coleoptera: Scarabaeidae), was isolated from a diseased grass grub larva. A 12-day median lethal dose of 4.89 × 103 ± 0.92 × 103 cells per grass grub larva was defined for AGR96X, and death occurred within 5 to 12 days following the ingestion of a high bacterial dose. During the infection period, the bacterium rapidly multiplied within the insect host and invaded the hemocoel, leading to a mean bacterial load of 8.2 × 109 cells per larva at 6 days postingestion. Genome sequencing of strain AGR96X revealed the presence of a variant of the Serratia entomophila antifeeding prophage (Afp), a tailocin designated AfpX. Unlike Afp, AfpX contains two Afp16 tail-length termination protein orthologs and two putative toxin components. A 37-kb DNA fragment encoding the AfpX-associated region was cloned, transformed into Escherichia coli, and fed to C. giveni and Pyronota larvae, causing mortality. In addition, the deletion of the afpX15 putative chaperone component abolished the virulence of AGR96X. Unlike S. entomophila Afp, the AfpX tailocin could be induced by mitomycin C. Transmission electron microscopy analysis revealed the presence of Afp-like particles of various lengths, and when the purified AfpX tailocin was fed to grass grub or manuka beetle larvae, they underwent phenotypic changes similar to those of larvae fed AGR96X.IMPORTANCESerratia proteamaculans strain AGR96X shows dual activity against larvae of endemic New Zealand pasture pests, the grass grub (Costelytra giveni) and the manuka beetle (Pyronota spp.). Unlike Serratia entomophila, the causal agent of amber disease, which takes 3 to 4 months to kill grass grub larvae, AGR96X causes mortality within 5 to 12 days of ingestion and invades the insect hemocoel. AGR96X produces a unique variant of the S. entomophila antifeeding prophage (Afp), a cell-free phage-like entity that is proposed to deliver protein toxins to the grass grub target site, causing a cessation of feeding activity. Unlike other Afp variants, AGR96X Afp, named AfpX, contains two tail-length termination proteins, resulting in greater variability in the AfpX length. AfpX shows dual activity against both grass grub and manuka beetle larvae. AGR96X is a viable alternative to S. entomophila for pest control in New Zealand pasture systems.
Collapse
|
19
|
Native and engineered tropism of vectors derived from a rare species D adenovirus serotype 43. Oncotarget 2018; 7:53414-53429. [PMID: 27462785 PMCID: PMC5288196 DOI: 10.18632/oncotarget.10800] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/13/2016] [Indexed: 02/03/2023] Open
Abstract
Unique molecular properties of species D adenoviruses (Ads)—the most diverse yet underexplored group of Ads—have been used to develop improved gene vectors. The low seroprevalence in humans of adenovirus serotype 43 (Ad43), an otherwise unstudied species D Ad, identified this rare serotype as an attractive new human gene therapy vector platform. Thus, in this study we wished to assess biological properties of Ad43 essential to its vectorization. We found that (1) Ad43 virions do not bind blood coagulation factor X and cause low random transduction upon vascular delivery; (2) they clear host tissues more quickly than do traditionally used Ad5 vectors; (3) Ad43 uses CD46 as primary receptor; (4) Ad43 can use integrins as alternative primary receptors. As the first step toward vectorization of Ad43, we demonstrated that the primary receptor specificity of the Ad43 fiber can be altered to achieve infection via Her2, an established oncotarget. Whereas this modification required use of the Ad5 fiber shaft, the presence of this domain in chimeric virions did not make them susceptible for neutralization by anti-Ad5 antibodies.
Collapse
|
20
|
Targeting polysialic acid-abundant cancers using oncolytic adenoviruses with fibers fused to active bacteriophage borne endosialidase. Biomaterials 2017; 158:86-94. [PMID: 29304405 DOI: 10.1016/j.biomaterials.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 11/24/2022]
Abstract
Genetic replacement of adenoviral fiber knobs by ligands that enable tumor specific targeting of oncolytic adenoviruses is challenging because the fiber knob contributes to virus assembly. Here, we present a novel concept by describing stable recombinant adenoviruses with tumor specific infection mode. The fiber knob was replaced by endosialidaseNF (endoNF), the tailspike protein of bacteriophage K1F. EndoNF recognizes polysialic acid, an oncofetal antigen characteristic for high malignant tumors of neuroendocrine origin. An intramolecular chaperone contained in endoNF warrants folding and compensates for the knob function in virus assembly. Obtained recombinant viruses demonstrated polysialic acid dependent infection modes, strong oncolytic capacity with polysialic acid positive cells in culture and a high potential to inhibit tumor growth in a therapeutic mouse model of subcutaneous neuroblastoma. With a single genetic manipulation we achieved ablation of the fiber knob, introduction of a tumor specific ligand, and folding control over the chimeric fiber construct.
Collapse
|
21
|
Morinaga T, Nguyễn TTT, Zhong B, Hanazono M, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. An image cytometric technique is a concise method to detect adenoviruses and host cell proteins and to monitor the infection and cellular responses induced. Virol J 2017; 14:219. [PMID: 29126418 PMCID: PMC5681831 DOI: 10.1186/s12985-017-0888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/31/2017] [Indexed: 11/30/2022] Open
Abstract
Background Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. Methods We used type 5 Ad in which the expression of E1A gene was activated by 5′-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. Results The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. Conclusions Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection. Electronic supplementary material The online version of this article (10.1186/s12985-017-0888-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Thảo Thi Thanh Nguyễn
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
22
|
Yamauchi S, Zhong B, Kawamura K, Yang S, Kubo S, Shingyoji M, Sekine I, Tada Y, Tatsumi K, Shimada H, Hiroshima K, Tagawa M. Cytotoxicity of replication-competent adenoviruses powered by an exogenous regulatory region is not linearly correlated with the viral infectivity/gene expression or with the E1A-activating ability but is associated with the p53 genotypes. BMC Cancer 2017; 17:622. [PMID: 28874135 PMCID: PMC5584036 DOI: 10.1186/s12885-017-3621-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 08/28/2017] [Indexed: 12/26/2022] Open
Abstract
Background Replication-competent adenoviruses (Ad) produced cytotoxic effects on infected tumors and have been examined for the clinical applicability. A biomarkers to predict the cytotoxicity is valuable in a clinical setting. Methods We constructed type 5 Ad (Ad5) of which the expression of E1A gene was activated by a 5′ regulatory sequences of survivin, midkine or cyclooxygenase-2, which were highly expressed in human tumors. We also produced the same replication-competent Ad of which the fiber-knob region was replaced by that of Ad35 (AdF35). The cytotoxicity was examined by a colorimetric assay with human tumor cell lines, 4 kinds of pancreatic, 9 esophageal carcinoma and 5 mesothelioma. Ad infectivity and Ad-mediated gene expression were examined with replication-incompetent Ad5 and AdF35 which expressed the green fluorescence protein gene. Expression of cellular receptors for Ad5 and AdF35 was also examined with flow cytometry. A transcriptional activity of the regulatory sequences was investigated with a luciferase assay in the tumor cells. We then investigated a possible correlation between Ad-mediated cytotoxicity and the infectivity/gene expression, the transcriptional activity or the p53 genotype. Results We found that the cytotoxicity was greater with AdF35 than with Ad5 vectors, but was not correlated with the Ad infectivity/gene expression irrespective of the fiber-knob region or the E1A-activating transcriptional activity. In contrast, replication-competent Ad produced greater cytotoxicity in p53 mutated than in wild-type esophageal carcinoma cells, suggesting a possible association between the cytotoxicity and the p53 genotype. Conclusions Sensitivity to Ad-mediated cytotoxic activity was linked with the p53 genotype but was not lineally correlated with the infectivity/gene expression or the E1A expression. Electronic supplementary material The online version of this article (10.1186/s12885-017-3621-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Suguru Yamauchi
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoko Kawamura
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Shan Yang
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan.,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shuji Kubo
- Department of Genetics, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Ikuo Sekine
- Department of Medical Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideaki Shimada
- Department of Surgery, School of Medicine, Toho University, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, Yachiyo, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, Chiba, Japan. .,Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
23
|
Tomono T, Yano K, Ogihara T. Snail-Induced Epithelial-to-Mesenchymal Transition Enhances P-gp-Mediated Multidrug Resistance in HCC827 Cells. J Pharm Sci 2017; 106:2642-2649. [DOI: 10.1016/j.xphs.2017.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/03/2017] [Accepted: 03/09/2017] [Indexed: 12/12/2022]
|
24
|
Tomono T, Kajita M, Yano K, Ogihara T. Adenovirus vector infection of non-small-cell lung cancer cells is a trigger for multi-drug resistance mediated by P-glycoprotein. Biochem Biophys Res Commun 2016; 476:183-187. [PMID: 27286705 DOI: 10.1016/j.bbrc.2016.05.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette protein involved in cancer multi-drug resistance (MDR). It has been reported that infection with some bacteria and viruses induces changes in the activities of various drug-metabolizing enzymes and transporters, including P-gp. Although human adenoviruses (Ad) cause the common cold, the effect of Ad infection on MDR in cancer has not been established. In this study, we investigated whether Ad infection is a cause of MDR in A549, H441 and HCC827 non-small-cell lung cancer (NSCLC) cell lines, using an Ad vector system. We found that Ad vector infection of NSCLC cell lines induced P-gp mRNA expression, and the extent of induction was dependent on the number of Ad vector virus particles and the infection time. Heat-treated Ad vector, which is not infectious, did not alter P-gp mRNA expression. Uptake experiments with doxorubicin (DOX), a P-gp substrate, revealed that DOX accumulation was significantly decreased in Ad vector-infected A549 cells. The decrease of DOX uptake was blocked by verapamil, a P-gp inhibitor. Our results indicated that Ad vector infection of NSCLC cells caused MDR mediated by P-gp overexpression. The Ad vector genome sequence is similar to that of human Ad, and therefore human Ad infection of lung cancer patients may lead to chemoresistance in the clinical environment.
Collapse
Affiliation(s)
- Takumi Tomono
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Masahiro Kajita
- Laboratory of Molecular Pharmaceutics and Technology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Kentaro Yano
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
| |
Collapse
|
25
|
Yoon AR, Hong J, Kim SW, Yun CO. Redirecting adenovirus tropism by genetic, chemical, and mechanical modification of the adenovirus surface for cancer gene therapy. Expert Opin Drug Deliv 2016; 13:843-58. [PMID: 26967319 DOI: 10.1517/17425247.2016.1158707] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Despite remarkable advancements, clinical evaluations of adenovirus (Ad)-mediated cancer gene therapies have highlighted the need for improved delivery and targeting. AREA COVERED Genetic modification of Ad capsid proteins has been extensively attempted. Although genetic modification enhances the therapeutic potential of Ad, it is difficult to successfully incorporate extraneous moieties into the capsid and the engineering process is laborious. Recently, chemical modification of the Ad surface with nanomaterials and targeting moieties has been found to enhance Ad internalization into the target by both passive and active mechanisms. Alternatively, external stimulus-mediated targeting can result in selective accumulation of Ad in the tumor and prevent dissemination of Ad into surrounding nontarget tissues. In the present review, we discuss various genetic, chemical, and mechanical engineering strategies for overcoming the challenges that hinder the therapeutic efficacy of Ad-based approaches. EXPERT OPINION Surface modification of Ad by genetic, chemical, or mechanical engineering strategies enables Ad to overcome the shortcomings of conventional Ad and enhances delivery efficiency through distinct and unique mechanisms that unmodified Ad cannot mimic. However, although the therapeutic potential of Ad-mediated gene therapy has been enhanced by various surface modification strategies, each strategy still possesses innate limitations that must be addressed, requiring innovative ideas and designs.
Collapse
Affiliation(s)
- A-Rum Yoon
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Jinwoo Hong
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| | - Sung Wan Kim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea.,b Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry , University of Utah , Salt Lake City , UT , USA
| | - Chae-Ok Yun
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Korea
| |
Collapse
|
26
|
Dicks MDJ, Spencer AJ, Coughlan L, Bauza K, Gilbert SC, Hill AVS, Cottingham MG. Differential immunogenicity between HAdV-5 and chimpanzee adenovirus vector ChAdOx1 is independent of fiber and penton RGD loop sequences in mice. Sci Rep 2015; 5:16756. [PMID: 26576856 PMCID: PMC4649739 DOI: 10.1038/srep16756] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/19/2015] [Indexed: 01/30/2023] Open
Abstract
Replication defective adenoviruses are promising vectors for the delivery of vaccine antigens. However, the potential of a vector to elicit transgene-specific adaptive immune responses is largely dependent on the viral serotype used. HAdV-5 (Human adenovirus C) vectors are more immunogenic than chimpanzee adenovirus vectors from species Human adenovirus E (ChAdOx1 and AdC68) in mice, though the mechanisms responsible for these differences in immunogenicity remain poorly understood. In this study, superior immunogenicity was associated with markedly higher levels of transgene expression in vivo, particularly within draining lymph nodes. To investigate the viral factors contributing to these phenotypes, we generated recombinant ChAdOx1 vectors by exchanging components of the viral capsid reported to be principally involved in cell entry with the corresponding sequences from HAdV-5. Remarkably, pseudotyping with the HAdV-5 fiber and/or penton RGD loop had little to no effect on in vivo transgene expression or transgene-specific adaptive immune responses despite considerable species-specific sequence heterogeneity in these components. Our results suggest that mechanisms governing vector transduction after intramuscular administration in mice may be different from those described in vitro.
Collapse
Affiliation(s)
- Matthew D. J. Dicks
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Alexandra J. Spencer
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lynda Coughlan
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Karolis Bauza
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Sarah C. Gilbert
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Adrian V. S. Hill
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Matthew G. Cottingham
- Jenner Institute, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| |
Collapse
|
27
|
Abstract
Oncolytic viruses represent a new class of therapeutic agents that promote anti-tumour responses through a dual mechanism of action that is dependent on selective tumour cell killing and the induction of systemic anti-tumour immunity. The molecular and cellular mechanisms of action are not fully elucidated but are likely to depend on viral replication within transformed cells, induction of primary cell death, interaction with tumour cell antiviral elements and initiation of innate and adaptive anti-tumour immunity. A variety of native and genetically modified viruses have been developed as oncolytic agents, and the approval of the first oncolytic virus by the US Food and Drug Administration (FDA) is anticipated in the near future. This Review provides a comprehensive overview of the basic biology supporting oncolytic viruses as cancer therapeutic agents, describes oncolytic viruses in advanced clinical trials and discusses the unique challenges in the development of oncolytic viruses as a new class of drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Howard L. Kaufman
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Frederick J. Kohlhapp
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| | - Andrew Zloza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, Room 2004, New Brunswick, 08901 New Jersey USA
| |
Collapse
|
28
|
Sakr HI, Coleman DT, Cardelli JA, Mathis JM. Characterization of an Oncolytic Adenovirus Vector Constructed to Target the cMet Receptor. Oncolytic Virother 2015; 4:119-132. [PMID: 26866014 PMCID: PMC4746000 DOI: 10.2147/ov.s87369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cMet receptor is a homodimer with tyrosine kinase activity. Upon stimulation with its ligand, hepatocyte growth factor (HGF), the receptor mediates wide physiologic actions. The HGF-cMet signaling pathway is dysregulated in many cancers, which makes cMet an important target for novel therapeutic interventions. Oncolytic adenoviruses (Ads) have been used for the past three decades as a promising therapeutic approach for a wide array of neoplastic diseases. To date, achieving cancer-specific replication of oncolytic Ads has been accomplished by either viral genome deletions or by incorporating tumor selective promoters. To achieve novel specificity of oncolytic Ad infection of cancer cells that overexpress cMet, we inserted the HGF NK2 sequence, corresponding to a competitive antagonist of HGF binding to the cMet receptor, into the Ad serotype 5 (Ad5) fiber gene. The resulting vector, Ad5-pIX-RFP-FF/NK2, was rescued, amplified in HEK293 cells, and characterized. Binding specificity and viral infectivity were tested in various cancer cell lines that express varying levels of cMet and hCAR (the Ad5 receptor). We found that Ad5-pIX-RFP-FF/NK2 demonstrated binding specificity to the cMet receptor. In addition, there was enhanced viral infectivity and virus replication compared with a non-targeted Ad vector. Although NK2 weakly induces cMet receptor activation, our results showed no receptor phosphorylation in the context of an oncolytic Ad virus. In summary, these results suggest that an oncolytic Ad retargeted to the cMet receptor is a promising vector for developing a novel cancer therapeutic agent.
Collapse
Affiliation(s)
- Hany I Sakr
- Department of Cellular Biology and Anatomy, LSU Health Shreveport, Shreveport, LA, USA; Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA
| | - David T Coleman
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - James A Cardelli
- Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Microbiology and Immunology, LSU Health Shreveport, Shreveport, LA, USA
| | - J Michael Mathis
- Gene Therapy Program, LSU Health Shreveport, Shreveport, LA, USA; Feist-Weiller Cancer Center, LSU Health Shreveport, Shreveport, LA, USA; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
29
|
McFall ER, Murray LM, Lunde JA, Jasmin BJ, Kothary R, Parks RJ. A reduction in the human adenovirus virion size through use of a shortened fibre protein does not enhance muscle transduction following systemic or localised delivery in mice. Virology 2014; 468-470:444-453. [PMID: 25243333 DOI: 10.1016/j.virol.2014.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/28/2014] [Accepted: 08/22/2014] [Indexed: 02/06/2023]
Abstract
We have investigated whether reducing the overall size of adenovirus (Ad), through use of a vector containing a shortened fibre, leads to enhanced distribution and dissemination of the vector. Intravenous or intraperitoneal injection of Ad5SlacZ (12 nm fibre versus the normal Ad5 37 nm fibre) or Ad5SpKlacZ (shortened fibre with polylysine motif in the H-I loop of fibre knob domain) led to similar levels of lacZ expression compared to Ad5LlacZ (native Ad5 fibre) in the liver of treated animals, but did not enhance extravasation into the tibialis anterior muscle. Direct injection of the short-fibre vectors into the tibialis anterior muscle did not result in enhanced spread of the vector through muscle tissue, and led to only sporadic transgene expression in the spinal cord, suggesting that modifying the fibre length or redirecting viral infection to a more common cell surface receptor does not enhance motor neuron uptake or retrograde transport.
Collapse
Affiliation(s)
- Emily R McFall
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lyndsay M Murray
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6
| | - John A Lunde
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada
| | - Rashmi Kothary
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Robin J Parks
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada K1H 8L6; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada; University of Ottawa Centre for Neuromuscular Disease, Ottawa, Ontario, Canada; Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
30
|
Molecular characterization of a lizard adenovirus reveals the first atadenovirus with two fiber genes and the first adenovirus with either one short or three long fibers per penton. J Virol 2014; 88:11304-14. [PMID: 25056898 DOI: 10.1128/jvi.00306-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins-one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton base. This observation raises new intriguing questions on virus structure. How can the triple fiber attach to a pentameric vertex? What determines the number and location of each vertex type in the icosahedral particle? Since fibers are responsible for primary attachment to the host, this novel architecture also suggests a novel mode of cell entry for LAdV-2. Adenoviruses have a recognized potential in nanobiomedicine, but only a few of the more than 200 types found so far in nature have been characterized in detail. Exploring the taxonomic wealth of adenoviruses should improve our chances to successfully use them as therapeutic tools.
Collapse
|
31
|
Majhen D, Calderon H, Chandra N, Fajardo CA, Rajan A, Alemany R, Custers J. Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Hum Gene Ther 2014; 25:301-17. [PMID: 24580050 DOI: 10.1089/hum.2013.235] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The field of adenovirology is undergoing rapid change in response to increasing appreciation of the potential advantages of adenoviruses as the basis for new vaccines and as vectors for gene and cancer therapy. Substantial knowledge and understanding of adenoviruses at a molecular level has made their manipulation for use as vaccines and therapeutics relatively straightforward in comparison with other viral vectors. In this review we summarize the structure and life cycle of the adenovirus and focus on the use of adenovirus-based vectors in vaccines against infectious diseases and cancers. Strategies to overcome the problem of preexisting antiadenovirus immunity, which can hamper the immunogenicity of adenovirus-based vaccines, are discussed. When armed with tumor-associated antigens, replication-deficient and oncolytic adenoviruses can efficiently activate an antitumor immune response. We present concepts on how to use adenoviruses as therapeutic cancer vaccines and consider some of the strategies used to further improve antitumor immune responses. Studies that explore the prospect of adenoviruses as vaccines against infectious diseases and cancer are underway, and here we give an overview of the latest developments.
Collapse
|
32
|
Di Paolo NC, Baldwin LK, Irons EE, Papayannopoulou T, Tomlinson S, Shayakhmetov DM. IL-1α and complement cooperate in triggering local neutrophilic inflammation in response to adenovirus and eliminating virus-containing cells. PLoS Pathog 2014; 10:e1004035. [PMID: 24651866 PMCID: PMC3961377 DOI: 10.1371/journal.ppat.1004035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/14/2014] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a highly coordinated host response to infection, injury, or cell stress. In most instances, the inflammatory response is pro-survival and is aimed at restoring physiological tissue homeostasis and eliminating invading pathogens, although exuberant inflammation can lead to tissue damage and death. Intravascular injection of adenovirus (Ad) results in virus accumulation in resident tissue macrophages that trigger activation of CXCL1 and CXCL2 chemokines via the IL-1α-IL-1RI signaling pathway. However, the mechanistic role and functional significance of this pathway in orchestrating cellular inflammatory responses to the virus in vivo remain unclear. Resident metallophilic macrophages expressing macrophage receptor with collagenous structure (MARCO+) in the splenic marginal zone (MZ) play the principal role in trapping Ad from the blood. Here we show that intravascular Ad administration leads to the rapid recruitment of Ly-6G+7/4+ polymorphonuclear leukocytes (PMNs) in the splenic MZ, the anatomical compartment that remains free of PMNs when these cells are purged from the bone marrow via a non-inflammatory stimulus. Furthermore, PMN recruitment in the splenic MZ resulted in elimination of virus-containing cells. IL-1α-IL-1RI signaling is only partially responsible for PMN recruitment in the MZ and requires CXCR2, but not CXCR1 signaling. We further found reduced recruitment of PMNs in the splenic MZ in complement C3-deficient mice, and that pre-treatment of IL-1α-deficient, but not wild-type mice, with complement inhibitor CR2-Crry (inhibits all complement pathways at C3 activation) or CR2-fH (inhibits only the alternative complement activation pathway) prior to Ad infection, abrogates PMN recruitment to the MZ and prevents elimination of MARCO+ macrophages from the spleen. Collectively, our study reveals a non-redundant role of the molecular factors of innate immunity – the chemokine-activating IL-1α-IL-1RI-CXCR2 axis and complement – in orchestrating local inflammation and functional cooperation of PMNs and resident macrophages in the splenic MZ, which collectively contribute to limiting disseminated pathogen spread via elimination of virus-containing cells. Adenovirus (Ad) induces a potent activation of pro-inflammatory cytokines and chemokines upon interaction with tissue macrophages in vivo. However, critical factors affecting cellular inflammatory responses to Ad and their functional significance remain unclear. Here we show that in the model of disseminated infection, intravenous Ad administration leads to a rapid release of pro-inflammatory Ly-6G+7/4+ leukocytes (PMNs) from the bone marrow into the blood. PMNs enter into peripheral tissues and, in the case of spleen, are accumulated in proximity to the virus-containing MARCO+ macrophages within the splenic marginal zone (MZ). Mechanistic dissection of molecular queues that guide PMN migration reveals that CXCL1 and CXCL2 chemokines are only partially responsible for CXCR2-dependent PMN recruitment into the splenic MZ. We further found that complement cooperates with IL-1α-IL-1RI-CXCR2 signaling pathways in recruitment of PMNs to the splenic MZ, which results in elimination of virus-containing MARCO+ macrophages from the spleen. Administration of complement-blocking CR2-Crry or CR2-fH proteins into IL-1α-deficient, but not wild-type, mice prevents PMN accumulation in the splenic MZ and elimination of virus-containing macrophages from the spleen. Our study defines the functional significance of molecular and cellular host defense mechanisms that cooperate in eliminating virus-containing cells in the model of acute disseminated Ad infection.
Collapse
Affiliation(s)
- Nelson C. Di Paolo
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Lisa K. Baldwin
- Division of Medical Genetics Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Eric E. Irons
- Division of Medical Genetics Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Thalia Papayannopoulou
- Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
33
|
Bhardwaj A, Casjens SR, Cingolani G. Exploring the atomic structure and conformational flexibility of a 320 Å long engineered viral fiber using X-ray crystallography. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:342-53. [PMID: 24531468 PMCID: PMC3940195 DOI: 10.1107/s1399004713027685] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022]
Abstract
Protein fibers are widespread in nature, but only a limited number of high-resolution structures have been determined experimentally. Unlike globular proteins, fibers are usually recalcitrant to form three-dimensional crystals, preventing single-crystal X-ray diffraction analysis. In the absence of three-dimensional crystals, X-ray fiber diffraction is a powerful tool to determine the internal symmetry of a fiber, but it rarely yields atomic resolution structural information on complex protein fibers. An 85-residue-long minimal coiled-coil repeat unit (MiCRU) was previously identified in the trimeric helical core of tail needle gp26, a fibrous protein emanating from the tail apparatus of the bacteriophage P22 virion. Here, evidence is provided that an MiCRU can be inserted in frame inside the gp26 helical core to generate a rationally extended fiber (gp26-2M) which, like gp26, retains a trimeric quaternary structure in solution. The 2.7 Å resolution crystal structure of this engineered fiber, which measures ∼320 Å in length and is only 20-35 Å wide, was determined. This structure, the longest for a trimeric protein fiber to be determined to such a high resolution, reveals the architecture of 22 consecutive trimerization heptads and provides a framework to decipher the structural determinants for protein fiber assembly, stability and flexibility.
Collapse
Affiliation(s)
- Anshul Bhardwaj
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | - Sherwood R. Casjens
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| |
Collapse
|
34
|
Mossoba ME, Medin JA. Cancer immunotherapy using virally transduced dendritic cells: animal studies and human clinical trials. Expert Rev Vaccines 2014; 5:717-32. [PMID: 17181444 DOI: 10.1586/14760584.5.5.717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immune system uses a process known as 'immunosurveillance' to help prevent the outgrowth of tumors. In cancer immunotherapy, a major goal is for immunity against tumor-associated antigens to be generated or strengthened in patients. To achieve this goal, several approaches have been tested, including the use of highly potent antigen-presenting cells called dendritic cells (DCs), which can activate T cells efficiently. Presentation of peptides derived from tumor antigens on the surface of DCs can stimulate strong antitumor immunity. Using recombinant viral vectors encoding tumor-associated antigens, DCs can be engineered efficiently to express sustained levels of tumor-antigen peptides. This review discusses the effectiveness of virally transduced DCs in treating tumors and generating antigen-specific T-cell responses. It covers mouse and nonhuman primate studies, preclinical in vitro human cell experiments and clinical trials.
Collapse
Affiliation(s)
- Miriam E Mossoba
- Department of Medical Biophysics, University of Toronto, 67 College Street, Room 426, Toronto, Ontario, M5G 2MI, Canada.
| | | |
Collapse
|
35
|
Lukashevich IS, Shirwan H. Adenovirus-Based Vectors for the Development of Prophylactic and Therapeutic Vaccines. NOVEL TECHNOLOGIES FOR VACCINE DEVELOPMENT 2014. [PMCID: PMC7121347 DOI: 10.1007/978-3-7091-1818-4_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Emerging and reemerging infectious diseases as well as cancer pose great global health impacts on the society. Vaccines have emerged as effective treatments to prevent or reduce the burdens of already developed diseases. This is achieved by means of activating various components of the immune system to generate systemic inflammatory reactions targeting infectious agents or diseased cells for control/elimination. DNA virus-based genetic vaccines gained significant attention in the past decades owing to the development of DNA manipulation technologies, which allowed engineering of recombinant viral vectors encoding sequences for foreign antigens or their immunogenic epitopes as well as various immunomodulatory molecules. Despite tremendous progress in the past 50 years, many hurdles still remain for achieving the full clinical potential of viral-vectored vaccines. This chapter will present the evolution of vaccines from “live” or “attenuated” first-generation agents to recombinant DNA and viral-vectored vaccines. Particular emphasis will be given to human adenovirus (Ad) for the development of prophylactic and therapeutic vaccines. Ad biological properties related to vaccine development will be highlighted along with their advantages and potential hurdles to be overcome. In particular, we will discuss (1) genetic modifications in the Ad capsid protein to reduce the intrinsic viral immunogenicity, (2) antigen capsid incorporation for effective presentation of foreign antigens to the immune system, (3) modification of the hexon and fiber capsid proteins for Ad liver de-targeting and selective retargeting to cancer cells, (4) Ad-based vaccines carrying “arming” transgenes with immunostimulatory functions as immune adjuvants, and (5) oncolytic Ad vectors as a new therapeutic approach against cancer. Finally, the combination of adenoviral vectors with other non-adenoviral vector systems, the prime/boost strategy of immunization, clinical trials involving Ad-based vaccines, and the perspectives for the field development will be discussed.
Collapse
Affiliation(s)
- Igor S Lukashevich
- Department of Pharmacology and Toxicolog Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| | - Haval Shirwan
- Department of Microbiology and Immunolog, University of Louisville, Louisville, Kentucky USA
| |
Collapse
|
36
|
Gosnell H, Kasman LM, Potta T, Vu L, Garrett-Mayer E, Rege K, Voelkel-Johnson C. Polymer-enhanced delivery increases adenoviral gene expression in an orthotopic model of bladder cancer. J Control Release 2013; 176:35-43. [PMID: 24370892 DOI: 10.1016/j.jconrel.2013.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/06/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
Abstract
Gene therapy has garnered significant attention as a therapeutic approach for bladder cancer but efficient delivery and gene expression remain major hurdles. The goal of this study was to determine if cationic polymers can enhance adenoviral gene expression in cells that are difficult to transduce in vitro and to subsequently investigate lead candidates for their capacity to increase adenoviral gene expression in an orthotopic in vivo model of bladder cancer. In vitro screening of linear polyamine-based and aminoglycoside-based polymer libraries identified several candidates that enhanced adenoviral reporter gene expression in vitro. The polyamine-based polymer NPGDE-1,4 Bis significantly enhanced adenoviral gene expression in the orthotopic model of bladder cancer but unfortunately further use of this polymer was limited by toxicity. In contrast, the aminoglycoside-based polymer paromomycin-BGDE, enhanced adenoviral gene expression within the bladder without adverse events. Our study demonstrates for the first time that cationic polymers can enhance adenoviral gene expression in an orthotopic model of bladder cancer, thereby providing the foundation for future studies to determine therapeutic benefits of polymer-adenovirus combination in bladder cancer gene therapy.
Collapse
Affiliation(s)
- Helen Gosnell
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Laura M Kasman
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA
| | - Thrimoorthy Potta
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe 85287-6106 USA
| | - Lucas Vu
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe 85287-6106 USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Sciences, Medical University of South Carolina, Charleston 29425, USA
| | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe 85287-6106 USA
| | - Christina Voelkel-Johnson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston 29425, USA.
| |
Collapse
|
37
|
Chimeric adenoviral vector Ad5F35L containing the Ad5 natural long-shaft exhibits efficient gene transfer into human T lymphocytes. J Virol Methods 2013; 194:52-9. [PMID: 23933078 DOI: 10.1016/j.jviromet.2013.07.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 01/06/2023]
Abstract
Adoptive therapy using T cells modified with tumour antigen-specific T cell receptor (TCR) genes has become a popular area of research in tumour biotherapy research. However, the efficiency of this treatment is low. To increase the efficiency of this therapy, the antigen specific TCR expression in the T cells needs to be improved. Adenoviral vector-mediated gene expression is an attractive approach to bypass the issue of TCR gene modification. The efficiency of adenovirus vector serotype 5 (Ad5) infection is low due to the absence of coxsackievirus B-adenovirus receptor (CAR) expression in T cells. In the present study, a chimeric adenoviral vector (Ad5F35L) was generated; this construct contained both the natural long-shaft of Ad5 and the Ad35 knob. A transduction study showed that the Ad5F35L vector exhibited a higher transduction efficiency in human primary T lymphocytes than the Ad5 vector and the Ad5F35S vector, which contained the Ad35 natural short-shaft and the Ad35 knob. Similar transduction efficiencies were observed for both CD4(+) T lymphocytes and CD8(+) T lymphocytes and the transfection was independent of the expression of cell surface receptors. The activation of T lymphocytes resulted in an improvement of the Ad5F35L transduction efficiency in CD4(+) T cells and a decrease in Ad5F35L transduction efficiency in CD8(+) T cells. The results demonstrate that Ad5F35L is a promising viral vector and will facilitate the clinical application of tumour antigen-specific TCR gene therapy.
Collapse
|
38
|
Coagulation factor binding orientation and dimerization may influence infectivity of adenovirus-coagulation factor complexes. J Virol 2013; 87:9610-9. [PMID: 23804638 DOI: 10.1128/jvi.01070-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses (Ads) are promising vectors for therapeutic interventions in humans. When injected into the bloodstream, Ad vectors can bind several vitamin K-dependent blood coagulation factors, which contributes to virus sequestration in the liver by facilitating transduction of hepatocytes. Although both coagulation factors FVII and FX bind the hexon protein of human Ad serotype 5 (HAdv5) with a very high affinity, only FX appears to play a role in mediating Ad-hepatocyte transduction in vivo. To understand the discrepancy between efficacy of FVII binding to hexon and its apparently poor capacity for supporting virus cell entry, we analyzed the HAdv5-FVII complex by using high-resolution cryo-electron microscopy (cryo-EM) followed by molecular dynamic flexible fitting (MDFF) simulations. The results indicate that although hexon amino acids T423, E424, and T425, identified earlier as critical for FX binding, are also involved in mediating binding of FVII, the FVII GLA domain sits within the surface-exposed hexon trimer depression in a different orientation from that found for FX. Furthermore, we found that when bound to hexon, two proximal FVII molecules interact via their serine protease (SP) domains and bury potential heparan sulfate proteoglycan (HSPG) receptor binding residues within the dimer interface. In contrast, earlier cryo-EM studies of the Ad-FX interaction showed no evidence of dimer formation. Dimerization of FVII bound to Ad may be a contributing mechanistic factor for the differential infectivity of Ad-FX and Ad-FVII complexes, despite high-affinity binding of both these coagulation factors to the virus.
Collapse
|
39
|
Uchio E, Inoue H, Kadonosono K. Anti-adenoviral effects of human cationic antimicrobial protein-18/LL-37, an antimicrobial peptide, by quantitative polymerase chain reaction. KOREAN JOURNAL OF OPHTHALMOLOGY 2013; 27:199-203. [PMID: 23730113 PMCID: PMC3663063 DOI: 10.3341/kjo.2013.27.3.199] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 06/27/2012] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Antimicrobial peptides have an important role in self-protection of the ocular surface. Human cationic antimicrobial protein (hCAP)-18 is a linear, α-helical peptide that consists of a conserved pro-sequence called a cathelin-like domain and a C-terminal peptide named LL-37. We investigated the in vitro anti-adenoviral activity of hCAP-18/LL-37 in several adenovirus types, inducing keratoconjunctivitis. METHODS A549 cells were used for viral cell culture, and human adenovirus (HAdV) types 3 (HAdV3, species B), 4 (species E), 8, 19a, and 37 (species D) were used. The cytotoxicity of LL-37 was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay to obtain 50% cytotoxic concentration. After pretreatment of A549 cells with serial dilutions of LL-37 for 24 hours, adenovirus was cultured for seven days, and adenoviral DNA was quantitatively measured by real-time polymerase chain reaction (PCR). RESULTS The 50% effective concentration of LL-37 obtained by real-time PCR ranged between 118 and 270 µM. LL-37 showed a significant inhibitory effect on adenoviral proliferation in all adenovirus types except HAdV4 in a dose-dependent manner. CONCLUSIONS LL-37 has significant inhibitory activity against HAdV3, 8, and 19, which induce keratoconjunctivitis. These results indicate that hCAP-18/LL-37 may be a possible candidate for the treatment of HAdV keratoconjunctivitis.
Collapse
Affiliation(s)
- Eiichi Uchio
- Department of Ophthalmology, Fukuoka University School of Medicine, Fukuoka, Japan
| | | | | |
Collapse
|
40
|
Koski A, Karli E, Kipar A, Escutenaire S, Kanerva A, Hemminki A. Mutation of the fiber shaft heparan sulphate binding site of a 5/3 chimeric adenovirus reduces liver tropism. PLoS One 2013; 8:e60032. [PMID: 23585829 PMCID: PMC3621953 DOI: 10.1371/journal.pone.0060032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Natural tropism to the liver is a major obstacle in systemic delivery of adenoviruses in cancer gene therapy. Adenovirus binding to soluble coagulation factors and to cellular heparan sulphate proteoglycans via the fiber shaft KKTK domain are suggested to cause liver tropism. Serotype 5 adenovirus constructs with mutated KKTK regions exhibit liver detargeting, but they also transduce tumors less efficiently, possibly due to altered fiber conformation. We constructed Ad5/3lucS*, a 5/3 chimeric adenovirus with a mutated KKTK region. The fiber knob swap was hypothesized to facilitate tumor transduction. This construct was studied with or without additional coagulation factor ablation. Ad5/3lucS* exhibited significantly reduced transduction of human hepatic cells in vitro and mouse livers in vivo. Combination of coagulation factor ablation by warfarinization to Ad5/3lucS* seemed to further enhance liver detargeting. Cancer cell transduction by Ad5/3lucS* was retained in vitro. In vivo, viral particle accumulation in M4A4-LM3 xenograft tumors was comparable to controls, but Ad5/3lucS* transgene expression was nearly abolished. Coagulation factor ablation did not affect tumor transduction. These studies set the stage for further investigations into the effects of the KKTK mutation and coagulation factor ablation in the context of 5/3 serotype chimerism. Of note, the putative disconnect between tumor transduction and transgene expression could prove useful in further understanding of adenovirus biology.
Collapse
Affiliation(s)
- Anniina Koski
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Eerika Karli
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Veterinary Pathology, School of Veterinary Science and Department of Infection Biology, Institute of Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Sophie Escutenaire
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Abstract
The outer shell of the adenovirus capsid comprises three major types of protein (hexon, penton base and fiber) that perform the majority of functions facilitating the early stages of adenovirus infection. These stages include initial cell-surface binding followed by receptor-mediated endocytosis, endosomal penetration and cytosolic entry, and intracellular trafficking toward the nucleus. Numerous studies have shown that the penton base contributes to several of these steps and have supported the development of this protein into a delivery agent for therapeutic molecules. Studies revealing that the fiber and hexon bear unexpected properties of cell entry and/or nuclear homing have supported the development of these capsid proteins, as well into potential delivery vehicles. This review summarizes the findings to date of the protein-cell activities of these capsid proteins in the absence of the whole virus and their potential for therapeutic application with regard to the delivery of foreign molecules.
Collapse
|
42
|
Reetz J, Herchenröder O, Schmidt A, Pützer BM. Vector Technology and Cell Targeting: Peptide-Tagged Adenoviral Vectors as a Powerful Tool for Cell Specific Targeting. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
43
|
Reduced infectivity of adenovirus type 5 particles and degradation of entering viral genomes associated with incomplete processing of the preterminal protein. J Virol 2012; 86:13554-65. [PMID: 23035217 DOI: 10.1128/jvi.02337-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To investigate further the contribution of the adenovirus type 5 (Ad5) E1B 55-kDa protein to genome replication, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected with Ad5 or the E1B 55-kDa-null mutant Hr6. Unexpectedly, all cell types were observed to contain a significantly higher concentration of entering Hr6 than of Ad5 DNA, as did an infectious unit of Hr6. However, the great majority of the Hr6 genomes were degraded soon after entry. As this unusual phenotype cannot be ascribed to the Hr6 E1B frameshift mutation (J. S. Chahal and S. J. Flint, J. Virol. 86:3064-3072, 2012), the sequences of the Ad5 and Hr6 genomes were compared by using high-throughput sequencing. Seven previously unrecognized mutations were identified in the Hr6 genome, two of which result in substitutions in virion proteins, G315V in the preterminal protein (preTP) and A406V in fiber protein IV. Previous observations and the visualization by immunofluorescence of greater numbers of viral genomes entering the cytosol of Hr6-infected cells than of Ad5-infected cells indicated that the fiber mutation could not be responsible for the low-infectivity phenotype of Hr6. However, comparison of the forms of terminal protein present in purified virus particles indicated that the production of mature terminal protein from a processing intermediate is impaired in Hr6 particles. We therefore propose that complete processing of preTP within virus particles is necessary for the ability of viral genomes to become localized at appropriate sites and persist in infected cells.
Collapse
|
44
|
Conserved fiber-penton base interaction revealed by nearly atomic resolution cryo-electron microscopy of the structure of adenovirus provides insight into receptor interaction. J Virol 2012; 86:12322-9. [PMID: 22951835 DOI: 10.1128/jvi.01608-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Adenovirus (Ad) cell attachment is initiated by the attachment of the fiber protein to a primary receptor (usually CAR or CD46). This event is followed by the engagement of the penton base protein with a secondary receptor (integrin) via its loop region, which contains an Arg-Gly-Asp (RGD) motif, to trigger virus internalization. To understand the well-orchestrated adenovirus cell attachment process that involves the fiber and the penton base, we reconstructed the structure of an Ad5F35 capsid, comprising an adenovirus type 5 (Ad5) capsid pseudotyped with an Ad35 fiber, at a resolution of approximately 4.2 Å. The fiber-penton base interaction in the cryo-electron microscopic (cryo-EM) structure of Ad5F35 is similar to that in the cryo-EM structure of Ad5, indicating that the fiber-penton base interaction of adenovirus is conserved. Our structure also confirms that the C-terminal segment of the fiber tail domain constitutes the bottom trunk of the fiber shaft. Based on the conserved fiber-penton base interaction, we have proposed a model for the interaction of Ad5F35 with its primary and secondary receptors. This model could provide insight for designing adenovirus gene delivery vectors.
Collapse
|
45
|
Kaufmann JK, Nettelbeck DM. Virus chimeras for gene therapy, vaccination, and oncolysis: adenoviruses and beyond. Trends Mol Med 2012; 18:365-76. [PMID: 22633438 DOI: 10.1016/j.molmed.2012.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/19/2012] [Accepted: 04/20/2012] [Indexed: 12/27/2022]
Abstract
Several challenges need to be addressed when developing viruses for clinical applications in gene therapy, vaccination, or viral oncolysis, including specific and efficient target cell transduction, virus delivery via the blood stream, and evasion of pre-existing immunity. With rising frequency, these goals are tackled by generating chimeric viruses containing nucleic acid fragments or proteins from two or more different viruses, thus combining different beneficial features of the parental viruses. These chimeras have boosted the development of virus-based treatment regimens for major inherited and acquired diseases, including cancer. Using adenoviruses as the paradigm and prominent examples from other virus families, we review the technological and functional advances in therapeutic virus chimera development and recent successful applications that can pave the way for future therapies.
Collapse
Affiliation(s)
- Johanna K Kaufmann
- Helmholtz University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ) and Department of Dermatology, Heidelberg University Hospital, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany
| | | |
Collapse
|
46
|
Lee BH, Hwang DM, Palaniyar N, Grinstein S, Philpott DJ, Hu J. Activation of P2X(7) receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. PLoS One 2012; 7:e35812. [PMID: 22558229 PMCID: PMC3338466 DOI: 10.1371/journal.pone.0035812] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/22/2012] [Indexed: 12/20/2022] Open
Abstract
Acute viral infection causes damages to the host due to uncontrolled viral replication but even replication deficient viral vectors can induce systemic inflammatory responses. Indeed, overactive host innate immune responses to viral vectors have led to devastating consequences. Macrophages are important innate immune cells that recognize viruses and induce inflammatory responses at the early stage of infection. However, tissue resident macrophages are not easily activated by the mere presence of virus suggesting that their activation requires additional signals from other cells in the tissue in order to trigger inflammatory responses. Previously, we have shown that the cross-talk between epithelial cells and macrophages generates synergistic inflammatory responses during adenoviral vector infection. Here, we investigated whether ATP is involved in the activation of macrophages to induce inflammatory responses during an acute adenoviral infection. Using a macrophage-epithelial cell co-culture system we demonstrated that ATP signaling through P2X7 receptor (P2X7R) is required for induction of inflammatory mediators. We also showed that ATP-P2X7R signaling regulates inflammasome activation as inhibition or deficiency of P2X7R as well as caspase-1 significantly reduced IL-1β secretion. Furthermore, we found that intranasal administration of replication deficient adenoviral vectors in mice caused a high mortality in wild-type mice with symptoms of acute respiratory distress syndrome but the mice deficient in P2X7R or caspase-1 showed increased survival. In addition, wild-type mice treated with apyrase or inhibitors of P2X7R or caspase-1 showed higher rates of survival. The improved survival in the P2X7R deficient mice correlated with diminished levels of IL-1β and IL-6 and reduced neutrophil infiltration in the early phase of infection. These results indicate that ATP, released during viral infection, is an important inflammatory regulator that activates the inflammasome pathway and regulates inflammatory responses.
Collapse
Affiliation(s)
- Benjamin H. Lee
- Research Institute, The Hospital for Sick Children, Toronto, Canada
- The Institute of Medical Science, University of Toronto, Toronto, Canada
| | - David M. Hwang
- Toronto General Hospital/University Health Network, Toronto, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Nades Palaniyar
- Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
| | - Sergio Grinstein
- Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Dana J. Philpott
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Jim Hu
- Research Institute, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
47
|
van Rensburg R, Beyer I, Yao XY, Wang H, Denisenko O, Li ZY, Russell DW, Miller DG, Gregory P, Holmes M, Bomsztyk K, Lieber A. Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hematopoietic stem cells. Gene Ther 2012; 20:201-14. [PMID: 22436965 PMCID: PMC3661409 DOI: 10.1038/gt.2012.25] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Achieving transgene integration into preselected genomic sites is currently one of the central tasks in stem cell gene therapy. A strategy to mediate such targeted integration involves site specific endonucleases. Two genomic sites within the MBS85 and CCR5 genes [AAVS1 and CCR5 zinc finger nuclease (CCR5-ZFN) site, respectively] have recently been suggested as potential target regions for integration as their disruption has no functional consequence. We hypothesized that efficient transgene integration maybe affected by DNA accessibility of endonucleases and therefore studied the transcriptional and chromatin status of the AAVS1 and CCR5 sites in eight human induced pluripotent stem (iPS) cell lines and pooled CD34+ hematopoietic stem cells. Matrixchromatin immunoprecipitation (ChIP) assays demonstrated that the CCR5 site and surrounding regions possessed a predominantly closed chromatin configuration consistent with its transcriptionally inactivity in these cell types. In contrast, the AAVS1 site was located within a transcriptionally active region and exhibited an open chromatin configuration in both iPS cells and hematopoietic stem cells. To show that the AAVS1 site is readily amendable to genome modification, we expressed Rep78, an AAV2-derived protein with AAVS1-specific endonuclease activity, in iPS cells after adenoviral gene transfer. We showed that Rep78 efficiently associated with the AAVS1 site and triggered genome modifications within this site. On the other hand, binding to and modification of the CCR5-ZFN site by a zinc-finger nuclease was relatively inefficient. Our data suggest a critical influence of chromatin structure on efficacy of site-specific endonucleases used for genome editing.
Collapse
Affiliation(s)
- R van Rensburg
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Khare R, Chen CY, Weaver EA, Barry MA. Advances and future challenges in adenoviral vector pharmacology and targeting. Curr Gene Ther 2011; 11:241-58. [PMID: 21453281 PMCID: PMC3267160 DOI: 10.2174/156652311796150363] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/26/2022]
Abstract
Adenovirus is a robust vector for therapeutic applications, but its use is limited by our understanding of its complex in vivo pharmacology. In this review we describe the necessity of identifying its natural, widespread, and multifaceted interactions with the host since this information will be crucial for efficiently redirecting virus into target cells. In the rational design of vectors, the notion of overcoming a sequence of viral "sinks" must be combined with re-targeting to target populations with capsid as well as shielding the vectors from pre-existing or toxic immune responses. It must also be noted that most known adenoviral pharmacology is deduced from the most commonly used serotypes, Ad5 and Ad2. However, these serotypes may not represent all adenoviruses, and may not even represent the most useful vectors for all purposes. Chimeras between Ad serotypes may become useful in engineering vectors that can selectively evade substantial viral traps, such as Kupffer cells, while retaining the robust qualities of Ad5. Similarly, vectorizing other Ad serotypes may become useful in avoiding immunity against Ad5 altogether. Taken together, this research on basic adenovirus biology will be necessary in developing vectors that interact more strategically with the host for the most optimal therapeutic effect.
Collapse
Affiliation(s)
- Reeti Khare
- Virology and Gene Therapy Program, Mayo Graduate School
| | - Christopher Y Chen
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
| | - Eric A Weaver
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
| | - Michael A Barry
- Department of Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program
- Department of Molecular Medicine, Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
49
|
Wang H, Li Z, Yumul R, Lara S, Hemminki A, Fender P, Lieber A. Multimerization of adenovirus serotype 3 fiber knob domains is required for efficient binding of virus to desmoglein 2 and subsequent opening of epithelial junctions. J Virol 2011; 85:6390-402. [PMID: 21525338 PMCID: PMC3112237 DOI: 10.1128/jvi.00514-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/19/2011] [Indexed: 02/03/2023] Open
Abstract
Recently, we identified desmoglein 2 (DSG2) as the main receptor for a group of species B adenoviruses (Ads), including Ad3, a serotype that is widely distributed in the human population (H. Wang et al., Nat. Med. 17:96-104, 2011). In this study, we have attempted to delineate structural details of the Ad3 interaction with DSG2. For CAR- and CD46-interacting Ad serotypes, attachment to cells can be completely blocked by an excess of recombinant fiber knob protein, while soluble Ad3 fiber knob only inefficiently blocks Ad3 infection. We found that the DSG2-interacting domain(s) within Ad3 is formed by several fiber knob domains that have to be in the spatial constellation that is present in viral particles. Based on this finding, we generated a small recombinant, self-dimerizing protein containing the Ad3 fiber knob (Ad3-K/S/Kn). Ad3-K/S/Kn bound to DSG2 with high affinity and blocked Ad3 infection. We demonstrated by confocal immunofluorescence and transmission electron microscopy analyses that Ad3-K/S/Kn, through its binding to DSG2, triggered the transient opening of intercellular junctions in epithelial cells. The pretreatment of epithelial cells with Ad3-K/S/Kn resulted in increased access to receptors that are localized in or masked by epithelial junctions, e.g., CAR or Her2/neu. Ad3-K/S/Kn treatment released CAR from tight junctions and thus increased the transduction of epithelial cells by a serotype Ad5-based vector. Furthermore, the pretreatment of Her2/neu-positive breast cancer cells with Ad3-K/S/Kn increased the killing of cancer cells by the Her2/neu-targeting monoclonal antibody trastuzumab (Herceptin). This study widens our understanding of how Ads achieve high avidity to their receptors and the infection of epithelial tissue. The small recombinant protein Ad3-K/S/Kn has practical implications for the therapy of epithelial cancer and gene/drug delivery to normal epithelial tissues.
Collapse
Affiliation(s)
- Hongjie Wang
- University of Washington, Division of Medical Genetics, Box 357720, Seattle, Washington 98195
- Cancer Gene Therapy Group, University of Helsinki & Helsinki University Central Hospital, Helsinki, Finland
| | - ZongYi Li
- University of Washington, Division of Medical Genetics, Box 357720, Seattle, Washington 98195
| | - Roma Yumul
- University of Washington, Division of Medical Genetics, Box 357720, Seattle, Washington 98195
| | - Stephanie Lara
- University of Washington, Department of Pathology, Seattle, Washington
| | - Akseli Hemminki
- Cancer Gene Therapy Group, University of Helsinki & Helsinki University Central Hospital, Helsinki, Finland
| | - Pascal Fender
- Unit of Virus Host Cell Interactions, UMI3265, CNRS/EMBL/UJF, Grenoble, France
| | - André Lieber
- University of Washington, Division of Medical Genetics, Box 357720, Seattle, Washington 98195
- University of Washington, Department of Pathology, Seattle, Washington
| |
Collapse
|
50
|
Corjon S, Gonzalez G, Henning P, Grichine A, Lindholm L, Boulanger P, Fender P, Hong SS. Cell entry and trafficking of human adenovirus bound to blood factor X is determined by the fiber serotype and not hexon:heparan sulfate interaction. PLoS One 2011; 6:e18205. [PMID: 21637339 PMCID: PMC3102659 DOI: 10.1371/journal.pone.0018205] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 02/28/2011] [Indexed: 01/29/2023] Open
Abstract
Human adenovirus serotype 5 (HAdV5)-based vectors administered intravenously accumulate in the liver as the result of their direct binding to blood coagulation factor X (FX) and subsequent interaction of the FX-HAdV5 complex with heparan sulfate proteoglycan (HSPG) at the surface of liver cells. Intriguingly, the serotype 35 fiber-pseudotyped vector HAdV5F35 has liver transduction efficiencies 4-logs lower than HAdV5, even though both vectors carry the same hexon capsomeres. In order to reconcile this apparent paradox, we investigated the possible role of other viral capsid proteins on the FX/HSPG-mediated cellular uptake of HAdV5-based vectors. Using CAR- and CD46-negative CHO cells varying in HSPG expression, we confirmed that FX bound to serotype 5 hexon protein and to HAdV5 and HAdV5F35 virions via its Gla-domain, and enhanced the binding of both vectors to surface-immobilized hypersulfated heparin and cellular HSPG. Using penton mutants, we found that the positive effect of FX on HAdV5 binding to HSPG and cell transduction did not depend on the penton base RGD and fiber shaft KKTK motifs. However, we found that FX had no enhancing effect on the HAdV5F35-mediated cell transduction, but a negative effect which did not involve the cell attachment or endocytic step, but the intracellular trafficking and nuclear import of the FX-HAdV5F35 complex. By cellular imaging, HAdV5F35 particles were observed to accumulate in the late endosomal compartment, and were released in significant amounts into the extracellular medium via exocytosis. We showed that the stability of serotype 5 hexon:FX interaction was higher at low pH compared to neutral pH, which could account for the retention of FX-HAdV5F35 complexes in the late endosomes. Our results suggested that, despite the high affinity interaction of hexon capsomeres to FX and cell surface HSPG, the adenoviral fiber acted as the dominant determinant of the internalization and trafficking pathway of HAdV5-based vectors.
Collapse
Affiliation(s)
- Stéphanie Corjon
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Gaëlle Gonzalez
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Petra Henning
- Department of Microbiology and Immunology,
University of Göteborg, Institute for Biomedicine, Göteborg,
Sweden
| | - Alexei Grichine
- Institut Albert Bonniot, CRI INSERM-UJF U-823,
La Tronche, France
| | | | - Pierre Boulanger
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| | - Pascal Fender
- Unit for Virus-Host Interaction, UMI-3265,
CNRS-EMBL-UJF, Grenoble, France
| | - Saw-See Hong
- University Lyon 1, INRA UMR 754, Retrovirus
and Comparative Pathology, Lyon, France
| |
Collapse
|