1
|
Yu H, Resch W, Moss B. Poxvirus structural biology for application to vaccine design. Trends Immunol 2025:S1471-4906(25)00094-8. [PMID: 40340168 DOI: 10.1016/j.it.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025]
Abstract
The upsurge of mpox (formerly known as monkeypox) in Africa and its global spread highlight the need for improved vaccines. The development of new recombinant vaccines, including mRNA and protein nanoparticles, depends on understanding the biology of poxviruses and selecting the most protective immunogens. Animal studies demonstrate that vaccines need to target the antigens of both infectious forms - the mature virion and the enveloped virion - which display surface proteins responsible for cell entry and cell-to-cell spread, respectively. Although some of these proteins have been shown to induce protective antibodies, others including most of those that are essential for membrane fusion remain to be tested. We review the structures of orthopoxvirus surface proteins as a guide to the selection of optimal antigens for recombinant vaccines.
Collapse
Affiliation(s)
- Huibin Yu
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Wolfgang Resch
- Center for Information Technology, NIH, Bethesda, MD, USA
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Deng Y, Navarro-Forero S, Yang Z. Temporal expression classes and functions of vaccinia virus and mpox (monkeypox) virus genes. mBio 2025; 16:e0380924. [PMID: 40111027 PMCID: PMC11980589 DOI: 10.1128/mbio.03809-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Poxviruses comprise pathogens that are highly pathogenic to humans and animals, causing diseases such as smallpox and mpox (formerly monkeypox). The family also contains members developed as vaccine vectors and oncolytic agents to fight other diseases. Vaccinia virus is the prototype poxvirus and the vaccine used to eradicate smallpox. Poxvirus genes follow a cascade temporal expression pattern, categorized into early, intermediate, and late stages using distinct transcription factors. This review comprehensively summarized the temporal expression classification of over 200 vaccinia virus genes. The relationships between expression classes and functions, as well as different branches of immune responses, were discussed. Based on the vaccinia virus orthologs, we classified the temporal expression classes of all the mpox virus genes, including a few that were not previously annotated with orthologs in vaccinia viruses. Additionally, we reviewed the functions of all vaccinia virus genes based on the up-to-date published papers. This review provides a readily usable resource for researchers working on poxvirus biology, medical countermeasures, and poxvirus utility development.
Collapse
Affiliation(s)
- Yining Deng
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Santiago Navarro-Forero
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Zhilong Yang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
3
|
Bamouh Z, Hamdi J, Elkarhat Z, Fellahi S, Omari Tadlaoui K, Watts DM, Fassi Fihri O, Elharrak M. Attenuation and genetic characteristics of a Moroccan strain of Camel pox virus. Vaccine 2022; 40:6471-6480. [PMID: 36192275 DOI: 10.1016/j.vaccine.2022.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 01/27/2023]
Abstract
Camel pox (CML) is a widespread infectious viral disease of camels that causes huge economic losses to the camel industry. In this study, a local strain of Camel pox virus (CMLV) was attenuated by 175 serial passages in Vero cells and the residual pathogenicity and infectivity were tested in naïve camels at 120, 150 and 175 passage levels. Also, the safety and immunogenicity of the 175th passage were evaluated in camels using a dose of 104.0 Tissue Culture Dose 50% (TCID50) and monitored for up to one-year post vaccination (pv) for neutralizing antibody. Seroconversion was noted at day 14 pv with neutralizing antibody titers ranging from 0.5 and 1.6 logs over the one-year of the study. Among 8 camels inoculated with the P175 strain, 4 were challenged at 12-month pv with 105.7 TCID50/ml of the original virulent CMLV and complete protection was recorded in all animals. Whole genome sequencing detected six mutations in the original CMLV strain that were not present in the attenuated 175th passage of this strain. Overall, the findings of this study indicated that the 175th passage of the CMLV was attenuated, safe and afforded protection to camels against virulent CMLV, and is therefore, a promising vaccine candidate for the prevention of CML in camels.
Collapse
Affiliation(s)
- Zahra Bamouh
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco; Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - Jihane Hamdi
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco
| | - Zouhair Elkarhat
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - Siham Fellahi
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco.
| | - Khalid Omari Tadlaoui
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| | - Douglas M Watts
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.
| | | | - Mehdi Elharrak
- Research and Development, MCI Santé Animale, Lot. 157, Z. I., Sud-Ouest (ERAC) B.P: 278, Mohammedia 28810, Morocco.
| |
Collapse
|
4
|
Inactivation of Genes by Frameshift Mutations Provides Rapid Adaptation of an Attenuated Vaccinia Virus. J Virol 2020; 94:JVI.01053-20. [PMID: 32669330 DOI: 10.1128/jvi.01053-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Unlike RNA viruses, most DNA viruses replicate their genomes with high-fidelity polymerases that rarely make base substitution errors. Nevertheless, experimental evolution studies have revealed rapid acquisition of adaptive mutations during serial passage of attenuated vaccinia virus (VACV). One way in which adaptation can occur is by an accordion mechanism in which the gene copy number increases followed by base substitutions and, finally, contraction of the gene copy number. Here, we show rapid acquisition of multiple adaptive mutations mediated by a gene-inactivating frameshift mechanism during passage of an attenuated VACV. Attenuation had been achieved by exchanging the VACV A8R intermediate transcription factor gene with the myxoma virus ortholog. A total of seven mutations in six different genes occurred in three parallel passages of the attenuated virus. The most frequent mutations were single-nucleotide insertions or deletions within runs of five to seven As or Ts, although a deletion of 11 nucleotides also occurred, leading to frameshifts and premature stop codons. During 10 passage rounds, the attenuated VACV was replaced by the mutant viruses. At the end of the experiment, virtually all remaining viruses had one fixed mutation and one or more additional mutations. Although nucleotide substitutions in the transcription apparatus accounted for two low-frequency mutations, frameshifts in genes encoding protein components of the mature virion, namely, A26L, G6R, and A14.5L, achieved 74% to 98% fixation. The adaptive role of the mutations was confirmed by making recombinant VACV with A26L or G6R or both deleted, which increased virus replication levels and decreased particle/PFU ratios.IMPORTANCE Gene inactivation is considered to be an important driver of orthopoxvirus evolution. Whereas cowpox virus contains intact orthologs of genes present in each orthopoxvirus species, numerous genes are inactivated in all other members of the genus. Inactivation of additional genes can occur upon extensive passaging of orthopoxviruses in cell culture leading to attenuation in vivo, a strategy for making vaccines. Whether inactivation of multiple viral genes enhances replication in the host cells or has a neutral effect is unknown in most cases. Using an experimental evolution protocol involving serial passages of an attenuated vaccinia virus, rapid acquisition of inactivating frameshift mutations occurred. After only 10 passage rounds, the starting attenuated vaccinia virus was displaced by viruses with one fixed mutation and one or more additional mutations. The high frequency of multiple inactivating mutations during experimental evolution simulates their acquisition during normal evolution and extensive virus passaging to make vaccine strains.
Collapse
|
5
|
Chervyakova OV, Zaitsev VL, Iskakov BK, Tailakova ET, Strochkov VM, Sultankulova KT, Sandybayev NT, Stanbekova GE, Beisenov DK, Abduraimov YO, Mambetaliyev M, Sansyzbay AR, Kovalskaya NY, Nemchinov LG, Hammond RW. Recombinant Sheep Pox Virus Proteins Elicit Neutralizing Antibodies. Viruses 2016; 8:E159. [PMID: 27338444 PMCID: PMC4926179 DOI: 10.3390/v8060159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 05/24/2016] [Accepted: 05/30/2016] [Indexed: 12/24/2022] Open
Abstract
The aim of this work was to evaluate the immunogenicity and neutralizing activity of sheep pox virus (SPPV; genus Capripoxvirus, family Poxviridae) structural proteins as candidate subunit vaccines to control sheep pox disease. SPPV structural proteins were identified by sequence homology with proteins of vaccinia virus (VACV) strain Copenhagen. Four SPPV proteins (SPPV-ORF 060, SPPV-ORF 095, SPPV-ORF 117, and SPPV-ORF 122), orthologs of immunodominant L1, A4, A27, and A33 VACV proteins, respectively, were produced in Escherichia coli. Western blot analysis revealed the antigenic and immunogenic properties of SPPV-060, SPPV-095, SPPV-117 and SPPV-122 proteins when injected with adjuvant into experimental rabbits. Virus-neutralizing activity against SPPV in lamb kidney cell culture was detected for polyclonal antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins. To our knowledge, this is the first report demonstrating the virus-neutralizing activities of antisera raised to SPPV-060, SPPV-117, and SPPV-122 proteins.
Collapse
Affiliation(s)
- Olga V Chervyakova
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Valentin L Zaitsev
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Bulat K Iskakov
- M. A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, RK ME&S - Science Committee, Almaty 050012, Kazakhstan.
| | - Elmira T Tailakova
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Vitaliy M Strochkov
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Kulyaisan T Sultankulova
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Nurlan T Sandybayev
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Gulshan E Stanbekova
- M. A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, RK ME&S - Science Committee, Almaty 050012, Kazakhstan.
| | - Daniyar K Beisenov
- M. A. Aitkhozhin's Institute of Molecular Biology and Biochemistry, RK ME&S - Science Committee, Almaty 050012, Kazakhstan.
| | - Yergali O Abduraimov
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Muratbay Mambetaliyev
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Abylay R Sansyzbay
- Research Institute for Biological Safety Problems, RK ME&S - Science Committee, Gvardeiskiy 080409, Kazakhstan.
| | - Natalia Y Kovalskaya
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | - Lev G Nemchinov
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | - Rosemarie W Hammond
- United States Department of Agriculture, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
6
|
Dahiya SS, Kumar S, Mehta SC, Narnaware SD, Singh R, Tuteja FC. Camelpox: A brief review on its epidemiology, current status and challenges. Acta Trop 2016; 158:32-38. [PMID: 26902797 DOI: 10.1016/j.actatropica.2016.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/12/2016] [Accepted: 02/18/2016] [Indexed: 11/17/2022]
Abstract
Camelpox caused by a Camelpox virus (CMLV) is a very important host specific viral disease of camel. It is highly contagious in nature and causes serious impact on health even mortality of camels and economic losses to the camel owners. It manifests itself either in the local/mild or generalized/severe form. Various outbreaks of different pathogenicity have been reported from camel dwelling areas of the world. CMLV has been characterized in embryonated chicken eggs with the production of characteristic pock lesions and in various cell lines with the capacity to induce giant cells. Being of Poxviridae family, CMLV employs various strategies to impede host immune system and facilitates its own pathogenesis. Both live and attenuated vaccine has been found effective against CMLV infection. The present review gives a comprehensive overview of camelpox disease with respect to its transmission, epidemiology, virion characteristics, viral life cycle, host interaction and its immune modulation.
Collapse
Affiliation(s)
- Shyam Singh Dahiya
- National Research Center on Camel, Jorbeer, Bikaner, Rajasthan 334001, India.
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | | | - Shirish D Narnaware
- National Research Center on Camel, Jorbeer, Bikaner, Rajasthan 334001, India
| | - Raghvendar Singh
- National Research Center on Camel, Jorbeer, Bikaner, Rajasthan 334001, India
| | - Fateh Chand Tuteja
- National Research Center on Camel, Jorbeer, Bikaner, Rajasthan 334001, India
| |
Collapse
|
7
|
Dobson BM, Tscharke DC. Redundancy complicates the definition of essential genes for vaccinia virus. J Gen Virol 2016; 96:3326-3337. [PMID: 26290187 DOI: 10.1099/jgv.0.000266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vaccinia virus (VACV) genes are characterized as either essential or non-essential for growth in culture. It seems intuitively obvious that if a gene can be deleted without imparting a growth defect in vitro it does not have a function related to basic replication or spread. However, this interpretation relies on the untested assumption that there is no redundancy across the genes that have roles in growth in cell culture. First, we provide a comprehensive summary of the literature that describes the essential genes of VACV. Next, we looked for interactions between large blocks of non-essential genes located at the ends of the genome by investigating sets of VACVs with large deletions at the genomic termini. Viruses with deletions at either end of the genome behaved as expected, exhibiting only mild or host-range defects. In contrast, combining deletions at both ends of the genome for the VACV Western Reserve (WR) strain caused a devastating growth defect on all cell lines tested. Unexpectedly, we found that the well-studied VACV growth factor homologue encoded by C11R has a role in growth in vitro that is exposed when 42 genes are absent from the left end of the VACV WR genome. These results demonstrate that some non-essential genes contribute to basic viral growth, but redundancy means these functions are not revealed by single-gene-deletion mutants.
Collapse
Affiliation(s)
- Bianca M Dobson
- Division of Biomedical Science and Biochemistry, Research School of Biology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - David C Tscharke
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Division of Biomedical Science and Biochemistry, Research School of Biology, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
8
|
Abstract
Many viruses encode short transmembrane proteins that play vital roles in virus replication or virulence. Because many of these proteins are less than 50 amino acids long and not homologous to cellular proteins, their open reading frames were often overlooked during the initial annotation of viral genomes. Some of these proteins oligomerize in membranes and form ion channels. Other miniproteins bind to cellular transmembrane proteins and modulate their activity, whereas still others have an unknown mechanism of action. Based on the underlying principles of transmembrane miniprotein structure, it is possible to build artificial small transmembrane proteins that modulate a variety of biological processes. These findings suggest that short transmembrane proteins provide a versatile mechanism to regulate a wide range of cellular activities, and we speculate that cells also express many similar proteins that have not yet been discovered.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520;
| |
Collapse
|
9
|
Kan S, Jia P, Sun L, Hu N, Li C, Lu H, Tian M, Qi Y, Jin N, Li X. Generation of an attenuated Tiantan vaccinia virus by deletion of the ribonucleotide reductase large subunit. Arch Virol 2014; 159:2223-31. [PMID: 24677065 DOI: 10.1007/s00705-014-2057-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Attenuation of the virulence of vaccinia Tiantan virus (VTT) underlies the strategy adopted for mass vaccination campaigns. This strategy provides advantages of safety and efficacy over traditional vaccines and is aimed at minimization of adverse health effects. In this study, a mutant form of the virus, MVTT was derived from VTT by deletion of the ribonucleotide reductase large subunit (R1) (TI4L). Compared to wild-type parental (VTT) and revertant (VTT-rev) viruses, virulence of the mutant MVTT was reduced by 100-fold based on body weight reduction and by 3,200-fold based on determination of the intracranial 50% lethal infectious dose. However, the immunogenicity of MVTT was equivalent to that of the parental VTT. We also demonstrated that the TI4L gene is not required for efficient replication. These data support the conclusion that MVTT can be used as a replicating virus vector or as a platform for the development of vaccines against infectious diseases and for cancer therapy.
Collapse
Affiliation(s)
- Shifu Kan
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences of PLA, Jilin, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bhanuprakash V, Prabhu M, Venkatesan G, Balamurugan V, Hosamani M, Pathak KML, Singh RK. Camelpox: epidemiology, diagnosis and control measures. Expert Rev Anti Infect Ther 2014; 8:1187-201. [DOI: 10.1586/eri.10.105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Generation of a complete single-gene knockout bacterial artificial chromosome library of cowpox virus and identification of its essential genes. J Virol 2013; 88:490-502. [PMID: 24155400 DOI: 10.1128/jvi.02385-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cowpox virus (CPXV) belongs to the genus Orthopoxvirus in the Poxviridae family. It infects a broad range of vertebrates and can cause zoonotic infections. CPXV has the largest genome among the orthopoxviruses and is therefore considered to have the most complete set of genes of all members of the genus. Since CPXV has also become a model for studying poxvirus genetics and pathogenesis, we created and characterized a complete set of single gene knockout bacterial artificial chromosome (BAC) clones of the CPXV strain Brighton Red. These mutants allow a systematic assessment of the contribution of single CPXV genes to the outcome of virus infection and replication, as well as to the virus host range. A full-length BAC clone of CPXV strain Brighton Red (pBRF) harboring the gene expressing the enhanced green fluorescent protein under the control of a viral late promoter was modified by introducing the mrfp1 gene encoding the monomeric red fluorescent protein driven by a synthetic early vaccinia virus promoter. Based on the modified BAC (pBRFseR), a library of targeted knockout mutants for each single viral open reading frame (ORF) was generated. Reconstitution of infectious virus was successful for 109 of the 183 mutant BAC clones, indicating that the deleted genes are not essential for virus replication. In contrast, 74 ORFs were identified as essential because no virus progeny was obtained upon transfection of the mutant BAC clones and in the presence of a helper virus. More than 70% of all late CPXV genes belonged to this latter group of essential genes.
Collapse
|
12
|
Wang Y, Kan S, Du S, Qi Y, Wang J, Liu L, Ji H, He D, Wu N, Li C, Chi B, Li X, Jin N. Characterization of an attenuated TE3L-deficient vaccinia virus Tian Tan strain. Antiviral Res 2012; 96:324-32. [DOI: 10.1016/j.antiviral.2012.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/07/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
|
13
|
Kan S, Wang Y, Sun L, Jia P, Qi Y, Su J, Liu L, Yang G, Liu L, Wang Z, Wang J, Liu G, Jin N, Li X, Ding Z. Attenuation of vaccinia Tian Tan strain by removal of viral TC7L-TK2L and TA35R genes. PLoS One 2012; 7:e31979. [PMID: 22363781 PMCID: PMC3283712 DOI: 10.1371/journal.pone.0031979] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/16/2012] [Indexed: 12/19/2022] Open
Abstract
Vaccinia Tian Tan (VTT) was attenuated by deletion of the TC7L-TK2L and TA35R genes to generate MVTT3. The mutant was generated by replacing the open reading frames by a gene encoding enhanced green fluorescent protein (EGFP) flanked by loxP sites. Viruses expressing EGFP were then screened for and purified by serial plaque formation. In a second step the marker EGFP gene was removed by transfecting cells with a plasmid encoding cre recombinase and selecting for viruses that had lost the EGFP phenotype. The MVTT3 mutant was shown to be avirulent and immunogenic. These results support the conclusion that TC7L-TK2L and TA35R deletion mutants can be used as safe viral vectors or as platform for vaccines.
Collapse
Affiliation(s)
- Shifu Kan
- College of Animal Science and Veterinary Medicine, Jilin University, Jilin, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Huemer HP, Lassnig C, Nowotny N. Cowpox virus isolate virulent in humans shows attenuated phenotype in mice. Res Vet Sci 2011; 92:333-7. [PMID: 21463881 DOI: 10.1016/j.rvsc.2011.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/07/2011] [Accepted: 03/11/2011] [Indexed: 12/01/2022]
Abstract
We have cultured Cowpox virus (CPXV) from skin lesion material of a human patient from Austria. Phylogenetic comparison of the HA-gene revealed a rather homogeneous cluster with other local isolates from recent years, the A36R-gene was mostly related to elephant derived strains from Germany. Despite causing disease in human, the isolate AT/Carinthia/788/07 surprisingly even at high titers showed a highly reduced virulence in BALB/c mice upon intranasal inoculation as compared to vaccinia virus. This contrasts earlier reports on other CPXV isolates. Using shotgun DNA sequencing several insertions and deletions were found in genes presumably involved in host range, immune regulation as well as established virulence factors. These preliminary data could be an indication that CPXV strains with proven pathogenicity for humans may have reduced virulence in mice and vice versa. Additionally strains with a reduced virulence may have an advantage in persisting in less dense rodent populations.
Collapse
Affiliation(s)
- Hartwig P Huemer
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Fritz-Pregl-Str. 3, R.301, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
15
|
Abstract
Studies of the functional proteins encoded by the poxvirus genome provide information about the composition of the virus as well as individual virus-virus protein and virus-host protein interactions, which provides insight into viral pathogenesis and drug discovery. Widely used proteomic techniques to identify and characterize specific protein-protein interactions include yeast two-hybrid studies and coimmunoprecipitations. Recently, various mass spectrometry techniques have been employed to identify viral protein components of larger complexes. These methods, combined with structural studies, can provide new information about the putative functions of viral proteins as well as insights into virus-host interaction dynamics. For viral proteins of unknown function, identification of either viral or host binding partners provides clues about their putative function. In this review, we discuss poxvirus proteomics, including the use of proteomic methodologies to identify viral components and virus-host protein interactions. High-throughput global protein expression studies using protein chip technology as well as new methods for validating putative protein-protein interactions are also discussed.
Collapse
|
16
|
Yu W, Fang Q, Zhu W, Wang H, Tien P, Zhang L, Chen Z. One time intranasal vaccination with a modified vaccinia Tiantan strain MVTT(ZCI) protects animals against pathogenic viral challenge. Vaccine 2009; 28:2088-96. [PMID: 20045097 PMCID: PMC7127290 DOI: 10.1016/j.vaccine.2009.12.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 12/03/2009] [Accepted: 12/16/2009] [Indexed: 12/03/2022]
Abstract
To combat variola virus in bioterrorist attacks, it is desirable to develop a noninvasive vaccine. Based on the vaccinia Tiantan (VTT) strain, which was historically used to eradicate the smallpox in China, we generated a modified VTT (MVTTZCI) by removing the hemagglutinin gene and an 11,944 bp genomic region from HindIII fragment C2L to F3L. MVTTZCI was characterized for its host cell range in vitro and preclinical safety and efficacy profiles in mice. Despite replication-competency in some cell lines, unlike VTT, MVTTZCI did not cause death after intracranial injection or body weight loss after intranasal inoculation. MVTTZCI did not replicate in mouse brain and was safe in immunodeficient mice. MVTTZCI induced neutralizing antibodies via the intranasal route of immunization. One time intranasal immunization protected animals from the challenge of the pathogenic vaccinia WR strain. This study established proof-of-concept that the attenuated replicating MVTTZCI may serve as a safe noninvasive smallpox vaccine candidate.
Collapse
Affiliation(s)
- Wenbo Yu
- AIDS Center and Modern Virology Research Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, PR China
| | | | | | | | | | | | | |
Collapse
|
17
|
Sood CL, Moss B. Vaccinia virus A43R gene encodes an orthopoxvirus-specific late non-virion type-1 membrane protein that is dispensable for replication but enhances intradermal lesion formation. Virology 2009; 396:160-8. [PMID: 19900687 DOI: 10.1016/j.virol.2009.10.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/08/2009] [Accepted: 10/16/2009] [Indexed: 11/29/2022]
Abstract
The vaccinia virus A43R open reading frame encodes a 168-amino acid protein with a predicted N-terminal signal sequence and a C-terminal transmembrane domain. Although A43R is conserved in all sequenced members of the orthopoxvirus genus, no non-orthopoxvirus homolog or functional motif was recognized. Biochemical and confocal microscopic studies indicated that A43 is expressed at late times following viral DNA synthesis and is a type-1 membrane protein with two N-linked oligosaccharide chains. A43 was present in Golgi and plasma membranes but only a trace amount was detected in sucrose gradient purified mature virions and none in CsCl gradient purified enveloped virions. Prevention of A43R expression had no effect on plaque size or virus replication in cell culture and little effect on virulence after mouse intranasal infection. Although the A43 mutant produced significantly smaller lesions in skin of mice than the control, the amounts of virus recovered from the lesions were similar.
Collapse
Affiliation(s)
- Cindy L Sood
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
| | | |
Collapse
|
18
|
Unger B, Nichols RJ, Stanitsa ES, Traktman P. Functional characterization of the vaccinia virus I5 protein. Virol J 2008; 5:148. [PMID: 19077320 PMCID: PMC2621143 DOI: 10.1186/1743-422x-5-148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Accepted: 12/15/2008] [Indexed: 12/05/2022] Open
Abstract
The I5L gene is one of ~90 genes that are conserved throughout the chordopoxvirus family, and hence are presumed to play vital roles in the poxvirus life cycle. Previous work had indicated that the VP13 protein, a component of the virion membrane, was encoded by the I5L gene, but no additional studies had been reported. Using a recombinant virus that encodes an I5 protein fused to a V5 epitope tag at the endogenous locus (vI5V5), we show here that the I5 protein is expressed as a post-replicative gene and that the ~9 kDa protein does not appear to be phosphorylated in vivo. I5 does not appear to traffic to any cellular organelle, but ultrastructural and biochemical analyses indicate that I5 is associated with the membranous components of assembling and mature virions. Intact virions can be labeled with anti-V5 antibody as assessed by immunoelectron microscopy, indicating that the C' terminus of the protein is exposed on the virion surface. Using a recombinant virus which encodes only a TET-regulated copy of the I5V5 gene (vΔindI5V5), or one in which the I5 locus has been deleted (vΔI5), we also show that I5 is dispensable for replication in tissue culture. Neither plaque size nor the viral yield produced in BSC40 cells or primary human fibroblasts are affected by the absence of I5 expression.
Collapse
Affiliation(s)
- Bethany Unger
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
19
|
Vaccinia virus encodes I5, a small hydrophobic virion membrane protein that enhances replication and virulence in mice. J Virol 2008; 82:10071-8. [PMID: 18701595 DOI: 10.1128/jvi.01355-08] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus I5L open reading frame encodes a 79-amino-acid protein, with two predicted transmembrane domains, that is conserved among all sequenced members of the chordopoxvirus subfamily. No nonpoxvirus homologs or functional motifs have been recognized, and the role of the I5 protein remains unknown. We found that synthesis of I5 was dependent on viral DNA replication and occurred exclusively at late times, consistent with a consensus late promoter motif adjacent to the start of the open reading frame. I5 was present in preparations of purified virions and could be extracted with nonionic detergent, suggesting membrane insertion. Transmission electron microscopy of immunogold-labeled thawed cryosections of infected cells revealed the association of an epitope-tagged I5 with the membranes of immature and mature virions. Viable I5L deletion and frameshift mutants were constructed and found to replicate like wild-type virus in a variety of cell lines and primary human epidermal keratinocytes, indicating that the protein was dispensable for in vitro cultivation. However, mouse intranasal challenge experiments indicated that a mutant virus with a frameshift resulting in a stop codon near the N terminus of I5 was attenuated compared to control virus. The attenuation was correlated with clearance of mutant viruses from the respiratory tract and with less progression and earlier resolution of pathological changes. We suggest that I5 is involved in an aspect of host defense that is evolutionarily conserved although a role in cell tropism should also be considered.
Collapse
|
20
|
Netherton C, Moffat K, Brooks E, Wileman T. A guide to viral inclusions, membrane rearrangements, factories, and viroplasm produced during virus replication. Adv Virus Res 2007; 70:101-82. [PMID: 17765705 PMCID: PMC7112299 DOI: 10.1016/s0065-3527(07)70004-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus replication can cause extensive rearrangement of host cell cytoskeletal and membrane compartments leading to the “cytopathic effect” that has been the hallmark of virus infection in tissue culture for many years. Recent studies are beginning to redefine these signs of viral infection in terms of specific effects of viruses on cellular processes. In this chapter, these concepts have been illustrated by describing the replication sites produced by many different viruses. In many cases, the cellular rearrangements caused during virus infection lead to the construction of sophisticated platforms in the cell that concentrate replicase proteins, virus genomes, and host proteins required for replication, and thereby increase the efficiency of replication. Interestingly, these same structures, called virus factories, virus inclusions, or virosomes, can recruit host components that are associated with cellular defences against infection and cell stress. It is possible that cellular defence pathways can be subverted by viruses to generate sites of replication. The recruitment of cellular membranes and cytoskeleton to generate virus replication sites can also benefit viruses in other ways. Disruption of cellular membranes can, for example, slow the transport of immunomodulatory proteins to the surface of infected cells and protect against innate and acquired immune responses, and rearrangements to cytoskeleton can facilitate virus release.
Collapse
Affiliation(s)
- Christopher Netherton
- Vaccinology Group, Pirbright Laboratories, Institute for Animal Health, Surrey, United Kingdom
| | | | | | | |
Collapse
|
21
|
Zhu W, Fang Q, Zhuang K, Wang H, Yu W, Zhou J, Liu L, Tien P, Zhang L, Chen Z. The attenuation of vaccinia Tian Tan strain by the removal of the viral M1L-K2L genes. J Virol Methods 2007; 144:17-26. [PMID: 17459491 PMCID: PMC7112875 DOI: 10.1016/j.jviromet.2007.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 03/12/2007] [Accepted: 03/14/2007] [Indexed: 11/25/2022]
Abstract
To generate a safe vaccinia Tian Tan (VTT)-based vaccine vector, it is necessary to develop a method to attenuate the virus. A modified VTT (MVTT(2-GFP)) was constructed by replacing the viral M1L-K2L genes with a GFP gene. In comparison to the parental VTT, MVTT(2-GFP) lost its replication capacity in rabbit RK13 and human HeLa cell lines. The life cycle of viral replication was blocked at different stages in these two cell lines as determined by electron microscope examination. MVTT(2-GFP) was less virulent than VTT for 100-fold by measuring mouse body weight loss after intranasal viral inoculation and for 340-fold by determining the intracranial LD(50) value in mice. The foreign GFP gene was stable genetically after 10 rounds of passage in Vero cells. Importantly, MVTT(2-GFP) elicited both humoral and cell-mediated immune responses to the GFP gene in mice. With two intramuscular inoculations of 10(5)PFU virus, the anti-GFP antibody reciprocal endpoint titer reached over 700 as determined by an ELISA. The number of IFN-gamma secreting T cells reached over 350SFU per million splenocytes against a CD8+ T cell-specific epitope of GFP. Collectively, the removal of the M1L-K2L genes is a useful method to generate an attenuated vaccinia Tian Tan vaccine vector.
Collapse
Affiliation(s)
- Weijun Zhu
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Qing Fang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Ke Zhuang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Haibo Wang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Wenbo Yu
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Jingying Zhou
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Li Liu
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Po Tien
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
| | - Linqi Zhang
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
- AIDS Research Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PR China
| | - Zhiwei Chen
- Modern Virology Research Center and AIDS Center, State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Hubei 430072, PR China
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY 10016, USA
- Corresponding author at: Aaron Diamond AIDS Research Center, 455 First Avenue, New York, NY 10016, USA. Tel.: +1 212 448 5031; fax: +1 212 725 1126.
| |
Collapse
|
22
|
Abstract
The smallpox vaccine consists of live vaccinia virus and is generally considered the gold standard of vaccines, since it is the only one that has led to the complete eradication of an infectious disease from the human population. Renewed fears that smallpox might be deliberately released in an act of bioterrorism have led to resurgence in the study of immunity and immunological memory to vaccinia virus and other poxviruses. Here we review our current understanding of memory T-cell, memory B-cell, and antibody responses to vaccinia and related poxviruses, both in animal models and human subjects. Of particular interest are recent advances in understanding protective immunity to poxviruses, quantifying immunological memory to the smallpox vaccine in humans, and identifying major vaccinia-specific T-cell and B-cell epitopes. In addition, potential mechanisms for maintenance of immunological memory are discussed.
Collapse
Affiliation(s)
- Ian J Amanna
- OHSU Vaccine and Gene Therapy Institute, Beaverton, OR, USA
| | | | | |
Collapse
|
23
|
Resch W, Hixson KK, Moore RJ, Lipton MS, Moss B. Protein composition of the vaccinia virus mature virion. Virology 2006; 358:233-47. [PMID: 17005230 DOI: 10.1016/j.virol.2006.08.025] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 08/03/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The protein content of vaccinia virus mature virions, purified by rate zonal and isopycnic centrifugations and solubilized by SDS or a solution of urea and thiourea, was determined by the accurate mass and time tag technology which uses both tandem mass spectrometry and Fourier transform-ion cyclotron resonance mass spectrometry to detect tryptic peptides separated by high-resolution liquid chromatography. Eighty vaccinia virus-encoded proteins representing 37% of the 218 genes annotated in the complete genome sequence were detected in at least three analyses. Ten proteins accounted for approximately 80% of the virion mass. Thirteen identified proteins were not previously reported as components of virions. On the other hand, 8 previously described virion proteins were not detected here, presumably due to technical reasons including small size and hydrophobicity. In addition to vaccinia virus-encoded proteins, 24 host proteins omitting isoforms were detected. The most abundant of these were cytoskeletal proteins, heat shock proteins and proteins involved in translation.
Collapse
Affiliation(s)
- Wolfgang Resch
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4 Center Drive, MSC 0445, Bethesda, MD 20892-0445, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Poxviruses comprise a large family of viruses characterized by a large, linear dsDNA genome, a cytoplasmic site of replication and a complex virion morphology. The most notorious member of the poxvirus family is variola, the causative agent of smallpox. The laboratory prototype virus used for the study of poxviruses is vaccinia, the virus that was used as a live, naturally attenuated vaccine for the eradication of smallpox. Both the morphogenesis and structure of poxvirus virions are unique among viruses. Poxvirus virions apparently lack any of the symmetry features common to other viruses such as helical or icosahedral capsids or nucleocapsids. Instead poxvirus virions appear as "brick shaped" or "ovoid" membrane-bound particles with a complex internal structure featuring a walled, biconcave core flanked by "lateral bodies." The virion assembly pathway involves a remarkable fabrication of membrane-containing crescents and immature virions, which evolve into mature virions in a process that is unparalleled in virology. As a result of significant advances in poxvirus genetics and molecular biology during the past 15 years, we can now positively identify over 70 specific gene products contained in poxvirus virions, and we can describe the effects of mutations in over 50 specific genes on poxvirus assembly. This review summarizes these advances and attempts to assemble them into a comprehensible and thoughtful picture of poxvirus structure and assembly.
Collapse
Affiliation(s)
- Richard C Condit
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, 32610, USA
| | | | | |
Collapse
|
25
|
Chung CS, Chen CH, Ho MY, Huang CY, Liao CL, Chang W. Vaccinia virus proteome: identification of proteins in vaccinia virus intracellular mature virion particles. J Virol 2006; 80:2127-40. [PMID: 16474121 PMCID: PMC1395410 DOI: 10.1128/jvi.80.5.2127-2140.2006] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 12/05/2005] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus is a large enveloped poxvirus with more than 200 genes in its genome. Although many poxvirus genomes have been sequenced, knowledge of the host and viral protein components of the virions remains incomplete. In this study, we used gel-free liquid chromatography and tandem mass spectroscopy to identify the viral and host proteins in purified vaccinia intracellular mature virions (IMV). Analysis of the proteins in the IMV showed that it contains 75 viral proteins, including structural proteins, enzymes, transcription factors, and predicted viral proteins not known to be expressed or present in the IMV. We also determined the relative abundances of the individual protein components in the IMV. Finally, 23 IMV-associated host proteins were also identified. This study provides the first comprehensive structural analysis of the infectious vaccinia virus IMV.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The genomes of all members of the Parvovirus genus were found to contain a small open reading frame (ORF), designated SAT, with a start codon four or seven nucleotides downstream of the VP2 initiation codon. Green fluorescent protein or FLAG fusion constructs of SAT demonstrated that these ORFs were expressed. Although the SAT proteins of the different parvoviruses are not particularly conserved, they were all predicted to contain a membrane-spanning helix, and mutations in this hydrophobic stretch affected the localization of the SAT protein. SAT colocalized with calreticulin in the membranes of the endoplasmic reticulum and the nucleus. A knockout mutant (SAT(-)), with an unmodified VP sequence, showed a "slow-spreading" phenotype. These knockout mutants could be complemented with VP2(-) SAT(+) mutant. The SAT protein is a late nonstructural (NS) protein, in contrast to previously identified NS proteins, since it is expressed from the same mRNA as VP2.
Collapse
Affiliation(s)
- Zoltán Zádori
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Canada
| | | | | |
Collapse
|
27
|
Da Silva M, Upton C. Using purine skews to predict genes in AT-rich poxviruses. BMC Genomics 2005; 6:22. [PMID: 15720717 PMCID: PMC552303 DOI: 10.1186/1471-2164-6-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Accepted: 02/18/2005] [Indexed: 11/13/2022] Open
Abstract
Background Clusters or runs of purines on the mRNA synonymous strand have been found in many different organisms including orthopoxviruses. The purine bias that is exhibited by these clusters can be observed using a purine skew and in the case of poxviruses, these skews can be used to help determine the coding strand of a particular segment of the genome. Combined with previous findings that minor ORFs have lower than average aspartate and glutamate composition and higher than average serine composition, purine content can be used to predict the likelihood of a poxvirus ORF being a "real gene". Results Using purine skews and a "quality" measure designed to incorporate previous findings about minor ORFs, we have found that in our training case (vaccinia virus strain Copenhagen), 59 of 65 minor (small and unlikely to be a real genes) ORFs were correctly classified as being minor. Of the 201 major (large and likely to be real genes) vaccinia ORFs, 192 were correctly classified as being major. Performing a similar analysis with the entomopoxvirus amsacta moorei (AMEV), it was found that 4 major ORFs were incorrectly classified as minor and 9 minor ORFs were incorrectly classified as major. The purine abundance observed for major ORFs in vaccinia virus was found to stem primarily from the first codon position with both the second and third codon positions containing roughly equal amounts of purines and pyrimidines. Conclusion Purine skews and a "quality" measure can be used to predict functional ORFs and purine skews in particular can be used to determine which of two overlapping ORFs is most likely to be the real gene if neither of the two ORFs has orthologs in other poxviruses.
Collapse
Affiliation(s)
- Melissa Da Silva
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| |
Collapse
|
28
|
Szajner P, Jaffe H, Weisberg AS, Moss B. A complex of seven vaccinia virus proteins conserved in all chordopoxviruses is required for the association of membranes and viroplasm to form immature virions. Virology 2005; 330:447-59. [PMID: 15567438 DOI: 10.1016/j.virol.2004.10.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 09/28/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
Early events in vaccinia virus (VAC) morphogenesis, particularly the formation of viral membranes and their association with viroplasm, are poorly understood. Recently, we showed that repression of A30 or G7 expression results in the accumulation of normal viral membranes that form empty-looking immature virions (IV), which are separated from large masses of electron-dense viroplasm. In addition, A30 and G7 physically and functionally interact with each other and with the F10 protein kinase. To identify other proteins involved in early morphogenesis, proteins from cells that had been infected with vaccinia virus expressing an epitope-tagged copy of F10 were purified by immunoaffinity chromatography and analyzed by gel electrophoresis. In addition to F10, A30, and G7, viral proteins A15, D2, D3, and J1 were identified by mass spectrometry of tryptic peptides. Further evidence for the complex was obtained by immunopurification of proteins associated with epitope-tagged A15, D2, and D3. The previously unstudied A15, like other proteins in the complex, was expressed late in infection, associated with virus cores, and required for the stability and kinase activity of F10. Biochemical and electron microscopic analyses indicated that mutants in which A15 or D2 expression was regulated by the Escherichia coli lac operator system exhibited phenotypes characterized by the presence of large numbers of empty immature virions, similar to the results obtained with inducible A30 and G7 mutants. Empty immature virions were also seen by electron microscopy of cells infected with temperature-sensitive mutants of D2 or D3, though the numbers of membrane forms were reduced perhaps due to additional effects of high temperature.
Collapse
Affiliation(s)
- Patricia Szajner
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
29
|
Viral Proteins that Enhance Membrane Permeability. VIRAL MEMBRANE PROTEINS: STRUCTURE, FUNCTION, AND DRUG DESIGN 2005. [PMCID: PMC7122156 DOI: 10.1007/0-387-28146-0_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Laidlaw SM, Skinner MA. Comparison of the genome sequence of FP9, an attenuated, tissue culture-adapted European strain of Fowlpox virus, with those of virulent American and European viruses. J Gen Virol 2004; 85:305-322. [PMID: 14769888 DOI: 10.1099/vir.0.19568-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 266 kbp genome sequence of plaque-purified, tissue culture-adapted, attenuated EuropeanFowlpox virusFP9 has been determined and compared with the 288 kbp sequence of a pathogenic US strain (FPVUS). FP9 carries 244 of the 260 reported FPVUS ORFs (both viruses also have an unreported orthologue of conserved poxvirus gene A14.5L). Relative to FPVUS, FP9 differed by 118 mutations (26 deletions, 15 insertions and 77 base substitutions), affecting FP9 equivalents of 71 FPVUS ORFs. To help to identify mutations involved in adaptation and attenuation, the virulent parent of FP9, HP1, was sequenced at positions where FP9 differed from FPVUS. At 68 positions, FP9 and HP1 sequences were identical, reflecting differences between American and European lineages. Mutations at the remaining 50 positions in FP9 relative to FPVUS and HP1, involving 46 ORFs, therefore accounted for adaptation and attenuation. ORFs deleted during passage included those encoding members of multigene families: 12 ankyrin repeat proteins, three C-type lectin-like proteins, two C4L/C10L-like proteins, one G-protein coupled receptor protein, one V-type Ig domain protein, two N1R/p28 proteins and one EFc family protein. Tandem ORFs encodingVariola virusB22R orthologues were fused by a 5·8 kbp deletion. Single-copy genes disrupted or deleted during passage included those encoding a homologue of murine T10, a conserved DNA/pantothenate metabolism flavoprotein, photolyase, the A-type inclusion protein and an orthologue of vaccinia A47L. Gene assignments have been updated for DNase II/DLAD, binding proteins for IL-18 and interferon-γ, phospholipid hydroperoxide glutathione peroxidase (PHGPX/GPX-4) and for a highly conserved homologue of ELOVL4.
Collapse
Affiliation(s)
- Stephen M Laidlaw
- Institute for Animal Health, Division of Molecular Biology, Compton, Newbury, Berks RG20 7NN, UK
| | - Michael A Skinner
- Institute for Animal Health, Division of Molecular Biology, Compton, Newbury, Berks RG20 7NN, UK
| |
Collapse
|
31
|
Abstract
Viroporins are a group of proteins that participate in several viral functions, including the promotion of release of viral particles from cells. These proteins also affect cellular functions, including the cell vesicle system, glycoprotein trafficking and membrane permeability. Viroporins are not essential for the replication of viruses, but their presence enhances virus growth. Comprising some 60-120 amino acids, viroporins have a hydrophobic transmembrane domain that interacts with and expands the lipid bilayer. Some viroporins also contain other motifs, such as basic amino acid residues or a domain rich in aromatic amino acids that confers on the protein the ability to interact with the interfacial lipid bilayer. Viroporin oligomerization gives rise to hydrophilic pores at the membranes of virus-infected cells. As the list of known viroporins steadily grows, recent research efforts focus on deciphering the actions of the viroporins poliovirus 2B, alphavirus 6K, HIV-1 Vpu and influenza virus M2. All these proteins can enhance the passage of ions and small molecules through membranes depending on their concentration gradient. Future work will lengthen the list of viroporins and will provide a deeper understanding of their mechanisms of action.
Collapse
Affiliation(s)
- Maria Eugenia Gonzalez
- Unidad de Expresión Viral, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Majadahonda-Pozuelo Km 2, 28220 Majadahonda, Madrid, Spain.
| | | |
Collapse
|
32
|
Upton C, Slack S, Hunter AL, Ehlers A, Roper RL. Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome. J Virol 2003; 77:7590-600. [PMID: 12805459 PMCID: PMC164831 DOI: 10.1128/jvi.77.13.7590-7600.2003] [Citation(s) in RCA: 212] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2002] [Accepted: 03/26/2003] [Indexed: 11/20/2022] Open
Abstract
Increasingly complex bioinformatic analysis is necessitated by the plethora of sequence information currently available. A total of 21 poxvirus genomes have now been completely sequenced and annotated, and many more genomes will be available in the next few years. First, we describe the creation of a database of continuously corrected and updated genome sequences and an easy-to-use and extremely powerful suite of software tools for the analysis of genomes, genes, and proteins. These tools are available free to all researchers and, in most cases, alleviate the need for using multiple Internet sites for analysis. Further, we describe the use of these programs to identify conserved families of genes (poxvirus orthologous clusters) and have named the software suite POCs, which is available at www.poxvirus.org. Using POCs, we have identified a set of 49 absolutely conserved gene families-those which are conserved between the highly diverged families of insect-infecting entomopoxviruses and vertebrate-infecting chordopoxviruses. An additional set of 41 gene families conserved in chordopoxviruses was also identified. Thus, 90 genes are completely conserved in chordopoxviruses and comprise the minimum essential genome, and these will make excellent drug, antibody, vaccine, and detection targets. Finally, we describe the use of these tools to identify necessary annotation and sequencing updates in poxvirus genomes. For example, using POCs, we identified 19 genes that were widely conserved in poxviruses but missing from the vaccinia virus strain Tian Tan 1998 GenBank file. We have reannotated and resequenced fragments of this genome and verified that these genes are conserved in Tian Tan. The results for poxvirus genes and genomes are discussed in light of evolutionary processes.
Collapse
Affiliation(s)
- Chris Upton
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
33
|
Hooper JW, Custer DM, Thompson E. Four-gene-combination DNA vaccine protects mice against a lethal vaccinia virus challenge and elicits appropriate antibody responses in nonhuman primates. Virology 2003; 306:181-95. [PMID: 12620810 PMCID: PMC9628742 DOI: 10.1016/s0042-6822(02)00038-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two major infectious forms of vaccinia virus (VACV) have been described: the intracellular mature virion (IMV), and the extracellular enveloped virion (EEV). Due to their stability in the environment, IMVs play a predominant role in host-to-host transmission, whereas EEVs play an important role in dissemination within the host. In a previous report, we demonstrated that mice vaccinated with VACV L1R (IMV immunogen) and A33R (EEV immunogen) were protected from a lethal poxvirus challenge. Vaccination with a combination of both genes conferred greater protection than either gene alone, suggesting that an immune response against both IMV and EEV is advantageous. Here, we report that in mice individually administered DNA vaccines with two different VACV immunogens, A27L (IMV immunogen) or B5R (EEV immunogen), failed to significantly protect; however, vaccination with a combination of both genes conferred a high level of protection. Mice were completely protected when vaccinated with a combination of four VACV genes (A27L + A33R + L1R + B5R). Rhesus macaques vaccinated with this four-gene-combination developed appropriate antibody responses to each protein. Antibody responses elicited by this vaccine cross-reacted with monkeypox virus orthologous proteins. These data indicate that a gene-based vaccine comprised of the VACV A27L + A33R + L1R + B5R genes may be a useful candidate to protect against other orthopoxviruses, including those that cause monkeypox and smallpox.
Collapse
Affiliation(s)
- J W Hooper
- Virology Division, United States Army Medical Research Institute for Infectious Diseases, Fort Detrick, MD 21702, USA.
| | | | | |
Collapse
|
34
|
Dvoracek B, Shors T. Construction of a novel set of transfer vectors to study vaccinia virus replication and foreign gene expression. Plasmid 2003; 49:9-17. [PMID: 12583996 DOI: 10.1016/s0147-619x(02)00154-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vaccinia virus (VV) is a useful expression vector for many laboratory applications. To date, approximately 60% ( approximately 120) of the VV genes remain uncharacterized. The thought of smallpox being used as a biological weapon has gained attention. In light of this, it is imperative that we continue to study the basic replication of VV, a poxvirus that is closely related to smallpox. A set of plasmid vectors were constructed to generate gene deletions (pZIPPY-NEO/GUS) in VV or for foreign gene expression (pBR-EXPRESS). The vectors contain the Escherichia coli neomycin resistance (neo) and beta-glucuronidase (gusA) genes as selectable markers to facilitate isolation of recombinant viruses. These are the first transfer vectors to use a neo/gusA selection system. We used these vectors to successfully generate a recombinant D9R deletion mutant of VV and to express E. coli lacZ gene. Results indicate that both vectors are highly suited for their designed purpose.
Collapse
Affiliation(s)
- Barbara Dvoracek
- Department of Biology and Microbiology, University of Wisconsin-Oshkosh, Oshkosh, WI, USA
| | | |
Collapse
|
35
|
Chiu WL, Chang W. Vaccinia virus J1R protein: a viral membrane protein that is essential for virion morphogenesis. J Virol 2002; 76:9575-87. [PMID: 12208937 PMCID: PMC136503 DOI: 10.1128/jvi.76.19.9575-9587.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccinia virus, a member of the poxvirus family, contains a conserved J1R open reading frame that encodes a late protein of 17.8 kDa. The 18-kDa J1R protein is associated mainly with the membrane fraction of intracellular mature virus particles. This study examines the biological function of J1R protein in the vaccinia virus life cycle. A recombinant vaccinia virus was constructed to conditionally express J1R protein in an isopropyl-beta-D-galactopyranoside (IPTG)-inducible manner. When J1R is not expressed during vaccinia virus infection, the virus titer is reduced approximately 100-fold. In contrast, J1R protein is not required for viral gene expression, as indicated by protein pulse-labeling. J1R protein is also not required for DNA processing, as the resolution of the concatemer junctions of replicated viral DNA was detected without IPTG. A deficiency of J1R protein caused a severe delay in the processing of p4a and p4b into mature core proteins 4a and 4b, indicating that J1R protein participates in virion morphogenesis. Infected cells grown in the absence of IPTG contained very few intracellular mature virions in the cytoplasm, and enlarged viroplasm structures accumulated with viral crescents attached at the periphery. Abundant intermediate membrane structures of abnormal shapes were observed, and many immature virions were either empty or partially filled, indicating that J1R protein is important for DNA packaging into immature virions. J1R protein also coimmunoprecipited with A45R protein in infected cells. In summary, these results indicate that vaccinia virus J1R is a membrane protein that is required for virus growth and plaque formation. J1R protein interacts with A45R protein and performs an important role during immature virion formation in cultured cells.
Collapse
Affiliation(s)
- Wen-Ling Chiu
- Graduate Institute of Life Science, National Defense Medical Center. Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | |
Collapse
|
36
|
Gubser C, Smith GL. The sequence of camelpox virus shows it is most closely related to variola virus, the cause of smallpox. J Gen Virol 2002; 83:855-872. [PMID: 11907336 DOI: 10.1099/0022-1317-83-4-855] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Camelpox virus (CMPV) and variola virus (VAR) are orthopoxviruses (OPVs) that share several biological features and cause high mortality and morbidity in their single host species. The sequence of a virulent CMPV strain was determined; it is 202182 bp long, with inverted terminal repeats (ITRs) of 6045 bp and has 206 predicted open reading frames (ORFs). As for other poxviruses, the genes are tightly packed with little non-coding sequence. Most genes within 25 kb of each terminus are transcribed outwards towards the terminus, whereas genes within the centre of the genome are transcribed from either DNA strand. The central region of the genome contains genes that are highly conserved in other OPVs and 87 of these are conserved in all sequenced chordopoxviruses. In contrast, genes towards either terminus are more variable and encode proteins involved in host range, virulence or immunomodulation. In some cases, these are broken versions of genes found in other OPVs. The relationship of CMPV to other OPVs was analysed by comparisons of DNA and predicted protein sequences, repeats within the ITRs and arrangement of ORFs within the terminal regions. Each comparison gave the same conclusion: CMPV is the closest known virus to variola virus, the cause of smallpox.
Collapse
Affiliation(s)
- Caroline Gubser
- Department of Infectious Diseases, Division of Investigative Science, Faculty of Medicine, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK2
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| | - Geoffrey L Smith
- Department of Infectious Diseases, Division of Investigative Science, Faculty of Medicine, Imperial College, St Mary's Campus, Norfolk Place, London W2 1PG, UK2
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK1
| |
Collapse
|
37
|
Afonso CL, Tulman ER, Lu Z, Zsak L, Sandybaev NT, Kerembekova UZ, Zaitsev VL, Kutish GF, Rock DL. The genome of camelpox virus. Virology 2002; 295:1-9. [PMID: 12033760 DOI: 10.1006/viro.2001.1343] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Camelpox virus (CMLV), a member of the Orthopoxvirus genus in the Poxviridae, is the etiologic agent of a disease of camels. Here we report the CMLV genomic sequence with analysis. The 205,719-bp CMLV genome contains 211 putative genes and consists of a central region bound by identical inverted terminal repeats of approximately 7 kb. A high degree of similarity in gene order, gene content, and amino acid composition in the region located between CMLV017 and CMLV184 (average 96% amino acid identity to vaccinia virus (VACV)) indicates a close structural and functional relationship between CMLV and other known orthopoxviruses (OPVs). Notably, CMLV contains a unique region of approximately 3 kb, which encodes three ORFs (CMLV185, CMLV186, CMLV187) absent in other OPVs. These ORFs are most similar to B22R homologues found in other chordopoxvirus genera. Among OPVs, CMLV is the most closely related to variola virus (VARV), sharing all genes involved in basic replicative functions and the majority of genes involved in other host-related functions. Differences between CMLV and VARV include deletion and disruption of a large number of genes. Twenty-seven CMLV ORFs are absent in VARV, including seven full-length homologues of NMDA-like receptor, phospholipase D, Schlafen, MT-4 virulence, kelch, VACV C8L, and cowpox (CPXV) B21R proteins. Thirty-eight CMLV ORFs, some of which are fragments of larger genes, differ in size from corresponding VARV ORFs by more than 10% (amino acids). Genome structure and phylogenetic analysis of DNA sequences for all ORFs indicate that CMLV is clearly distinct from VARV and VACV and, as it has been suggested for VARV, it may have originated from a CPXV virus-like ancestor.
Collapse
Affiliation(s)
- C L Afonso
- Plum Island Animal Disease Center, U.S. Department of Agriculture, Greenport, New York, 11944, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cao JX, McFadden G. Characterization of the myxoma virus M118L protein: a novel essential poxvirus IMV-associated protein. Virus Genes 2001; 23:303-13. [PMID: 11778698 DOI: 10.1023/a:1012573306916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Myxoma M118L ORF has the capacity to encode a 76 amino acid protein that is highly conserved in other vertebrate poxviruses including vaccinia (A30L), molluscum contagiosum (MC136L), yaba tumour virus (D13L) and fowlpox virus (FPV 194). The time course analysis by Western blotting using M118L antibody showed that the M118L ORF is expressed as a typical poxvirus late gene. The M118L protein can be detected in both the virus infected cytosolic and membrane fractions, even though the M118L protein does not possess a predicted transmembrane domain. The protein was found to be associated with the sucrose gradient purified myxoma intracellular mature virus (IMV) as determined by Western blotting with M118L antibody. Furthermore, the M118L protein associated with the IMV can be surface labeled with water-soluble biotin and is released from the purified IMV with treatment of nonionic detergent NP-40, indicating that the M118L protein is associated with the outer membrane of myxoma IMV. Unexpectedly, an IMV-associated M118L protein isoform was observed to bind tightly to Streptavidin beads, unlike the six other detectable myxoma IMV surface proteins, suggesting an unusual post-translational modification, such as biotinylation. Extensive attempts to generate the M118L deletion mutant using standard homologous recombination technique with E. coli gpt gene as a positive selection marker were unsuccessful. Although PCR analysis clearly indicated the presence of the correctly targeted M118L deletion mutants in mixed recombinant virus plaques selected with mycophenolic acid (MPA), repeated passages and plaquing failed to segregate the pure M118L deletion mutant from either single crossover recombinants or regenerated wild type parental viruses. Taken together, our data strongly indicate that the M118L is a novel poxvirus IMV associated protein that is essential for virus viability.
Collapse
Affiliation(s)
- J X Cao
- The John P. Robarts Research Institute, London, Ontario, Canada
| | | |
Collapse
|
39
|
Abstract
The genome sequence of Yaba-like disease virus (YLDV), an unclassified member of the yatapoxvirus genus, has been determined. Excluding the terminal hairpin loops, the YLDV genome is 144,575 bp in length and contains inverted terminal repeats (ITRs) of 1883 bp. Within 20 nucleotides of the termini, there is a sequence that is conserved in other poxviruses and is required for the resolution of concatemeric replicative DNA intermediates. The nucleotide composition of the genome is 73% A+T, but the ITRs are only 63% A+T. The genome contains 151 tightly packed open reading frames (ORFs) that either are > or =180 nucleotides in length or are conserved in other poxviruses. ORFs within 23 kb of each end are transcribed toward the termini, whereas ORFs within the central region of the genome are encoded on either DNA strand. In the central region ORFs have a conserved position, orientation, and sequence compared with vaccinia virus ORFs and encode many enzymes, transcription factors, or structural proteins. In contrast, ORFs near the termini are more divergent and in seven cases are without counterparts in other poxviruses. The YLDV genome encodes several predicted immunomodulators; examples include two proteins with similarity to CC chemokine receptors and predicted secreted proteins with similarity to MHC class I antigen, OX-2, interleukin-10/mda-7, poxvirus growth factor, serpins, and a type I interferon-binding protein. Phylogenic analyses indicated that YLDV is very closely related to yaba monkey tumor virus, but outside the yatapoxvirus genus YLDV is more closely related to swinepox virus and leporipoxviruses than to other chordopoxvirus genera.
Collapse
Affiliation(s)
- H J Lee
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
40
|
Yeh WW, Moss B, Wolffe EJ. The vaccinia virus A9L gene encodes a membrane protein required for an early step in virion morphogenesis. J Virol 2000; 74:9701-11. [PMID: 11000242 PMCID: PMC112402 DOI: 10.1128/jvi.74.20.9701-9711.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The A9L open reading frame of vaccinia virus was predicted to encode a membrane-associated protein. A transcriptional analysis of the A9L gene indicated that it was expressed at late times in vaccinia virus-infected cells. Late expression, as well as virion membrane association, was demonstrated by the construction and use of a recombinant vaccinia virus encoding an A9L protein with a C-terminal epitope tag. Immunoelectron microscopy revealed that the A9L protein was associated with both immature and mature virus particles and was oriented in the membrane with its C terminus exposed on the virion surface. To determine whether the A9L protein functions in viral assembly or infectivity, we made a conditional-lethal inducible recombinant vaccinia virus. In the absence of inducer, A9L expression and virus replication were undetectable. Under nonpermissive conditions, viral late protein synthesis occurred, but maturational proteolytic processing was inhibited, and there was an accumulation of membrane-coated electron-dense bodies, crescents, and immature virus particles, many of which appeared abnormal. We concluded that the product of the A9L gene is a viral membrane-associated protein and functions at an early stage in virion morphogenesis.
Collapse
Affiliation(s)
- W W Yeh
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
41
|
da Fonseca FG, Wolffe EJ, Weisberg A, Moss B. Characterization of the vaccinia virus H3L envelope protein: topology and posttranslational membrane insertion via the C-terminal hydrophobic tail. J Virol 2000; 74:7508-17. [PMID: 10906204 PMCID: PMC112271 DOI: 10.1128/jvi.74.16.7508-7517.2000] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vaccinia virus H3L open reading frame encodes a 324-amino-acid immunodominant membrane component of virus particles. Biochemical and microscopic studies demonstrated that the H3L protein was expressed late in infection, accumulated in the cytoplasmic viral factory regions, and associated primarily with amorphous material near immature virions and with intracellular virion membranes. Localization of the H3L protein on the surfaces of viral particles and anchorage via the hydrophobic tail were consistent with its extraction by NP-40 in the absence of reducing agents, its trypsin sensitivity, its reactivity with a membrane-impermeable biotinylation reagent, and its immunogold labeling with an antibody to a peptide comprising amino acids 247 to 259. The H3L protein, synthesized in a coupled in vitro transcription/translation system, was tightly anchored to membranes as determined by resistance to Na(2)CO(3) (pH 11) extraction and cytoplasmically oriented as shown by sensitivity to proteinase K digestion. Further studies demonstrated that membrane insertion of the H3L protein occurred posttranslationally and that the C-terminal hydrophobic domain was necessary and sufficient for this to occur. These data indicated that the H3L protein is a member of the C-terminal anchor family and supported a model in which it is synthesized on free ribosomes and inserts into the membranes of viral particles during their maturation.
Collapse
Affiliation(s)
- F G da Fonseca
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA
| | | | | | | |
Collapse
|
42
|
Ploubidou A, Moreau V, Ashman K, Reckmann I, González C, Way M. Vaccinia virus infection disrupts microtubule organization and centrosome function. EMBO J 2000; 19:3932-44. [PMID: 10921875 PMCID: PMC306617 DOI: 10.1093/emboj/19.15.3932] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examined the role of the microtubule cytoskeleton during vaccinia virus infection. We found that newly assembled virus particles accumulate in the vicinity of the microtubule-organizing centre in a microtubule- and dynein-dynactin complex-dependent fashion. Microtubules are required for efficient intracellular mature virus (IMV) formation and are essential for intracellular enveloped virus (IEV) assembly. As infection proceeds, the microtubule cytoskeleton becomes dramatically reorganized in a fashion reminiscent of overexpression of microtubule-associated proteins (MAPs). Consistent with this, we report that the vaccinia proteins A10L and L4R have MAP-like properties and mediate direct binding of viral cores to microtubules in vitro. In addition, vaccinia infection also results in severe reduction of proteins at the centrosome and loss of centrosomal microtubule nucleation efficiency. This represents the first example of viral-induced disruption of centrosome function. Further studies with vaccinia will provide insights into the role of microtubules during viral pathogenesis and regulation of centrosome function.
Collapse
Affiliation(s)
- A Ploubidou
- European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|