1
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Radhakrishnan R, Sowd GA, Dos Santos NFB, Ganser-Pornillos BK, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. mBio 2025; 16:e0016925. [PMID: 40013779 PMCID: PMC11980554 DOI: 10.1128/mbio.00169-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/28/2025] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here, we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, providing insights for the development of antiretroviral therapies, such as lenacapavir. IMPORTANCE Human immunodeficiency virus (HIV) encodes a protein that forms a conical shell, called a capsid, that surrounds its genome. The capsid has been shown to protect the viral genome from innate immune sensors in the cell, to help transport the genome toward and into the nucleus, to keep the components of reverse transcription together for conversion of the RNA genome into DNA, and to target viral DNA integration into specific regions of the host genome. In this study, we show that HIV hijacks two host proteins to bind to capsid sequentially in order to choreograph the precise order and timing of these virus replication steps. Disruption of binding of these proteins to capsid or their location in the cell leads to defective HIV nuclear import, integration, and infection. Mutations that exist in the capsid protein of HIV in infected individuals may reduce the efficacy of antiretroviral drugs that target capsid.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rajalingham Radhakrishnan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Nayara F. B. Dos Santos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Barbie K. Ganser-Pornillos
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Biochemistry, University of Utah, Salt Lake City, Utah, USA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Center for HIV Protein Interactions, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Ingram Z, Kline C, Hughson AK, Singh PK, Fischer HL, Sowd GA, Watkins SC, Kane M, Engelman AN, Ambrose Z. Spatiotemporal binding of cyclophilin A and CPSF6 to capsid regulates HIV-1 nuclear entry and integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588584. [PMID: 38645162 PMCID: PMC11030324 DOI: 10.1101/2024.04.08.588584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Human immunodeficiency virus type 1 (HIV-1) capsid, which is the target of the antiviral lenacapavir, protects the viral genome and binds multiple host proteins to influence intracellular trafficking, nuclear import, and integration. Previously, we showed that capsid binding to cleavage and polyadenylation specificity factor 6 (CPSF6) in the cytoplasm is competitively inhibited by cyclophilin A (CypA) binding and regulates capsid trafficking, nuclear import, and infection. Here we determined that a capsid mutant with increased CypA binding affinity had significantly reduced nuclear entry and mislocalized integration. However, disruption of CypA binding to the mutant capsid restored nuclear entry, integration, and infection in a CPSF6-dependent manner. Furthermore, relocalization of CypA expression from the cell cytoplasm to the nucleus failed to restore mutant HIV-1 infection. Our results clarify that sequential binding of CypA and CPSF6 to HIV-1 capsid is required for optimal nuclear entry and integration targeting, informing antiretroviral therapies that contain lenacapavir.
Collapse
Affiliation(s)
- Zachary Ingram
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Christopher Kline
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexandra K. Hughson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| | - Parmit K. Singh
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Hannah L. Fischer
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gregory A. Sowd
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Simon C. Watkins
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Melissa Kane
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alan N. Engelman
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Zandrea Ambrose
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Infectious Diseases and Microbiology, University of Pittsburgh School of Public Health, Pittsburgh, PA
| |
Collapse
|
3
|
Balaji S, Chakraborty R, Aggarwal S. Neurological Complications Caused by Human Immunodeficiency Virus (HIV) and Associated Opportunistic Co-infections: A Review on their Diagnosis and Therapeutic Insights. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:284-305. [PMID: 37005520 DOI: 10.2174/1871527322666230330083708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 12/28/2022] [Accepted: 01/25/2023] [Indexed: 04/04/2023]
Abstract
Neurocognitive disorders associated with human immunodeficiency virus (HIV) infected individuals increase the risk of mortality and morbidity that remain a prevalent clinical complication even in the antiretroviral therapy era. It is estimated that a considerable number of people in the HIV community are developing neurological complications at their early stages of infection. The daily lives of people with chronic HIV infections are greatly affected by cognitive declines such as loss of attention, learning, and executive functions, and other adverse conditions like neuronal injury and dementia. It has been found that the entry of HIV into the brain and subsequently crossing the blood-brain barrier (BBB) causes brain cell damage, which is the prerequisite for the development of neurocognitive disorders. Besides the HIV replication in the central nervous system and the adverse effects of antiretroviral therapy on the BBB, a range of opportunistic infections, including viral, bacterial, and parasitic agents, augment the neurological complications in people living with HIV (PLHIV). Given the immuno-compromised state of PLHIV, these co-infections can present a wide range of clinical syndromes with atypical manifestations that pose challenges in diagnosis and clinical management, representing a substantial burden for the public health system. Therefore, the present review narrates the neurological complications triggered by HIV and their diagnosis and treatment options. Moreover, coinfections that are known to cause neurological disorders in HIV infected individuals are highlighted.
Collapse
Affiliation(s)
- Sivaraman Balaji
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| | - Rohan Chakraborty
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Aggarwal
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research-Headquarters, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
4
|
Xue G, Yu HJ, Buffone C, Huang SW, Lee K, Goh SL, Gres AT, Guney MH, Sarafianos SG, Luban J, Diaz-Griffero F, KewalRamani VN. The HIV-1 capsid core is an opportunistic nuclear import receptor. Nat Commun 2023; 14:3782. [PMID: 37355754 PMCID: PMC10290713 DOI: 10.1038/s41467-023-39146-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 06/01/2023] [Indexed: 06/26/2023] Open
Abstract
The movement of viruses and other large macromolecular cargo through nuclear pore complexes (NPCs) is poorly understood. The human immunodeficiency virus type 1 (HIV-1) provides an attractive model to interrogate this process. HIV-1 capsid (CA), the chief structural component of the viral core, is a critical determinant in nuclear transport of the virus. HIV-1 interactions with NPCs are dependent on CA, which makes direct contact with nucleoporins (Nups). Here we identify Nup35, Nup153, and POM121 to coordinately support HIV-1 nuclear entry. For Nup35 and POM121, this dependence was dependent cyclophilin A (CypA) interaction with CA. Mutation of CA or removal of soluble host factors changed the interaction with the NPC. Nup35 and POM121 make direct interactions with HIV-1 CA via regions containing phenylalanine glycine motifs (FG-motifs). Collectively, these findings provide additional evidence that the HIV-1 CA core functions as a macromolecular nuclear transport receptor (NTR) that exploits soluble host factors to modulate NPC requirements during nuclear invasion.
Collapse
Affiliation(s)
- Guangai Xue
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Hyun Jae Yu
- Basic Science Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD, 21702, USA
| | - Cindy Buffone
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Szu-Wei Huang
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - KyeongEun Lee
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shih Lin Goh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Anna T Gres
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
| | - Mehmet Hakan Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Stefan G Sarafianos
- Bond Life Sciences Center, Chemistry, University of Missouri, Columbia, MO, 65201, USA
- Bond Life Sciences Center, MMI, Biochemistry, University of Missouri, Columbia, MO, 65201, USA
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vineet N KewalRamani
- Model Development Section, Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, 21702, USA.
| |
Collapse
|
5
|
Nasser H, Takahashi N, Eltalkhawy YM, Reda O, Lotfi S, Nasu K, Sakuragi JI, Suzu S. Inhibitory and Stimulatory Effects of IL-32 on HIV-1 Infection. THE JOURNAL OF IMMUNOLOGY 2022; 209:970-978. [DOI: 10.4049/jimmunol.2200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/29/2022] [Indexed: 01/04/2023]
Abstract
Abstract
The proinflammatory cytokine IL-32 is elevated in the plasma and tissues of HIV-1–infected individuals. However, its significance in HIV-1 infection remains unclear because IL-32 inhibits and stimulates viral production in monocyte-derived macrophages (MDMs) and CD4+ T cells, respectively. In this study, we initially found that the inhibitory effect on human MDMs depends on SAMHD1, a dNTP triphosphohydrolase that inhibits viral reverse transcription. IL-32 increased the unphosphorylated active form of SAMHD1, which was consistent with the reduced expression of the upstream cyclin-dependent kinases. Indeed, IL-32 lost its anti–HIV-1 activity in MDMs when SAMHD1 was depleted. These results explain why IL-32 inhibits HIV-1 in MDMs but not CD4+ T cells, because SAMHD1 restricts HIV-1 in noncycling MDMs but not in cycling CD4+ T cells. Another unique feature of IL-32 is the induction of the immunosuppressive molecule IDO1, which is beneficial for HIV-1 infection. In this study, we found that IL-32 also upregulates other immunosuppressive molecules, including PD-L1, in MDMs. Moreover, IL-32 promoted the motility of MDMs, which potentially facilitates intercellular HIV-1 transmission. Our findings indicate that IL-32 has both the direct inhibitory effect on HIV-1 production in MDMs and the indirect stimulatory effects through phenotypic modulation of MDMs, and they suggest that the stimulatory effects may outweigh the inhibitory effect because the window for IL-32 to inhibit HIV-1 is relatively confined to SAMHD1-mediated reverse transcription suppression in the viral life cycle.
Collapse
Affiliation(s)
- Hesham Nasser
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Naofumi Takahashi
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Youssef M. Eltalkhawy
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Omnia Reda
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Sameh Lotfi
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Kanako Nasu
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| | - Jun-ichi Sakuragi
- †Division of Microbiology, Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Shinya Suzu
- *Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; and
| |
Collapse
|
6
|
Song Y, Zhang H, Wang Y, Guo J, Tang S, Wang L, Peng K, Dong CS. Importin KPNA2 confers HIV-1 pre-integration complex nuclear import by interacting with the capsid protein. Antiviral Res 2022; 200:105289. [PMID: 35301060 DOI: 10.1016/j.antiviral.2022.105289] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
For human immunodeficiency virus 1 (HIV-1) to infect non-dividing cells, pre-integration complex (PIC) must be transported into the nucleus within the replication cycle. We previously reported that the karyopherin β1 (KPNB1)-nucleoporin Pom121 pathway, related to the downstream process of PIC nuclear import, mediates efficient HIV-1 PIC nuclear import. Further, our earlier RNA transcriptome sequencing revealed that karyopherin α2 (KPNA2) was among the differentially expressed importin family members during monocyte to macrophage differentiation. Although PIC transport into the nucleus in HIV-1 has been widely studied, much remains to be understood about it. In this study, we confirmed our previous RNA sequencing results and found that HIV-1 replication was significantly lower in 293T cells with siRNA-mediated KPNA2 knockdown and higher in KPNA2-upregulated cells. Quantitative PCR indicated that viral replication was impaired during cDNA nuclear import. The N-terminal of the capsid protein p24 interacted with KPNA2, and KPNB1 participated in KPNA2-mediated PIC nuclear import. Disruption of the capsid-KPNA2 binding by overexpression of full-length p24 or p24 N-terminal impaired the PIC nuclear import. These results indicate that KPNA2 is an important upstream adaptor of the KPNB1-Pom121 axis, thereby mediating HIV-1 PIC nuclear transportation. KPNA2 is thus a potential target for HIV-1 antiviral treatment.
Collapse
Affiliation(s)
- Yanhui Song
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, China.
| | - Hongguang Zhang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Yinmiao Wang
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, China
| | - Jin Guo
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Shengjie Tang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Lu Wang
- The Institutes of Biology and Medical Sciences, Soochow University, China
| | - Ke Peng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | - Chun-Sheng Dong
- The Institutes of Biology and Medical Sciences, Soochow University, China.
| |
Collapse
|
7
|
Wang Q, Su Q, Liu B, Li Y, Sun W, Liu Y, Xue R, Chang S, Wang Y, Zhao P. Enhanced Antiviral Ability by a Combination of Zidovudine and Short Hairpin RNA Targeting Avian Leukosis Virus. Front Microbiol 2022; 12:808982. [PMID: 35250911 PMCID: PMC8889011 DOI: 10.3389/fmicb.2021.808982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis virus (ALV) causes tumor diseases in poultry and is circulating all over the world, leading to significant economic losses. In addition, mixed infection of ALV with other viruses is very common and is often reported to contaminate live vaccines. At present, there is no effective method to suppress the replication of ALV in vitro, so it is very difficult to remove it in mixed infection. As a retrovirus, the replication of ALV can be limited by reverse transcriptase (RT) inhibitors like zidovudine (AZT), but it also causes nontargeted cytotoxicity. To find the optimal solution in cytotoxicity and inhibition efficiency in vitro culture system, we firstly designed a combination therapy of AZT and short hairpin RNA (shRNA) targeting ALV and then verified its efficiency by multiple biological methods. Results showed that shRNA can effectively inhibit the expression of RT and then limit the replication of ALV. The combination of AZT and shRNA can significantly improve the antiviral efficiency in viral replication, shedding, and provirus assembly under the condition of low cytotoxicity. Overall, in this study, the combination therapy of AZT and shRNA targeting ALV showed excellent antiviral performance against ALV in vitro culture system. This method can be applied to multiple scenarios, such as the removal of ALV in mixed infection or the purification of contaminated vaccine strains.
Collapse
Affiliation(s)
- Qun Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Qi Su
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Bowen Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yan Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Wanli Sun
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yanxue Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Ruyu Xue
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Shuang Chang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China.,Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Tai'an, China
| |
Collapse
|
8
|
Boyer PL, Rehm CA, Sneller MC, Mican J, Caplan MR, Dewar R, Ferris AL, Clark P, Johnson A, Maldarelli F, Hughes SH. A Combination of Amino Acid Mutations Leads to Resistance to Multiple Nucleoside Analogs in Reverse Transcriptases from HIV-1 Subtypes B and C. Antimicrob Agents Chemother 2022; 66:e0150021. [PMID: 34723625 PMCID: PMC8765311 DOI: 10.1128/aac.01500-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to anti-HIV drugs has been a problem from the beginning of antiviral drug treatments. The recent expansion of combination antiretroviral therapy worldwide has led to an increase in resistance to antiretrovirals; understanding the mechanisms of resistance is increasingly important. In this study, we analyzed reverse transcriptase (RT) variants based on sequences derived from an individual who had low-level rebound viremia while undergoing therapy with abacavir, azidothymidine (AZT) (zidovudine), and (-)-l-2',3'-dideoxy-3'-thiacytidine (3TC) (lamivudine). The RT had mutations at positions 64, 67, 70, 184, and 219 and a threonine insertion after amino acid 69 in RT. The virus remained partially susceptible to the nucleoside RT inhibitor (NRTI) regimen. We show how these mutations affect the ability of NRTIs to inhibit DNA synthesis by RT. The presence of the inserted threonine reduced the susceptibility of the RT mutant to inhibition by tenofovir.
Collapse
Affiliation(s)
- Paul L. Boyer
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Catherine A. Rehm
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Michael C. Sneller
- Clinical and Molecular Retrovirology Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - JoAnn Mican
- Clinical Research Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Margaret R. Caplan
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Robin Dewar
- Division of Infectious Disease, Department of Medicine, Harbor-UCLA Medical Center, Los Angeles, California, USA
| | - Andrea L. Ferris
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| | - Patrick Clark
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Adam Johnson
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Frank Maldarelli
- Clinical Retrovirology Section, National Cancer Institute, Frederick, Maryland, USA
| | - Stephen H. Hughes
- Retroviral Replication Laboratory, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
9
|
A Comprehensive Analysis of Human Endogenous Retroviruses HERV-K (HML.2) from Teratocarcinoma Cell Lines and Detection of Viral Cargo in Microvesicles. Int J Mol Sci 2021; 22:ijms222212398. [PMID: 34830279 PMCID: PMC8619701 DOI: 10.3390/ijms222212398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
About 8% of our genome is composed of sequences from Human Endogenous Retroviruses (HERVs). The HERV-K (HML.2) family, here abbreviated HML.2, is able to produce virus particles that were detected in cell lines, malignant tumors and in autoimmune diseases. Parameters and properties of HML.2 released from teratocarcinoma cell lines GH and Tera-1 were investigated in detail. In most experiments, analyzed viruses were purified by density gradient centrifugation. HML.2 structural proteins, reverse transcriptase (RT) activity, viral RNA (vRNA) and particle morphology were analyzed. The HML.2 markers were predominantly detected in fractions with a buoyant density of 1.16 g/cm3. Deglycosylation of TM revealed truncated forms of transmembrane (TM) protein. Free virions and extracellular vesicles (presumably microvesicles—MVs) with HML.2 elements, including budding intermediates, were detected by electron microscopy. Viral elements and assembled virions captured and exported by MVs can boost specific immune responses and trigger immunomodulation in recipient cells. Sequencing of cDNA clones demonstrated exclusive presence of HERV-K108 env in HML.2 from Tera-1 cells. Not counting two recombinant variants, four known env sequences were found in HML.2 from GH cells. Obtained results shed light on parameters and morphology of HML.2. A possible mechanism of HML.2-induced diseases is discussed.
Collapse
|
10
|
Multiple Pathways To Avoid Beta Interferon Sensitivity of HIV-1 by Mutations in Capsid. J Virol 2019; 93:JVI.00986-19. [PMID: 31511380 PMCID: PMC6854511 DOI: 10.1128/jvi.00986-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
HIV-1 infection causes robust innate immune activation in virus-infected patients. This immune activation is characterized by elevated levels of type I interferons (IFNs), which can block HIV-1 replication. Recent studies suggest that the viral capsid protein (CA) is a determinant for the sensitivity of HIV-1 to IFN-mediated restriction. Specifically, it was reported that the loss of CA interactions with CPSF6 or CypA leads to higher IFN sensitivity. However, the molecular mechanism of CA adaptation to IFN sensitivity is largely unknown. Here, we experimentally evolved an IFN-β-hypersensitive CA mutant which showed decreased binding to CPSF6 and CypA in IFN-β-treated cells. The CA mutations that emerged from this adaptation indeed conferred IFN-β resistance. Our genetic assays suggest a limited contribution of known host factors to IFN-β resistance. Strikingly, one of these mutations accelerated the kinetics of reverse transcription and uncoating. Our findings suggest that HIV-1 selected multiple, known host factor-independent pathways to avoid IFN-β-mediated restriction. Type I interferons (IFNs), including alpha IFN (IFN-α) and IFN-β, potently suppress HIV-1 replication by upregulating IFN-stimulated genes (ISGs). The viral capsid protein (CA) partly determines the sensitivity of HIV-1 to IFNs. However, it remains to be determined whether CA-related functions, including utilization of known host factors, reverse transcription, and uncoating, affect the sensitivity of HIV-1 to IFN-mediated restriction. Recently, we identified an HIV-1 CA variant that is unusually sensitive to IFNs. This variant, called the RGDA/Q112D virus, contains multiple mutations in CA: H87R, A88G, P90D, P93A, and Q112D. To investigate how an IFN-hypersensitive virus can evolve to overcome IFN-β-mediated blocks targeting the viral capsid, we adapted the RGDA/Q112D virus in IFN-β-treated cells. We successfully isolated IFN-β-resistant viruses which contained either a single Q4R substitution or the double amino acid change G94D/G116R. These two IFN-β resistance mutations variably changed the sensitivity of CA binding to human myxovirus resistance B (MxB), cleavage and polyadenylation specificity factor 6 (CPSF6), and cyclophilin A (CypA), indicating that the observed loss of sensitivity was not due to interactions with these known host CA-interacting factors. In contrast, the two mutations apparently functioned through distinct mechanisms. The Q4R mutation dramatically accelerated the kinetics of reverse transcription and initiation of uncoating of the RGDA/Q112D virus in the presence or absence of IFN-β, whereas the G94D/G116R mutations affected reverse transcription only in the presence of IFN-β, most consistent with a mechanism of the disruption of binding to an unknown IFN-β-regulated host factor. These results suggest that HIV-1 can exploit multiple, known host factor-independent pathways to avoid IFN-β-mediated restriction by altering capsid sequences and subsequent biological properties. IMPORTANCE HIV-1 infection causes robust innate immune activation in virus-infected patients. This immune activation is characterized by elevated levels of type I interferons (IFNs), which can block HIV-1 replication. Recent studies suggest that the viral capsid protein (CA) is a determinant for the sensitivity of HIV-1 to IFN-mediated restriction. Specifically, it was reported that the loss of CA interactions with CPSF6 or CypA leads to higher IFN sensitivity. However, the molecular mechanism of CA adaptation to IFN sensitivity is largely unknown. Here, we experimentally evolved an IFN-β-hypersensitive CA mutant which showed decreased binding to CPSF6 and CypA in IFN-β-treated cells. The CA mutations that emerged from this adaptation indeed conferred IFN-β resistance. Our genetic assays suggest a limited contribution of known host factors to IFN-β resistance. Strikingly, one of these mutations accelerated the kinetics of reverse transcription and uncoating. Our findings suggest that HIV-1 selected multiple, known host factor-independent pathways to avoid IFN-β-mediated restriction.
Collapse
|
11
|
CA Mutation N57A Has Distinct Strain-Specific HIV-1 Capsid Uncoating and Infectivity Phenotypes. J Virol 2019; 93:JVI.00214-19. [PMID: 30814280 DOI: 10.1128/jvi.00214-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 12/20/2022] Open
Abstract
The ability of human immunodeficiency virus type 1 (HIV-1) to transduce nondividing cells is key to infecting terminally differentiated macrophages, which can serve as a long-term reservoir of HIV-1 infection. The mutation N57A in the viral CA protein renders HIV-1 cell cycle dependent, allowing examination of HIV-1 infection of nondividing cells. Here, we show that the N57A mutation confers a postentry infectivity defect that significantly differs in magnitude between the common lab-adapted molecular clones HIV-1NL4-3 (>10-fold) and HIV-1LAI (2- to 5-fold) in multiple human cell lines and primary CD4+ T cells. Capsid permeabilization and reverse transcription are altered when N57A is incorporated into HIV-1NL4-3 but not HIV-1LAI The N57A infectivity defect is significantly exacerbated in both virus strains in the presence of cyclosporine (CsA), indicating that N57A infectivity is dependent upon CA interacting with host factor cyclophilin A (CypA). Adaptation of N57A HIV-1LAI selected for a second CA mutation, G94D, which rescued the N57A infectivity defect in HIV-1LAI but not HIV-1NL4-3 The rescue of N57A by G94D in HIV-1LAI is abrogated by CsA treatment in some cell types, demonstrating that this rescue is CypA dependent. An examination of over 40,000 HIV-1 CA sequences revealed that the four amino acids that differ between HIV-1NL4-3 and HIV-1LAI CA are polymorphic, and the residues at these positions in the two strains are widely prevalent in clinical isolates. Overall, a few polymorphic amino acid differences between two closely related HIV-1 molecular clones affect the phenotype of capsid mutants in different cell types.IMPORTANCE The specific mechanisms by which HIV-1 infects nondividing cells are unclear. A mutation in the HIV-1 capsid protein abolishes the ability of the virus to infect nondividing cells, serving as a tool to examine cell cycle dependence of HIV-1 infection. We have shown that two widely used HIV-1 molecular clones exhibit significantly different N57A infectivity phenotypes due to fewer than a handful of CA amino acid differences and that these clones are both represented in HIV-infected individuals. As such minor differences in closely related HIV-1 strains may impart significant infectivity differences, careful consideration should be given to drawing conclusions from one particular HIV-1 clone. This study highlights the potential for significant variation in results with the use of multiple strains and possible unanticipated effects of natural polymorphisms.
Collapse
|
12
|
Kim H, Lee SY, Choi YM, Kim BJ. HBV polymerase-derived peptide exerts an anti-HIV-1 effect by inhibiting the acetylation of viral integrase. Biochem Biophys Res Commun 2018; 501:541-546. [PMID: 29752938 DOI: 10.1016/j.bbrc.2018.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023]
Abstract
Here, we found that a 6-mer peptide, Poly6, derived from the hepatitis B virus (HBV), which overlaps with a polymerase corresponding to a preS1 deletion reported to contribute to liver disease progression, can elicit an antiviral effect against human immunodeficiency virus (HIV)-1 by inhibiting HIV-1 integrase (IN) activity of infected cells. Mechanistic studies revealed that the anti-HIV-1 effects of Poly6 occurred via the inhibition of integration, which resulted from the inhibition of acetylation of HIV-1 IN possibly by downregulation of p300 histone acetyltransferase. Our data suggest the potential therapeutic use of a 6-mer HBV-derived peptide, Poly6, as an anti-HIV-1 agent to suppress HIV-1 infection via inhibiting integrase activity.
Collapse
Affiliation(s)
- Hong Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea
| | - So-Young Lee
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea
| | - Yu-Min Choi
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Biomedical Sciences, Liver Research Institute, Cancer Research Institute and SNUMRC, College of Medicine, Seoul National University, 28 Yongon-dong, Chongno-gu, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
13
|
DeStefano JJ, Alves Ferreira-Bravo I. A highly sensitive aptamer-based HIV reverse transcriptase detection assay. J Virol Methods 2018; 257:22-28. [PMID: 29630943 DOI: 10.1016/j.jviromet.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/16/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Although many new assays for HIV have been developed, several labs still use simple and reliable radioactivity-based reverse transcriptase (RT) nucleotide incorporation assays for detection and quantification. We describe here a new assay for detection and quantitation of HIV RT activity that is based on a high affinity DNA aptamer to RT. The aptamer is sequestered on 96-well plates where it can bind to RT and other constituents can be removed by extensive washing. Since the aptamer mimics a primer-template, upon radiolabeled nucleotide addition, bound RT molecules can extend the aptamer and the radioactive signal can be detected by standard methods. In addition to being procedurally simple, the assay demonstrated high sensitivity (detection limits for RT and virions were ≤6400 molecules (∼4 × 10-8 units) and ∼100-300 virions, respectively) and was essentially linear over a range of at least 104. Both wild type and drug-resistant forms of HIV-1 RT were detectable as was HIV-2 RT, although there were some modest differences in sensitivity.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States; The Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States.
| | - Irani Alves Ferreira-Bravo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States; The Maryland Pathogen Research Institute, University of Maryland, College Park, MD, United States
| |
Collapse
|
14
|
Allosteric HIV-1 Integrase Inhibitors Lead to Premature Degradation of the Viral RNA Genome and Integrase in Target Cells. J Virol 2017; 91:JVI.00821-17. [PMID: 28615207 DOI: 10.1128/jvi.00821-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
Recent evidence indicates that inhibition of HIV-1 integrase (IN) binding to the viral RNA genome by allosteric integrase inhibitors (ALLINIs) or through mutations within IN yields aberrant particles in which the viral ribonucleoprotein complexes (vRNPs) are eccentrically localized outside the capsid lattice. These particles are noninfectious and are blocked at an early reverse transcription stage in target cells. However, the basis of this reverse transcription defect is unknown. Here, we show that the viral RNA genome and IN from ALLINI-treated virions are prematurely degraded in target cells, whereas reverse transcriptase remains active and stably associated with the capsid lattice. The aberrantly shaped cores in ALLINI-treated particles can efficiently saturate and be degraded by a restricting TRIM5 protein, indicating that they are still composed of capsid proteins arranged in a hexagonal lattice. Notably, the fates of viral core components follow a similar pattern in cells infected with eccentric particles generated by mutations within IN that inhibit its binding to the viral RNA genome. We propose that IN-RNA interactions allow packaging of both the viral RNA genome and IN within the protective capsid lattice to ensure subsequent reverse transcription and productive infection in target cells. Conversely, disruption of these interactions by ALLINIs or mutations in IN leads to premature degradation of both the viral RNA genome and IN, as well as the spatial separation of reverse transcriptase from the viral genome during early steps of infection.IMPORTANCE Recent evidence indicates that HIV-1 integrase (IN) plays a key role during particle maturation by binding to the viral RNA genome. Inhibition of IN-RNA interactions yields aberrant particles with the viral ribonucleoprotein complexes (vRNPs) eccentrically localized outside the conical capsid lattice. Although these particles contain all of the components necessary for reverse transcription, they are blocked at an early reverse transcription stage in target cells. To explain the basis of this defect, we tracked the fates of multiple viral components in infected cells. Here, we show that the viral RNA genome and IN in eccentric particles are prematurely degraded, whereas reverse transcriptase remains active and stably associated within the capsid lattice. We propose that IN-RNA interactions ensure the packaging of both vRNPs and IN within the protective capsid cores to facilitate subsequent reverse transcription and productive infection in target cells.
Collapse
|
15
|
TLR7 Agonist GS-9620 Is a Potent Inhibitor of Acute HIV-1 Infection in Human Peripheral Blood Mononuclear Cells. Antimicrob Agents Chemother 2016; 61:AAC.01369-16. [PMID: 27799218 PMCID: PMC5192112 DOI: 10.1128/aac.01369-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
GS-9620 is a potent and selective oral Toll-like receptor 7 (TLR7) agonist that directly activates plasmacytoid dendritic cells (pDCs). GS-9620 suppressed hepatitis B virus (HBV) in animal models of chronic infection and transiently activated HIV expression ex vivo in latently infected peripheral blood mononuclear cells (PBMCs) from virally suppressed patients. Currently, GS-9620 is under clinical evaluation for treating chronic HBV infection and for reducing latent reservoirs in virally suppressed HIV-infected patients. Here, we investigated the in vitro anti-HIV-1 activity of GS-9620. GS-9620 potently inhibited viral replication in PBMCs, particularly when it was added 24 to 48 h prior to HIV infection (50% effective concentration = 27 nM). Depletion of pDCs but not other immune cell subsets from PBMC cultures suppressed GS-9620 antiviral activity. Although GS-9620 was inactive against HIV in purified CD4+ T cells and macrophages, HIV replication was potently inhibited by conditioned medium derived from GS-9620-treated pDC cultures when added to CD4+ T cells prior to infection. This suggests that GS-9620-mediated stimulation of PBMCs induced the production of a soluble factor(s) inhibiting HIV replication in trans. GS-9620-treated PBMCs primarily showed increased production of interferon alpha (IFN-α), and cotreatment with IFN-α-blocking antibodies reversed the HIV-1-inhibitory effect of GS-9620. Additional studies demonstrated that GS-9620 inhibited a postentry event in HIV replication at a step coincident with or prior to reverse transcription. The simultaneous activation of HIV-1 expression and inhibition of HIV-1 replication are important considerations for the clinical evaluation of GS-9620 since these antiviral effects may help restrict potential local HIV spread upon in vivo latency reversal.
Collapse
|
16
|
Jacques DA, McEwan WA, Hilditch L, Price AJ, Towers GJ, James LC. HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 2016; 536:349-53. [PMID: 27509857 PMCID: PMC4998957 DOI: 10.1038/nature19098] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022]
Abstract
During the early stages of infection, the HIV-1 capsid protects viral components from cytosolic sensors and nucleases such as cGAS and TREX, respectively, while allowing access to nucleotides for efficient reverse transcription. Here we show that each capsid hexamer has a size-selective pore bound by a ring of six arginine residues and a 'molecular iris' formed by the amino-terminal β-hairpin. The arginine ring creates a strongly positively charged channel that recruits the four nucleotides with on-rates that approach diffusion limits. Progressive removal of pore arginines results in a dose-dependent and concomitant decrease in nucleotide affinity, reverse transcription and infectivity. This positively charged channel is universally conserved in lentiviral capsids despite the fact that it is strongly destabilizing without nucleotides to counteract charge repulsion. We also describe a channel inhibitor, hexacarboxybenzene, which competes for nucleotide binding and efficiently blocks encapsidated reverse transcription, demonstrating the tractability of the pore as a novel drug target.
Collapse
|
17
|
Francis AC, Marin M, Shi J, Aiken C, Melikyan GB. Time-Resolved Imaging of Single HIV-1 Uncoating In Vitro and in Living Cells. PLoS Pathog 2016; 12:e1005709. [PMID: 27322072 PMCID: PMC4913920 DOI: 10.1371/journal.ppat.1005709] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
Disassembly of the cone-shaped HIV-1 capsid in target cells is a prerequisite for establishing a life-long infection. This step in HIV-1 entry, referred to as uncoating, is critical yet poorly understood. Here we report a novel strategy to visualize HIV-1 uncoating using a fluorescently tagged oligomeric form of a capsid-binding host protein cyclophilin A (CypA-DsRed), which is specifically packaged into virions through the high-avidity binding to capsid (CA). Single virus imaging reveals that CypA-DsRed remains associated with cores after permeabilization/removal of the viral membrane and that CypA-DsRed and CA are lost concomitantly from the cores in vitro and in living cells. The rate of loss is modulated by the core stability and is accelerated upon the initiation of reverse transcription. We show that the majority of single cores lose CypA-DsRed shortly after viral fusion, while a small fraction remains intact for several hours. Single particle tracking at late times post-infection reveals a gradual loss of CypA-DsRed which is dependent on reverse transcription. Uncoating occurs both in the cytoplasm and at the nuclear membrane. Our novel imaging assay thus enables time-resolved visualization of single HIV-1 uncoating in living cells, and reveals the previously unappreciated spatio-temporal features of this incompletely understood process. HIV-1 genome and key enzymes required for establishing productive infection are encased in a cone-shaped shell made of the capsid protein (CA). After being released into the cytosol of target cells, the cone-shaped core complex undergoes a series of carefully orchestrated steps, including uncoating (loss of CA). HIV-1 uncoating remains poorly understood, due in part to the lack of direct assays enabling studies of this process in living cells. Here, we introduce a novel strategy for labeling the HIV-1 capsid without genetically modifying the CA protein. We designed a novel fluorescent cyclophilin A construct that binds the capsid with an extremely high avidity and (1) efficiently incorporates into virions without compromising infectivity; (2) remains bound to cores after viral fusion; and (3) is lost from post-fusion cores along with CA. The novel imaging assay provides new insights into the kinetics and spatial distribution of HIV-1 uncoating in living cells.
Collapse
Affiliation(s)
- Ashwanth C Francis
- Department of Pediatric, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Mariana Marin
- Department of Pediatric, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center. Nashville, Tennessee, United States of America
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center. Nashville, Tennessee, United States of America
| | - Gregory B Melikyan
- Department of Pediatric, Emory University School of Medicine, Atlanta, Georgia, United States of America.,Children's Healthcare of Atlanta, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
19
|
Hashimoto M, Nasser H, Bhuyan F, Kuse N, Satou Y, Harada S, Yoshimura K, Sakuragi JI, Monde K, Maeda Y, Welbourn S, Strebel K, Abd El-Wahab EW, Miyazaki M, Hattori S, Chutiwitoonchai N, Hiyoshi M, Oka S, Takiguchi M, Suzu S. Fibrocytes Differ from Macrophages but Can Be Infected with HIV-1. THE JOURNAL OF IMMUNOLOGY 2015; 195:4341-50. [PMID: 26416279 DOI: 10.4049/jimmunol.1500955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/31/2015] [Indexed: 11/19/2022]
Abstract
Fibrocytes (fibroblastic leukocytes) are recently identified as unique hematopoietic cells with features of both macrophages and fibroblasts. Fibrocytes are known to contribute to the remodeling or fibrosis of various injured tissues. However, their role in viral infection is not fully understood. In this study, we show that differentiated fibrocytes are phenotypically distinguishable from macrophages but can be infected with HIV-1. Importantly, fibrocytes exhibited persistently infected cell-like phenotypes, the degree of which was more apparent than macrophages. The infected fibrocytes produced replication-competent HIV-1, but expressed HIV-1 mRNA at low levels and strongly resisted HIV-1-induced cell death, which enabled them to support an extremely long-term HIV-1 production at low but steady levels. More importantly, our results suggested that fibrocytes were susceptible to HIV-1 regardless of their differentiation state, in contrast to the fact that monocytes become susceptible to HIV-1 after the differentiation into macrophages. Our findings indicate that fibrocytes are the previously unreported HIV-1 host cells, and they suggest the importance of considering fibrocytes as one of the long-lived persistently infected cells for curing HIV-1.
Collapse
Affiliation(s)
- Michihiro Hashimoto
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hesham Nasser
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Farzana Bhuyan
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yorifumi Satou
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shigeyoshi Harada
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Kazuhisa Yoshimura
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Jun-ichi Sakuragi
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kazuaki Monde
- Department of Medical Virology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yosuke Maeda
- Department of Medical Virology, Kumamoto University, Kumamoto 860-8556, Japan
| | - Sarah Welbourn
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Klaus Strebel
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ekram W Abd El-Wahab
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Mitsue Miyazaki
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | - Masateru Hiyoshi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo 162-0052, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan
| | - Shinya Suzu
- Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan; International Research Center for Medical Sciences, Kumamoto University, Kumamoto 860-0811, Japan;
| |
Collapse
|
20
|
Mutations in human immunodeficiency virus type 1 reverse transcriptase that make it sensitive to degradation by the viral protease in virions are selected against in patients. Virology 2015; 484:127-135. [PMID: 26093496 DOI: 10.1016/j.virol.2015.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/02/2015] [Accepted: 05/31/2015] [Indexed: 10/23/2022]
Abstract
Mutations in the thumb subdomain of reverse transcriptase (RT) of HIV-1 can cause this enzyme to be degraded in virions by the viral protease (PR). Many of these mutations confer a temperature-sensitive phenotype on RT and viral replication. The degradation of RT by PR appears to take place after Gag-Pol has been processed. We show here that mutations in other parts of RT, including the RNase H domain, can make RT PR-sensitive and temperature-sensitive. These data explain why some mutations in the RNase H domain, which had little or no effect on the polymerase activity of purified recombinant RT, had a profound effect on viral titer. Because the PR-sensitive phenotype significantly reduced viral titer, we previously suggested that these mutations would be selected against in patients. We also show that RT mutations that are known to confer a temperature sensitive phenotype are rarely found in the Stanford database.
Collapse
|
21
|
A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol 2015; 89:8119-29. [PMID: 25995261 DOI: 10.1128/jvi.00809-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/11/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. IMPORTANCE Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting the in vitro data. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity.
Collapse
|
22
|
Herzig E, Hizi A. The importance of glutamine 294 that affects the ribonuclease H activity of the reverse transcriptase of HIV-2 to viral replication. Virology 2015; 483:13-20. [PMID: 25965791 DOI: 10.1016/j.virol.2015.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/02/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022]
Abstract
Most currently-used antiretroviral drugs inhibit the reverse-transcriptase (RT) of HIV. The differences between HIV-1 and HIV-2 RTs explain why some of the anti-HIV-1 drugs are not effective against HIV-2. One major difference between the two HIV RTs is the low ribonuclease H (RNase H) activity of HIV-2 RT relative to HIV-1 RT. Our previous studies showed that residue Gln294 in HIV-2 RT accounts for this RNase H reduction (the comparable residue in HIV-1 RT is Pro294), as the Q294P mutant of HIV-2 RT has ~10-fold higher RNase H. Here, we show that infectious HIV-2 cannot bear the replacement of the RT's Gln294 by the HIV-1 RT Pro counterpart, as it results in substantially reduced HIV-2 replication and fast reversions to the wild-type Gln294 virus. These findings prove the critical role of maintaining low RT-associated RNase H activity in HIV-2. In contrast, HIV-1 can tolerate an about 10-fold higher RNase H.
Collapse
Affiliation(s)
- Eytan Herzig
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69974, Israel
| | - Amnon Hizi
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69974, Israel.
| |
Collapse
|
23
|
Takeda E, Kono K, Hulme AE, Hope TJ, Nakayama EE, Shioda T. Fluorescent image analysis of HIV-1 and HIV-2 uncoating kinetics in the presence of old world monkey TRIM5α. PLoS One 2015; 10:e0121199. [PMID: 25803716 PMCID: PMC4372348 DOI: 10.1371/journal.pone.0121199] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
Uncoating of Human Immunodeficiency Virus type 1 (HIV-1) and type 2 (HIV-2) conical cores is an important early step for establishment of infection. In Old World Monkey (OWM) cells, the TRIM5α cellular factor potently suppresses an early step of infection by HIV-1. Previously, biochemical studies using whole cell lysates of infected cells revealed that OWM TRIM5α accelerates the uncoating of HIV-1, leading to premature reverse transcription. In the present study, we re-evaluated uncoating kinetics of HIV-1 in the presence of OWM TRIM5α by using an in situ uncoating assay, which allowed us to differentiate productive HIV-1 entry from simple (non-productive) endocytosis. Results showed that the uncoating kinetics of HIV-1 was indeed accelerated in the presence of OWM TRIM5α. Furthermore, we adapted an in situ uncoating assay to HIV-2, which showed wide variations in TRIM5α sensitivity among different isolates. HIV-2 isolate GH123, whose infectivity was suppressed by cynomolgus monkey (CM) TRIM5α, showed accelerated uncoating in the presence of CM TRIM5α. In contrast, mutant HIV-2 ASA, whose infectivity was unaltered by CM TRIM5α, showed no change in uncoating kinetics in the presence of CM TRIM5α. These results confirmed and further extended the previous notion that accelerated uncoating is associated with restriction activity of TRIM5α against lentiviruses.
Collapse
Affiliation(s)
- Eri Takeda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Amy E. Hulme
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
24
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
25
|
A cell-based strategy to assess intrinsic inhibition efficiencies of HIV-1 reverse transcriptase inhibitors. Antimicrob Agents Chemother 2014; 59:838-48. [PMID: 25403670 DOI: 10.1128/aac.04163-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
During HIV-1 reverse transcription, there are increasing opportunities for nucleos(t)ide (NRTI) or nonnucleoside (NNRTI) reverse transcriptase (RT) inhibitors to stop elongation of the nascent viral DNA (vDNA). In addition, RT inhibitors appear to influence the kinetics of vDNA synthesis differently. While cell-free kinetic inhibition constants have provided detailed mechanistic insight, these assays are dependent on experimental conditions that may not mimic the cellular milieu. Here we describe a novel cell-based strategy to provide a measure of the intrinsic inhibition efficiencies of clinically relevant RT inhibitors on a per-stop-site basis. To better compare inhibition efficiencies among HIV-1 RT inhibitors that can stop reverse transcription at any number of different stop sites, their basic probability, p, of getting stopped at any potential stop site was determined. A relationship between qPCR-derived 50% effective inhibitory concentrations (EC50s) and this basic probability enabled determination of p by successive approximation. On a per-stop-site basis, tenofovir (TFV) exhibited 1.4-fold-greater inhibition efficiency than emtricitabine (FTC), and as a class, both NRTIs exhibited an 8- to 11-fold greater efficiency than efavirenz (EFV). However, as more potential stops sites were considered, the probability of reverse transcription failing to reach the end of the template approached equivalence between both classes of RT inhibitors. Overall, this novel strategy provides a quantitative measure of the intrinsic inhibition efficiencies of RT inhibitors in the natural cellular milieu and thus may further understanding of drug efficacy. This approach also has applicability for understanding the impact of viral polymerase-based inhibitors (alone or in combination) in other virus systems.
Collapse
|
26
|
Mamik MK, Ghorpade A. Chemokine CXCL8 promotes HIV-1 replication in human monocyte-derived macrophages and primary microglia via nuclear factor-κB pathway. PLoS One 2014; 9:e92145. [PMID: 24662979 PMCID: PMC3963875 DOI: 10.1371/journal.pone.0092145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/18/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Chemokine CXCL8 is an important neutrophil chemoattractant implicated in various neurodegenerative disorders. Cytokine/chemokine imbalance, with an increase in proinflammatory cytokines like interleukin-1β and tumor necrosis factor-α within the central nervous system, is a hallmark of human immunodeficiency virus (HIV)-1 infection. We previously reported that HIV-1 infection is linked to upregulation of CXCL8 in brain tissues and human astrocytes. Chemokines play crucial roles in trafficking of leukocytes and trafficking of HIV-1-infected across the blood-brain barrier play an important role in HIV-1 central nervous system disease. In the post-antiretroviral therapy era, low level of productive replication of HIV-1 in brain is a critical component of neuropathogenesis regulation. The present study investigated the effect of CXCL8 on productive infection of HIV-1 in human monocytes-derived macrophages (MDM) and primary human microglia. RESULTS Human MDM and microglia were infected with the blood or brain derived HIV-1 isolates, HIV-1ADA or HIV-1JRFL. Treatment with CXCL8 significantly upregulated HIV-1p24 levels in supernatants of both HIV-1-infected MDM as well as microglia. In addition, the formation of 2-long terminal repeat (LTR) circles, a measure of viral genome integration, was significantly higher in CXCL8-treated, HIV-1-infected MDM and microglia. Transient transfection of U937 cells with HIV-1 LTR luciferase reporter construct resulted in increased promoter activity when treated with CXCL8. Moreover, increased nuclear translocation of nuclear factor-κB was seen in HIV-1-infected MDM following CXCL8 treatment. Blocking CXCL8 receptors CXCR1 and CXCR2 abrogated the CXCL8-mediated enhanced HIV-1 replication. CONCLUSION Our results show that CXCL8 mediates productive infection of HIV-1 in MDM and microglia via receptors CXCR1 and CXCR2. These results demonstrate that CXCL8 exerts its downstream effects by increasing translocation of nuclear factor-κB into the nucleus, thereby promoting HIV-1 LTR activity.
Collapse
Affiliation(s)
- Manmeet K. Mamik
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| |
Collapse
|
27
|
Kline C, Ndjomou J, Franks T, Kiser R, Coalter V, Smedley J, Piatak M, Mellors JW, Lifson JD, Ambrose Z. Persistence of viral reservoirs in multiple tissues after antiretroviral therapy suppression in a macaque RT-SHIV model. PLoS One 2013; 8:e84275. [PMID: 24367650 PMCID: PMC3867492 DOI: 10.1371/journal.pone.0084275] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 11/13/2013] [Indexed: 01/09/2023] Open
Abstract
Although antiretroviral therapy (ART) can suppress HIV-1 replication sufficiently to eliminate measurable plasma viremia, infected cells remain and ensure viral recrudescence after discontinuation of ART. We used a macaque model of HIV-1/AIDS to evaluate the location of infected cells during ART. Twelve macaques were infected with RT-SHIVmne, a SIV containing HIV-1 reverse transcriptase, conferring sensitivity to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Ten to fourteen weeks post-infection, 6 animals were treated with 3 or 4 antiretroviral drugs for 17-20 weeks; 6 control animals remained untreated. Viral DNA (vDNA) and RNA (vRNA) were measured in peripheral blood mononuclear cells (PBMC) and at necropsy in multiple tissues by quantitative PCR and RT-PCR. The majority of virally infected cells were located in lymphoid tissues with variable levels in the gastrointestinal tract of both treated and untreated animals. Tissue viral DNA levels correlated with week 1 plasma viremia, suggesting that tissues that harbor proviral DNA are established within the first week of infection. PBMC vDNA levels did not correlate with plasma viremia or tissue levels of vDNA. vRNA levels were high in lymphoid and gastrointestinal tissues of the untreated animals; animals on ART had little vRNA expressed in tissues and virus could not be cultured from lymph node resting CD4+ cells after 17-20 weeks on ART, indicating little or no ongoing viral replication. Strategies for eradication of HIV-1 will need to target residual virus in ART suppressed individuals, which may not be accurately reflected by frequencies of infected cells in blood.
Collapse
Affiliation(s)
- Christopher Kline
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jean Ndjomou
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Tamera Franks
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Rebecca Kiser
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Vicky Coalter
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeremy Smedley
- Laboratory Animal Sciences Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Incorporated, (formerly SAIC-Frederick, Incorporated), Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
28
|
Abstract
Human cytidine deaminases APOBEC3F (A3F) and APOBEC3G (A3G) are host factors that incorporate into virions and restrict virus replication. We labeled HIV-1 particles with yellow fluorescent protein (YFP)-tagged APOBEC3 proteins and examined their association with preintegration complexes (PICs) in infected cells. Labeling of PICs with A3F-YFP, and to a lesser extent A3G-YFP, could be used to visualize PICs in the nuclei, which was dependent on nuclear pore protein Nup153 but not TNPO3. We show that reverse transcription is not required for nuclear import of PICs, indicating that a viral core uncoating event associated with reverse transcription, and the central DNA flap that forms during reverse transcription, are not required for nuclear import. We also quantify association of cytoplasmic PICs with nuclear envelope (NE) and report that capsid mutations that increase or decrease core stability dramatically reduce NE association and nuclear import of PICs. In addition, we find that nuclear PICs remain close to the NE and are not distributed throughout the nuclei. These results provide tools for tracking retroviral PICs in infected cells and reveal insights into HIV-1 replication.
Collapse
|
29
|
Kono K, Takeda E, Tsutsui H, Kuroishi A, Hulme AE, Hope TJ, Nakayama EE, Shioda T. Slower uncoating is associated with impaired replicative capability of simian-tropic HIV-1. PLoS One 2013; 8:e72531. [PMID: 23967315 PMCID: PMC3742594 DOI: 10.1371/journal.pone.0072531] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) productively infects only humans and chimpanzees, but not Old World monkeys, such as rhesus and cynomolgus (CM) monkeys. To establish a monkey model of HIV-1/AIDS, several HIV-1 derivatives have been constructed. We previously generated a simian-tropic HIV-1 that replicates efficiently in CM cells. This virus encodes a capsid protein (CA) with SIVmac239-derived loops between α-helices 4 and 5 (L4/5) and between α-helices 6 and 7 (L6/7), along with the entire vif from SIVmac239 (NL-4/5S6/7SvifS). These SIVmac239-derived sequences were expected to protect the virus from HIV-1 restriction factors in monkey cells. However, the replicative capability of NL-4/5S6/7SvifS in human cells was severely impaired. By long-term cultivation of human CEM-SS cells infected with NL-4/5S6/7SvifS, we succeeded in partially rescuing the impaired replicative capability of the virus in human cells. This adapted virus encoded a G-to-E substitution at the 116th position of the CA (NL-4/5SG116E6/7SvifS). In the work described here, we explored the mechanism by which the replicative capability of NL-4/5S6/7SvifS was impaired in human cells. Quantitative analysis (by real-time PCR) of viral DNA synthesis from infected cells revealed that NL-4/5S6/7SvifS had a major defect in nuclear entry. Mutations in CA are known to affect viral core stability and result in deleterious effects in HIV-1 infection; therefore, we measured the kinetics of uncoating of these viruses. The uncoating of NL-4/5S6/7SvifS was significantly slower than that of wild type HIV-1 (WT), whereas the uncoating of NL-4/5SG116E6/7SvifS was similar to that of WT. Our results suggested that the lower replicative capability of NL-4/5S6/7SvifS in human cells was, at least in part, due to the slower uncoating of this virus.
Collapse
Affiliation(s)
- Ken Kono
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Eri Takeda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hiromi Tsutsui
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Ayumu Kuroishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Amy E. Hulme
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Thomas J. Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Emi E. Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
30
|
Wang J, Li D, Bambara RA, Dykes C. Reverse transcriptase backbone can alter the polymerization and RNase activities of non-nucleoside reverse transcriptase mutants K101E+G190S. J Gen Virol 2013; 94:2297-2308. [PMID: 23804564 DOI: 10.1099/vir.0.054999-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous work by our group showed that human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) containing non-nucleoside RT inhibitor (NNRTI) drug resistance mutations has defects in RNase H activity as well as reduced amounts of RT protein in virions. These deficits correlate with replication fitness in the absence of NNRTIs. Viruses with the mutant combination K101E+G190S replicated better in the presence of NNRTIs than in the absence of drug. Stimulation of virus growth by NNRTIs occurred during the early steps of the virus life cycle and was modulated by the RT backbone sequence in which the resistance mutations arose. We wanted to determine what effects RT backbone sequence would have on RT content and polymerization and RNase H activities in the absence of NNRTIs. We compared a NL4-3 RT with K101E+G190S to a patient-isolate RT sequence D10 with K101E+G190S. We show here that, unlike the NL4-3 backbone, the D10 backbone sequence decreased the RNA-dependent DNA polymerization activity of purified recombinant RT compared to WT. In contrast, RTs with the D10 backbone had increased RNase H activity compared to WT and K101E+G190S in the NL4-3 backbone. D10 virions also had increased amounts of RT compared to K101E+G190S in the NL4-3 backbone. We conclude that the backbone sequence of RT can alter the activities of the NNRTI drug-resistant mutant K101E+G190S, and that identification of the amino acids responsible will aid in understanding the mechanism by which NNRTI drug-resistant mutants alter fitness and NNRTIs stimulate HIV-1 virus replication.
Collapse
Affiliation(s)
- Jiong Wang
- University of Rochester, School of Medicine and Dentistry, Department of Medicine, Rochester, NY, USA
| | - Dongge Li
- University of Rochester, School of Medicine and Dentistry, Department of Medicine, Rochester, NY, USA
| | - Robert A Bambara
- University of Rochester, School of Medicine and Dentistry, Department of Microbiology and Immunology, Rochester, NY, USA
| | - Carrie Dykes
- University of Rochester, School of Medicine and Dentistry, Department of Medicine, Rochester, NY, USA
| |
Collapse
|
31
|
Wang J, Li D, Bambara RA, Yang H, Dykes C. L74V increases the reverse transcriptase content of HIV-1 virions with non-nucleoside reverse transcriptase drug-resistant mutations L100I+K103N and K101E+G190S, which results in increased fitness. J Gen Virol 2013; 94:1597-1607. [PMID: 23535575 DOI: 10.1099/vir.0.050914-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The fitness of non-nucleoside reverse transcriptase inhibitor (NNRTI) drug-resistant reverse transcriptase (RT) mutants of HIV-1 correlates with the amount of RT in the virions and the RNase H activity of the RT. We wanted to understand the mechanism by which secondary NNRTI-resistance mutations, L100I and K101E, and the nucleoside resistance mutation, L74V, alter the fitness of K103N and G190S viruses. We measured the amount of RT in virions and the polymerization and RNase H activities of mutant RTs compared to wild-type, K103N and G190S. We found that L100I, K101E and L74V did not change the polymerization or RNase H activities of K103N or G190S RTs. However, L100I and K101E reduced the amount of RT in the virions and subsequent addition of L74V restored RT levels back to those of G190S or K103N alone. We conclude that fitness changes caused by L100I, K101E and L74V derive from their effects on RT content.
Collapse
Affiliation(s)
- Jiong Wang
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dongge Li
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Robert A Bambara
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hongmei Yang
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Carrie Dykes
- Department of Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
32
|
Johnson BC, Métifiot M, Ferris A, Pommier Y, Hughes SH. A homology model of HIV-1 integrase and analysis of mutations designed to test the model. J Mol Biol 2013; 425:2133-46. [PMID: 23542006 DOI: 10.1016/j.jmb.2013.03.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/15/2013] [Accepted: 03/16/2013] [Indexed: 01/26/2023]
Abstract
Although there are structures of the different domains of human immunodeficiency virus type 1 (HIV-1) integrase (IN), there is no structure of the entire protein. The recently determined crystal structures of the prototype foamy virus (PFV) IN tetramer, in complexes with viral DNA, led to the generation of models of full-length HIV-1 IN. These models were generated, in part, by superimposing the structures of the domains of HIV-1 IN onto the structure of full-length PFV IN. We developed a model for HIV-1 IN-based solely on its sequence alignment with PFV IN-that differs in several ways from the previous models. Specifically, in our model, the junction between the catalytic core domain and C-terminal domain adopts a helix-loop-helix motif that is similar to the corresponding segment of PFV IN and differs from the crystal structures of these two HIV-1 IN domains. The alignment of residues in the C-terminal domain also differs from the previous models. Our model can be used to explain the phenotype of previously published HIV-1 IN mutants. We made additional mutants, and the behavior of these new mutants provides additional support for the model.
Collapse
Affiliation(s)
- Barry C Johnson
- HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, P.O. Box B, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
33
|
Wang H, Jurado KA, Wu X, Shun MC, Li X, Ferris AL, Smith SJ, Patel PA, Fuchs JR, Cherepanov P, Kvaratskhelia M, Hughes SH, Engelman A. HRP2 determines the efficiency and specificity of HIV-1 integration in LEDGF/p75 knockout cells but does not contribute to the antiviral activity of a potent LEDGF/p75-binding site integrase inhibitor. Nucleic Acids Res 2012; 40:11518-30. [PMID: 23042676 PMCID: PMC3526291 DOI: 10.1093/nar/gks913] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The binding of integrase (IN) to lens epithelium-derived growth factor (LEDGF)/p75 in large part determines the efficiency and specificity of HIV-1 integration. However, a significant residual preference for integration into active genes persists in Psip1 (the gene that encodes for LEDGF/p75) knockout (KO) cells. One other cellular protein, HRP2, harbors both the PWWP and IN-binding domains that are important for LEDGF/p75 co-factor function. To assess the role of HRP2 in HIV-1 integration, cells generated from Hdgfrp2 (the gene that encodes for HRP2) and Psip1/Hdgfrp2 KO mice were infected alongside matched control cells. HRP2 depleted cells supported normal infection, while disruption of Hdgfrp2 in Psip1 KO cells yielded additional defects in the efficiency and specificity of integration. These deficits were largely restored by ectopic expression of either LEDGF/p75 or HRP2. The double-KO cells nevertheless supported residual integration into genes, indicating that IN and/or other host factors contribute to integration specificity in the absence of LEDGF/p75 and HRP2. Psip1 KO significantly increased the potency of an allosteric inhibitor that binds the LEDGF/p75 binding site on IN, a result that was not significantly altered by Hdgfrp2 disruption. These findings help to rule out the host factor-IN interactions as the primary antiviral targets of LEDGF/p75-binding site IN inhibitors.
Collapse
Affiliation(s)
- Hao Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.
Collapse
Affiliation(s)
- Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
35
|
Lee K, Mulky A, Yuen W, Martin TD, Meyerson NR, Choi L, Yu H, Sawyer SL, KewalRamani VN. HIV-1 capsid-targeting domain of cleavage and polyadenylation specificity factor 6. J Virol 2012; 86:3851-60. [PMID: 22301135 PMCID: PMC3302544 DOI: 10.1128/jvi.06607-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/19/2012] [Indexed: 12/27/2022] Open
Abstract
The antiviral factor CPSF6-358 restricts human immunodeficiency virus type 1 (HIV-1) infection through an interaction with capsid (CA), preventing virus nuclear entry and integration. HIV-1 acquires resistance to CPSF6-358 through an N74D mutation of CA that impairs binding of the antiviral factor. Here we examined the determinants within CPSF6-358 that are necessary for CA-specific interaction. Residues 314 to 322 include amino acids that are essential for CPSF6-358 restriction of HIV-1. Fusion of CPSF6 residues 301 to 358 to rhesus TRIM5α is also sufficient to restrict wild-type but not N74D HIV-1. Restriction is lost if CPSF6 residues in the amino acid 314 to 322 interaction motif are mutated. Examination of the CA targeting motif in CPSF6-358 did not reveal evidence of positive selection. Given the sensitivity of different primate lentiviruses to CPSF6-358 and apparent conservation of this interaction, our data suggest that CPSF6-358-mediated targeting of HIV-1 could provide a broadly effective antiviral strategy.
Collapse
Affiliation(s)
- KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute
| | - Alok Mulky
- HIV Drug Resistance Program, National Cancer Institute
| | - Wendy Yuen
- HIV Drug Resistance Program, National Cancer Institute
- SAIC-Frederick, Basic Science Program, Frederick, Maryland, USA
| | | | - Nicholas R. Meyerson
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Laura Choi
- HIV Drug Resistance Program, National Cancer Institute
| | - Hyun Yu
- HIV Drug Resistance Program, National Cancer Institute
| | - Sara L. Sawyer
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
36
|
Jiang J, Ablan S, Derebail S, Hercík K, Soheilian F, Thomas JA, Tang S, Hewlett I, Nagashima K, Gorelick RJ, Freed EO, Levin JG. The interdomain linker region of HIV-1 capsid protein is a critical determinant of proper core assembly and stability. Virology 2011; 421:253-65. [PMID: 22036671 PMCID: PMC3573886 DOI: 10.1016/j.virol.2011.09.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 08/17/2011] [Accepted: 09/14/2011] [Indexed: 11/20/2022]
Abstract
The HIV-1 capsid protein consists of two independently folded domains connected by a flexible peptide linker (residues 146-150), the function of which remains to be defined. To investigate the role of this region in virus replication, we made alanine or leucine substitutions in each linker residue and two flanking residues. Three classes of mutants were identified: (i) S146A and T148A behave like wild type (WT); (ii) Y145A, I150A, and L151A are noninfectious, assemble unstable cores with aberrant morphology, and synthesize almost no viral DNA; and (iii) P147L and S149A display a poorly infectious, attenuated phenotype. Infectivity of P147L and S149A is rescued specifically by pseudotyping with vesicular stomatitis virus envelope glycoprotein. Moreover, despite having unstable cores, these mutants assemble WT-like structures and synthesize viral DNA, although less efficiently than WT. Collectively, these findings demonstrate that the linker region is essential for proper assembly and stability of cores and efficient replication.
Collapse
Affiliation(s)
- Jiyang Jiang
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Sherimay Ablan
- Virus-Cell Interaction Section, Drug Resistance Program, National Cancer Institute Frederick, Frederick, MD 21702-1201, USA
| | - Suchitra Derebail
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Kamil Hercík
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| | - Ferri Soheilian
- Image Analysis Laboratory, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - James A. Thomas
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Shixing Tang
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Indira Hewlett
- Laboratory of Molecular Virology, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | - Kunio Nagashima
- Image Analysis Laboratory, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD 21702-1201, USA
| | - Eric O. Freed
- Virus-Cell Interaction Section, Drug Resistance Program, National Cancer Institute Frederick, Frederick, MD 21702-1201, USA
| | - Judith G. Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health, National Institutes of Health, Building 6B, Room 216, 6 Center Drive, Bethesda, MD 20892-2780, USA
| |
Collapse
|
37
|
Davis CA, Parniak MA, Hughes SH. The effects of RNase H inhibitors and nevirapine on the susceptibility of HIV-1 to AZT and 3TC. Virology 2011; 419:64-71. [PMID: 21907380 DOI: 10.1016/j.virol.2011.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/04/2011] [Accepted: 08/17/2011] [Indexed: 11/19/2022]
Abstract
It was recently proposed that HIV RT mutations that decrease RNase H activity increase zidovudine (AZT) resistance by delaying the degradation of the RNA template, allowing more time for AZTMP excision from the 3' end of the viral DNA. This predicts that suboptimal concentrations of an RNase H Inhibitor (RNHI), which would decrease RNaseH activity, would decrease AZT susceptibility. Conversely, a suboptimal concentration of a nonnucleoside RT inhibitor (NNRTI) would decrease polymerase activity and increase AZT susceptibility. We determined the effect of several RNHIs and an NNRTI (nevirapine) on AZT and lamivudine (3TC) susceptibility with vectors that replicate using WT or AZT resistant RTs. Susceptibility to 3TC, which is not readily excised, did not change significantly. Nevirapine, and most RNHIs tested, had only small effects on the susceptibility of either HIV vector to AZT and 3TC. One RNHI, F0444-0019, increased the IC(50) for AZT for either vector by ~5-fold, which may be a concern.
Collapse
Affiliation(s)
- Caroline A Davis
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA
| | | | | |
Collapse
|
38
|
Nonnucleoside reverse transcriptase inhibitor-resistant HIV is stimulated by efavirenz during early stages of infection. J Virol 2011; 85:10861-73. [PMID: 21835788 DOI: 10.1128/jvi.05116-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nonnucleoside reverse transcriptase inhibitors (NNRTIs) are potent and commonly prescribed antiviral agents used in combination therapy (CART) of human immunodeficiency virus type 1 (HIV-1) infection. The development of drug resistance is a major limitation of CART. Reverse transcriptase (RT) genotypes with the NNRTI resistance mutations K101E+G190S are highly resistant to efavirenz (EFV) and can develop during failure of EFV-containing regimens in patients. We have previously shown that virus with K101E+G190S mutations can replicate more efficiently in the presence of EFV than in its absence. In this study, we evaluated the underlying mechanism for drug-dependent stimulation, using a single-cycle cell culture assay in which EFV was added either during the infection or the virus production step. We determined that EFV stimulates K101E+G190S virus during early infection and does not affect late steps of virus replication, such as increasing the amount of active RT incorporated into virions. Additionally, we showed that another NNRTI, nevirapine (NVP), stimulated K101E+G190S virus replication during the early steps of infection similar to EFV, but that the newest NNRTI, etravirine (ETR), did not. We also showed that EFV stimulates K101E+Y188L and K101E+V106I virus, but not K101E+L100I, K101E+K103N, K101E+Y181C, or K101E+G190A virus, suggesting that the stimulation is mutation specific. Real-time PCR of reverse transcription intermediates showed that although the drug did not stimulate minus-strand transfer, it did stimulate minus-strand strong-stop DNA synthesis. Our results indicate that stimulation most likely occurs through a mechanism whereby NNRTIs stimulate priming or elongation of the tRNA.
Collapse
|
39
|
Joshi P, Stoddart CA. Impaired infectivity of ritonavir-resistant HIV is rescued by heat shock protein 90AB1. J Biol Chem 2011; 286:24581-92. [PMID: 21602280 PMCID: PMC3137033 DOI: 10.1074/jbc.m111.248021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 05/19/2011] [Indexed: 12/18/2022] Open
Abstract
Certain ritonavir resistance mutations impair HIV infectivity through incomplete Gag processing by the mutant viral protease. Analysis of the mutant virus phenotype indicates that accumulation of capsid-spacer peptide 1 precursor protein in virus particles impairs HIV infectivity and that the protease mutant virus is arrested during the early postentry stage of HIV infection before proviral DNA synthesis. However, activation of the target cell can rescue this defect, implying that specific host factors expressed in activated cells can compensate for the defect in ritonavir-resistant HIV. This ability to rescue impaired HIV replication presented a unique opportunity to identify host factors involved in postentry HIV replication, and we designed a functional genetic screen so that expression of a given host factor extracted from activated T cells would lead directly to its discovery by rescuing mutant virus replication in nonactivated T cells. We identified the cellular heat shock protein 90 kDa α (cytosolic), class B member 1 (HSP90AB1) as a host factor that can rescue impaired replication of ritonavir-resistant HIV. Moreover, we show that pharmacologic inhibition of HSP90AB1 with 17-(allylamino)-17-demethoxygeldanamycin (tanespimycin) has potent in vitro anti-HIV activity and that ritonavir-resistant HIV is hypersensitive to the drug. These results suggest a possible role for HSP90AB1 in postentry HIV replication and may provide an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Pheroze Joshi
- From the Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California 94110
| | - Cheryl A. Stoddart
- From the Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, California 94110
| |
Collapse
|
40
|
The requirement for nucleoporin NUP153 during human immunodeficiency virus type 1 infection is determined by the viral capsid. J Virol 2011; 85:7818-27. [PMID: 21593146 DOI: 10.1128/jvi.00325-11] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Lentiviruses likely infect nondividing cells by commandeering host nuclear transport factors to facilitate the passage of their preintegration complexes (PICs) through nuclear pore complexes (NPCs) within nuclear envelopes. Genome-wide small interfering RNA screens previously identified karyopherin β transportin-3 (TNPO3) and NPC component nucleoporin 153 (NUP153) as being important for infection by human immunodeficiency virus type 1 (HIV-1). The knockdown of either protein significantly inhibited HIV-1 infectivity, while infection by the gammaretrovirus Moloney murine leukemia virus (MLV) was unaffected. Here, we establish that primate lentiviruses are particularly sensitive to NUP153 knockdown and investigate HIV-1-encoded elements that contribute to this dependency. Mutants lacking functional Vpr or the central DNA flap remained sensitive to NUP153 depletion, while MLV/HIV-1 chimera viruses carrying MLV matrix, capsid, or integrase became less sensitive when the latter two elements were substituted. Two capsid missense mutant viruses, N74D and P90A, were largely insensitive to NUP153 depletion, as was wild-type HIV-1 when cyclophilin A was depleted simultaneously or when infection was conducted in the presence of cyclosporine A. The codepletion of NUP153 and TNPO3 yielded synergistic effects that outweighed those calculated based on individual knockdowns, indicating potential interdependent roles for these factors during HIV-1 infection. Quantitative PCR revealed normal levels of late reverse transcripts, a moderate reduction of 2-long terminal repeat (2-LTR) circles, and a relatively large reduction in integrated proviruses upon NUP153 knockdown. These results suggest that capsid, likely by the qualities of its uncoating, determines whether HIV-1 requires cellular NUP153 for PIC nuclear import.
Collapse
|
41
|
Vu BC, Boyer PL, Siddiqui MA, Marquez VE, Hughes SH. 4'-C-methyl-2'-deoxyadenosine and 4'-C-ethyl-2'-deoxyadenosine inhibit HIV-1 replication. Antimicrob Agents Chemother 2011; 55:2379-89. [PMID: 21343443 PMCID: PMC3088259 DOI: 10.1128/aac.01290-10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 02/16/2011] [Indexed: 11/20/2022] Open
Abstract
It is important to develop new anti-HIV drugs that are effective against the existing drug-resistant mutants. Because the excision mechanism is an important pathway for resistance to nucleoside analogs, we are preparing analogs that retain a 3'-OH and can be extended after they are incorporated by the viral reverse transcriptase. We show that 4'-C-alkyl-deoxyadenosine (4'-C-alkyl-dA) compounds can be phosphorylated in cultured cells and can inhibit the replication of HIV-1 vectors: 4'-C-methyl- and 4'-C-ethyl-dA show both efficacy and selectivity against HIV-1. The compounds are also effective against viruses that replicate using reverse transcriptases (RTs) that carry nucleoside reverse transcriptase inhibitor resistance mutations, with the exception of the M184V mutant. Analysis of viral DNA synthesis in infected cells showed that viral DNA synthesis is blocked by the incorporation of either 4'-C-methyl- or 4'-C-ethyl-2'-deoxyadenosine. In vitro experiments with purified HIV-1 RT showed that 4'-C-methyl-2'-dATP can compete with dATP and that incorporation of the analog causes pausing in DNA synthesis. The 4'-C-ethyl compound also competes with dATP and shows a differential ability to block DNA synthesis on RNA and DNA templates. Experiments that measure the ability of the compounds to block DNA synthesis in infected cells suggest that this differential block to DNA synthesis also occurs in infected cells.
Collapse
Affiliation(s)
- B. Christie Vu
- HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21702
| | - Paul L. Boyer
- HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21702
| | | | - Victor E. Marquez
- Laboratory of Medicinal Chemistry, NCI-Frederick, Frederick, Maryland 21702
| | - Stephen H. Hughes
- HIV Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21702
| |
Collapse
|
42
|
Piekna-Przybylska D, Bambara RA. Requirements for efficient minus strand strong-stop DNA transfer in human immunodeficiency virus 1. RNA Biol 2011; 8:230-6. [PMID: 21444998 DOI: 10.4161/rna.8.2.14802] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
After HIV-1 enters a human cell, its RNA genome is converted into double stranded DNA during the multistep process of reverse transcription. First (minus) strand DNA synthesis is initiated near the 5' end of the viral RNA, where only a short fragment of the genome is copied. In order to continue DNA synthesis the virus employs a complicated mechanism, which enables transferring of the growing minus strand DNA to a remote position at the genomic 3' end. This is called minus strand DNA transfer. The transfer enables regeneration of long terminal repeat sequences, which are crucial for viral genomic DNA integration into the host chromosome. Numerous factors have been identified that stimulate minus strand DNA transfer. In this review we focus on describing protein-RNA and RNA-RNA interactions, as well as RNA structural features, known to facilitate this step in reverse transcription.
Collapse
Affiliation(s)
- Dorota Piekna-Przybylska
- Department of Biochemistry and Biophysics, and the Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | | |
Collapse
|
43
|
Ohishi M, Nakano T, Sakuragi S, Shioda T, Sano K, Sakuragi JI. The relationship between HIV-1 genome RNA dimerization, virion maturation and infectivity. Nucleic Acids Res 2010; 39:3404-17. [PMID: 21186186 PMCID: PMC3082877 DOI: 10.1093/nar/gkq1314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between virion protein maturation and genomic RNA dimerization of human immunodeficiency virus type 1 (HIV-1) remains incompletely understood. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. Within the virion maturation process, the RNA dimer stabilization begins during the primary cleavage (p2-NC) of Pr55 Gag. However, the primary cleavage alone is not sufficient, and the ensuing cleavages are required for the completion of dimerization. From our observations, the increase of cleavage products may not put a threshold on the transition from fragile to stable dimeric RNA. Most of the RNA dimerization process did not require viral core formation, and particle morphology dynamics during viral maturation did not completely synchronize with the transition of dimeric RNA status. Although the endogenous virion RT activity was fully acquired at the initial step of maturation, the following process was necessary for viral DNA production in infected cell, suggesting the maturation of viral RNA/protein plays critical role for viral infectivity other than RT process.
Collapse
Affiliation(s)
- Masahisa Ohishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Van Cor-Hosmer SK, Daddacha W, Kim B. Mechanistic interplay among the M184I HIV-1 reverse transcriptase mutant, the central polypurine tract, cellular dNTP concentrations and drug sensitivity. Virology 2010; 406:253-60. [PMID: 20701944 DOI: 10.1016/j.virol.2010.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/23/2010] [Accepted: 07/17/2010] [Indexed: 12/31/2022]
Abstract
We recently reported that the M184I 3TC resistant mutation reduces RT binding affinity to dNTP substrates. First, the HIV-1 M184I mutant vector displays reduced transduction efficiency compared to wild type (WT) RT vector, which could be rescued by both elevating the cellular dNTP concentration and incorporating WT RT molecules into the M184I vector particles. Second, the central polypurine tract (cPPT) mutation and M184I mutation additively reduced the vector transduction to almost undetectable levels, particularly in nondividing cells. Third, the M184I (-) cPPT vector became significantly more sensitive to 3TC than the M184I (+) cPPT vector, but not to AZT or Nevirapine in the dividing cells. Finally, this 3TC sensitizing effect of the cPPT inactivation of the M184I vector was reversed by elevating the dCTP level, but not by the other three dNTPs. These data support a mechanistic interaction between cPPT and M184I RT with respect to viral replication and sensitivity to 3TC.
Collapse
Affiliation(s)
- Sarah K Van Cor-Hosmer
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
45
|
Reduced fitness in cell culture of HIV-1 with nonnucleoside reverse transcriptase inhibitor-resistant mutations correlates with relative levels of reverse transcriptase content and RNase H activity in virions. J Virol 2010; 84:9377-89. [PMID: 20592075 DOI: 10.1128/jvi.00618-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTIs) are important components of multidrug therapy for HIV-1. Understanding the effect of NNRTI-resistant mutants on virus replication and reverse transcriptase (RT) function is valuable for the development of extended-spectrum NNRTIs. We measured the fitness of six NNRTI-resistant mutants, the K103N, V106A, Y181C, G190A, G190S, and P236L viruses, using a flow cytometry-based cell culture assay. K103N and Y181C viruses had fitness similar to that of the wild type while V106A, G190A, G190S, and P236L viruses had reduced fitness. We also determined the biochemical correlates of fitness by measuring the RNase H and polymerization activities of recombinant mutant RTs and virion-associated RTs. The RNase H activities of recombinant and virion-associated RTs correlated with the relative fitness for each mutant. K103N and Y181C mutants had normal RNase H activity; V106A, G190A, and G190S mutants had moderate reductions in activity; and the P236L mutant had substantially reduced activity. With the exception of the P236L mutant, reduced fitness correlates with low virion-associated polymerization efficiency and reduced RT content. Reduced polymerase function in virions derived from low RT content rather than an intrinsic polymerization defect in each RT protein. In conclusion, severe defects in RNase H activity alone, exemplified by the P236L mutant, appear sufficient to cause a substantial reduction in fitness. For the other NNRTI mutants, reductions in RT content decreased both polymerization and RNase H activity in virions. RNase H reduction was compounded by intrinsic RNase H defects in the mutant RTs.
Collapse
|
46
|
Ferris AL, Wu X, Hughes CM, Stewart C, Smith SJ, Milne TA, Wang GG, Shun MC, Allis CD, Engelman A, Hughes SH. Lens epithelium-derived growth factor fusion proteins redirect HIV-1 DNA integration. Proc Natl Acad Sci U S A 2010; 107:3135-40. [PMID: 20133638 PMCID: PMC2840313 DOI: 10.1073/pnas.0914142107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lens epithelium-derived growth factor (LEDGF) fusion proteins can direct HIV-1 DNA integration to novel sites in the host genome. The C terminus of LEDGF contains an integrase binding domain (IBD), and the N terminus binds chromatin. LEDGF normally directs integrations to the bodies of expressed genes. Replacing the N terminus of LEDGF with chromatin binding domains (CBDs) from other proteins changes the specificity of HIV-1 DNA integration. We chose two well-characterized CBDs: the plant homeodomain (PHD) finger from ING2 and the chromodomain from heterochromatin binding protein 1alpha (HP1alpha). The ING2 PHD finger binds H3K4me3, a histone mark that is associated with the transcriptional start sites of expressed genes. The HP1alpha chromodomain binds H3K9me2,3, histone marks that are widely distributed throughout the genome. A fusion protein in which the ING2 PHD finger was linked to the LEDGF IBD directed integrations near the start sites of expressed genes. A similar fusion protein in which the HP1alpha chromodomain was linked to the LEDGF IBD directed integrations to sites that differed from both the PHD finger fusion-directed and LEDGF-directed integration sites. The ability to redirect HIV-1 DNA integration may help solve the problems associated with the activation of oncogenes when retroviruses are used in gene therapy.
Collapse
Affiliation(s)
- Andrea L. Ferris
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Xiaolin Wu
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., Frederick, MD 21702
| | - Christina M. Hughes
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Claudia Stewart
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., Frederick, MD 21702
| | - Steven J. Smith
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| | - Thomas A. Milne
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Gang G. Wang
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Ming-Chieh Shun
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - C. David Allis
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY 10065; and
| | - Alan Engelman
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115
| | - Stephen H. Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702
| |
Collapse
|
47
|
Furtak V, Mulky A, Rawlings SA, Kozhaya L, Lee K, KewalRamani VN, Unutmaz D. Perturbation of the P-body component Mov10 inhibits HIV-1 infectivity. PLoS One 2010; 5:e9081. [PMID: 20140200 PMCID: PMC2816699 DOI: 10.1371/journal.pone.0009081] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/11/2010] [Indexed: 11/19/2022] Open
Abstract
Exogenous retroviruses are obligate cellular parasites that co-opt a number of host proteins and functions to enable their replication and spread. Several host factors that restrict HIV and other retroviral infections have also recently been described. Here we demonstrate that Mov10, a protein associated with P-bodies that has a putative RNA-helicase domain, when overexpressed in cells can inhibit the production of infectious retroviruses. Interestingly, reducing the endogenous Mov10 levels in virus-producing cells through siRNA treatment also modestly suppresses HIV infectivity. The actions of Mov10 are not limited to HIV, however, as ectopic expression of Mov10 restricts the production of other lentiviruses as well as the gammaretrovirus, murine leukemia virus. We found that HIV produced in the presence of high levels of Mov10 is restricted at the pre-reverse transcription stage in target cells. Finally, we show that either helicase mutation or truncation of the C-terminal half of Mov10, where a putative RNA-helicase domain is located, maintained most of its HIV inhibition; whereas removing the N-terminal half of Mov10 completely abolished its activity on HIV. Together these results suggest that Mov10 could be required during the lentiviral lifecycle and that its perturbation disrupts generation of infectious viral particles. Because Mov10 is implicated as part of the P-body complex, these findings point to the potential role of cytoplasmic RNA processing machinery in infectious retroviral production.
Collapse
Affiliation(s)
- Vyacheslav Furtak
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alok Mulky
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Stephen A. Rawlings
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Lina Kozhaya
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - KyeongEun Lee
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Vineet N. KewalRamani
- HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland, United States of America
- * E-mail: (VK); (DU)
| | - Derya Unutmaz
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (VK); (DU)
| |
Collapse
|
48
|
Carmo M, Dias JD, Panet A, Coroadinha AS, Carrondo MJT, Alves PM, Cruz PE. Thermosensitivity of the reverse transcription process as an inactivation mechanism of lentiviral vectors. Hum Gene Ther 2010; 20:1168-76. [PMID: 19537947 DOI: 10.1089/hum.2009.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Lentiviral vectors are an important tool for gene transfer research and gene therapy purposes. However, the low stability of these vectors affects their production, storage, and efficacy in preclinical and clinical settings. In the present work the mechanism underlying the thermosensitivity of lentiviral vectors was evaluated. For lentiviral vectors pseudotyped with amphotropic and RDpro envelopes, the capacity to perform reverse transcription was lost rapidly at 37 degrees C, in high correlation with the loss of infectivity. The vector with RDpro envelope presented a higher level of stability than that with amphotropic envelope for both the reverse transcription process and viral infectivity. Reverse transcriptase enzyme inactivation and viral template RNA degradation were not implicated in the loss of the viral capacity to perform reverse transcription. Furthermore, early entry steps in the infection process do not determine the rate of viral inactivation, as the amount of viral RNA and p24 protein entering the cells decreased slowly for both vectors. Taken together, it can be concluded that the reverse transcription process is thermolabile and thus determines the rate of lentiviral inactivation. Strategies to stabilize the reverse transcription process should be pursued to improve the applicability of lentiviral vectors in gene therapy.
Collapse
Affiliation(s)
- M Carmo
- Instituto de Tecnologia Química e Biológica-Universidade Nova de Lisboa/Instituto de Biologia Experimental e Tecnológica (ITQB-UNL/IBET), P-2781-901 Oeiras, Portugal
| | | | | | | | | | | | | |
Collapse
|
49
|
Maegawa H, Miyamoto T, Sakuragi JI, Shioda T, Nakayama EE. Contribution of RING domain to retrovirus restriction by TRIM5alpha depends on combination of host and virus. Virology 2010; 399:212-20. [PMID: 20110098 DOI: 10.1016/j.virol.2010.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/08/2009] [Accepted: 01/05/2010] [Indexed: 11/30/2022]
Abstract
The anti-retroviral restriction factor TRIM5alpha contains the RING domain, which is frequently observed in E3 ubiquitin ligases. It was previously proposed that TRIM5alpha restricts human immunodeficiency virus type 1 (HIV-1) via proteasome-dependent and -independent pathways. Here we examined the effects of RING domain mutations on retrovirus restriction by TRIM5alpha in various combinations of virus and host species. Simian immunodeficiency virus isolated from macaque (SIVmac) successfully avoided attacks by RING mutants of African green monkey (AGM)-TRIM5alpha that could still restrict HIV-1. Addition of proteasome inhibitor did not affect the anti-HIV-1 activity of AGM-TRIM5alpha, whereas it disrupted at least partly its anti-SIVmac activity. In the case of mutant human TRIM5alpha carrying proline at the position 332, however, both HIV-1 and SIVmac restrictions were eliminated as a result of RING domain mutations. These results suggested that the mechanisms of retrovirus restriction by TRIM5alpha vary depending on the combination of host and virus.
Collapse
Affiliation(s)
- Hikoichiro Maegawa
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
50
|
Dunn LL, McWilliams MJ, Das K, Arnold E, Hughes SH. Mutations in the thumb allow human immunodeficiency virus type 1 reverse transcriptase to be cleaved by protease in virions. J Virol 2009; 83:12336-44. [PMID: 19759158 PMCID: PMC2786724 DOI: 10.1128/jvi.00676-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 09/04/2009] [Indexed: 02/07/2023] Open
Abstract
Although human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) has been extensively studied, there are still significant questions about the effects of mutations on the maturation and stability of RT. We show here that a significant fraction (>80%) of the single point mutations we generated in the thumb subdomain of HIV-1 (RT) affect the stability of RT in virions. Fragments of the unstable mutant RTs can be detected in Western blots of virion proteins; however, the degree of degradation varies. The titers of the mutants whose virions contain degraded RTs are reduced. Some, but not all, of the unstable RT thumb subdomain mutants we analyzed have a temperature-sensitive phenotype. A preliminary survey of mutations in other subdomains of RT shows that some of these mutations also destabilize RT. The stability of the RT mutants is enhanced by the addition of a protease inhibitor, suggesting that the viral protease plays an important role in the degradation of the mutant RTs. These results confirm and extend earlier reports of mutations that affect the stability of RT in virions. The data suggest that the stability of a mutant RT in virions could be a major factor in determining the virus titer and, by extension, viral fitness, which could affect whether a mutation in RT is acceptable to the virus.
Collapse
Affiliation(s)
- Linda L. Dunn
- HIV-Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21701, Rutgers University, Department of Chemistry and Chemical Biology, Piscataway, New Jersey 08854
| | - Mary Jane McWilliams
- HIV-Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21701, Rutgers University, Department of Chemistry and Chemical Biology, Piscataway, New Jersey 08854
| | - Kalyan Das
- HIV-Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21701, Rutgers University, Department of Chemistry and Chemical Biology, Piscataway, New Jersey 08854
| | - Eddy Arnold
- HIV-Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21701, Rutgers University, Department of Chemistry and Chemical Biology, Piscataway, New Jersey 08854
| | - Stephen H. Hughes
- HIV-Drug Resistance Program, NCI-Frederick, Frederick, Maryland 21701, Rutgers University, Department of Chemistry and Chemical Biology, Piscataway, New Jersey 08854
| |
Collapse
|