1
|
O'Hagan D, Shandilya S, Hopkins LJ, Hahn PA, Fuchs SP, Martinez-Navio JM, Alpert MD, Gardner MR, Desrosiers RC, Gao G, Lifson JD, Farzan M, Ardeshir A, Martins MA. In vivo evolution of env in SHIV-AD8 EO-infected rhesus macaques after AAV-vectored delivery of eCD4-Ig. Mol Ther 2025; 33:560-579. [PMID: 39673132 PMCID: PMC11853013 DOI: 10.1016/j.ymthe.2024.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
eCD4-immunoglobulin (Ig) is an HIV entry inhibitor that mimics the engagement of both CD4 and CCR5 with the HIV envelope (Env) protein, a property that imbues it with remarkable potency and breadth. However, env is exceptionally genetically malleable and can evolve to escape a wide variety of entry inhibitors. Here we document the evolution of partial eCD4-Ig resistance in SHIV-AD8EO-infected rhesus macaques (RMs) treated with adeno-associated virus vectors encoding eCD4-Ig. In one RM, setpoint viremia plateaued at 1,000 vRNA copies/mL, despite concomitant serum concentrations of eCD4-Ig in the 60-110 μg/mL range, implying that the virus had gained partial eCD4-Ig resistance. Env mutations occurring prominently in this animal were cloned and further characterized. Three of these mutations (R315G, A436T, and G471E) were sufficient to confer substantial resistance to eCD4-Ig-mediated neutralization onto the parental Env, accompanied by a marked loss of viral fitness. This resistance was not driven by decreased CD4 affinity, subverted sulfopeptide mimicry, changes to co-receptor tropism, or by a gain of CD4 independence. Rather, our data argue that the Env evolving in this animal attained eCD4-Ig resistance by decreasing triggerability, stabilizing the triggered state, and changing the nature of its relationship to the host CD4.
Collapse
Affiliation(s)
- Daniel O'Hagan
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Siddhartha Shandilya
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA
| | - Lincoln J Hopkins
- California National Primate Research Center, University of California, Davis, Davis, CA 95616, USA
| | - Patricia A Hahn
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Sebastian P Fuchs
- University of Miami, Miller School of Medicine, Miami, FL 33136, USA
| | | | | | - Mathew R Gardner
- Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Michael Farzan
- Boston Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Amir Ardeshir
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA
| | - Mauricio A Martins
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA.
| |
Collapse
|
2
|
Swanstrom AE, Del Prete GQ, Deleage C, Elser SE, Lackner AA, Hoxie JA. The SIV Envelope Glycoprotein, Viral Tropism, and Pathogenesis: Novel Insights from Nonhuman Primate Models of AIDS. Curr HIV Res 2019; 16:29-40. [PMID: 29173176 DOI: 10.2174/1570162x15666171124123116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cellular tropism of human immunodeficiency virus (HIV-1) is closely linked to interactions between the viral envelope glycoprotein (Env) with CD4 and chemokine receptor family members, CCR5 and CXCR4. This interaction plays a key role in determining anatomic sites that are infected in vivo and the cascade of early and late events that result in chronic immune activation, immunosuppression and ultimately, AIDS. CD4+ T cells are critical to adaptive immune responses, and their early and rapid infection in gut lamina propria and secondary lymphoid tissues in susceptible hosts likely contributes to viral persistence and progression to disease. CD4+ macrophages are also infected, although their role in HIV-1 pathogenesis is more controversial. METHODS Pathogenic infection by simian immunodeficiency viruses (SIV) in Asian macaques as models of HIV-1 infection has enabled the impact of cellular tropism on pathogenesis to be directly probed. This review will highlight examples in which experimental interventions during SIV infection or the introduction of viral mutations have altered cellular tropism and, subsequently, pathogenesis. RESULTS Alterations to the interaction of Env and its cellular receptors has been shown to result in changes to CD4 dependence, coreceptor specificity, and viral tropism for gut CD4+ T cells and macrophages. CONCLUSION Collectively, these findings have yielded novel insights into the critical role of the viral Env and tropism as a driver of pathogenesis and host control and have helped to identify new areas for targeted interventions in therapy and prevention of HIV-1 infection.
Collapse
Affiliation(s)
- Adrienne E Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, United States
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, United States
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, United States
| | - Samra E Elser
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, LA, United States
| | - James A Hoxie
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
Li Y, Deng L, Ai SM, Sang P, Yang J, Xia YL, Zhang ZB, Fu YX, Liu SQ. Insights into the molecular mechanism underlying CD4-dependency and neutralization sensitivity of HIV-1: a comparative molecular dynamics study on gp120s from isolates with different phenotypes. RSC Adv 2018; 8:14355-14368. [PMID: 35540760 PMCID: PMC9079880 DOI: 10.1039/c8ra00425k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/08/2018] [Indexed: 01/26/2023] Open
Abstract
The envelope (Env) of HIV-1 plays critical roles in viral infection and immune evasion. Although structures of prefusion Env have been determined and phenotypes relevant to the CD4 dependency and the neutralization sensitivity for various HIV-1 isolates have been identified, the detailed structural dynamics and energetics underlying these two phenotypes have remained elusive. In this study, two unliganded structural models of gp120, one from the CD4-dependent, neutralization-resistant isolate H061.14 and the other from the CD4-independent, neutralization-sensitive R2 strain, were constructed, and subsequently were subjected to multiple-replica molecular dynamics (MD) simulations followed by free energy landscape (FEL) construction. Comparative analyses of MD trajectories reveal that during simulations R2-gp120 demonstrated larger structural fluctuations/deviations and higher global conformational flexibility than H061.14-gp120. Close comparison of local conformational flexibility shows that some of the structural regions involving direct interactions with gp41 and adjacent gp120 subunits in the context of the closed trimeric Env exhibit significantly higher flexibility in R2-gp120 than in H061.14-gp120, thus likely increasing the probability for R2-Env to open the trimer crown and prime gp41 fusogenic properties without induction by CD4. Collective motions derived from principal component analysis (PCA) reveal that R2-gp120 is prone to spontaneous transition to the neutralization-sensitive CD4-bound state while H061.14-gp120 tends to maintain the neutralization-resistant unliganded state. Finally, comparison between FELs reveals that R2-gp120 has larger conformational entropy, richer conformational diversity, and lower thermostability than H061.14-gp120, thus explaining why R2-gp120 is more structurally unstable and conformationally flexible, and has a higher propensity to transition to the CD4-bound state than H061.14-gp120. The present results reveal that the differences in dynamics and energetics between R2-gp120 and H061.14-gp120 impart Env trimers with distinct capacities to sample different states (i.e., R2-Env samples more readily the open state while H061.14-Env is more inclined to maintain the closed state), thus shedding light on the molecular mechanism underlying the HIV-1 phenotype associated with CD4 dependency/neutralization sensitivity. The envelope (Env) of HIV-1 plays critical roles in viral infection and immune evasion.![]()
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Lei Deng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Shi-Meng Ai
- Department of Applied Mathematics
- Yunnan Agricultural University
- Kunming
- P. R. China
| | - Peng Sang
- College of Agriculture and Biological Science
- Dali University
- Dali
- P. R. China
| | - Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Yuan-Lin Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Zhi-Bi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| | - Yun-Xin Fu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
- Human Genetics Center and Division of Biostatistics
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan
- Yunnan University
- Kunming
- P. R. China
| |
Collapse
|
4
|
Abstract
BACKGROUND HIV-1 is known to adapt to the local environment in its usage of receptors, and it can become CD4 independent in the brain where the receptor is scarce. This adaptation is through amino acid variations, but the patterns of such variation are not yet well understood. Given that infection of long-lived CD4-low and CD4-negative cells in anatomical compartments such as the brain expands cell tropism in vivo and may serve as potential viral reservoirs that pose challenge for HIV eradication, understanding the evolution to CD4 independence and envelope conformation associated with infection in the absence of CD4 will not only broaden our insights into HIV pathogenesis but may guide functional cure strategies as well. METHODS We characterize, by site-directed mutagenesis, neutralization assay, and structural analysis, a pair of CD4-dependent (cl2) and CD4-independent (cl20) envelopes concurrently isolated from the cerebral spinal fluid of an SHIV-infected macaque with neurological AIDS and with minimum sequence differences. RESULTS Residues different between cl2 and cl20 are mapped to the V1V2 and surrounding regions. Mutations of these residues in cl2 increased its CD4 independence in infection, and the effects are cumulative and likely structural. CONCLUSIONS Our data suggested that the determinants of CD4 independence in vivo mapped principally to V1V2 of gp120 that can destabilize the apex of the envelope spike, with an additional change in V4 that abrogated a potential N-linked glycan to facilitate movement of the V1V2 domain and further expose the coreceptor-binding site.
Collapse
|
5
|
Espy N, Pacheco B, Sodroski J. Adaptation of HIV-1 to cells with low expression of the CCR5 coreceptor. Virology 2017; 508:90-107. [PMID: 28521215 DOI: 10.1016/j.virol.2017.04.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 11/19/2022]
Abstract
The binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimer ((gp120/gp41)3) to the receptors CD4 and CCR5 triggers virus entry into host cells. To identify Env regions that respond to CCR5 binding, HIV-1 was serially passaged on a CD4-positive canine cell line expressing progressively lower levels of CCR5. HIV-1 replication was observed in cells expressing ~1300 CCR5 molecules/cell. Env changes that conferred this low-CCR5 replication phenotype were located outside of the known CCR5-binding region of the gp120 Env subunit and did not apparently increase CCR5 binding affinity. The adaptation-associated changes, located in the gp120 α1 helix and in the gp41 HR1 heptad repeat and membrane-proximal external region (MPER), enhanced HIV-1 replication in cells at all levels of CCR5 expression. The adapted Envs exhibited a greater propensity to undergo conformational changes, as evidenced by increased exposure of conserved regions near the CD4- and CCR5-binding sites.
Collapse
Affiliation(s)
- Nicole Espy
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Beatriz Pacheco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Joseph Sodroski
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Release of gp120 Restraints Leads to an Entry-Competent Intermediate State of the HIV-1 Envelope Glycoproteins. mBio 2016; 7:mBio.01598-16. [PMID: 27795397 PMCID: PMC5080382 DOI: 10.1128/mbio.01598-16] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Primary human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimers [(gp120/gp41)3] typically exist in a metastable closed conformation (state 1). Binding the CD4 receptor triggers Env to undergo extensive conformational changes to mediate virus entry. We identified specific gp120 residues that restrain Env in state 1. Alteration of these restraining residues destabilized state 1, allowing Env to populate a functional conformation (state 2) intermediate between state 1 and the full CD4-bound state (state 3). Increased state 2 occupancy was associated with lower energy barriers between the states. State 2 was an obligate intermediate for all transitions between state 1 and state 3. State 2-enriched Envs required lower CD4 concentrations to trigger virus entry and more efficiently infected cells expressing low levels of CD4. These Envs were resistant to several broadly neutralizing antibodies and small-molecule inhibitors. Thus, state 2 is an Env conformation on the virus entry pathway; sampling state 2 increases the adaptability of HIV-1 to different host cell receptor levels and immune environments. Our results provide new insights into the conformational regulation of HIV-1 entry. The envelope glycoproteins (Env) of HIV-1 mediate virus entry and are the sole targets of neutralizing antibodies. Understanding the way that Env promotes HIV-1 entry can expedite drug and vaccine development. By destabilizing Env, we found that it assumes an intermediate state that is functional and obligate for transitions to entry-competent conformations. Increased sampling of this state enhances the ability of HIV-1 to infect cells that express low levels of the CD4 receptor and allows the virus to evade neutralizing antibodies and small-molecule inhibitors. These findings provide new mechanistic insights into the function and inhibition of HIV-1 Env and will contribute to ongoing therapeutic and prevention efforts to combat HIV-1.
Collapse
|
7
|
Deshpande S, Patil S, Kumar R, Hermanus T, Murugavel KG, Srikrishnan AK, Solomon S, Morris L, Bhattacharya J. HIV-1 clade C escapes broadly neutralizing autologous antibodies with N332 glycan specificity by distinct mechanisms. Retrovirology 2016; 13:60. [PMID: 27576440 PMCID: PMC5006590 DOI: 10.1186/s12977-016-0297-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022] Open
Abstract
The glycan supersite centered on N332 in the V3 base of the HIV-1 envelope (Env) is a target for broadly neutralizing antibodies (bnAbs) such as PGT121 and PGT128. In this study, we examined the basis of resistance of HIV-1 clade C Envs obtained from broadly cross neutralizing (BCN) plasma of an Indian donor with N332 specificity. Pseudotyped viruses expressing autologous envs were found to be resistant to autologous BCN plasma as well as to PGT121 and PGT128 mAbs despite the majority of Envs containing an intact N332 residue. While resistance of one of the Envs to neutralization by autologous plasma antibodies with shorter V1 loop length was found to be correlated with a N332S mutation, resistance to neutralization of rest of the Envs was found to be associated with longer V1 loop length and acquisition of protective N-glycans. In summary, we show evidence of escape of circulating HIV-1 clade C in an individual from autologous BCN antibodies by three distinct mechanisms.
Collapse
Affiliation(s)
- Suprit Deshpande
- HIV Vaccine Translational Research Laboratory, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Shilpa Patil
- HIV Vaccine Translational Research Laboratory, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Rajesh Kumar
- HIV Vaccine Translational Research Laboratory, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tandile Hermanus
- National Institute of Communicable Diseases, Johannesburg, South Africa
| | | | | | - Suniti Solomon
- YRG Care Center for AIDS Research & Education, Chennai, 600113, India
| | - Lynn Morris
- National Institute of Communicable Diseases, Johannesburg, South Africa
| | - Jayanta Bhattacharya
- HIV Vaccine Translational Research Laboratory, NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, Haryana, India. .,International AIDS Vaccine Initiative, New York, NY, USA.
| |
Collapse
|
8
|
Swanstrom AE, Haggarty B, Jordan APO, Romano J, Leslie GJ, Aye PP, Marx PA, Lackner AA, Del Prete GQ, Robinson JE, Betts MR, Montefiori DC, LaBranche CC, Hoxie JA. Derivation and Characterization of a CD4-Independent, Non-CD4-Tropic Simian Immunodeficiency Virus. J Virol 2016; 90:4966-4980. [PMID: 26937037 PMCID: PMC4859711 DOI: 10.1128/jvi.02851-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
UNLABELLED CD4 tropism is conserved among all primate lentiviruses and likely contributes to viral pathogenesis by targeting cells that are critical for adaptive antiviral immune responses. Although CD4-independent variants of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) have been described that can utilize the coreceptor CCR5 or CXCR4 in the absence of CD4, these viruses typically retain their CD4 binding sites and still can interact with CD4. We describe the derivation of a novel CD4-independent variant of pathogenic SIVmac239, termed iMac239, that was used to derive an infectious R5-tropic SIV lacking a CD4 binding site. Of the seven mutations that differentiate iMac239 from wild-type SIVmac239, a single change (D178G) in the V1/V2 region was sufficient to confer CD4 independence in cell-cell fusion assays, although other mutations were required for replication competence. Like other CD4-independent viruses, iMac239 was highly neutralization sensitive, although mutations were identified that could confer CD4-independent infection without increasing its neutralization sensitivity. Strikingly, iMac239 retained the ability to replicate in cell lines and primary cells even when its CD4 binding site had been ablated by deletion of a highly conserved aspartic acid at position 385, which, for HIV-1, plays a critical role in CD4 binding. iMac239, with and without the D385 deletion, exhibited an expanded host range in primary rhesus peripheral blood mononuclear cells that included CCR5(+) CD8(+) T cells. As the first non-CD4-tropic SIV, iMac239-ΔD385 will afford the opportunity to directly assess the in vivo role of CD4 targeting on pathogenesis and host immune responses. IMPORTANCE CD4 tropism is an invariant feature of primate lentiviruses and likely plays a key role in pathogenesis by focusing viral infection onto cells that mediate adaptive immune responses and in protecting virions attached to cells from neutralizing antibodies. Although CD4-independent viruses are well described for HIV and SIV, these viruses characteristically retain their CD4 binding site and can engage CD4 if available. We derived a novel CD4-independent, CCR5-tropic variant of the pathogenic molecular clone SIVmac239, termed iMac239. The genetic determinants of iMac239's CD4 independence provide new insights into mechanisms that underlie this phenotype. This virus remained replication competent even after its CD4 binding site had been ablated by mutagenesis. As the first truly non-CD4-tropic SIV, lacking the capacity to interact with CD4, iMac239 will provide the unique opportunity to evaluate SIV pathogenesis and host immune responses in the absence of the immunomodulatory effects of CD4(+) T cell targeting and infection.
Collapse
Affiliation(s)
- Adrienne E Swanstrom
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beth Haggarty
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea P O Jordan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Josephine Romano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George J Leslie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pyone P Aye
- Tulane National Primate Research Center, Covington, and Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Preston A Marx
- Tulane National Primate Research Center, Covington, and Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Andrew A Lackner
- Tulane National Primate Research Center, Covington, and Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Gregory Q Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - James E Robinson
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Michael R Betts
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia C LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - James A Hoxie
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
Zolla-Pazner S, Cohen SS, Boyd D, Kong XP, Seaman M, Nussenzweig M, Klein F, Overbaugh J, Totrov M. Structure/Function Studies Involving the V3 Region of the HIV-1 Envelope Delineate Multiple Factors That Affect Neutralization Sensitivity. J Virol 2016; 90:636-49. [PMID: 26491157 PMCID: PMC4702699 DOI: 10.1128/jvi.01645-15] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 10/04/2015] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Antibodies (Abs) specific for the V3 loop of the HIV-1 gp120 envelope neutralize most tier 1 and many tier 2 viruses and are present in essentially all HIV-infected individuals as well as immunized humans and animals. Vaccine-induced V3 Abs are associated with reduced HIV infection rates in humans and affect the nature of transmitted viruses in infected vaccinees, despite the fact that V3 is often occluded in the envelope trimer. Here, we link structural and experimental data showing how conformational alterations of the envelope trimer render viruses exceptionally sensitive to V3 Abs. The experiments interrogated the neutralization sensitivity of pseudoviruses with single amino acid mutations in various regions of gp120 that were predicted to alter packing of the V3 loop in the Env trimer. The results indicate that the V3 loop is metastable in the envelope trimer on the virion surface, flickering between states in which V3 is either occluded or available for binding to chemokine receptors (leading to infection) and to V3 Abs (leading to virus neutralization). The spring-loaded V3 in the envelope trimer is easily released by disruption of the stability of the V3 pocket in the unliganded trimer or disruption of favorable V3/pocket interactions. Formation of the V3 pocket requires appropriate positioning of the V1V2 domain, which is, in turn, dependent on the conformation of the bridging sheet and on the stability of the V1V2 B-C strand-connecting loop. IMPORTANCE The levels of antibodies to the third variable region (V3) of the HIV envelope protein correlate with reduced HIV infection rates. Previous studies showed that V3 is often occluded, as it sits in a pocket of the envelope trimer on the surface of virions; however, the trimer is flexible, allowing occluded portions of the envelope (like V3) to flicker into an exposed position that binds antibodies. Here we provide a systematic interrogation of mechanisms by which single amino acid changes in various regions of gp120 (i) render viruses sensitive to neutralization by V3 antibodies, (ii) result in altered packing of the V3 loop, and (iii) activate an open conformation that exposes V3 to the effects of V3 Abs. Taken together, these and previous studies explain how V3 antibodies can protect against HIV-1 infection and why they should be one of the targets of vaccine-induced antibodies.
Collapse
Affiliation(s)
- Susan Zolla-Pazner
- Veterans Affairs New York Harbor Healthcare System, New York, New York, USA Departments of Pathology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Sandra Sharpe Cohen
- Departments of Pathology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - David Boyd
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Xiang-Peng Kong
- Departments of Pathology and Biochemistry, New York University School of Medicine, New York, New York, USA
| | - Michael Seaman
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | - Julie Overbaugh
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Max Totrov
- Molsoft, L.L.C., San Diego, California, USA
| |
Collapse
|
10
|
Aiamkitsumrit B, Sullivan NT, Nonnemacher MR, Pirrone V, Wigdahl B. Human Immunodeficiency Virus Type 1 Cellular Entry and Exit in the T Lymphocytic and Monocytic Compartments: Mechanisms and Target Opportunities During Viral Disease. Adv Virus Res 2015; 93:257-311. [PMID: 26111588 DOI: 10.1016/bs.aivir.2015.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the course of human immunodeficiency virus type 1 infection, a number of cell types throughout the body are infected, with the majority of cells representing CD4+ T cells and cells of the monocyte-macrophage lineage. Both types of cells express, to varying levels, the primary receptor molecule, CD4, as well as one or both of the coreceptors, CXCR4 and CCR5. Viral tropism is determined by both the coreceptor utilized for entry and the cell type infected. Although a single virus may have the capacity to infect both a CD4+ T cell and a cell of the monocyte-macrophage lineage, the mechanisms involved in both the entry of the virus into the cell and the viral egress from the cell during budding and viral release differ depending on the cell type. These host-virus interactions and processes can result in the differential targeting of different cell types by selected viral quasispecies and the overall amount of infectious virus released into the extracellular environment or by direct cell-to-cell spread of viral infectivity. This review covers the major steps of virus entry and egress with emphasis on the parts of the replication process that lead to differences in how the virus enters, replicates, and buds from different cellular compartments, such as CD4+ T cells and cells of the monocyte-macrophage lineage.
Collapse
Affiliation(s)
- Benjamas Aiamkitsumrit
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Neil T Sullivan
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Guttman M, Cupo A, Julien JP, Sanders RW, Wilson IA, Moore JP, Lee KK. Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nat Commun 2015; 6:6144. [PMID: 25652336 PMCID: PMC4338595 DOI: 10.1038/ncomms7144] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022] Open
Abstract
HIV’s envelope glycoprotein (Env) is the sole target for neutralizing antibodies. The structures of many broadly neutralizing antibodies (bNAbs) in complex with truncated Env subunits or components have been reported. However, their interaction with the intact Env trimer, and the structural determinants that underlie neutralization resistance in this more native context are less well understood. Here we use hydrogen/deuterium-exchange to examine the interactions between a panel of bNAbs and native-like Env trimers (SOSIP.664 trimers). Highly potent bNAbs cause only localized effects at their binding interface, while the binding of less potent antibodies is associated with elaborate changes throughout the trimer. In conjunction with binding kinetics, our results suggest that poorly neutralizing antibodies can only bind when the trimer transiently samples an open state. We propose that the kinetics of such opening motions varies among isolates, with Env from neutralization-sensitive viruses opening more frequently than Env from resistant viruses.
Collapse
Affiliation(s)
- Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, Washington 98195, USA
| | - Albert Cupo
- Weill Cornell Medical College, New York, New York 10021, USA
| | - Jean-Philippe Julien
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Rogier W Sanders
- 1] Weill Cornell Medical College, New York, New York 10021, USA [2] Department of Medical Microbiology, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, International AIDS Vaccine Initiative Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John P Moore
- Weill Cornell Medical College, New York, New York 10021, USA
| | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Box 357610, Seattle, Washington 98195, USA
| |
Collapse
|
12
|
Tedbury PR, Freed EO. The cytoplasmic tail of retroviral envelope glycoproteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:253-84. [PMID: 25595807 DOI: 10.1016/bs.pmbts.2014.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Retroviruses comprise a large, diverse group that infects a broad range of host organisms. Pathogenicity varies widely; the human immunodeficiency virus is the causative agent of acquired immunodeficiency syndrome, one of the world's leading infectious causes of death, while many nonhuman retroviruses cause cancer in the host. Retroviruses have been studied intensively, and great strides have been made in understanding aspects of retroviral biology. While the principal functions of the viral structural proteins are well understood, there remain many incompletely characterized domains. One of these is the cytoplasmic tail (CT) of the envelope glycoprotein. Several functions of the CT are highly conserved, whereas other properties are unique to a specific retrovirus. For example, the lentiviruses encode envelope glycoproteins with particularly large cytoplasmic domains. The functions of the long lentiviral envelope CT are still being deciphered. The reported functions of retroviral envelope CTs are discussed in this chapter.
Collapse
Affiliation(s)
- Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA.
| |
Collapse
|
13
|
Mutations in HIV-1 envelope that enhance entry with the macaque CD4 receptor alter antibody recognition by disrupting quaternary interactions within the trimer. J Virol 2014; 89:894-907. [PMID: 25378497 DOI: 10.1128/jvi.02680-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Chimeric simian immunodeficiency virus (SIV)/human immunodeficiency virus (HIV) (SHIV) infection of macaques is commonly used to model HIV type 1 (HIV-1) transmission and pathogenesis in humans. Despite the fact that SHIVs encode SIV antagonists of the known macaque host restriction factors, these viruses require additional adaptation for replication in macaques to establish a persistent infection. Additional adaptation may be required in part because macaque CD4 (mCD4) is a suboptimal receptor for most HIV-1 envelope glycoprotein (Env) variants. This requirement raises the possibility that adaptation of HIV-1 Env to the macaque host leads to selection of variants that lack important biological and antigenic properties of the viruses responsible for the HIV-1 pandemic in humans. Here, we investigated whether this adaptation process leads to changes in the antigenicity and structure of HIV-1 Env. For this purpose, we examined how two independent mutations that enhance mCD4-mediated entry, A204E and G312V, impact antibody recognition in the context of seven different parental HIV-1 Env proteins from diverse subtypes. We also examined HIV-1 Env variants from three SHIVs that had been adapted for increased replication in macaques. Our results indicate that these different macaque-adapted variants had features in common, including resistance to antibodies directed to quaternary epitopes and sensitivity to antibodies directed to epitopes in the variable domains (V2 and V3) that are buried in the parental, unadapted Env proteins. Collectively, these findings suggest that adaptation to mCD4 results in conformational changes that expose epitopes in the variable domains and disrupt quaternary epitopes in the native Env trimer. IMPORTANCE These findings indicate the antigenic consequences of adapting HIV-1 Env to mCD4. They also suggest that to best mimic HIV-1 infection in humans when using the SHIV/macaque model, HIV-1 Env proteins should be identified that use mCD4 as a functional receptor and preserve quaternary epitopes characteristic of HIV-1 Env.
Collapse
|
14
|
Emergence of CD4 independence envelopes and astrocyte infection in R5 simian-human immunodeficiency virus model of encephalitis. J Virol 2014; 88:8407-20. [PMID: 24829360 DOI: 10.1128/jvi.01237-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Human immunodeficiency virus type 1 (HIV-1) infection in the central nervous system (CNS) is characterized by replication in macrophages or brain microglia that express low levels of the CD4 receptor and is the cause of HIV-associated dementia and related cognitive and motor disorders that affect 20 to 30% of treatment-naive patients with AIDS. Independent viral envelope evolution in the brain has been reported, with the need for robust replication in resident CD4(low) cells, as well as CD4-negative cells, such as astrocytes, proposed as a major selective pressure. We previously reported giant-cell encephalitis in subtype B and C R5 simian-human immunodeficiency virus (SHIV)-infected macaques (SHIV-induced encephalitis [SHIVE]) that experienced very high chronic viral loads and progressed rapidly to AIDS, with varying degrees of macrophage or microglia infection and activation of these immune cells, as well as astrocytes, in the CNS. In this study, we characterized envelopes (Env) amplified from the brains of subtype B and C R5 SHIVE macaques. We obtained data in support of an association between severe neuropathological changes, robust macrophage and microglia infection, and evolution to CD4 independence. Moreover, the degree of Env CD4 independence appeared to correlate with the extent of astrocyte infection in vivo. These findings further our knowledge of the CNS viral population phenotypes that are associated with the severity of HIV/SHIV-induced neurological injury and improve our understanding of the mechanism of HIV-1 cellular tropism and persistence in the brain. IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) infection of astrocytes in the brain has been suggested to be important in HIV persistence and neuropathogenesis but has not been definitively demonstrated in an animal model of HIV-induced encephalitis (HIVE). Here, we describe a new nonhuman primate (NHP) model of R5 simian-human immunodeficiency virus (SHIV)-induced encephalitis (SHIVE) with several classical HIVE features that include astrocyte infection. We further show an association between severe neuropathological changes, robust resident microglia infection, and evolution to CD4 independence of viruses in the central nervous system (CNS), with expansion to infection of truly CD4-negative cells in vivo. These findings support the use of the R5 SHIVE models to study the contribution of the HIV envelope and viral clades to neurovirulence and residual virus replication in the CNS, providing information that should guide efforts to eradicate HIV from the body.
Collapse
|
15
|
Aiamkitsumrit B, Dampier W, Antell G, Rivera N, Martin-Garcia J, Pirrone V, Nonnemacher MR, Wigdahl B. Bioinformatic analysis of HIV-1 entry and pathogenesis. Curr HIV Res 2014; 12:132-61. [PMID: 24862329 PMCID: PMC4382797 DOI: 10.2174/1570162x12666140526121746] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 03/18/2014] [Accepted: 05/06/2014] [Indexed: 02/07/2023]
Abstract
The evolution of human immunodeficiency virus type 1 (HIV-1) with respect to co-receptor utilization has been shown to be relevant to HIV-1 pathogenesis and disease. The CCR5-utilizing (R5) virus has been shown to be important in the very early stages of transmission and highly prevalent during asymptomatic infection and chronic disease. In addition, the R5 virus has been proposed to be involved in neuroinvasion and central nervous system (CNS) disease. In contrast, the CXCR4-utilizing (X4) virus is more prevalent during the course of disease progression and concurrent with the loss of CD4(+) T cells. The dual-tropic virus is able to utilize both co-receptors (CXCR4 and CCR5) and has been thought to represent an intermediate transitional virus that possesses properties of both X4 and R5 viruses that can be encountered at many stages of disease. The use of computational tools and bioinformatic approaches in the prediction of HIV-1 co-receptor usage has been growing in importance with respect to understanding HIV-1 pathogenesis and disease, developing diagnostic tools, and improving the efficacy of therapeutic strategies focused on blocking viral entry. Current strategies have enhanced the sensitivity, specificity, and reproducibility relative to the prediction of co-receptor use; however, these technologies need to be improved with respect to their efficient and accurate use across the HIV-1 subtypes. The most effective approach may center on the combined use of different algorithms involving sequences within and outside of the env-V3 loop. This review focuses on the HIV-1 entry process and on co-receptor utilization, including bioinformatic tools utilized in the prediction of co-receptor usage. It also provides novel preliminary analyses for enabling identification of linkages between amino acids in V3 with other components of the HIV-1 genome and demonstrates that these linkages are different between X4 and R5 viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA 19102.
| |
Collapse
|
16
|
Activity of the HIV-1 attachment inhibitor BMS-626529, the active component of the prodrug BMS-663068, against CD4-independent viruses and HIV-1 envelopes resistant to other entry inhibitors. Antimicrob Agents Chemother 2013; 57:4172-80. [PMID: 23774428 DOI: 10.1128/aac.00513-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BMS-626529 is a novel small-molecule HIV-1 attachment inhibitor active against both CCR5- and CXCR4-tropic viruses. BMS-626529 functions by preventing gp120 from binding to CD4. A prodrug of this compound, BMS-663068, is currently in clinical development. As a theoretical resistance pathway to BMS-663068 could be the development of a CD4-independent phenotype, we examined the activity of BMS-626529 against CD4-independent viruses and investigated whether resistance to BMS-626529 could be associated with a CD4-independent phenotype. Finally, we evaluated whether cross-resistance exists between BMS-626529 and other HIV-1 entry inhibitors. Two laboratory-derived envelopes with a CD4-independent phenotype (one CXCR4 tropic and one CCR5 tropic), five envelopes from clinical isolates with preexisting BMS-626529 resistance, and several site-specific mutant BMS-626529-resistant envelopes were examined for their dependence on CD4 for infectivity or susceptibility to BMS-626529. Viruses resistant to other entry inhibitors (enfuvirtide, maraviroc, and ibalizumab) were also examined for susceptibility to BMS-626529. Both CD4-independent laboratory isolates retained sensitivity to BMS-626529 in CD4(-) cells, while HIV-1 envelopes from viruses resistant to BMS-626529 exhibited no evidence of a CD4-independent phenotype. BMS-626529 also exhibited inhibitory activity against ibalizumab- and enfuvirtide-resistant envelopes. While there appeared to be some association between maraviroc resistance and reduced susceptibility to BMS-626529, an absolute correlation cannot be presumed, since some CCR5-tropic maraviroc-resistant envelopes remained sensitive to BMS-626529. Clinical use of the prodrug BMS-663068 is unlikely to promote resistance via generation of CD4-independent virus. No cross-resistance between BMS-626529 and other HIV entry inhibitors was observed, which could allow for sequential or concurrent use with different classes of entry inhibitors.
Collapse
|
17
|
Stieh DJ, Phillips JL, Rogers PM, King DF, Cianci GC, Jeffs SA, Gnanakaran S, Shattock RJ. Dynamic electrophoretic fingerprinting of the HIV-1 envelope glycoprotein. Retrovirology 2013; 10:33. [PMID: 23514633 PMCID: PMC3648349 DOI: 10.1186/1742-4690-10-33] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 03/07/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interactions between the HIV-1 envelope glycoprotein (Env) and its primary receptor CD4 are influenced by the physiological setting in which these events take place. In this study, we explored the surface chemistry of HIV-1 Env constructs at a range of pH and salinities relevant to mucosal and systemic compartments through electrophoretic mobility (EM) measurements. Sexual transmission events provide a more acidic environment for HIV-1 compared to dissemination and spread of infection occurring in blood or lymph node. We hypothesize functional, trimeric Env behaves differently than monomeric forms. RESULTS The dynamic electrophoretic fingerprint of trimeric gp140 revealed a change in EM from strongly negative to strongly positive as pH increased from that of the lower female genital tract (pHx) to that of the blood (pHy). Similar findings were observed using a trimeric influenza Haemagglutinin (HA) glycoprotein, indicating that this may be a general attribute of trimeric viral envelope glycoproteins. These findings were supported by computationally modeling the surface charge of various gp120 and HA crystal structures. To identify the behavior of the infectious agent and its target cells, EM measurements were made on purified whole HIV-1 virions and primary T-lymphocytes. Viral particles had a largely negative surface charge, and lacked the regions of positivity near neutral pH that were observed with trimeric Env. T cells changed their surface chemistry as a function of activation state, becoming more negative over a wider range of pH after activation. Soluble recombinant CD4 (sCD4) was found to be positively charged under a wide range of conditions. Binding studies between sCD4 and gp140 show that the affinity of CD4-gp140 interactions depends on pH. CONCLUSIONS Taken together, these findings allow a more complete model of the electrochemical forces involved in HIV-1 Env functionality. These results indicate that the influence of the localized environment on the interactions of HIV with target cells are more pronounced than previously appreciated. There is differential chemistry of trimeric, but not monomeric, Env under conditions which mimic the mucosa compared to those found systemically. This should be taken into consideration during design of immunogens which targets virus at mucosal portals of entry.
Collapse
Affiliation(s)
- Daniel J Stieh
- Center for Infection, Department of Cellular and Molecular Medicine, St. George's University of London, London SW17 0RE, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
van Gils MJ, Sanders RW. Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology 2013; 435:46-56. [PMID: 23217615 DOI: 10.1016/j.virol.2012.10.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022]
Abstract
The need for an effective vaccine to prevent the global spread of human immunodeficiency virus type 1 (HIV-1) is well recognized. Passive immunization and challenge studies in non-human primates testify that broadly neutralizing antibodies (BrNAbs) can accomplish protection against infection. In recent years, the introduction of new techniques has facilitated the discovery of an unprecedented number of new human BrNAbs that target and delineate diverse conserved epitopes on the envelope glycoprotein spike (Env). The epitopes of these BrNAbs can serve as templates for immunogen design aimed to induce similar antibodies. Here we will review the characteristics of the different classes of BrNAbs and their target epitopes, as well as factors associated with their development and implications for vaccine design.
Collapse
Affiliation(s)
- Marit J van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Abstract
The retrovirus family contains several important human and animal pathogens, including the human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency syndrome (AIDS). Studies with retroviruses were instrumental to our present understanding of the cellular entry of enveloped viruses in general. For instance, studies with alpharetroviruses defined receptor engagement, as opposed to low pH, as a trigger for the envelope protein-driven membrane fusion. The insights into the retroviral entry process allowed the generation of a new class of antivirals, entry inhibitors, and these therapeutics are at present used for treatment of HIV/AIDS. In this chapter, we will summarize key concepts established for entry of avian sarcoma and leukosis virus (ASLV), a widely used model system for retroviral entry. We will then review how foamy virus and HIV, primate- and human retroviruses, enter target cells, and how the interaction of the viral and cellular factors involved in the cellular entry of these viruses impacts viral tropism, pathogenesis and approaches to therapy and vaccine development.
Collapse
|
20
|
Effect of complement on HIV-2 plasma antiviral activity is intratype specific and potent. J Virol 2012; 87:273-81. [PMID: 23077299 DOI: 10.1128/jvi.01640-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 2 (HIV-2)-infected individuals develop immunodeficiency with a considerable delay and transmit the virus at rates lower than HIV-1-infected persons. Conceivably, comparative studies on the immune responsiveness of HIV-1- and HIV-2-infected hosts may help to explain the differences in pathogenesis and transmission between the two types of infection. Previous studies have shown that the neutralizing antibody response is more potent and broader in HIV-2 than in HIV-1 infection. In the present study, we have examined further the function of the humoral immune response and studied the effect of complement on the antiviral activity of plasma from singly HIV-1- or HIV-2-infected individuals, as well as HIV-1/HIV-2 dually infected individuals. The neutralization and antibody-dependent complement-mediated inactivation of HIV-1 and HIV-2 isolates were tested in a plaque reduction assay using U87.CD4.CCR5 cells. The results showed that the addition of complement increased intratype antiviral activities of both HIV-1 and HIV-2 plasma samples, although the complement effect was more pronounced with HIV-2 than HIV-1 plasma. Using an area-under-the-curve (AUC)-based readout, multivariate statistical analysis confirmed that the type of HIV infection was independently associated with the magnitude of the complement effect. The analyses carried out with purified IgG indicated that the complement effect was largely exerted through the classical complement pathway involving IgG in both HIV-1 and HIV-2 infections. In summary, these findings suggest that antibody binding to HIV-2 structures facilitates the efficient use of complement and thereby may be one factor contributing to a strong antiviral activity present in HIV-2 infection.
Collapse
|
21
|
Steckbeck JD, Kuhlmann AS, Montelaro RC. C-terminal tail of human immunodeficiency virus gp41: functionally rich and structurally enigmatic. J Gen Virol 2012; 94:1-19. [PMID: 23079381 PMCID: PMC3542723 DOI: 10.1099/vir.0.046508-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic is amongst the most important current worldwide public health threats. While much research has been focused on AIDS vaccines that target the surface viral envelope (Env) protein, including gp120 and the gp41 ectodomain, the C-terminal tail (CTT) of gp41 has received relatively little attention. Despite early studies highlighting the immunogenicity of a particular CTT sequence, the CTT has been classically portrayed as a type I membrane protein limited to functioning in Env trafficking and virion incorporation. Recent studies demonstrate, however, that the Env CTT has other important functions. The CTT has been shown to additionally modulate Env ectodomain structure on the cell and virion surface, affect Env reactivity and viral sensitivity to conformation-dependent neutralizing antibodies, and alter cell–cell and virus–cell fusogenicity of Env. This review provides an overview of the Env structure and function with a particular emphasis on the CTT and recent studies that highlight its functionally rich nature.
Collapse
Affiliation(s)
- Jonathan D. Steckbeck
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anne-Sophie Kuhlmann
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
22
|
Grupping K, Selhorst P, Michiels J, Vereecken K, Heyndrickx L, Kessler P, Vanham G, Martin L, Ariën KK. MiniCD4 protein resistance mutations affect binding to the HIV-1 gp120 CD4 binding site and decrease entry efficiency. Retrovirology 2012; 9:36. [PMID: 22551420 PMCID: PMC3408336 DOI: 10.1186/1742-4690-9-36] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 05/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background Binding of the viral envelope protein (Env), and particularly of its gp120 subunit, to the cellular CD4 receptor is the first essential step of the HIV-1 entry process. The CD4 binding site (CD4bs) of gp120, and especially a recessed cavity occupied by the CD4 Phe43 residue, are known to be highly conserved among the different circulating subtypes and therefore constitute particularly interesting targets for vaccine and drug design. The miniCD4 proteins are a promising class of CD4bs inhibitors. Studying virus evolution under pressure of CD4bs inhibitors could provide insight on the gp120-CD4 interaction and viral entry. Results The present study reports on the resistance induction of two subtype B HIV-1 against the most active miniCD4, M48U1, and its ancestor, M48, and how these mutated positions affect CD4bs recognition, entry efficiency, and sensitivity to other CD4bs inhibitors. Resistance against M48U1 was always associated with S375R/N substitution in both BaL and SF162; M48 resistance was associated with D474N substitution in SF162 and with H105Y substitution in BaL. In addition, some other mutations at position V255 and G471 were of importance for SF162 resistant viruses. Except for 474, all of these mutated positions are conserved, and introducing them into an SF162 Env expressing infectious molecular clone (pBRNL4.3 SF162) resulted in decreased entry efficiency. Furthermore, resistant mutants showed at least some cross-resistance towards other CD4bs inhibitors, the V3 monoclonal antibody 447-52D and some even against the monoclonal antibody 17b, of which the epitope overlaps the co-receptor binding site. Conclusions The mutations H105Y, V255M, S375R/N, G471R/E, and D474N are found to be involved in resistance towards M48 and M48U1. All mutated positions are part of, or in close proximity to, the CD4bs; most are highly conserved, and all have an impact on the entry efficiency, suggesting their importance for optimal virus infectivity.
Collapse
Affiliation(s)
- Katrijn Grupping
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
HIV-1 is completely dependent upon the Env protein to enter cells. The virus typically replicates in activated CD4+ T cells due to viral entry requirements for the CCR5 coreceptor and for high surface levels of the CD4 receptor. This is the case for the transmitted virus and for most of the virus sampled in the blood. Over the course of infection, the env gene can evolve to encode a protein with altered receptor and coreceptor usage allowing the virus to enter alternative host cells. In about 50% of HIV-1 infections, the viral population undergoes coreceptor switching, usually late in disease, allowing the virus to use CXCR4 to enter a different subset of CD4+ T cells. Neurocognitive disorders occur in about 10% of infections, also usually late in disease, but caused (ultimately) by viral replication in the brain either in CD4+ T cells or macrophage and/or microglia. Expanded host range is significantly intertwined with pathogenesis. Identification and characterization of such HIV-1 variants may be useful for early detection which would allow intervention to reduce viral pathogenesis in these alternative cell types.
Collapse
Affiliation(s)
- Kathryn Twigg Arrildt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | | | | |
Collapse
|
24
|
Subtle alteration of residues including N-linked glycans in V2 loop modulate HIV-1 neutralization by PG9 and PG16 monoclonal antibodies. Virology 2012; 426:34-41. [PMID: 22314018 DOI: 10.1016/j.virol.2012.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 12/27/2011] [Accepted: 01/13/2012] [Indexed: 11/23/2022]
Abstract
Recent discovery of several potent and broadly neutralizing monoclonal antibodies (MAbs) (such as PG9 and PG16) to HIV-1 provided clues on newer vaccine targets. In the present study, we found an env clone obtained from a slow progressor showing significant resistance to PG9 and PG16 MAbs in sharp contrast to other contemporaneous autologous env clones. By constructing chimeric envelopes and specific substitutions we found that both loop length and spatial orientation of glycan residues in addition to the net charge of the β sheet C region that directly binds to PG9 CDRH3 within V2 loop significantly modulated HIV-1 sensitivity to PG9 and PG16 MAbs. Similar observation were made with several other Envs which varied in length, glycan content and net charge in PG9 contacting complementary region in V2 loop. Our data indicated that subtle change within V2 loop alone modulates exposition of quaternary epitopes that are targets of PG9/PG16 MAbs.
Collapse
|
25
|
Lai W, Huang L, Ho P, Montefiori D, Chen CH. The role of dynamin in HIV type 1 Env-mediated cell-cell fusion. AIDS Res Hum Retroviruses 2011; 27:1013-7. [PMID: 21338326 DOI: 10.1089/aid.2010.0259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
HIV-1 envelope glycoproteins are the key viral proteins that mediate HIV-1 entry and cell-cell fusion. In contrast to HIV-1 entry, the mechanism of HIV-1 Env-mediated cell-cell fusion is relatively unclear. This study demonstrated that dynasore, a dynamin inhibitor, suppressed HIV-1 Env-mediated cell-cell fusion. Dynasore sensitivity of HIV-1 Env-mediated cell-cell fusion varied depending on the viral strains. Results from testing a panel of gp41 cytoplasmic tail truncation mutants suggested that the gp41 cytoplasmic tail might play a role in dynasore sensitivity. HIV-1 Env-mediated cell-cell fusion could also be suppressed by a dynamin dominant-negative mutant DNM2(K44A). In summary, these results suggested that dynamin 2 might play a role in HIV-1 Env-mediated cell-cell fusion.
Collapse
Affiliation(s)
- Weihong Lai
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Li Huang
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Phong Ho
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Chin-Ho Chen
- Department of Surgery, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
26
|
Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 2011; 410:582-608. [PMID: 21762802 PMCID: PMC3139147 DOI: 10.1016/j.jmb.2011.04.042] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 12/13/2022]
Abstract
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.
Collapse
Affiliation(s)
- Mary Ann Checkley
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Benjamin G. Luttge
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program National Cancer Institute Frederick, MD 21702
| |
Collapse
|
27
|
Longer V1V2 region with increased number of potential N-linked glycosylation sites in the HIV-1 envelope glycoprotein protects against HIV-specific neutralizing antibodies. J Virol 2011; 85:6986-95. [PMID: 21593147 DOI: 10.1128/jvi.00268-11] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has the ability to adapt to the host environment by escaping from host immune responses. We previously observed that escape from humoral immunity, both at the individual and at a population level, coincided with longer variable loops and an increased number of potential N-linked glycosylation sites (PNGS) in the viral envelope glycoprotein (Env) and, in particular, in variable regions 1 and 2 (V1V2). Here, we provide several lines of evidence for the role of V1V2 in the resistance of HIV-1 to neutralizing antibodies. First, we determined that the increasing neutralization resistance of a reference panel of tier-categorized neutralization-sensitive and -resistant HIV-1 variants coincided with a longer V1V2 loop containing more PNGS. Second, an exchange of the different variable regions of Env from a neutralization-sensitive HIV-1 variant into a neutralization-resistant escape variant from the same individual revealed that the V1V2 loop is a strong determinant for sensitivity to autologous-serum neutralization. Third, exchange of the V1V2 loop of neutralization-sensitive HIV-1 variants from historical seroconverters with the V1V2 loop of neutralization-resistant HIV-1 variants from contemporary seroconverters decreased the neutralization sensitivity to CD4-binding site-directed antibodies. Overall, we demonstrate that an increase in the length of the V1V2 loop and/or the number of PNGS in that same region of the HIV-1 envelope glycoprotein is directly involved in the protection of HIV-1 against HIV-specific neutralizing antibodies, possibly by shielding underlying epitopes in the envelope glycoprotein from antibody recognition.
Collapse
|
28
|
Melikyan GB. Membrane fusion mediated by human immunodeficiency virus envelope glycoprotein. CURRENT TOPICS IN MEMBRANES 2011; 68:81-106. [PMID: 21771496 DOI: 10.1016/b978-0-12-385891-7.00004-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gregory B Melikyan
- Department of Pediatrics, Infectious Diseases, Emory University, Atlanta, GA, USA
| |
Collapse
|
29
|
Ringe R, Thakar M, Bhattacharya J. Variations in autologous neutralization and CD4 dependence of b12 resistant HIV-1 clade C env clones obtained at different time points from antiretroviral naïve Indian patients with recent infection. Retrovirology 2010; 7:76. [PMID: 20860805 PMCID: PMC2955667 DOI: 10.1186/1742-4690-7-76] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/22/2010] [Indexed: 12/03/2022] Open
Abstract
Background Limited information is available on HIV-1 Indian clade C sensitivities to autologous antibodies during the course of natural infection. In the present study, a total of 37 complete envelope clones (Env) were amplified at different time points predominantly from the plasma of five Indian patients with recent HIV-1 infection and envelope-pseudotyped viruses were examined for their magnitude of sensitivity to autologous plasma antibodies during natural course of infection. Results Variable low levels of neutralization were consistently detected with contemporaneous autologous plasma. In contrast to clade B and African clade C HIV-1 envelopes, Env clones obtained from four patients were found to be resistant to IgG1b12. The majority of the Env clones were resistant to 2G12 and 2F5 due to the absence of the minimal motifs required for antibody recognition, but were sensitive to 4E10. Nonetheless, Env clones from one patient were found to be sensitive to 2G12, atypical for clade C, and one Env clone exhibited unusual sensitivity to 17b, suggesting spontaneous exposure of CD4i epitopes. Phylogenetic analysis revealed that Env clones were closely clustered within patients. Variation in the potential N-linked glycosylation pattern also appeared to be different in patients over the course of infection. Interestingly, we found that the sensitivity of Envs to contemporaneous autologous NAbs correlated positively with increased sensitivity to soluble CD4 and inversely with anti-CD4 antibody and Envs with increased NAb sensitivity were able to efficiently infect HeLa cells expressing low CD4. Conclusion Our data showed considerable variations in autologous neutralization of these early HIV-1 clade C Envs in each of these patients and indicate greater exposure to CD4 of Envs that showed increased autologous neutralization. Interestingly, Env clones obtained from a single patient at different time points were found to retain sensitivity to b12 antibody that binds to CD4 binding site in Env in contrast to Envs obtained from other patients. However, we did not find any association between increased b12 sensitivity of Envs obtained from this particular patient with their degree of exposure to CD4.
Collapse
Affiliation(s)
- Rajesh Ringe
- Department of Molecular Virology, National AIDS Research Institute, Indian Council of Medical Research, G-73 MIDC, Bhosari, Pune, India
| | | | | |
Collapse
|
30
|
Abstract
Developing an HIV-1 vaccine that can elicit antibodies to prevent infection has been a formidable challenge. Although no single immunogen has generated antibodies that can neutralize diverse isolates, progress has been made in understanding (a) the structure of the HIV-1 envelope glycoprotein, which is targeted by neutralizing antibodies, (b) how HIV-1 evades antibodies made by an infected host, and (c) how rare monoclonal antibodies can exhibit broadly neutralizing activity. Advances in structural and molecular biology coupled with new approaches to isolate neutralizing antibodies from HIV-1-infected individuals are enhancing our understanding of what humoral immune responses will be required for a vaccine. This review summarizes progress in understanding the host antibody response to HIV-1 and current strategies for applying this information to develop an effective vaccine.
Collapse
Affiliation(s)
- James A Hoxie
- Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
31
|
Bosch KA, Rainwater S, Jaoko W, Overbaugh J. Temporal analysis of HIV envelope sequence evolution and antibody escape in a subtype A-infected individual with a broad neutralizing antibody response. Virology 2010; 398:115-24. [PMID: 20034648 DOI: 10.1016/j.virol.2009.11.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 10/28/2009] [Accepted: 11/18/2009] [Indexed: 11/29/2022]
Abstract
The origin of broadly neutralizing HIV-specific antibodies and their relation to HIV evolution are not well defined. Here we examined virus evolution and neutralizing antibody escape in a subtype A infected individual with a broad, cross subtype, antibody response. The majority of envelope variants isolated over the first approximately 5 years after infection were poorly neutralized by contemporaneous plasma that neutralized variants from earlier in infection, consistent with a dynamic process of escape. The majority of variants could be neutralized by later plasma, suggesting these evolving variants may have contributed to the elicitation of new antibody responses. However, some variants from later in infection were recognized by plasma from earlier in infection, including one notably neutralization-sensitive variant that was sensitive due to a proline at position 199 in V2. These studies suggest a complex pattern of virus evolution in this individual with a broad NAb response, including persistence of neutralization-sensitive viruses.
Collapse
Affiliation(s)
- Katherine A Bosch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
32
|
Bunnik EM, van Gils MJ, Lobbrecht MSD, Pisas L, Nanlohy NM, van Baarle D, van Nuenen AC, Hessell AJ, Schuitemaker H. Emergence of monoclonal antibody b12-resistant human immunodeficiency virus type 1 variants during natural infection in the absence of humoral or cellular immune pressure. J Gen Virol 2010; 91:1354-64. [PMID: 20053822 DOI: 10.1099/vir.0.017319-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) resistance to broadly neutralizing antibodies such as b12, which targets the highly conserved CD4-binding site, raises a significant hurdle for the development of a neutralizing antibody-based vaccine. Here, 15 individuals were studied of whom seven developed b12-resistant viruses late in infection. The study investigated whether immune pressure may be involved in the selection of these viruses in vivo. Although four out of seven patients showed HIV-1-specific broadly neutralizing activity in serum, none of these patients had CD4-binding site-directed antibodies, indicating that strong humoral immunity is not a prerequisite for the outgrowth of b12-resistant viruses. In virus variants from one patient, who showed extremely weak heterologous and autologous neutralizing activity in serum, mutations were identified in the envelope that coincided with changes in b12 neutralization sensitivity. Lack of cytotoxic T-cell activity against epitopes with and without these mutations excluded a role for host cellular immunity in the selection of b12-resistant mutant viruses in this patient. However, b12 resistance correlated well with increased virus replication kinetics, indicating that selection for enhanced infectivity, possibly driven by the low availability of target cells in the later stages of disease, may coincide with increased resistance to CD4-binding site-directed agents, such as b12. These results showed that b12-resistant HIV-1 variants can emerge during the course of natural infection in the absence of both humoral and cellular immune pressure, suggestive of other mechanisms playing a role in the selective outgrowth of b12-resistant viruses.
Collapse
Affiliation(s)
- Evelien M Bunnik
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory and Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Adaptive mutations in a human immunodeficiency virus type 1 envelope protein with a truncated V3 loop restore function by improving interactions with CD4. J Virol 2009; 83:11005-15. [PMID: 19692476 DOI: 10.1128/jvi.01238-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that a human immunodeficiency virus type 1 (HIV-1) clade B envelope protein with a severely truncated V3 loop regained function after passage in tissue culture. The adapted virus, termed TA1, retained the V3 truncation, was exquisitely sensitive to neutralization by the CD4 binding site monoclonal antibody b12 and by HIV-positive human sera, used CCR5 to enter cells, and was completely resistant to small molecule CCR5 antagonists. To examine the mechanistic basis for these properties, we singly and in combination introduced each of the 5 mutations from the adapted clone TA1 into the unadapted envelope. We found that single amino acid changes in the C3 region, the V3 loop, and in the fusion peptide were responsible for imparting near-normal levels of envelope function to TA1. T342A, which resulted in the loss of a highly conserved glycosylation site in C3, played the primary role. The adaptive amino acid changes had no impact on CCR5 antagonist resistance but made virus more sensitive to neutralization by antibodies to the CD4 binding site, modestly enhanced affinity for CD4, and made TA1 more responsive to CD4 binding. Specifically, TA1 was triggered by soluble CD4 more readily than the parental Env and, unlike the parental Env, could mediate entry on cells that express low levels of CD4. In contrast, TA1 interacted with CCR5 less efficiently and was highly sensitive to antibodies that bind to the CCR5 N terminus and ECL2. Therefore, enhanced utilization of CD4 is one mechanism by which HIV-1 can overcome mutations in the V3 region that negatively affect CCR5 interactions.
Collapse
|
34
|
Human immunodeficiency virus type 1 escape from cyclotriazadisulfonamide-induced CD4-targeted entry inhibition is associated with increased neutralizing antibody susceptibility. J Virol 2009; 83:9577-83. [PMID: 19570853 DOI: 10.1128/jvi.00648-09] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Continuous specific downmodulation of CD4 receptor expression in T lymphocytes by the small molecule cyclotriazadisulfonamide (CADA) selected for the CADA-resistant human immunodeficiency virus type 1 (HIV-1) NL4.3 virus containing unique mutations in the C4 and V5 regions of gp120, likely stabilizing the CD4-binding conformation. The amino acid changes in Env were associated with decreased susceptibility to anti-CD4 monoclonal antibody treatment of the cells and with higher susceptibility of the virus to soluble CD4. In addition, the acquired ability of a CADA-resistant virus to infect cells with low CD4 expression was associated with an increased susceptibility of the virus to neutralizing antibodies from sera of several HIV-1-infected patients.
Collapse
|
35
|
Fromme BJ, Coetsee M, Van Der Watt P, Chan MC, Sperling KM, Katz AA, Flanagan CA. High-affinity binding of southern African HIV type 1 subtype C envelope protein, gp120, to the CCR5 coreceptor. AIDS Res Hum Retroviruses 2008; 24:1527-36. [PMID: 19018669 DOI: 10.1089/aid.2008.0105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 subtype C is the fastest spreading subtype worldwide and predominantly uses the CCR5 coreceptor, showing minimal transition to the X4 phenotype. This raises the possibility that envelope proteins of HIV-1 subtype C have structural features that favor interaction with CCR5. Preference for CCR5 could arise from enhanced affinity of HIV-1 subtype C for CCR5. To test this, we have characterized the interaction of gp120 envelope proteins from HIV-1 subtype C clones with CD4 and CCR5. Recombinant gp120 proteins from isolates of HIV-1 subtypes B and C were expressed, purified, and assessed in a CD4 binding assay and a CCR5 chemokine competition binding assay. All gp120 proteins bound to CD4-expressing cells, except one, 97ZA347ts, which had Arg substituted for the Cys239 in the conserved C2 loop. Reconstitution of Cys239, using site-directed mutagenesis, restored CD4 binding, while introducing Arg or Ser into position 239 of the functional Du151 gp120 protein abrogated CD4 binding. This shows that the Cys228-Cys239 disulfide bond of gp120 is required for high-affinity binding to CD4. Recombinant gp120 proteins from two HIV-1 subtype B clones bound CCR5 in the presence of CD4, while gp120 from the X4-tropic, HxB2, clone did not bind CCR5. gp120 from two functional HIV-1 subtype C clones, Du151 and MOLE1, bound CCR5 with high affinity in the presence of CD4 and Du151 showed significant CCR5 binding in the absence of CD4. A gp120 from a nonfunctional subtype C clone had lower affinity for CCR5. These results indicate that HIV-1 subtype C proteins have high affinity for CCR5 with variable dependence on CD4.
Collapse
Affiliation(s)
- Bernhard J. Fromme
- MRC/UCT Research Group for Receptor Biology, University of Cape Town, Cape Town, South Africa
| | - Marla Coetsee
- MRC/UCT Research Group for Receptor Biology, University of Cape Town, Cape Town, South Africa
| | - Pauline Van Der Watt
- MRC/UCT Research Group for Receptor Biology, University of Cape Town, Cape Town, South Africa
| | - Mei-Chi Chan
- MRC/UCT Research Group for Receptor Biology, University of Cape Town, Cape Town, South Africa
| | - Karin M. Sperling
- MRC/UCT Research Group for Receptor Biology, University of Cape Town, Cape Town, South Africa
| | - Arieh A. Katz
- MRC/UCT Research Group for Receptor Biology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa
| | - Colleen A. Flanagan
- MRC/UCT Research Group for Receptor Biology, University of Cape Town, Cape Town, South Africa
- School of Physiology, University of the Witwatersrand, Parktown, South Africa
| |
Collapse
|
36
|
Human immunodeficiency virus type 2 (HIV-2)/HIV-1 envelope chimeras detect high titers of broadly reactive HIV-1 V3-specific antibodies in human plasma. J Virol 2008; 83:1240-59. [PMID: 19019969 DOI: 10.1128/jvi.01743-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Deciphering antibody specificities that constrain human immunodeficiency virus type 1 (HIV-1) envelope (Env) diversity, limit virus replication, and contribute to neutralization breadth and potency is an important goal of current HIV/AIDS vaccine research. Transplantation of discrete HIV-1 neutralizing epitopes into HIV-2 scaffolds may provide a sensitive, biologically functional context by which to quantify specific antibody reactivities even in complex sera. Here, we describe a novel HIV-2 proviral scaffold (pHIV-2(KR.X7)) into which we substituted the complete variable region 3 (V3) of the env gene of HIV-1(YU2) or HIV-1(Ccon) to yield the chimeric proviruses pHIV-2(KR.X7) YU2 V3 and pHIV-2(KR.X7) Ccon V3. These HIV-2/HIV-1 chimeras were replication competent and sensitive to selective pharmacological inhibitors of virus entry. V3 chimeric viruses were resistant to neutralization by HIV-1 monoclonal antibodies directed against the CD4 binding site, coreceptor binding site, and gp41 membrane proximal external region but exhibited striking sensitivity to HIV-1 V3-specific monoclonal antibodies, 447-52D and F425 B4e8 (50% inhibitory concentration of [IC(50)] <0.005 microg/ml for each). Plasma specimens from 11 HIV-1 clade B- and 10 HIV-1 clade C-infected subjects showed no neutralizing activity against HIV-2 but exhibited high-titer V3-specific neutralization against both HIV-2/HIV-1 V3 chimeras with IC(50) measurements ranging from 1:50 to greater than 1:40,000. Neutralization titers of B clade plasmas were as much as 1,000-fold lower when tested against the primary HIV-1(YU2) virus than with the HIV-2(KR.X7) YU2 V3 chimera, demonstrating highly effective shielding of V3 epitopes in the native Env trimer. This finding was replicated using a second primary HIV-1 strain (HIV-1(BORI)) and the corresponding HIV-2(KR.X7) BORI V3 chimera. We conclude that V3 is highly immunogenic in vivo, eliciting antibodies with substantial breadth of reactivity and neutralizing potential. These antibodies constrain HIV-1 Env to a structure(s) in which V3 epitopes are concealed prior to CD4 engagement but do not otherwise contribute to neutralization breadth and potency against most primary virus strains. Triggering of the viral spike to reveal V3 epitopes may be required if V3 immunogens are to be components of an effective HIV-1 vaccine.
Collapse
|
37
|
Characterization of a CD4-independent clinical HIV-1 that can efficiently infect human hepatocytes through chemokine (C-X-C motif) receptor 4. AIDS 2008; 22:1749-57. [PMID: 18753859 DOI: 10.1097/qad.0b013e328308937c] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE HIV-1 isolates are prominently CD4-dependent and, to date, only a few laboratory-adapted CD4-independent strains have been reported. Therefore, whether CD4-independent viruses may exist in HIV-1-infected patients has remained unclear. Here, we report the successful isolation of a CD4-independent clinical HIV-1 strain, designated SDA-1, from the viral quasispecies of a therapy-naive HIV-1 and Pneumocystis jirovecii pneumonia patient in the late-stage of AIDS with extremely low CD4 cell count (CD4 = 1/microl). We characterized this virus and further explored whether it could infect or induce pathological effects in human hepatocytes. DESIGN AND METHODS To determine coreceptor usage and CD4-independent infection, the HIV-1 envelope (Env)-pseudotypes and Env-chimeric viruses were used. RESULTS SDA-1 was able to infect CD4 cell lines through either chemokine (C-X-C motif) receptor 4 or CCR5. It still maintained the ability to infect CD4 cells through multiple coreceptors of chemokine (C-X-C motif) receptor 4, chemokine (C-C motif) receptor 5, chemokine (C-C motif) receptor 3 and chemokine (C-C motif) receptor 8. Productive infection by SDA-1 was noted in both CD4-negative hepatoma cells and primary cultured human hepatocytes. Moreover, we demonstrated that SDA-1 could efficiently infect human hepatocytes on both static and mitotic phases through chemokine (C-X-C motif) receptor 4, without inducing apoptotic cell death. CONCLUSION The present study provides evidence that emergence of CD4-independent HIV-1 virus in vivo may occur in HIV-1-infected patients. In addition, these results shed light on the mechanisms involved in liver damage in HIV-1-infected individuals, which could have important implications concerning the range of mutability and the pathogenesis of AIDS.
Collapse
|
38
|
Willett BJ, McMonagle EL, Logan N, Samman A, Hosie MJ. A single site for N-linked glycosylation in the envelope glycoprotein of feline immunodeficiency virus modulates the virus-receptor interaction. Retrovirology 2008; 5:77. [PMID: 18721458 PMCID: PMC2563026 DOI: 10.1186/1742-4690-5-77] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/22/2008] [Indexed: 11/10/2022] Open
Abstract
Feline immunodeficiency virus (FIV) targets helper T cells by attachment of the envelope glycoprotein (Env) to CD134, a subsequent interaction with CXCR4 then facilitating the process of viral entry. As the CXCR4 binding site is not exposed until CD134-binding has occurred then the virus is protected from neutralising antibodies targeting the CXCR4-binding site on Env. Prototypic FIV vaccines based on the FL4 strain of FIV contain a cell culture-adapted strain of FIV Petaluma, a CD134-independent strain of FIV that interacts directly with CXCR4. In addition to a characteristic increase in charge in the V3 loop homologue of FIVFL4, we identified two mutations in potential sites for N-linked glycosylation in the region of FIV Env analogous to the V1–V2 region of HIV and SIV Env, T271I and N342Y. When these mutations were introduced into the primary GL8 and CPG41 strains of FIV, the T271I mutation was found to alter the nature of the virus-CD134 interaction; primary viruses carrying the T271I mutation no longer required determinants in cysteine-rich domain (CRD) 2 of CD134 for viral entry. The T271I mutation did not confer CD134-independent infection upon GL8 or CPG41, nor did it increase the affinity of the CXCR4 interaction, suggesting that the principal effect was targeted at reducing the complexity of the Env-CD134 interaction.
Collapse
Affiliation(s)
- Brian J Willett
- Retrovirus Research Laboratory, Institute of Comparative Medicine, Faculty of Veterinary Medicine, University of Glasgow, Bearsden Road, Glasgow, G61 1QH, UK.
| | | | | | | | | |
Collapse
|
39
|
Comparison of the immunogenicities of HIV-1 mutants based on structural modification of env. Virol Sin 2008. [DOI: 10.1007/s12250-008-2949-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection. J Virol 2008; 82:7932-41. [PMID: 18524815 DOI: 10.1128/jvi.00757-08] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Most human immunodeficiency virus type 1 (HIV-1)-infected individuals develop an HIV-specific neutralizing antibody (NAb) response that selects for escape variants of the virus. Here, we studied autologous NAb responses in five typical CCR5-using progressors in relation to viral NAb escape and molecular changes in the viral envelope (Env) in the period from seroconversion until after AIDS diagnosis. In sera from three patients, high-titer neutralizing activity was observed against the earliest autologous virus variants, followed by declining humoral immune responses against subsequent viral escape variants. Autologous neutralizing activity was undetectable in sera from two patients. Patients with high-titer neutralizing activity in serum showed the strongest positive selection pressure on Env early in infection. In the initial phase of infection, gp160 length and the number of potential N-linked glycosylation sites (PNGS) increased in viruses from all patients. Over the course of infection, positive selection pressure declined as the NAb response subsided, coinciding with reversions of changes in gp160 length and the number of PNGS. A number of identical amino acid changes were observed over the course of infection in the viral quasispecies of different patients. Our results indicate that although neutralizing autologous humoral immunity may have a limited effect on the disease course, it is an important selection pressure in virus evolution early in infection, while declining HIV-specific humoral immunity in later stages may coincide with reversion of NAb-driven changes in Env.
Collapse
|
41
|
An alteration of human immunodeficiency virus gp41 leads to reduced CCR5 dependence and CD4 independence. J Virol 2008; 82:5460-71. [PMID: 18353949 DOI: 10.1128/jvi.01049-07] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 infection requires functional interactions of the viral surface (gp120) glycoprotein with cell surface CD4 and a chemokine coreceptor (usually CCR5 or CXCR4) and of the viral transmembrane (gp41) glycoprotein with the target cell membrane. Extensive genetic variability, generally in gp120 and the gp41 ectodomain, can result in altered coreceptor use, fusion kinetics, and neutralization sensitivity. Here we describe an R5 HIV variant that, in contrast to its parental virus, infects T-cell lines expressing low levels of cell surface CCR5. This correlated with an ability to infect cells in the absence of CD4, increased sensitivity to a neutralizing antibody recognizing the coreceptor binding site of gp120, and increased resistance to the fusion inhibitor T-20. Surprisingly, these properties were determined by alterations in gp41, including the cytoplasmic tail, a region not previously shown to influence coreceptor use. These data indicate that HIV infection of cells with limiting levels of cell surface CCR5 can be facilitated by gp41 sequences that are not exposed on the envelope ectodomain yet induce allosteric changes in gp120 that facilitate exposure of the CCR5 binding site.
Collapse
|
42
|
Kubo Y, Yokoyama M, Yoshii H, Mitani C, Tominaga C, Tanaka Y, Sato H, Yamamoto N. Inhibitory role of CXCR4 glycan in CD4-independent X4-tropic human immunodeficiency virus type 1 infection and its abrogation in CD4-dependent infection. J Gen Virol 2007; 88:3139-3144. [PMID: 17947541 DOI: 10.1099/vir.0.83202-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CXCR4 functions as an infection receptor of X4 human immunodeficiency virus type 1 (HIV-1) . CXCR4 is glycosylated at the N-terminal extracellular region, which is important for viral envelope (Env) protein binding. We compared the effects of CXCR4 glycan on the CD4-dependent and -independent infections in human cells by X4 viruses. We found that transduction mediated by Env proteins of CD4-independent HIV-1 strains increased up to 5.5-fold in cells expressing unglycosylated CXCR4, suggesting that the CXCR4 glycan inhibits CD4-independent X4 virus infection. Co-expression of CD4 on the target cell surface or pre-incubation of virus particles with soluble CD4 abrogates the glycan-mediated inhibition of X4 virus infection, suggesting that interaction of Env protein with CD4 counteracts the inhibition. These findings indicate that it will be advantageous for X4 HIV-1 to remain CD4-dependent. A structural model that explains the glycan-mediated inhibition is discussed.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Masaru Yokoyama
- Laboratory of Viral Genomics, Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan.,Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hiroaki Yoshii
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chiho Mitani
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Chika Tominaga
- Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School and Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hironori Sato
- Laboratory of Viral Genomics, Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan.,Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Naoki Yamamoto
- Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan.,AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan.,Department of AIDS Research, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
43
|
Laakso MM, Lee FH, Haggarty B, Agrawal C, Nolan KM, Biscone M, Romano J, Jordan APO, Leslie GJ, Meissner EG, Su L, Hoxie JA, Doms RW. V3 loop truncations in HIV-1 envelope impart resistance to coreceptor inhibitors and enhanced sensitivity to neutralizing antibodies. PLoS Pathog 2007; 3:e117. [PMID: 17722977 PMCID: PMC1950945 DOI: 10.1371/journal.ppat.0030117] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 07/02/2007] [Indexed: 02/01/2023] Open
Abstract
The V1/V2 region and the V3 loop of the human immunodeficiency virus type I (HIV-1) envelope (Env) protein are targets for neutralizing antibodies and also play an important functional role, with the V3 loop largely determining whether a virus uses CCR5 (R5), CXCR4 (X4), or either coreceptor (R5X4) to infect cells. While the sequence of V3 is variable, its length is highly conserved. Structural studies indicate that V3 length may be important for interactions with the extracellular loops of the coreceptor. Consistent with this view, genetic truncation of the V3 loop is typically associated with loss of Env function. We removed approximately one-half of the V3 loop from three different HIV-1 strains, and found that only the Env protein from the R5X4 strain R3A retained some fusion activity. Loss of V1/V2 (ΔV1/V2) was well tolerated by this virus. Passaging of virus with the truncated V3 loop resulted in the derivation of a virus strain that replicated with wild-type kinetics. This virus, termed TA1, retained the V3 loop truncation and acquired several adaptive changes in gp120 and gp41. TA1 could use CCR5 but not CXCR4 to infect cells, and was extremely sensitive to neutralization by HIV-1 positive human sera, and by antibodies to the CD4 binding site and to CD4-induced epitopes in the bridging sheet region of gp120. In addition, TA1 was completely resistant to CCR5 inhibitors, and was more dependent upon the N-terminal domain of CCR5, a region of the receptor that is thought to contact the bridging sheet of gp120 and the base of the V3 loop, and whose conformation may not be greatly affected by CCR5 inhibitors. These studies suggest that the V3 loop protects HIV from neutralization by antibodies prevalent in infected humans, that CCR5 inhibitors likely act by disrupting interactions between the V3 loop and the coreceptor, and that altered use of CCR5 by HIV-1 associated with increased sensitivity to changes in the N-terminal domain can be linked to high levels of resistance to these antiviral compounds. The envelope protein of HIV-1 is responsible for binding virus to the surface of cells and mediating viral entry. Viral entry can be prevented by neutralizing antibodies that bind to envelope, and by small molecule inhibitors that bind to viral receptors on the cell surface, such as CCR5. HIV may acquire resistance to these small molecule inhibitors, several of which are being used in clinical trials to treat HIV-infected individuals, through resistance mechanisms that are not well understood. In addition, broadly neutralizing antibodies are rare—the envelope protein possesses structural features that limit antibody binding. We made a partial deletion in a region of envelope that interacts with viral receptors, and which is also widely believed to act as a shield against neutralizing antibodies. Normally, an envelope with such a modification would have total loss of function. However, by passaging virus with the partially deleted envelope in vitro, the envelope acquired adaptive mutations that restored function. Virus with the adapted envelope was highly sensitive to neutralizing antibodies and so may serve as a platform for immunization. This envelope also exhibited complete resistance to small molecule inhibitors that bind to the viral receptor CCR5, and lends insight into a mechanism of drug resistance by which the virus interacts with viral receptors on the cell surface in a novel manner.
Collapse
Affiliation(s)
- Meg M Laakso
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Fang-Hua Lee
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Beth Haggarty
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Caroline Agrawal
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Katrina M Nolan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark Biscone
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Josephine Romano
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Andrea P. O Jordan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - George J Leslie
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Eric G Meissner
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina, United States of America
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lishan Su
- Department of Microbiology and Immunology, The University of North Carolina, Chapel Hill, North Carolina, United States of America
- The Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - James A Hoxie
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Robert W Doms
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Laurén A, Vincic E, Hoshino H, Thorstensson R, Fenyö EM. CD4-independent use of the CCR5 receptor by sequential primary SIVsm isolates. Retrovirology 2007; 4:50. [PMID: 17645788 PMCID: PMC1950888 DOI: 10.1186/1742-4690-4-50] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022] Open
Abstract
Background CD4-independence has been taken as a sign of a more open envelope structure that is more accessible to neutralizing antibodies and may confer altered cell tropism. In the present study, we analyzed SIVsm isolates for CD4-independent use of CCR5, mode of CCR5-use and macrophage tropism. The isolates have been collected sequentially from 13 experimentally infected cynomolgus macaques and have previously been shown to use CCR5 together with CD4. Furthermore, viruses obtained early after infection were neutralization sensitive, while neutralization resistance appeared already three months after infection in monkeys with progressive immunodeficiency. Results Depending whether isolated early or late in infection, two phenotypes of CD4-independent use of CCR5 could be observed. The inoculum virus (SIVsm isolate SMM-3) and reisolates obtained early in infection often showed a pronounced CD4-independence since virus production and/or syncytia induction could be detected directly in NP-2 cells expressing CCR5 but not CD4 (CD4-independent-HIGH). Conversely, late isolates were often more CD4-dependent in that productive infection in NP-2/CCR5 cells was in most cases weak and was revealed only after cocultivation of infected NP-2/CCR5 cells with peripheral blood mononuclear cells (CD4-independent-LOW). Considering neutralization sensitivity of these isolates, newly infected macaques often harbored virus populations with a CD4-independent-HIGH and neutralization sensitive phenotype that changed to a CD4-independent-LOW and neutralization resistant virus population in the course of infection. Phenotype changes occurred faster in progressor than long-term non-progressor macaques. The phenotypes were not reflected by macrophage tropism, since all isolates replicated efficiently in macrophages. Infection of cells expressing CCR5/CXCR4 chimeric receptors revealed that SIVsm used the CCR5 receptor in a different mode than HIV-1. Conclusion Our results show that SIVsm isolates use CCR5 independently of CD4. While the degree of CD4 independence and neutralization sensitivity vary over time, the ability to productively infect monocyte-derived macrophages remains at a steady high level throughout infection. The mode of CCR5 use differs between SIVsm and HIV-1, SIVsm appears to be more flexible than HIV-1 in its receptor requirement. We suggest that the mode of CCR5 coreceptor use and CD4-independence are interrelated properties.
Collapse
Affiliation(s)
- Anna Laurén
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| | - Elzbieta Vincic
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| | - Hiroo Hoshino
- Department of Virology and Preventive Medicine, Gunma University Graduate School of Medicine, Gunma, Japan
| | | | - Eva Maria Fenyö
- Department of Laboratory Medicine, Division of Medical Microbiology/Virology, Lund University, Lund, Sweden
| |
Collapse
|
45
|
Dunfee RL, Thomas ER, Wang J, Kunstman K, Wolinsky SM, Gabuzda D. Loss of the N-linked glycosylation site at position 386 in the HIV envelope V4 region enhances macrophage tropism and is associated with dementia. Virology 2007; 367:222-34. [PMID: 17599380 PMCID: PMC2201988 DOI: 10.1016/j.virol.2007.05.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 05/14/2007] [Accepted: 05/23/2007] [Indexed: 11/17/2022]
Abstract
HIV infects macrophages and microglia in the central nervous system (CNS). Mechanisms that enhance HIV macrophage/microglial tropism are not well understood. Here, we identify an HIV Env variant in the V4 region of gp120, Asp 386 (D386), that eliminates an N-linked glycosylation site at position 386, enhances viral replication in macrophages, and is present at a higher frequency in AIDS patients with HIV-associated dementia (HAD) compared with non-HAD patients. D386 enhances HIV entry and replication in macrophages but not in microglia or peripheral blood mononuclear cells, possibly due to differential glycosylation in these cell types. A D386N mutation in the UK1br Env, which restores the N-linked glycan site, reduced neutralization sensitivity to the IgG1b12 (b12) monoclonal antibody, which recognizes a conserved neutralization epitope that overlaps the CD4 binding site. Molecular modeling suggested that loss of the glycan at position 386 increases exposure of the CD4 and b12 binding sites on gp120. Loss of a glycan at 386 was more frequent in Envs from HAD patients (26%; n=185) compared with non-HAD patients (7%; n=99; p<0.001). The most significant association of these Env variants with HAD was in blood or lymphoid tissue rather than brain. These findings suggest that increased exposure of the b12 epitope overlapping the CD4 binding site via elimination of a glycan at position 386 is associated with enhanced HIV macrophage tropism, and provide evidence that determinants of macrophage and microglia tropism are overlapping but distinct.
Collapse
Affiliation(s)
- Rebecca L. Dunfee
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Elaine R. Thomas
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Jianbin Wang
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Kevin Kunstman
- Department of Medicine, Northwestern University Medical School, Chicago, IL, USA
| | - Steven M. Wolinsky
- Department of Medicine, Northwestern University Medical School, Chicago, IL, USA
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Corresponding Author. Mailing Address: Dana-Farber Cancer Institute, JFB 816, 44 Binney St., Boston, MA 02115, Phone: (617) 632-2154, Fax: (617) 632 3113, E-mail:
| |
Collapse
|
46
|
Yan J, Yoon H, Kumar S, Ramanathan MP, Corbitt N, Kutzler M, Dai A, Boyer JD, Weiner DB. Enhanced cellular immune responses elicited by an engineered HIV-1 subtype B consensus-based envelope DNA vaccine. Mol Ther 2007; 15:411-21. [PMID: 17235321 DOI: 10.1038/sj.mt.6300036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An important goal for human immunodeficiency virus (HIV) vaccines is to develop immunogens that induce broader and more potent cellular immune responses. In this study of DNA vaccine potency, we constructed a novel subtype B env gene (EY2E1-B) with the goal of increasing vaccine antigen immune potency. The vaccine cassette was designed based on subtype B-specific consensus sequence with several modifications, including codon optimization, RNA optimization, the addition of a Kozak sequence, and a substituted immunoglobulin E leader sequence. The V1 and V2 loops were shortened and the cytoplasmic tail was truncated to prevent envelope recycling. Three different strains of mice (BALB/c, C57BL/6, and HLA-A2 transgenic mice) were immunized three times with pEY2E1-B or the primary DNA immunogen pEK2P-B alone. The analysis of specific antibody responses suggested that EY2E1-B could induce a moderate subtype B-specific antibody response. Moreover, this construct was up to four times more potent at driving cellular immune responses. Epitope mapping results indicated that there is an increase in the breadth and magnitude of cross-reactive cellular responses induced by the EY2E1-B immunogen. These properties suggest that such a synthetic immunogen deserves further examination for its potential to serve as a component antigen in an HIV vaccine cocktail.
Collapse
Affiliation(s)
- Jian Yan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Newman JT, Sturgeon TJ, Gupta P, Montelaro RC. Differential functional phenotypes of two primary HIV-1 strains resulting from homologous point mutations in the LLP domains of the envelope gp41 intracytoplasmic domain. Virology 2007; 367:102-16. [PMID: 17582453 PMCID: PMC2034414 DOI: 10.1016/j.virol.2007.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 04/09/2007] [Accepted: 05/21/2007] [Indexed: 01/10/2023]
Abstract
We previously reported that selected mutations of highly conserved arginine residues within the LLP regions of HIV-1(ME46) gp41 had diverse effects on Env function. In the current study, we sought to test if the observed LLP mutant phenotypes would be similar in HIV-1(89.6). The results of the current studies revealed that the LLP-1 mutations conferred reduced Env incorporation, infectivity, and replication phenotypes in both viruses, while homologous LLP-2 mutations had differential phenotypical effects between the two strains. In particular, several of the 89.6 LLP-2 mutant viruses were replication defective in CEMX174 cells despite having increased levels of Env incorporation, and with both strains, there were differential effects on infectivity. This comparison of homologous point mutations in two different strains of HIV supports the role of LLPs as determinants of Env function, but reveals for the first time the influence of virus strain on LLP mutant phenotypes.
Collapse
Affiliation(s)
- Jason T Newman
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | |
Collapse
|
48
|
Pastore C, Nedellec R, Ramos A, Hartley O, Miamidian JL, Reeves JD, Mosier DE. Conserved changes in envelope function during human immunodeficiency virus type 1 coreceptor switching. J Virol 2007; 81:8165-79. [PMID: 17507486 PMCID: PMC1951319 DOI: 10.1128/jvi.02792-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We studied the evolution of human immunodeficiency virus type 1 (HIV-1) envelope function during the process of coreceptor switching from CCR5 to CXCR4. Site-directed mutagenesis was used to introduce most of the possible intermediate mutations in the envelope for four distinct coreceptor switch mutants, each with a unique pattern of CCR5 and CXCR4 utilization that extended from highly efficient use of both coreceptors to sole use of CXCR4. Mutated envelopes with some preservation of entry function on either CCR5- or CXCR4-expressing target cells were further characterized for their sensitivity to CCR5 or CXCR4 inhibitors, soluble CD4, and the neutralizing antibodies b12-IgG and 4E10. A subset of mutated envelopes was also studied in direct CD4 or CCR5 binding assays and in envelope-mediated fusion reactions. Coreceptor switch intermediates displayed increased sensitivity to CCR5 inhibitors (except for a few envelopes with mutations in V2 or C2) that correlated with a loss in CCR5 binding. As use of CXCR4 improved, infection mediated by the mutated envelopes became more resistant to soluble CD4 inhibition and direct binding to CD4 increased. These changes were accompanied by increasing resistance to the CXCR4 inhibitor AMD3100. Sensitivity to neutralizing antibody was more variable, although infection of CXCR4-expressing targets was generally more sensitive to neutralization by both b12-IgG and 4E10 than infection of CCR5-expressing target cells. These changes in envelope function were uniform in all four series of envelope mutations and thus were independent of the final use of CCR5 and CXCR4. Decreased CCR5 and increased CD4 binding appear to be common features of coreceptor switch intermediates.
Collapse
Affiliation(s)
- Cristina Pastore
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Fernando K, Hu H, Ni H, Hoxie JA, Weissman D. Vaccine-delivered HIV envelope inhibits CD4(+) T-cell activation, a mechanism for poor HIV vaccine responses. Blood 2006; 109:2538-44. [PMID: 17158230 PMCID: PMC1852208 DOI: 10.1182/blood-2006-08-038661] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus (HIV) causes impairment of the immune system in part by targeting CD4(+) T cells for infection and dysfunction. HIV envelope (Env) present on free virions and infected cells causes dysfunction of uninfected bystander CD4(+) T cells via interaction with both CD4 and coreceptors. Env is commonly used as part of a cocktail of HIV antigens in current vaccines. In DNA and viral vector vaccine approaches, antigen-presenting cells (APCs) and non-APCs in the vicinity of the vaccine delivery site and draining lymph node express vaccine-derived antigens. The studies here demonstrate that cell-surface expression of Env on APCs and non-APCs as part of the vaccine action causes an inhibition of antigen-induced CD4(+) T-cell activation and proliferation mediated by CD4 binding and suggests a potential mechanism for reduced activity of Env-containing HIV vaccines. Similar studies using a functional Env lacking CD4 binding circumvented suppression, suggesting an alternative and potentially superior approach to HIV vaccine design.
Collapse
Affiliation(s)
- Kathy Fernando
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
50
|
Haynes BF, Montefiori DC. Aiming to induce broadly reactive neutralizing antibody responses with HIV-1 vaccine candidates. Expert Rev Vaccines 2006; 5:579-95. [PMID: 16989638 DOI: 10.1586/14760584.5.4.579] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neutralizing antibody induction is a key feature of many effective vaccines and is the only immune response that has proven to be capable of completely blocking AIDS virus infection in animal models. Unfortunately, the extensive genetic variability and complex immune-evasion strategies of HIV-1 have thwarted all attempts to date at eliciting an effective neutralizing antibody response with candidate HIV-1 vaccine immunogens. Recent advances in our understanding of how these evasion strategies operate, coupled with growing progress in unravelling the structure and immunobiology of the viral envelope glycoproteins, are contributing to novel immunogen designs to overcome the many barriers to inducing protective antibodies against HIV-1.
Collapse
|