1
|
Fu H, Pan D. Mechanisms of HSV gene regulation during latency and reactivation. Virology 2025; 602:110324. [PMID: 39626607 DOI: 10.1016/j.virol.2024.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/16/2024] [Accepted: 11/27/2024] [Indexed: 12/15/2024]
Abstract
Herpes simplex virus 1 and 2 (HSV-1 and HSV-2) are prevalent human pathogens associated with many diseases. After productive (lytic) infection in peripheral tissues, HSV establishes lifelong latent infection in neurons of the peripheral nervous system. Periodic reactivation from latency, triggered by certain stimuli, can resume the lytic cycle. Lytic infection, latent infection and reactivation follow distinct viral gene expression patterns. The switch between the different infection programs is controlled by complicated regulatory mechanisms involving numerous viral and host molecules. Recent studies integrating cutting-edge technologies including neuronal culture techniques have greatly improved our understanding of the molecular details of latency and reactivation but many questions remain. This review summarizes the current knowledge about how HSV gene expression is regulated during latency and reactivation and discusses the important questions remaining to be addressed in future.
Collapse
Affiliation(s)
- Hui Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dongli Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Singh N, Zachariah S, Phillips AT, Tscharke D. Lytic promoter activity during herpes simplex virus latency is dependent on genome location. J Virol 2024; 98:e0125824. [PMID: 39431845 PMCID: PMC11575402 DOI: 10.1128/jvi.01258-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) is a significant pathogen that establishes lifelong latent infections with intermittent episodes of resumed disease. In mouse models of HSV infection, sporadic low-level lytic gene expression has been detected during latency in the absence of reactivation events that lead to production of new viruses. This viral activity during latency has been reported using a sensitive Cre-marking model for several lytic gene promoters placed in one location in the HSV-1 genome. Here, we extend these findings in the same model by examining first, the activity of an ectopic lytic gene promoter in several places in the genome and second, whether any promoters might be active in their natural context. We found that Cre expression was detected during latency from ectopic and native promoters, but only in locations near the ends of the unique long genome segment. This location is significant because it is in close proximity to the region from which latency-associated transcripts (LATs) are derived. These results show that native HSV-1 lytic gene promoters can produce protein products during latency, but that this activity is only detectable when they are located close to the LAT locus.IMPORTANCEHSV is a significant human pathogen and the best studied model of mammalian virus latency. Traditionally, the active (lytic) and inactive (latent) phases of infection were considered to be distinct, but the notion of latency being entirely quiescent is evolving due to the detection of some lytic gene expression during latency. Here, we add to this literature by finding that the activity can be found for native lytic gene promoters as well as for constructs placed ectopically in the HSV genome. However, this activity was only detectable when these promoters were located close by a region known to be transcriptionally active during latency. These data have implications for our understanding of HSV gene regulation during latency and the extent to which transcriptionally active regions are insulated from adjacent parts of the viral genome.
Collapse
Affiliation(s)
- Navneet Singh
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Sherin Zachariah
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Aaron T Phillips
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - David Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
3
|
Mazzara PG, Criscuolo E, Rasponi M, Massimino L, Muggeo S, Palma C, Castelli M, Clementi M, Burioni R, Mancini N, Broccoli V, Clementi N. A Human Stem Cell-Derived Neurosensory–Epithelial Circuitry on a Chip to Model Herpes Simplex Virus Reactivation. Biomedicines 2022; 10:biomedicines10092068. [PMID: 36140168 PMCID: PMC9495731 DOI: 10.3390/biomedicines10092068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Both emerging viruses and well-known viral pathogens endowed with neurotropism can either directly impair neuronal functions or induce physio-pathological changes by diffusing from the periphery through neurosensory–epithelial connections. However, developing a reliable and reproducible in vitro system modeling the connectivity between the different human sensory neurons and peripheral tissues is still a challenge and precludes the deepest comprehension of viral latency and reactivation at the cellular and molecular levels. This study shows a stable topographic neurosensory–epithelial connection on a chip using human stem cell-derived dorsal root ganglia (DRG) organoids. Bulk and single-cell transcriptomics showed that different combinations of key receptors for herpes simplex virus 1 (HSV-1) are expressed by each sensory neuronal cell type. This neuronal–epithelial circuitry enabled a detailed analysis of HSV infectivity, faithfully modeling its dynamics and cell type specificity. The reconstitution of an organized connectivity between human sensory neurons and keratinocytes into microfluidic chips provides a powerful in vitro platform for modeling viral latency and reactivation of human viral pathogens.
Collapse
Affiliation(s)
| | - Elena Criscuolo
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Luca Massimino
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Sharon Muggeo
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Cecilia Palma
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy
| | - Matteo Castelli
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- National Research Council (CNR), Institute of Neuroscience, 20129 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Hospital, 20132 Milan, Italy
- Correspondence: (V.B.); (N.C.); Tel.: +39-022-643-4616 (V.B.); +39-022-643-3144 (N.C.)
| |
Collapse
|
4
|
Kennedy PGE, Mogensen TH, Cohrs RJ. Recent Issues in Varicella-Zoster Virus Latency. Viruses 2021; 13:v13102018. [PMID: 34696448 PMCID: PMC8540691 DOI: 10.3390/v13102018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Varicella-zoster virus (VZV) is a human herpes virus which causes varicella (chicken pox) as a primary infection, and, following a variable period of latency in neurons in the peripheral ganglia, may reactivate to cause herpes zoster (shingles) as well as a variety of neurological syndromes. In this overview we consider some recent issues in alphaherpesvirus latency with special focus on VZV ganglionic latency. A key question is the nature and extent of viral gene transcription during viral latency. While it is known that this is highly restricted, it is only recently that the very high degree of that restriction has been clarified, with both VZV gene 63-encoded transcripts and discovery of a novel VZV transcript (VLT) that maps antisense to the viral transactivator gene 61. It has also emerged in recent years that there is significant epigenetic regulation of VZV gene transcription, and the mechanisms underlying this are complex and being unraveled. The last few years has also seen an increased interest in the immunological aspects of VZV latency and reactivation, in particular from the perspective of inborn errors of host immunity that predispose to different VZV reactivation syndromes.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK
- Correspondence:
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark;
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Randall J. Cohrs
- Department of Neurology, University of Colorado School of Medicine, 80045 Aurora, CO, USA
| |
Collapse
|
5
|
Jiang H, Wu J, Liu X, Lu R, Zhou M, Chen M, Liu Y, Zhou GG, Fu W. Termination of Transcription of LAT Increases the Amounts of ICP0 mRNA but Does Not Alter the Course of HSV-1 Infection in Latently Infected Murine Ganglia. Virol Sin 2020; 36:264-272. [PMID: 32894405 DOI: 10.1007/s12250-020-00287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/31/2020] [Indexed: 11/26/2022] Open
Abstract
On entering sensory ganglia, herpes simplex viruses 1 (HSV-1) establishes a latent infection with the synthesis of a latency associated transcript (LAT) or initiates productive infection with expression of a set of immediate early viral proteins. The precise mechanisms how expression of α genes is suppressed during the latency are unknown. One mechanism that has been proposed is illustrated in the case of ICP0, a key immediate early viral regulatory protein. Specifically, the 2 kb LAT intron is complementary to the 3' terminal portion of ICP0 mRNA. To test the hypothesis that accumulation of LAT negatively affects the accumulation of ICP0 mRNA, we inserted a DNA fragment encoding two poly(A) sequences into LAT to early terminate LAT transcript without interrupting the complementary sequence of ICP0 transcript (named as SR1603). Comparisons of the parent (SR1601) and mutant (SR1603) HSV-1 viruses showed the following: Neurons harboring latent SR1603 virus accumulated equivalent amounts of viral DNA but higher amounts of ICP0 mRNA and lower amounts of LAT, when compared to neurons harboring the SR1601 virus. One notable difference between the two viruses is that viral RNA accumulation in explanted ganglia harboring SR1603 virus initiated significantly sooner than that in neurons harboring SR1601 virus, suggesting that ICP0 may act as an activator of viral gene expression in permissive cells. Collectively, these data suggest that increased ICP0 mRNA by suppressed LAT did not affect the establishment of latency in latently infected murine ganglia.
Collapse
Affiliation(s)
- Haifang Jiang
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiaming Wu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xianjie Liu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, China
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Manling Zhou
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Meiling Chen
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yonghong Liu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, China.
| | - Wenmin Fu
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116, China.
| |
Collapse
|
6
|
Wang E, Ye Y, Zhang K, Yang J, Gong D, Zhang J, Hong R, Zhang H, Li L, Chen G, Yang L, Liu J, Cao H, Du T, Fraser NW, Cheng L, Cao X, Zhou J. Longitudinal transcriptomic characterization of viral genes in HSV-1 infected tree shrew trigeminal ganglia. Virol J 2020; 17:95. [PMID: 32641145 PMCID: PMC7341572 DOI: 10.1186/s12985-020-01344-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/01/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Following acute infection, Herpes Simplex virus-1 (HSV-1) establishes lifelong latency and recurrent reactivation in the sensory neurons of trigeminal ganglia (TG). Infected tree shrew differs from mouse and show characteristics similar to human infection. A detailed transcriptomic analysis of the tree shrew model could provide mechanistic insights into HSV-1 infection in humans. METHODS We sequenced the transcriptome of infected TGs from tree shrews and mice, and 4 human donors, then examined viral genes expression up to 58 days in infected TGs from mouse and tree shrew, and compare the latency data with that in human TGs. RESULTS Here, we found that all HSV-1 genes could be detected in mouse TGs during acute infection, but 22 viral genes necessary for viral transcription, replication and viral maturation were not expressed in tree shrew TGs during this stage. Importantly, during latency, we found that LAT could be detected both in mouse and tree shrew, but the latter also has an ICP0 transcript signal absent in mouse but present in human samples. Importantly, we observed that infected human and tree shrew TGs have a more similar LAT region transcription peak. More importantly, we observed that HSV-1 spontaneously reactivates from latently infected tree shrews with relatively high efficiency. CONCLUSIONS These results represent the first longitudinal transcriptomic characterization of HSV-1 infection in during acute, latency and recurrent phases, and revealed that tree shrew infection has important similar features with human infection.
Collapse
Affiliation(s)
- Erlin Wang
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunshuang Ye
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Zhang
- Key Laboratory of Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China.,Department of medicine laboratory, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450003, Henan, China
| | - Jinlong Yang
- BGI-Yunnan, BGI-Shenzhen, Kunming, 650000, Yunnan, China.,College of Forensic Science, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Daohua Gong
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, 200063, China
| | - Renjun Hong
- School of Forensic Medicine, Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Huan Zhang
- School of Forensic Medicine, Kunming Medical University, Kunming, 650101, Yunnan, China
| | - Lihong Li
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Guijun Chen
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Liping Yang
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jianmei Liu
- BGI-Yunnan, BGI-Shenzhen, Kunming, 650000, Yunnan, China
| | - Hanyu Cao
- Key Laboratory of Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Ting Du
- Key Laboratory of Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China
| | - Nigel W Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104, USA
| | - Le Cheng
- BGI-Yunnan, BGI-Shenzhen, Kunming, 650000, Yunnan, China.
| | - Xia Cao
- Key Laboratory of Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, China.
| | - Jumin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanism of the Chinese Academy of Science/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|
7
|
The HSV-1 ubiquitin ligase ICP0: Modifying the cellular proteome to promote infection. Virus Res 2020; 285:198015. [PMID: 32416261 PMCID: PMC7303953 DOI: 10.1016/j.virusres.2020.198015] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
ICP0 is a viral E3 ubiquitin ligase that promotes HSV-1 infection. ICP0 interacts with multiple component proteins of the ubiquitin pathway. ICP0 disrupts multiple cellular processes activated in response to infection ICP0 remodels the SUMO proteome to counteract host immune defences to infection. ICP0 is an attractive drug target for the development of antiviral HSV-1 therapeutics.
Herpes simplex virus 1 (HSV-1) hijacks ubiquitination machinery to modify the cellular proteome to create an environment permissive for virus replication. HSV-1 encodes its own RING-finger E3 ubiquitin (Ub) ligase, Infected Cell Protein 0 (ICP0), that directly interfaces with component proteins of the Ub pathway to inactivate host immune defences and cellular processes that restrict the progression of HSV-1 infection. Consequently, ICP0 plays a critical role in the infectious cycle of HSV-1 that is required to promote the efficient onset of lytic infection and productive reactivation of viral genomes from latency. This review will describe the current knowledge regarding the biochemical properties and known substrates of ICP0 during HSV-1 infection. We will highlight the gaps in the characterization of ICP0 function and propose future areas of research required to understand fully the biological properties of this important HSV-1 regulatory protein.
Collapse
|
8
|
Weidner-Glunde M, Kruminis-Kaszkiel E, Savanagouder M. Herpesviral Latency-Common Themes. Pathogens 2020; 9:E125. [PMID: 32075270 PMCID: PMC7167855 DOI: 10.3390/pathogens9020125] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/09/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Latency establishment is the hallmark feature of herpesviruses, a group of viruses, of which nine are known to infect humans. They have co-evolved alongside their hosts, and mastered manipulation of cellular pathways and tweaking various processes to their advantage. As a result, they are very well adapted to persistence. The members of the three subfamilies belonging to the family Herpesviridae differ with regard to cell tropism, target cells for the latent reservoir, and characteristics of the infection. The mechanisms governing the latent state also seem quite different. Our knowledge about latency is most complete for the gammaherpesviruses due to previously missing adequate latency models for the alpha and beta-herpesviruses. Nevertheless, with advances in cell biology and the availability of appropriate cell-culture and animal models, the common features of the latency in the different subfamilies began to emerge. Three criteria have been set forth to define latency and differentiate it from persistent or abortive infection: 1) persistence of the viral genome, 2) limited viral gene expression with no viral particle production, and 3) the ability to reactivate to a lytic cycle. This review discusses these criteria for each of the subfamilies and highlights the common strategies adopted by herpesviruses to establish latency.
Collapse
Affiliation(s)
- Magdalena Weidner-Glunde
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Tuwima Str. 10, 10-748 Olsztyn, Poland; (E.K.-K.); (M.S.)
| | | | | |
Collapse
|
9
|
Herpes Simplex Virus Latency Is Noisier the Closer We Look. J Virol 2020; 94:JVI.01701-19. [PMID: 31776275 DOI: 10.1128/jvi.01701-19] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
During herpes simplex virus (HSV) latency, the viral genome is harbored in peripheral neurons in the absence of infectious virus but with the potential to restart infection. Advances in epigenetics have helped explain how viral gene expression is largely inhibited during latency. Paradoxically, at the same time, the view that latency is entirely silent has been eroding. This low-level noise has implications for our understanding of HSV latency and should not be ignored.
Collapse
|
10
|
Nguyen ML, Gennis E, Pena KC, Blaho JA. Comparison of HEp-2 and Vero Cell Responses Reveal Unique Proapoptotic Activities of the Herpes Simplex Virus Type 1 α0 Gene Transcript and Product. Front Microbiol 2019; 10:998. [PMID: 31139162 PMCID: PMC6518028 DOI: 10.3389/fmicb.2019.00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Previous studies have provided evidence suggesting a role for apoptosis in the control of Herpes Simplex Virus 1 (HSV-1) latency. HSV-1 induces and then later blocks apoptosis in infected cells. The immediate early viral gene α0, which synthesizes the ICP0 protein, is necessary and sufficient for HSV-1-induced apoptosis in human epithelial (HEp-2) cells. While previous research showed that ICP0 protein synthesis is not necessary for HSV-1-induced apoptosis in infected HEp-2 cells, circumstantial evidence suggested that it might be needed in infected African green monkey kidney (Vero) cells. In this study, we determined the specific aspects of α0 needed to trigger apoptosis in these two cell types. HEp-2 cells transfected with α0 expressing plasmids that generated either full-length, truncated, or no detectable (multiple stop codons) ICP0 protein died through apoptosis. This indicates that ICP0 protein is not necessary for α0-induced apoptosis and that α0 mRNA alone has apoptotic induction properties in HEp-2 cells. We next investigated the primary structure of α0's mRNA to better define its proapoptotic ability. Since α0 is one of the few HSV-1 genes that are spliced, we transfected cells with a plasmid expressing ICP0 from cDNA copy, pcDNAICP0. The cells transfected with pcDNAICP0 underwent apoptosis at a level equivalent to those transfected with the genomic copy of α0, which indicates that neither splicing events nor introns are required for the apoptotic function of α0 in HEp-2 cells. Next, we studied the ability of α0 to cause apoptosis in Vero cells. Since HSV-1-induced apoptosis in Vero cells requires protein synthesis early in infection, proteins synthesized with immediate early kinetics may facilitate apoptosis. Vero cells were transfected with plasmids producing either full-length ICP0 or ICP0 truncated at codon 212. Full-length ICP0, but not truncated ICP0, induced apoptosis in Vero cells. Together, these results suggest that α0 gene expression triggers apoptosis, but ICP0 protein is needed to facilitate apoptosis in Vero cells. In addition, ICP0's facilitation activity may lie in its carboxyl-terminated domain. Thus, our results demonstrate that α0's mRNA and protein possess proapoptotic properties. The requirement for ICP0 protein during HSV-dependent apoptosis appears to be cell type specific.
Collapse
Affiliation(s)
- Marie L Nguyen
- Department of Microbiology and Immunology, Des Moines University, Des Moines, IA, United States
| | - Elisabeth Gennis
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, United States
| | - Kristen C Pena
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY, United States
| | - John A Blaho
- NYC Regional Innovation Node, The City University of New York, New York, NY, United States
| |
Collapse
|
11
|
Sun B, Wang Q, Pan D. [Mechanisms of herpes simplex virus latency and reactivation]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:89-101. [PMID: 31102363 PMCID: PMC8800643 DOI: 10.3785/j.issn.1008-9292.2019.02.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
Herpes simplex virus (HSV), including HSV-1 and HSV-2, is an important pathogen that can cause many diseases. Usually these diseases are recurrent and incurable. After lytic infection on the surface of peripheral mucosa, HSV can enter sensory neurons and establish latent infection during which viral replication ceases. Moreover, latent virus can re-enter the replication cycle by reactivation and return to peripheral tissues to start recurrent infection. This ability to escape host immune surveillance during latent infection and to spread during reactivation is a viral survival strategy and the fundamental reason why no drug can completely eradicate the virus at present. Although there are many studies on latency and reactivation of HSV, and much progress has been made, many specific mechanisms of the process remain obscure or even controversial due to the complexity of this process and the limitations of research models. This paper reviews the major results of research on HSV latency and reactivation, and discusses future research directions in this field.
Collapse
Affiliation(s)
- Boqiang Sun
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qiongyan Wang
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dongli Pan
- Department of Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
12
|
Tormanen K, Allen S, Mott KR, Ghiasi H. The Latency-Associated Transcript Inhibits Apoptosis via Downregulation of Components of the Type I Interferon Pathway during Latent Herpes Simplex Virus 1 Ocular Infection. J Virol 2019; 93:e00103-19. [PMID: 30814286 PMCID: PMC6498055 DOI: 10.1128/jvi.00103-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/19/2019] [Indexed: 12/24/2022] Open
Abstract
The herpes simplex virus (HSV-1) latency-associated transcript (LAT) has been shown to inhibit apoptosis via inhibiting activation of proapoptotic caspases. However, the mechanism of LAT control of apoptosis is unclear, because LAT is not known to encode a functional protein, and the LAT transcript is found largely in the nucleus. We hypothesized that LAT inhibits apoptosis by regulating expression of genes that control apoptosis. Consequently, we sought to establish the molecular mechanism of antiapoptosis functions of LAT at a transcriptional level during latent HSV-1 ocular infection in mice. Our results suggest the following. (i) LAT likely inhibits apoptosis via upregulation of several components of the type I interferon (IFN) pathway. (ii) LAT does not inhibit apoptosis via the caspase cascade at a transcriptional level or via downregulating Toll-like receptors (TLRs). (iii) The mechanism of LAT antiapoptotic effect is distinct from that of the baculovirus inhibitor of apoptosis (cpIAP) because replacement of LAT with the cpIAP gene resulted in a different gene expression pattern than in either LAT+ or LAT- viruses. (iv) Replacement of LAT with the cpIAP gene does not cause upregulation of CD8 or markers of T cell exhaustion despite their having similar levels of latency, further supporting that LAT and cpIAP function via distinct mechanisms.IMPORTANCE The HSV-1 latency reactivation cycle is the cause of significant human pathology. The HSV-1 latency-associated transcript (LAT) functions by regulating latency and reactivation, in part by inhibiting apoptosis. However, the mechanism of this process is unknown. Here we show that LAT likely controls apoptosis via downregulation of several components in the JAK-STAT pathway. Furthermore, we provide evidence that immune exhaustion is not caused by the antiapoptotic activity of the LAT.
Collapse
Affiliation(s)
- Kati Tormanen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Sariah Allen
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Kevin R Mott
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, California, USA
| |
Collapse
|
13
|
Depledge DP, Sadaoka T, Ouwendijk WJD. Molecular Aspects of Varicella-Zoster Virus Latency. Viruses 2018; 10:v10070349. [PMID: 29958408 PMCID: PMC6070824 DOI: 10.3390/v10070349] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/27/2018] [Indexed: 02/07/2023] Open
Abstract
Primary varicella-zoster virus (VZV) infection causes varicella (chickenpox) and the establishment of a lifelong latent infection in ganglionic neurons. VZV reactivates in about one-third of infected individuals to cause herpes zoster, often accompanied by neurological complications. The restricted host range of VZV and, until recently, a lack of suitable in vitro models have seriously hampered molecular studies of VZV latency. Nevertheless, recent technological advances facilitated a series of exciting studies that resulted in the discovery of a VZV latency-associated transcript (VLT) and provide novel insights into our understanding of VZV latency and factors that may initiate reactivation. Deducing the function(s) of VLT and the molecular mechanisms involved should now be considered a priority to improve our understanding of factors that govern VZV latency and reactivation. In this review, we summarize the implications of recent discoveries in the VZV latency field from both a virus and host perspective and provide a roadmap for future studies.
Collapse
Affiliation(s)
- Daniel P Depledge
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Tomohiko Sadaoka
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus Medical Centre, 3015 CN Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Collins-McMillen D, Goodrum FD. The loss of binary: Pushing the herpesvirus latency paradigm. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017; 4:124-131. [PMID: 29250481 DOI: 10.1007/s40588-017-0072-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Purpose of Review Herpesvirus latency has been viewed as a binary state where replication is either on or off. During latency, gene expression is thought to be restricted to non-coding RNAs or very few proteins so that the virus avoids detection by the immune system. However, a number of recent studies across herpesvirus families call into question the existence of a binary switch for latency, and suggest that latency is far more dynamic than originally presumed. These studies are the focus of this review. Recent Findings Highly sensitive and global approaches to investigate viral gene expression in the context of latency have revealed low level viral transcripts, and in some cases protein, from each of the three kinetic gene classes during the latent alpha and beta herpesvirus infection either in vitro or in vivo. Further, low level, asymptomatic virus shedding persists following acute infection. Together, these findings have raised questions about how silent the latent infection truly is. Summary Emerging evidence suggests that viral gene expression associated with latent states may be broader and more dynamic than originally presumed during herpesvirus latency. This is an important possibility to consider in understanding the molecular programs associated with the establishment, maintenance and reactivation of herpesvirus latency. Here, we review these findings and detail how they contribute to the emergence of a biphasic model of reactivation.
Collapse
Affiliation(s)
| | - Felicia D Goodrum
- BIO5 Institute, University of Arizona, Tucson, AZ, USA
- Department of Immunobiology, Department of Cellular and Molecular Medicine, Department of Molecular and Cellular Biology, Arizona Center on Aging, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Viral Ubiquitin Ligase Stimulates Selective Host MicroRNA Expression by Targeting ZEB Transcriptional Repressors. Viruses 2017; 9:v9080210. [PMID: 28783105 PMCID: PMC5580467 DOI: 10.3390/v9080210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 02/06/2023] Open
Abstract
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors.
Collapse
|
16
|
Phelan D, Barrozo ER, Bloom DC. HSV1 latent transcription and non-coding RNA: A critical retrospective. J Neuroimmunol 2017; 308:65-101. [PMID: 28363461 DOI: 10.1016/j.jneuroim.2017.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/22/2022]
Abstract
Virologists have invested great effort into understanding how the herpes simplex viruses and their relatives are maintained dormant over the lifespan of their host while maintaining the poise to remobilize on sporadic occasions. Piece by piece, our field has defined the tissues in play (the sensory ganglia), the transcriptional units (the latency-associated transcripts), and the responsive genomic region (the long repeats of the viral genomes). With time, the observed complexity of these features has compounded, and the totality of viral factors regulating latency are less obvious. In this review, we compose a comprehensive picture of the viral genetic elements suspected to be relevant to herpes simplex virus 1 (HSV1) latent transcription by conducting a critical analysis of about three decades of research. We describe these studies, which largely involved mutational analysis of the notable latency-associated transcripts (LATs), and more recently a series of viral miRNAs. We also intend to draw attention to the many other less characterized non-coding RNAs, and perhaps coding RNAs, that may be important for consideration when trying to disentangle the multitude of phenotypes of the many genetic modifications introduced into recombinant HSV1 strains.
Collapse
Affiliation(s)
- Dane Phelan
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - Enrico R Barrozo
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, United States.
| |
Collapse
|
17
|
Mutations Inactivating Herpes Simplex Virus 1 MicroRNA miR-H2 Do Not Detectably Increase ICP0 Gene Expression in Infected Cultured Cells or Mouse Trigeminal Ganglia. J Virol 2017; 91:JVI.02001-16. [PMID: 27847363 DOI: 10.1128/jvi.02001-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/07/2016] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) latency entails the repression of productive ("lytic") gene expression. An attractive hypothesis to explain some of this repression involves inhibition of the expression of ICP0, a lytic gene activator, by a viral microRNA, miR-H2, which is completely complementary to ICP0 mRNA. To test this hypothesis, we engineered mutations that disrupt miR-H2 without affecting ICP0 in HSV-1. The mutant virus exhibited drastically reduced expression of miR-H2 but showed wild-type levels of infectious virus production and no increase in ICP0 expression in lytically infected cells, which is consistent with the weak expression of miR-H2 relative to the level of ICP0 mRNA in that setting. Following corneal inoculation of mice, the mutant was not significantly different from wild-type virus in terms of infectious virus production in the trigeminal ganglia during acute infection, mouse mortality, or the rate of reactivation from explanted latently infected ganglia. Critically, the mutant was indistinguishable from wild-type virus for the expression of ICP0 and other lytic genes in acutely and latently infected mouse trigeminal ganglia. The latter result may be related to miR-H2 being less effective in inhibiting ICP0 expression in transfection assays than a host microRNA, miR-138, which has previously been shown to inhibit lytic gene expression in infected ganglia by targeting ICP0 mRNA. Additionally, transfected miR-138 reduced lytic gene expression in infected cells more effectively than miR-H2. While this study provides little support for the hypothesis that miR-H2 promotes latency by inhibiting ICP0 expression, the possibility remains that miR-H2 might target other genes during latency. IMPORTANCE Herpes simplex virus 1 (HSV-1), which causes a variety of diseases, can establish lifelong latent infections from which virus can reactivate to cause recurrent disease. Latency is the most biologically interesting and clinically vexing feature of the virus. Ever since miR-H2's discovery as a viral microRNA bearing complete sequence complementarity to the mRNA for the important viral gene activator ICP0, inhibition of ICP0 expression by miR-H2 has been a major hypothesis to help explain the repression of lytic gene expression during latency. However, this hypothesis remained untested in latently infected animals. Using a miR-H2-deficient mutant virus, we found no evidence that miR-H2 represses the expression of ICP0 or other lytic genes in cells or mice infected with HSV-1. Although miR-H2 can repress ICP0 expression in transfection assays, such repression is weak. The results suggest that other mechanisms for miR-H2 activity and for the repression of lytic gene expression during latency deserve investigation.
Collapse
|
18
|
Russell TA, Tscharke DC. Lytic Promoters Express Protein during Herpes Simplex Virus Latency. PLoS Pathog 2016; 12:e1005729. [PMID: 27348812 PMCID: PMC4922595 DOI: 10.1371/journal.ppat.1005729] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/06/2016] [Indexed: 12/31/2022] Open
Abstract
Herpes simplex virus (HSV) has provided the prototype for viral latency with previously well-defined acute or lytic and latent phases. More recently, the deep quiescence of HSV latency has been questioned with evidence that lytic genes can be transcribed in this state. However, to date the only evidence that these transcripts might be translated has come from immunological studies that show activated T cells persist in the nervous system during latency. Here we use a highly sensitive Cre-marking model to show that lytic and latent phases are less clearly defined in two significant ways. First, around half of the HSV spread leading to latently infected sites occurred beyond the initial acute infection and second, we show direct evidence that lytic promoters can drive protein expression during latency. Herpes simplex virus, which causes cold sores and genital herpes, has active and inactive (or latent) phases of infection that have been considered to be distinct. In this study we found that the active phase of infection, including spread in the nervous system, continues longer than has been previously appreciated. We also show evidence that virus genes previously only associated with active infection are turned on during latency. These genes are of particular interest because other work has found that they are targets of the immune response to HSV. The extent and nature of residual viral activity during latency is important to understand because it may suggest therapeutic targets to reduce recurrent HSV disease.
Collapse
Affiliation(s)
- Tiffany A. Russell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - David C. Tscharke
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
19
|
Abstract
UNLABELLED Latent infections by viruses usually involve minimizing viral protein expression so that the host immune system cannot recognize the infected cell through the viral peptides presented on its cell surface. Herpes simplex virus (HSV), for example, is thought to express noncoding RNAs such as latency-associated transcripts (LATs) and microRNAs (miRNAs) as the only abundant viral gene products during latent infection. Here we describe analysis of HSV-1 mutant viruses, providing strong genetic evidence that HSV-infected cell protein 0 (ICP0) is expressed during establishment and/or maintenance of latent infection in murine sensory neurons in vivo Studies of an ICP0 nonsense mutant virus showed that ICP0 promotes heterochromatin and latent and lytic transcription, arguing that ICP0 is expressed and functional. We propose that ICP0 promotes transcription of LATs during establishment or maintenance of HSV latent infection, much as it promotes lytic gene transcription. This report introduces the new concept that a lytic viral protein can be expressed during latent infection and can serve dual roles to regulate viral chromatin to optimize latent infection in addition to its role in epigenetic regulation during lytic infection. An additional implication of the results is that ICP0 might serve as a target for an antiviral therapeutic acting on lytic and latent infections. IMPORTANCE Latent infection by viruses usually involves minimizing viral protein synthesis so that the host immune system cannot recognize the infected cells and eliminate them. Herpes simplex virus has been thought to express only noncoding RNAs as abundant gene products during latency. In this study, we found genetic evidence that an HSV lytic protein is functional during latent infection, and this protein may provide a new target for antivirals that target both lytic and latent infections.
Collapse
|
20
|
Abstract
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation.
Collapse
Affiliation(s)
- Douglas O'Connell
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| | - Chengyu Liang
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
21
|
Pan D, Flores O, Umbach JL, Pesola JM, Bentley P, Rosato PC, Leib DA, Cullen BR, Coen DM. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 2015; 15:446-56. [PMID: 24721573 DOI: 10.1016/j.chom.2014.03.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/15/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
After infecting peripheral sites, herpes simplex virus (HSV) invades the nervous system and initiates latent infection in sensory neurons. Establishment and maintenance of HSV latency require host survival, and entail repression of productive cycle ("lytic") viral gene expression. We find that a neuron-specific microRNA, miR-138, represses expression of ICP0, a viral transactivator of lytic gene expression. A mutant HSV-1 (M138) with disrupted miR-138 target sites in ICP0 mRNA exhibits enhanced expression of ICP0 and other lytic proteins in infected neuronal cells in culture. Following corneal inoculation, M138-infected mice have higher levels of ICP0 and lytic transcripts in trigeminal ganglia during establishment of latency, and exhibit increased mortality and encephalitis symptoms. After full establishment of latency, the fraction of trigeminal ganglia harboring detectable lytic transcripts is greater in M138-infected mice. Thus, miR-138 is a neuronal factor that represses HSV-1 lytic gene expression, promoting host survival and viral latency.
Collapse
Affiliation(s)
- Dongli Pan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Omar Flores
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jennifer L Umbach
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jean M Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Peris Bentley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Pamela C Rosato
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - David A Leib
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Bryan R Cullen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Ma JZ, Russell TA, Spelman T, Carbone FR, Tscharke DC. Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response. PLoS Pathog 2014; 10:e1004237. [PMID: 25058429 PMCID: PMC4110040 DOI: 10.1371/journal.ppat.1004237] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/23/2014] [Indexed: 12/11/2022] Open
Abstract
Herpes simplex viruses (HSV) are significant human pathogens that provide one of the best-described examples of viral latency and reactivation. HSV latency occurs in sensory neurons, being characterized by the absence of virus replication and only fragmentary evidence of protein production. In mouse models, HSV latency is especially stable but the detection of some lytic gene transcription and the ongoing presence of activated immune cells in latent ganglia have been used to suggest that this state is not entirely quiescent. Alternatively, these findings can be interpreted as signs of a low, but constant level of abortive reactivation punctuating otherwise silent latency. Using single cell analysis of transcription in mouse dorsal root ganglia, we reveal that HSV-1 latency is highly dynamic in the majority of neurons. Specifically, transcription from areas of the HSV genome associated with at least one viral lytic gene occurs in nearly two thirds of latently-infected neurons and more than half of these have RNA from more than one lytic gene locus. Further, bioinformatics analyses of host transcription showed that progressive appearance of these lytic transcripts correlated with alterations in expression of cellular genes. These data show for the first time that transcription consistent with lytic gene expression is a frequent event, taking place in the majority of HSV latently-infected neurons. Furthermore, this transcription is of biological significance in that it influences host gene expression. We suggest that the maintenance of HSV latency involves an active host response to frequent viral activity. Primary herpes simplex virus (HSV) infections are characterized by acute disease that resolves rapidly, but the virus persists in a latent form in sensory neurons that can be a source of renewed disease. Analyzing gene expression in single mouse neurons harboring latent HSV, we show directly that HSV latency is dynamic and heterogeneous. HSV lytic gene transcripts were frequently detected in latently infected neurons and often in combinations. Expression of selected cellular anti-viral and survival genes showed that transcriptional profiles differed between latently infected and uninfected neurons from the same ganglia. The pattern of host gene expression also differed between latently infected neurons that were and were not experiencing HSV lytic gene expression. Our study suggests that HSV latency is characterized by very frequent switching on of lytic genes and a rapid response by the host, presumably to halt progression to reactivation.
Collapse
Affiliation(s)
- Joel Z. Ma
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (JZM); (FRC); (DCT)
| | - Tiffany A. Russell
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Tim Spelman
- Victorian Infectious Diseases Service, Melbourne Health, Melbourne, Victoria, Australia
- Centre of Population Health, Burnet Institute, Melbourne, Victoria, Australia
| | - Francis R. Carbone
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail: (JZM); (FRC); (DCT)
| | - David C. Tscharke
- Division of Biomedical Science and Biochemistry, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
- * E-mail: (JZM); (FRC); (DCT)
| |
Collapse
|
23
|
Gelev V, Zabolotny JM, Lange M, Hiromura M, Yoo SW, Orlando JS, Kushnir A, Horikoshi N, Paquet E, Bachvarov D, Schaffer PA, Usheva A. A new paradigm for transcription factor TFIIB functionality. Sci Rep 2014; 4:3664. [PMID: 24441171 PMCID: PMC3895905 DOI: 10.1038/srep03664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/12/2013] [Indexed: 12/23/2022] Open
Abstract
Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects.
Collapse
Affiliation(s)
- Vladimir Gelev
- 1] Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2]
| | - Janice M Zabolotny
- 1] Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA [2]
| | - Martin Lange
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Makoto Hiromura
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sang Wook Yoo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joseph S Orlando
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Anna Kushnir
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nobuo Horikoshi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Eric Paquet
- Centre Hospitalier Universitaire de Québec (CHUQ)-Centre de Recherche, Hopital L'Hôtel-Dieu de Québec et Université Laval, Québec G1R 2J6, Canada
| | - Dimcho Bachvarov
- Centre Hospitalier Universitaire de Québec (CHUQ)-Centre de Recherche, Hopital L'Hôtel-Dieu de Québec et Université Laval, Québec G1R 2J6, Canada
| | - Priscilla A Schaffer
- Department of Microbiology and Molecular Genetics, Program in Virology, Harvard Medical School at Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Anny Usheva
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
24
|
Control of HSV-1 latency in human trigeminal ganglia--current overview. J Neurovirol 2011; 17:518-27. [PMID: 22139603 DOI: 10.1007/s13365-011-0063-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/13/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
Abstract
Although recurrent Herpes simplex virus type 1 (HSV-1) infections are quite common in humans, little is known about the exact molecular mechanisms involved in latency and reactivation of the virus from its stronghold, the trigeminal ganglion. After primary infection, HSV-1 establishes latency in sensory neurons, a state that lasts for the life of the host. Reactivation of the virus leads to recurrent disease, ranging from relatively harmless cold sores to ocular herpes. If herpes encephalitis-often a devastating disease-is also caused by reactivation or a new infection, is still a matter of debate. It is widely accepted that CD8(+) T cells as well as host cellular factors play a crucial role in maintaining latency. At least in the animal model, IFNγ and Granzyme B secretion of T cells were shown to be important for control of viral latency. Furthermore, the virus itself expresses factors that regulate its own latency-reactivation cycle. In this regard, the latency associated transcript, immediate-early proteins, and viral miRNAs seem to be the key players that control latency and reactivation on the viral side. This review focuses on HSV-1 latency in humans in the light of mechanisms learned from animal models.
Collapse
|
25
|
Roizman B, Zhou G, Du T. Checkpoints in productive and latent infections with herpes simplex virus 1: conceptualization of the issues. J Neurovirol 2011; 17:512-7. [PMID: 22052379 DOI: 10.1007/s13365-011-0058-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/07/2011] [Accepted: 10/13/2011] [Indexed: 01/23/2023]
Abstract
The fundamental question posed here is why in dorsal root ganglia herpes simplex viruses (HSV) can establish a silent infection in which only latency associate transcripts (LAT) and miRNAs are expressed and the neuronal cell survives whereas in non-neuronal cells HSV replicates and destroys the infected cells. Current evidence indicates that in productive infection there are two checkpoints. The first is at activation of α genes and requires a viral protein (VP16) that recruits HCF-1, Oct1, LSD1, and the CLOCK histone acetyl transferase to demethylate histones and initiate transcription. The second checkpoint involves activation of β and γ genes. An α protein, ICP0, activates transcription by displacing HDAC1 or 2 from the HDAC/CoREST/LSD1/REST repressor complex at its DNA binding sites. Current data suggest that in dorsal root ganglia VP16 and HCF-1 are not translocated to neuronal nucleus and that the HDAC/CoREST/LSD1/REST complex is not suppressed-a first step in silencing of the viral genome and establishment of heterochromatin. The viral genome remains in a state of equilibrium with respect to viral gene expression. The function of both LAT and the micro RNAs is to silence low level expression of viral genes that could reactivate the latent genomes.
Collapse
Affiliation(s)
- Bernard Roizman
- Marjorie B. Kovler Viral Oncology Laboratories, The University of Chicago, 910 East 58th Street, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
26
|
Proença JT, Coleman HM, Nicoll MP, Connor V, Preston CM, Arthur J, Efstathiou S. An investigation of herpes simplex virus promoter activity compatible with latency establishment reveals VP16-independent activation of immediate-early promoters in sensory neurones. J Gen Virol 2011; 92:2575-2585. [PMID: 21752961 PMCID: PMC3541806 DOI: 10.1099/vir.0.034728-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Accepted: 07/11/2011] [Indexed: 01/14/2023] Open
Abstract
Herpes simplex virus (HSV) type-1 establishes lifelong latency in sensory neurones and it is widely assumed that latency is the consequence of a failure to initiate virus immediate-early (IE) gene expression. However, using a Cre reporter mouse system in conjunction with Cre-expressing HSV-1 recombinants we have previously shown that activation of the IE ICP0 promoter can precede latency establishment in at least 30% of latently infected cells. During productive infection of non-neuronal cells, IE promoter activation is largely dependent on the transactivator VP16 a late structural component of the virion. Of significance, VP16 has recently been shown to exhibit altered regulation in neurones; where its de novo synthesis is necessary for IE gene expression during both lytic infection and reactivation from latency. In the current study, we utilized the Cre reporter mouse model system to characterize the full extent of viral promoter activity compatible with cell survival and latency establishment. In contrast to the high frequency activation of representative IE promoters prior to latency establishment, cell marking using a virus recombinant expressing Cre under VP16 promoter control was very inefficient. Furthermore, infection of neuronal cultures with VP16 mutants reveals a strong VP16 requirement for IE promoter activity in non-neuronal cells, but not sensory neurones. We conclude that only IE promoter activation can efficiently precede latency establishment and that this activation is likely to occur through a VP16-independent mechanism.
Collapse
Affiliation(s)
- João T. Proença
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Heather M. Coleman
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Michael P. Nicoll
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Viv Connor
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Christopher M. Preston
- MRC–University of Glasgow Centre for Virus Research, 8 Church Street, Glasgow G11 5JR, Scotland, UK
| | - Jane Arthur
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Microbiology and Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, Frome Road, Adelaide 5000, Australia
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
27
|
Expression of herpes simplex virus 1-encoded microRNAs in human trigeminal ganglia and their relation to local T-cell infiltrates. J Virol 2011; 85:9680-5. [PMID: 21795359 DOI: 10.1128/jvi.00874-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Herpes simplex type 1 (HSV-1) is a neurotropic virus which establishes lifelong latency in human trigeminal ganglia (TG). Currently, two nonexclusive control mechanisms of HSV-1 latency are discussed: antiviral CD8(+) T cells and viral microRNAs (miRNAs) encoded by the latency associated transcript (LAT). We investigate here to what extent these mechanisms may contribute to the maintenance of HSV-1 latency. We show that only a small proportion of LAT(+) neurons is surrounded by T cells in human TG. This indicates that viral latency in human TG might be controlled by other mechanisms such as viral miRNAs. Therefore, we assessed TG sections for the presence of HSV-1 miRNA, DNA, and mRNA by combining LAT in situ hybridization, T-cell immunohistochemistry, and single cell analysis of laser-microdissected sensory neurons. Quantitative reverse transcription-PCR (RT-PCR) revealed that LAT(+) neurons with or without surrounding T cells were always positive for HSV-1 miRNAs and DNA. Furthermore, ICP0 mRNA could rarely be detected only in LAT(+) neurons, as analyzed by single-cell RT-PCR. In contrast, in LAT(-) neurons that were surrounded by T cells, neither miRNAs nor the DNA of HSV-1, HSV-2, or varicella-zoster virus could be detected. These data indicate that the majority of LAT(+) neurons is not directly controlled by T cells. However, miRNA expression in every latently infected neuron would provide an additional checkpoint before viral replication is initiated.
Collapse
|
28
|
Kramer MF, Jurak I, Pesola JM, Boissel S, Knipe DM, Coen DM. Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 2011; 417:239-47. [PMID: 21782205 DOI: 10.1016/j.virol.2011.06.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/06/2011] [Accepted: 06/16/2011] [Indexed: 01/02/2023]
Abstract
Several herpes simplex virus 1 microRNAs are encoded within or near the latency associated transcript (LAT) locus, and are expressed abundantly during latency. Some of these microRNAs can repress the expression of important viral proteins and are hypothesized to play important roles in establishing and/or maintaining latent infections. We found that in lytically infected cells and in acutely infected mouse ganglia, expression of LAT-encoded microRNAs was weak and unaffected by a deletion that includes the LAT promoter. In mouse ganglia latently infected with wild type virus, the microRNAs accumulated to high levels, but deletions of the LAT promoter markedly reduced expression of LAT-encoded microRNAs and also miR-H6, which is encoded upstream of LAT and can repress expression of ICP4. Because these LAT deletion mutants establish and maintain latent infections, these microRNAs are not essential for latency, at least in mouse trigeminal ganglia, but may help promote it.
Collapse
Affiliation(s)
- Martha F Kramer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
29
|
Jurak I, Griffiths A, Coen DM. Mammalian alphaherpesvirus miRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:641-53. [PMID: 21736960 DOI: 10.1016/j.bbagrm.2011.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/17/2011] [Accepted: 06/18/2011] [Indexed: 12/26/2022]
Abstract
Mammalian alphaherpesviruses are major causes of human and veterinary disease. During productive infection, these viruses exhibit complex and robust patterns of gene expression. These viruses also form latent infections in neurons of sensory ganglia in which productive cycle gene expression is highly repressed. Both modes of infection provide advantageous opportunities for regulation by microRNAs. Thus far, published data regarding microRNAs are available for six mammalian alphaherpesviruses. No microRNAs have yet been detected from varicella zoster virus. The five other viruses-herpes simplex viruses-1 and -2, herpes B virus, bovine herpesvirus-1, and pseudorabies virus-representing both genera of mammalian alphaherpesviruses have been shown to express microRNAs. In this article, we discuss these microRNAs in terms of where they are encoded in the viral genome relative to other viral transcripts; whether they are expressed during productive or latent infection; their potential targets; what little is known about their actual targets and functions during viral infection; and what little is known about the interactions of these viruses with the host microRNA machinery. This article is part of a Special Issue entitled: "MicroRNAs in viral gene regulation".
Collapse
Affiliation(s)
- Igor Jurak
- Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
30
|
The checkpoints of viral gene expression in productive and latent infection: the role of the HDAC/CoREST/LSD1/REST repressor complex. J Virol 2011; 85:7474-82. [PMID: 21450817 DOI: 10.1128/jvi.00180-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
At the portal of entry into the body, herpes simplex viruses (HSV) vigorously multiply and spread until curtailed by the adaptive immune response. At the same time, HSV invades nerve ending-abutting infected cells and is transported in a retrograde manner to the neuronal nucleus, where it establishes a latent (silent) infection. At intervals, as a consequence of physical or metabolic stress, the virus is activated and transported in an anterograde manner to the body surface. The progression of infection is regulated at four checkpoints. In cell culture or at the portal of entry into the body, HSV uses components of the HDAC1- or HDAC2/CoREST/LSD1/REST repressor complex to activate α genes (checkpoint 1) and then uses an α protein, ICP0, to suppress the same repressor complex from silencing post-α gene expression (checkpoint 2). In neurons destined to harbor latent virus (checkpoint 3), HSV hijacks the same repressor complex to silence itself as a first step in the establishment of the latent state. Suppression of histone deacetylases (HDACs) plays a key role in the reactivation from latency (checkpoint 4). HSV has evolved a strategy of using the same host repressor complex to meet its diverse lifestyle needs.
Collapse
|
31
|
De Regge N, Van Opdenbosch N, Nauwynck HJ, Efstathiou S, Favoreel HW. Interferon alpha induces establishment of alphaherpesvirus latency in sensory neurons in vitro. PLoS One 2010; 5. [PMID: 20927329 PMCID: PMC2947521 DOI: 10.1371/journal.pone.0013076] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 09/07/2010] [Indexed: 11/19/2022] Open
Abstract
Background Several alphaherpesviruses, including herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV), establish lifelong latency in neurons of the trigeminal ganglion (TG). Although it is thought that efficient establishment of alphaherpesvirus latency is based on a subtle interplay between virus, neurons and the immune system, it is not clear which immune components are of major importance for the establishment of latency. Methodology/Principal Findings Here, using an in vitro model that enables a natural route of infection, we show that interferon alpha (IFNalpha) has the previously uncharacterized capacity to induce a quiescent HSV-1 and PRV infection in porcine TG neurons that shows strong similarity to in vivo latency. IFNalpha induced a stably suppressed HSV-1 and PRV infection in TG neurons in vitro. Subsequent treatment of neurons containing stably suppressed virus with forskolin resulted in reactivation of both viruses. HSV and PRV latency in vivo is often accompanied by the expression of latency associated transcripts (LATs). Infection of TG neurons with an HSV-1 mutant expressing LacZ under control of the LAT promoter showed activation of the LAT promoter and RT-PCR analysis confirmed that both HSV-1 and PRV express LATs during latency in vitro. Conclusions/Significance These data represent a unique in vitro model of alphaherpesvirus latency and indicate that IFNalpha may be a driving force in promoting efficient latency establishment.
Collapse
Affiliation(s)
- Nick De Regge
- Department of Virology, Parasitology, and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
32
|
Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 2010; 84:4659-72. [PMID: 20181707 DOI: 10.1128/jvi.02725-09] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Certain viruses use microRNAs (miRNAs) to regulate the expression of their own genes, host genes, or both. Previous studies have identified a limited number of miRNAs expressed by herpes simplex viruses 1 and 2 (HSV-1 and -2), some of which are conserved between these two viruses. To more comprehensively analyze the miRNAs expressed by HSV-1 or HSV-2 during productive and latent infection, we applied a massively parallel sequencing approach. We were able to identify 16 and 17 miRNAs expressed by HSV-1 and HSV-2, respectively, including all previously known species, and a number of previously unidentified virus-encoded miRNAs. The genomic positions of most miRNAs encoded by these two viruses are within or proximal to the latency-associated transcript region. Nine miRNAs are conserved in position and/or sequence, particularly in the seed region, between these two viruses. Interestingly, we did not detect an HSV-2 miRNA homolog of HSV-1 miR-H1, which is highly expressed during productive infection, but we did detect abundant expression of miR-H6, whose seed region is conserved with HSV-1 miR-H1 and might represent a functional analog. We also identified a highly conserved miRNA family arising from the viral origins of replication. In addition, we detected several pairs of complementary miRNAs and we found miRNA-offset RNAs (moRs) arising from the precursors of HSV-1 and HSV-2 miR-H6 and HSV-2 miR-H4. Our results reveal elements of miRNA conservation and divergence that should aid in identifying miRNA functions.
Collapse
|
33
|
Role of nuclear factor Y in stress-induced activation of the herpes simplex virus type 1 ICP0 promoter. J Virol 2010; 84:188-200. [PMID: 19828605 DOI: 10.1128/jvi.01377-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesviruses are characterized by the ability to establish lifelong latent infections and to reactivate periodically, leading to recurrent disease. The herpes simplex virus type 1 (HSV-1) genome is maintained in a quiescent state in sensory neurons during latency, which is characterized by the absence of detectable viral protein synthesis. Cellular factors induced by stress may act directly on promoters within the latent viral genome to induce the transcription of viral genes and trigger reactivation. In order to identify which viral promoters are induced by stress and elucidate the cellular mechanism responsible for the induction, we generated a panel of HSV-1 promoter-luciferase constructs and measured their response to heat shock. Of the promoters tested, those of ICP0 and ICP22 were the most strongly upregulated after heat shock. Microarray analysis of lytically infected cells supported the upregulation of ICP0 and ICP22 promoters by heat shock. Mutagenic analysis of the ICP0 promoter identified two regions necessary for efficient heat-induced promoter activity, both containing predicted nuclear factor Y (NF-Y) sites, at bases -708 and -75 upstream of the transcriptional start site. While gel shift analysis confirmed NF-Y binding to both sites, only the site at -708 was important for efficient heat-induced activity. Reverse transcription-PCR analysis of selected viral transcripts in the presence of dominant-negative NF-Y confirmed the requirement for NF-Y in the induction of the ICP0 but not the ICP22 promoter by heat shock in lytically infected cells. These findings suggest that the immediate-early ICP0 gene may be among the first genes to be induced during the early events in HSV-1 reactivation, that NF-Y is important for this induction, and that other factors induce the ICP22 promoter.
Collapse
|
34
|
Two small RNAs encoded within the first 1.5 kilobases of the herpes simplex virus type 1 latency-associated transcript can inhibit productive infection and cooperate to inhibit apoptosis. J Virol 2009; 83:9131-9. [PMID: 19587058 DOI: 10.1128/jvi.00871-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) is abundantly expressed in latently infected trigeminal ganglionic sensory neurons. Expression of the first 1.5 kb of LAT coding sequences is sufficient for the wild-type reactivation phenotype in small animal models of infection. The ability of the first 1.5 kb of LAT coding sequences to inhibit apoptosis is important for the latency-reactivation cycle. Several studies have also concluded that LAT inhibits productive infection. To date, a functional LAT protein has not been identified, suggesting that LAT is a regulatory RNA. Two small RNAs (sRNAs) were previously identified within the first 1.5 kb of LAT coding sequences. In this study, we demonstrated that both LAT sRNAs were expressed in the trigeminal ganglia of mice latently infected with an HSV-1 strain that expresses LAT but not when mice were infected with a LAT null mutant. LAT sRNA1 and sRNA2 cooperated to inhibit cold shock-induced apoptosis in mouse neuroblastoma cells. LAT sRNA1, but not LAT sRNA2, inhibited apoptosis less efficiently than both sRNAs. When rabbit skin cells were cotransfected with plasmids that express LAT sRNA1 and HSV-1 genomic DNA, the amount of infectious virus released was reduced approximately 3 logs. Although LAT sRNA2 was less effective at inhibiting virus production, it inhibited expression of infected cell protein 4 (ICP4). Neither LAT sRNA had an obvious effect on ICP0 expression. These studies suggested that expression of two LAT sRNAs plays a role in the latency-reactivation cycle by inhibiting apoptosis and productive infection.
Collapse
|
35
|
Hoshino Y, Pesnicak L, Straus SE, Cohen JI. Impairment in reactivation of a latency associated transcript (LAT)-deficient HSV-2 is not solely dependent on the latent viral load or the number of CD8(+) T cells infiltrating the ganglia. Virology 2009; 387:193-9. [PMID: 19269661 DOI: 10.1016/j.virol.2009.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/23/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
The HSV latency-associated transcript (LAT) is abundantly expressed during virus latency. Previous studies have shown that the latent viral load and CD8(+) T cells in ganglia influence the rate of reactivation of HSV. While LAT is important for efficient reactivation and establishment of latency, it is uncertain how LAT affects either the HSV latent viral load or CD8(+) T cell infiltration of ganglia. We infected mice with LAT-deficient or LAT-restored HSV-2 at a wide range of inocula. We found that the reduced rate of spontaneous ex-vivo reactivation of the LAT-deficient virus was not associated with a higher number of CD8(+) T cells in the ganglia. Reactivation rates were lower for LAT-deficient than LAT restored HSV-2 even when the latent viral loads were similar, indicating that differences in reactivation were not solely dependent on the latent viral load. Therefore, LAT likely has additional functions important for reactivation.
Collapse
Affiliation(s)
- Yo Hoshino
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
36
|
MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008; 454:780-3. [PMID: 18596690 DOI: 10.1038/nature07103] [Citation(s) in RCA: 534] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 05/16/2008] [Indexed: 01/01/2023]
Abstract
Herpesviruses are characterized by their ability to maintain life-long latent infections in their animal hosts. However, the mechanisms that allow establishment and maintenance of the latent state remain poorly understood. Herpes simplex virus 1 (HSV-1) establishes latency in neurons of sensory ganglia, where the only abundant viral gene product is a non-coding RNA, the latency associated transcript (LAT). Here we show that LAT functions as a primary microRNA (miRNA) precursor that encodes four distinct miRNAs in HSV-1 infected cells. One of these miRNAs, miR-H2-3p, is transcribed in an antisense orientation to ICP0-a viral immediate-early transcriptional activator that is important for productive HSV-1 replication and thought to have a role in reactivation from latency. We show that miR-H2-3p is able to reduce ICP0 protein expression, but does not significantly affect ICP0 messenger RNA levels. We also identified a fifth HSV-1 miRNA in latently infected trigeminal ganglia, miR-H6, which derives from a previously unknown transcript distinct from LAT. miR-H6 shows extended seed complementarity to the mRNA encoding a second HSV-1 transcription factor, ICP4, and inhibits expression of ICP4, which is required for expression of most HSV-1 genes during productive infection. These results may explain the reported ability of LAT to promote latency. Thus, HSV-1 expresses at least two primary miRNA precursors in latently infected neurons that may facilitate the establishment and maintenance of viral latency by post-transcriptionally regulating viral gene expression.
Collapse
|
37
|
Khrustalev VV, Barkovsky EV. Anin-silico study of alphaherpesviruses ICP0 genes: Positive selection or strong mutational GC-pressure? IUBMB Life 2008; 60:456-60. [DOI: 10.1002/iub.55] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Saffert RT, Kalejta RF. Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both? Future Virol 2008; 3:265-277. [PMID: 19763230 DOI: 10.2217/17460794.3.3.265] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The promyelocytic leukemia (PML) protein gathers other cellular proteins, such as Daxx and Sp100, to form subnuclear structures termed PML-nuclear bodies (PML-NBs) or ND10 domains. Many infecting viral genomes localize to PML-NBs, leading to speculation that these structures may represent the most efficient subnuclear location for viral replication. Conversely, many viral proteins modify or disrupt PML-NBs, suggesting that viral replication may be more efficient in the absence of these structures. Thus, a debate remains as to whether PML-NBs inhibit or enhance viral replication. Here we review and discuss recent data indicating that for herpesviruses, PML-NB proteins inhibit viral replication in cell types where productive, lytic replication occurs, while at the same time may enhance the establishment of lifelong latent infections in other cell types.
Collapse
Affiliation(s)
- Ryan T Saffert
- University of Wisconsin-Madison, Institute for Molecular Virology & McArdle Laboratory for Cancer Research, Madison, WI, USA Tel.: +1 608 265 5546; ;
| | | |
Collapse
|
39
|
Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 2008; 6:211-21. [PMID: 18264117 DOI: 10.1038/nrmicro1794] [Citation(s) in RCA: 329] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Herpes simplex viruses (HSV) can undergo a lytic infection in epithelial cells and a latent infection in sensory neurons. During latency the virus persists until reactivation, which leads to recurrent productive infection and transmission to a new host. How does HSV undergo such different types of infection in different cell types? Recent research indicates that regulation of the assembly of chromatin on HSV DNA underlies the lytic versus latent decision of HSV. We propose a model for the decision to undergo a lytic or a latent infection in which HSV encodes gene products that modulate chromatin structure towards either euchromatin or heterochromatin, and we discuss the implications of this model for the development of therapeutics for HSV infections.
Collapse
|
40
|
Danaher RJ, Jacob RJ, Miller CS. Reactivation from quiescence does not coincide with a global induction of herpes simplex virus type 1 transactivators. Virus Genes 2006; 33:163-7. [PMID: 16972030 DOI: 10.1007/s11262-005-0052-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 11/28/2005] [Indexed: 10/24/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) reactivates from a small fraction of latently infected neurons in vivo and neuronally differentiated (ND), quiescently infected (QIF)-PC12 cells in vitro. This may be the result of reactivation initiating in only a few cells, or reactivation followed by premature termination of the productive virus life cycle in many or even a majority of cells. To examine the viral stress response, HSV-1 promoters of representative alpha, beta, and gamma class genes were examined in ND- and QIF-PC12 cells after treatments with agents known to induce reactivation. HSV-1 promoters displayed variable levels of basal gene expression in ND-PC12 cells ranging from 2 to 1,200 times the level of the control vector pGL3-Basic. Expression of the latency associated transcript (LAT) was greatest, with representatives of the alpha class exhibiting greater expression than the beta and gamma classes. The HSV-1 promoters examined did not respond dramatically to stress treatments. The viral gene response was also measured during the initiation of reactivation of a cryptic HSV-1 genome after forskolin treatment, under conditions that restricted DNA replication. During the first 24 h after stress induction the response was limited. By 48 h post-forskolin treatment, only modest increases occurred for ICP0, ICP4, and LAT transcripts, reaching levels of no greater than 2.2 times mock treated levels. In contrast, ICP27, ribonucleotide reductase (RR), and VP16 promoters did not respond. These findings indicate that reactivation from QIF-PC12 cells does not result in a global response of the specific HSV-1 genes tested, when assessed at the population level. These data support the hypothesis that stress-induced reactivation initiates in a minority of cells.
Collapse
Affiliation(s)
- Robert J Danaher
- Oral Medicine Section, MN 324, Center for Oral Health Research and Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Dentistry and College of Medicine, 800 Rose Street, Lexington, 40536-0297, USA
| | | | | |
Collapse
|
41
|
Maillet S, Naas T, Crepin S, Roque-Afonso AM, Lafay F, Efstathiou S, Labetoulle M. Herpes simplex virus type 1 latently infected neurons differentially express latency-associated and ICP0 transcripts. J Virol 2006; 80:9310-21. [PMID: 16940542 PMCID: PMC1563928 DOI: 10.1128/jvi.02615-05] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 06/28/2006] [Indexed: 11/20/2022] Open
Abstract
During the latent phase of herpes simplex virus type 1 (HSV-1) infection, the latency-associated transcripts (LATs) are the most abundant viral transcripts present in neurons, but some immediate-early viral transcripts, such as those encoding ICP0, have also been reported to be transcribed in latently infected mouse trigeminal ganglia (TG). A murine oro-ocular model of herpetic infection was used to study ICP0 gene expression in the major anatomical sites of HSV-1 latency, including the TG, superior cervical ganglion, spinal cord, and hypothalamus. An HSV-1 recombinant strain, SC16 110LacZ, revealed ICP0 promoter activity in several neurons in latently infected ganglia, and following infection with wild-type HSV-1 strain SC16, in situ hybridization analyses identified ICP0 transcripts in the nuclei of neurons at times consistent with the establishment of latency. Reverse transcription (RT)-PCR assays performed on RNA extracted from latently infected tissues indicated that ICP0 transcripts were detected in all anatomical sites of viral latency. Furthermore, quantitative real-time RT-PCR showed that neurons differentially expressed the LATs and ICP0 transcripts, with splicing of ICP0 transcripts being dependent on the anatomical location of latency. Finally, TG neurons were characterized by high-level expression of LATs and detection of abundant unspliced ICP0 transcripts, a pattern markedly different from those of other anatomical sites of HSV-1 latency. These results suggest that LATs might be involved in the maintenance of HSV-1 latency through the posttranscriptional regulation of ICP0 in order to inhibit expression of this potent activator of gene expression during latency.
Collapse
Affiliation(s)
- Séverine Maillet
- Laboratoire de Virologie Moléculaire et Structurale, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Thompson RL, Sawtell NM. Evidence that the herpes simplex virus type 1 ICP0 protein does not initiate reactivation from latency in vivo. J Virol 2006; 80:10919-30. [PMID: 16943285 PMCID: PMC1642178 DOI: 10.1128/jvi.01253-06] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The stress-induced host cell factors initiating the expression of the herpes simplex virus lytic cycle from the latent viral genome are not known. Previous studies have focused on the effect of specific viral proteins on reactivation, i.e., the production of detectable infectious virus. However, identification of the viral protein(s) through which host cell factors transduce entry into the lytic cycle and analysis of the promoter(s) of this (these) first protein(s) will provide clues to the identity of the stress-induced host cell factors important for reactivation. In this report, we present the first strategy developed for this type of analysis and use this strategy to test the established hypothesis that the herpes simplex virus ICP0 protein initiates reactivation from the latent state. To this end, ICP0 null and promoter mutants were analyzed for the abilities (i) to exit latency and produce lytic-phase viral proteins (initiate reactivation) and (ii) to produce infectious viral progeny (reactivate) in explant and in vivo. Infection conditions were manipulated so that approximately equal numbers of latent infections were established by the parental strains, the mutants, and their genomically restored counterparts, eliminating disparate latent pool sizes as a complicating factor. Following hyperthermic stress (HS), which induces reactivation in vivo, equivalent numbers of neurons exited latency (as evidenced by the expression of lytic-phase viral proteins) in ganglia latently infected with either the ICP0 null mutant dl1403 or the parental strain. In contrast, infectious virus was detected in the ganglia of mice latently infected with the parental strain but not with ICP0 null mutant dl1403 or FXE. These data demonstrate that the role of ICP0 in the process of reactivation is not as a component of the switch from latency to lytic-phase gene expression; rather, ICP0 is required after entry into the lytic cycle has occurred. Similar analyses were carried out with the DeltaTfi mutant, which contains a 350-bp deletion in the ICP0 promoter, and the genomically restored isolate, DeltaTfiR. The numbers of latently infected neurons exiting latency were not different for DeltaTfi and DeltaTfiR. However, DeltaTfi did not reactivate in vivo, whereas DeltaTfiR reactivated in approximately 38% of the mice. In addition, ICP0 was detected in DeltaTfiR-infected neurons exiting latency but was not detected in those neurons exiting latency infected with DeltaTfi. We conclude that while ICP0 is important and perhaps essential for infectious virus production during reactivation in vivo, this protein is not required and appears to play no major role in the initiation of reactivation in vivo.
Collapse
Affiliation(s)
- R L Thompson
- Cincinnati Children's Hospital Medical Center, Division of Infectious Diseases, 3333 Burnet Ave., Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
43
|
Decman V, Freeman ML, Kinchington PR, Hendricks RL. Immune control of HSV-1 latency. Viral Immunol 2005; 18:466-73. [PMID: 16212525 DOI: 10.1089/vim.2005.18.466] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A hallmark of the herpes family of viruses is their ability to cause recurrent disease. Upon primary infection, Herpes Simplex virus (HSV) establishes a latent infection in sensory neurons that persists for the life of the individual. Reactivation of these latent viral genomes with virion formation is the source of virus for most HSV recurrent disease. This review details recent exciting findings supporting a role for the host immune system, particularly CD8+ T cells in maintaining HSV-1 in a latent state.
Collapse
Affiliation(s)
- Vilma Decman
- Department of Ophthalmology, Graduate Programs in Immunology, University of Pittsburgh School of Medicine, 203 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
44
|
Pesola JM, Zhu J, Knipe DM, Coen DM. Herpes simplex virus 1 immediate-early and early gene expression during reactivation from latency under conditions that prevent infectious virus production. J Virol 2005; 79:14516-25. [PMID: 16282451 PMCID: PMC1287588 DOI: 10.1128/jvi.79.23.14516-14525.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/12/2005] [Indexed: 01/20/2023] Open
Abstract
The program of gene expression exhibited by herpes simplex virus during productive infection of cultured cells is well established; however, less is known about the regulatory controls governing reactivation from latency in neurons. One difficulty in examining gene regulation during reactivation lies in distinguishing between events occurring in initial reactivating cells versus events occurring in secondarily infected cells. Thus, two inhibitors were employed to block production of infectious virus: acyclovir, which inhibits viral DNA synthesis, and WAY-150138, which permits viral DNA synthesis but inhibits viral DNA encapsidation. Latently infected murine ganglia were explanted in the presence of either inhibitor, and then amounts of RNA, DNA, or infectious virus were quantified. In ganglia explanted for 48 h, the levels of five immediate-early and early RNAs did not exhibit meaningful differences between acyclovir and WAY-150138 treatments when analyzed by in situ hybridization or quantitative reverse transcription-PCR. However, comparative increases in viral DNA and RNA content in untreated ganglia suggested that virus was produced before 48 h postexplant. This was confirmed by the detection of infectious virus as early as 14 h postexplant. Together, these results suggest that high levels of viral gene expression at 48 h postexplant are due largely to the production of infectious virus and subsequent spread through the tissue. These results lead to a reinterpretation of previous results indicating a role for DNA replication in immediate-early and early viral gene expression; however, it remains possible that viral gene expression is regulated differently in neurons than in cultured cells.
Collapse
Affiliation(s)
- Jean M Pesola
- Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
45
|
Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci U S A 2005; 102:16055-9. [PMID: 16247011 PMCID: PMC1266038 DOI: 10.1073/pnas.0505850102] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV) persists in its human host and evades the immune response by undergoing a latent infection in sensory neurons, from which it can reactivate periodically. HSV expresses >80 gene products during productive ("lytic") infection, but only the latency-associated transcript (LAT) gene is expressed at abundant levels during latent infection. The LAT gene has been shown to repress lytic-gene expression in sensory neurons. In this study, we use chromatin immunoprecipitation to show that HSV lytic-gene promoters become complexed with modified histones associated with heterochromatin during the course of establishment of latent infection. Experiments comparing LAT-negative and LAT-positive viruses show that a function encoded by the LAT gene increases the amount of dimethyl lysine 9 form of histone H3 or heterochromatin and reduces the amount of dimethyl lysine 4 form of histone H3, a part of active chromatin, on viral lytic-gene promoters. Thus, HSV, and in particular the HSV LAT gene, may manipulate the cellular histone modification machinery to repress its lytic-gene expression and contribute to the persistence of its genome in a quiescent form in sensory neurons.
Collapse
Affiliation(s)
- Qing-Yin Wang
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
HSV triggers and blocks apoptosis in cell type-specific fashion. This review discusses present understanding of the role of apoptosis and signaling cascades in neuronal pathogenesis and survival and summarizes present findings relating to the modulation of these strictly balanced processes by HSV infection. Underscored are the findings that HSV-1, but not HSV-2, triggers apoptosis in CNS neurons and causes encephalitis in adult subjects. Mechanisms responsible for the different outcomes of infection with the two HSV serotypes are described, including the contribution of viral antiapoptotic genes, notably the HSV-2 gene ICP10PK. Implications for the potential use of HSV vectors in future therapeutic developments are discussed.
Collapse
Affiliation(s)
- L Aurelian
- Virology/Immunology Laboratories, University of Maryland, Bressler, Room 4-023, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|
47
|
Khanna KM, Lepisto AJ, Decman V, Hendricks RL. Immune control of herpes simplex virus during latency. Curr Opin Immunol 2005; 16:463-9. [PMID: 15245740 DOI: 10.1016/j.coi.2004.05.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) persists within the host in the presence of concomitant immunity by establishing a latent infection within sensory neurons. HSV-1 latency is widely viewed as a neuron-enforced quiescent state of the virus, in which a lack of viral protein synthesis prevents recognition of the infected neuron by the host immune system. On the basis of recent findings, however, we propose a more dynamic view of HSV-1 latency characterized by persistent or intermittent low-level viral gene expression in some latently infected neurons. We further propose that HSV-1-specific memory/effector CD8(+) T lymphocytes that are retained in the ganglion in close apposition to the neurons prevent full reactivation and virion formation through IFN-gamma production and an additional undefined mechanism(s).
Collapse
Affiliation(s)
- Kamal M Khanna
- Graduate Program in Immunology, Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213-2588, USA
| | | | | | | |
Collapse
|
48
|
Cook WJ, Kramer MF, Walker RM, Burwell TJ, Holman HA, Coen DM, Knipe DM. Persistent expression of chemokine and chemokine receptor RNAs at primary and latent sites of herpes simplex virus 1 infection. Virol J 2004; 1:5. [PMID: 15507126 PMCID: PMC524517 DOI: 10.1186/1743-422x-1-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Accepted: 05/28/2004] [Indexed: 11/18/2022] Open
Abstract
Inflammatory cytokines and infiltrating T cells are readily detected in herpes simplex virus (HSV) infected mouse cornea and trigeminal ganglia (TG) during the acute phase of infection, and certain cytokines continue to be expressed at lower levels in infected TG during the subsequent latent phase. Recent results have shown that HSV infection activates Toll-like receptor signaling. Thus, we hypothesized that chemokines may be broadly expressed at both primary sites and latent sites of HSV infection for prolonged periods of time. Real-time reverse transcriptase-polymrease chain reaction (RT-PCR) to quantify expression levels of transcripts encoding chemokines and their receptors in cornea and TG following corneal infection. RNAs encoding the inflammatory-type chemokine receptors CCR1, CCR2, CCR5, and CXCR3, which are highly expressed on activated T cells, macrophages and most immature dendritic cells (DC), and the more broadly expressed CCR7, were highly expressed and strongly induced in infected cornea and TG at 3 and 10 days postinfection (dpi). Elevated levels of these RNAs persisted in both cornea and TG during the latent phase at 30 dpi. RNAs for the broadly expressed CXCR4 receptor was induced at 30 dpi but less so at 3 and 10 dpi in both cornea and TG. Transcripts for CCR3 and CCR6, receptors that are not highly expressed on activated T cells or macrophages, also appeared to be induced during acute and latent phases; however, their very low expression levels were near the limit of our detection. RNAs encoding the CCR1 and CCR5 chemokine ligands MIP-1α, MIP-1β and RANTES, and the CCR2 ligand MCP-1 were also strongly induced and persisted in cornea and TG during the latent phase. These and other recent results argue that HSV antigens or DNA can stimulate expression of chemokines, perhaps through activation of Toll-like receptors, for long periods of time at both primary and latent sites of HSV infection. These chemokines recruit activated T cells and other immune cells, including DC, that express chemokine receptors to primary and secondary sites of infection. Prolonged activation of chemokine expression could provide mechanistic explanations for certain aspects of HSV biology and pathogenesis.
Collapse
Affiliation(s)
- W James Cook
- Millennium Pharmaceuticals Inc., Cambridge, MA 02139, USA
- GlycoFi, Inc., 21 Lafayette Street, Suite 200, Lebanon, NH 03766, USA
| | - Martha F Kramer
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Holly A Holman
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology Harvard Medical School, Boston, MA 02115, USA
| | - David M Knipe
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
49
|
Khanna KM, Lepisto AJ, Hendricks RL. Immunity to latent viral infection: many skirmishes but few fatalities. Trends Immunol 2004; 25:230-4. [PMID: 15099562 DOI: 10.1016/j.it.2004.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kamal M Khanna
- Graduate Program in Immunology, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213-2588, USA
| | | | | |
Collapse
|
50
|
Chen SH, Pearson A, Coen DM, Chen SH. Failure of thymidine kinase-negative herpes simplex virus to reactivate from latency following efficient establishment. J Virol 2004; 78:520-3. [PMID: 14671133 PMCID: PMC303395 DOI: 10.1128/jvi.78.1.520-523.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thymidine kinase-negative mutants of herpes simplex virus did not reactivate from latency in mouse trigeminal ganglia, even when their latent viral loads were comparable to those that permitted reactivation by wild-type virus. Thus, reduced establishment of latency does not suffice to account for the failure to reactivate.
Collapse
Affiliation(s)
- Shih-Heng Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China
| | | | | | | |
Collapse
|