1
|
The ORF45 Protein of Kaposi's Sarcoma-Associated Herpesvirus and Its Critical Role in the Viral Life Cycle. Viruses 2022; 14:v14092010. [PMID: 36146816 PMCID: PMC9506158 DOI: 10.3390/v14092010] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) protein ORF45 is a virion-associated tegument protein that is unique to the gammaherpesvirus family. Generation of KSHV ORF45-knockout mutants and their subsequent functional analyses have permitted a better understanding of ORF45 and its context-specific and vital role in the KSHV lytic cycle. ORF45 is a multifaceted protein that promotes infection at both the early and late phases of the viral life cycle. As an immediate-early protein, ORF45 is expressed within hours of KSHV lytic reactivation and plays an essential role in promoting the lytic cycle, using multiple mechanisms, including inhibition of the host interferon response. As a tegument protein, ORF45 is necessary for the proper targeting of the viral capsid for envelopment and release, affecting the late stage of the viral life cycle. A growing list of ORF45 interaction partners have been identified, with one of the most well-characterized being the association of ORF45 with the host extracellular-regulated kinase (ERK) p90 ribosomal s6 kinase (RSK) signaling cascade. In this review, we describe ORF45 expression kinetics, as well as the host and viral interaction partners of ORF45 and the significance of these interactions in KSHV biology. Finally, we discuss the role of ORF45 homologs in gammaherpesvirus infections.
Collapse
|
2
|
Amjadimanesh E, Mokhtari A, Saffar B. RNA interference targeting UL25 gene as a gene therapy approach against BHV-1. Res Vet Sci 2022; 145:109-115. [DOI: 10.1016/j.rvsc.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/01/2022] [Accepted: 02/02/2022] [Indexed: 10/19/2022]
|
3
|
Sajid M, Moazzam M, Cho Y, Kato S, Xu A, Way JJ, Lohan S, Tiwari RK. siRNA Therapeutics for the Therapy of COVID-19 and Other Coronaviruses. Mol Pharm 2021; 18:2105-2121. [PMID: 33945284 PMCID: PMC9896947 DOI: 10.1021/acs.molpharmaceut.0c01239] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ongoing pandemic of global concern has killed about three million humans and affected around 151 million people worldwide, as of April 30, 2021. Although recently approved vaccines for COVID-19 are engendering hope, finding new ways to cure the viral pandemic is still a quest for researchers worldwide. Major pandemics in history have been of viral origin, such as SARS, MERS, H1NI, Spanish flu, and so on. A larger emphasis has been on discovering potential vaccines, novel antiviral drugs, and agents that can mitigate the viral infection symptoms; however, a relatively new area, RNA interference (RNAi), has proven effective as an antiviral agent. The RNAi phenomenon has been largely exploited to cure cancer, neurodegenerative diseases, and some rare diseases. The U.S. Food and Drug Administration has recently approved three siRNA products for human use that garner significant hope in siRNA therapeutics for coronaviruses. There have been some commentaries and communications addressing this area. We have summarized and illustrated the significance and the potential of the siRNA therapeutics available as of April 30, 2021 to combat the ongoing viral pandemic and the emerging new variants such as B.1.1.7 and B.1.351. Numerous successful in vitro studies and several investigations to address the clinical application of siRNA therapeutics provide great hope in this field. This seminal Review describes the significance of siRNA-based therapy to treat diverse viral infections in addition to the current coronavirus challenge. In addition, we have thoroughly reviewed the patents approved for coronaviruses, the major challenges in siRNA therapy, and the potential approaches to address them, followed by innovation and prospects.
Collapse
Affiliation(s)
- Muhammad
Imran Sajid
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Faculty
of Pharmacy, University of Central Punjab, Lahore 54700, Pakistan
| | - Muhammad Moazzam
- Faculty
of Pharmacy, University of Central Punjab, Lahore 54700, Pakistan
| | - Yeseom Cho
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Department
of Biochemistry and Molecular Biology, Schmid College of Science and
Technology, Chapman University, Orange, California 92866, United States
| | - Shun Kato
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Department
of Biochemistry and Molecular Biology, Schmid College of Science and
Technology, Chapman University, Orange, California 92866, United States
| | - Ava Xu
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - J. J. Way
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Rakesh K. Tiwari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
4
|
Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome. mBio 2018; 9:mBio.01831-18. [PMID: 30377280 PMCID: PMC6212821 DOI: 10.1128/mbio.01831-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Unrepaired uracils in DNA can lead to mutations and compromise genomic stability. Herpesviruses have hijacked host processes of DNA repair and nucleotide metabolism by encoding a viral UNG that excises uracils and a viral dUTPase that initiates conversion of dUTP to dTTP. To better understand the impact of these processes on gammaherpesvirus pathogenesis, we examined the separate and collaborative roles of vUNG and vDUT upon MHV68 infection of mice. Simultaneous disruption of the enzymatic activities of both vUNG and vDUT led to a severe defect in acute replication and establishment of latency, while also revealing a novel, combinatorial function in promoting viral genomic stability. We propose that herpesviruses require these enzymatic processes to protect the viral genome from damage, possibly triggered by misincorporated uracil. This reveals a novel point of therapeutic intervention to potentially block viral replication and reduce the fitness of multiple herpesviruses. Misincorporation of uracil or spontaneous cytidine deamination is a common mutagenic insult to DNA. Herpesviruses encode a viral uracil-DNA glycosylase (vUNG) and a viral dUTPase (vDUT), each with enzymatic and nonenzymatic functions. However, the coordinated roles of these enzymatic activities in gammaherpesvirus pathogenesis and viral genomic stability have not been defined. In addition, potential compensation by the host UNG has not been examined in vivo. The genetic tractability of the murine gammaherpesvirus 68 (MHV68) system enabled us to delineate the contribution of host and viral factors that prevent uracilated DNA. Recombinant MHV68 lacking vUNG (ORF46.stop) was not further impaired for acute replication in the lungs of UNG−/− mice compared to wild-type (WT) mice, indicating host UNG does not compensate for the absence of vUNG. Next, we investigated the separate and combinatorial consequences of mutating the catalytic residues of the vUNG (ORF46.CM) and vDUT (ORF54.CM). ORF46.CM was not impaired for replication, while ORF54.CM had a slight transient defect in replication in the lungs. However, disabling both vUNG and vDUT led to a significant defect in acute expansion in the lungs, followed by impaired establishment of latency in the splenic reservoir. Upon serial passage of the ORF46.CM/ORF54.CM mutant in either fibroblasts or the lungs of mice, we noted rapid loss of the nonessential yellow fluorescent protein (YFP) reporter gene from the viral genome, due to recombination at repetitive elements. Taken together, our data indicate that the vUNG and vDUT coordinate to promote viral genomic stability and enable viral expansion prior to colonization of latent reservoirs.
Collapse
|
5
|
Van Skike ND, Minkah NK, Hogan CH, Wu G, Benziger PT, Oldenburg DG, Kara M, Kim-Holzapfel DM, White DW, Tibbetts SA, French JB, Krug LT. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice. PLoS Pathog 2018; 14:e1006843. [PMID: 29390024 PMCID: PMC5811070 DOI: 10.1371/journal.ppat.1006843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/13/2018] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. Gammaherpesviruses are infectious agents that cause cancer. The study of viral genes unique to this subfamily may offer insight into the strategies that these viruses use to persist in the host and drive disease. The vFGARATs are a family of viral proteins found only in gammaherpesviruses, and are critical for replication in cell culture. Here we report that a rhadinovirus of rodents requires a previously uncharacterized vFGARAT family member, ORF75A, to support viral growth and persistence in mice. In addition, viruses lacking ORF75A are defective in the production of infectious viral particles. Thus, duplications and functional divergence of the various vFGARATs in the rhadinovirus lineage have likely been driven by selective pressures to disseminate within and colonize the host. Identification of the shared host processes that are targeted by the diverse family of vFGARATs may reveal novel targets for therapeutic agents to prevent life-long infections by these oncogenic viruses.
Collapse
Affiliation(s)
- Nick D. Van Skike
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nana K. Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Chad H. Hogan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program of Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Gary Wu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Peter T. Benziger
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Mehmet Kara
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Deborah M. Kim-Holzapfel
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jarrod B. French
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
6
|
Santana AL, Oldenburg DG, Kirillov V, Malik L, Dong Q, Sinayev R, Marcu KB, White DW, Krug LT. RTA Occupancy of the Origin of Lytic Replication during Murine Gammaherpesvirus 68 Reactivation from B Cell Latency. Pathogens 2017; 6:pathogens6010009. [PMID: 28212352 PMCID: PMC5371897 DOI: 10.3390/pathogens6010009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/10/2017] [Indexed: 02/06/2023] Open
Abstract
RTA, the viral Replication and Transcription Activator, is essential for rhadinovirus lytic gene expression upon de novo infection and reactivation from latency. Lipopolysaccharide (LPS)/toll-like receptor (TLR)4 engagement enhances rhadinovirus reactivation. We developed two new systems to examine the interaction of RTA with host NF-kappaB (NF-κB) signaling during murine gammaherpesvirus 68 (MHV68) infection: a latent B cell line (HE-RIT) inducible for RTA-Flag expression and virus reactivation; and a recombinant virus (MHV68-RTA-Bio) that enabled in vivo biotinylation of RTA in BirA transgenic mice. LPS acted as a second stimulus to drive virus reactivation from latency in the context of induced expression of RTA-Flag. ORF6, the gene encoding the single-stranded DNA binding protein, was one of many viral genes that were directly responsive to RTA induction; expression was further increased upon treatment with LPS. However, NF-κB sites in the promoter of ORF6 did not influence RTA transactivation in response to LPS in HE-RIT cells. We found no evidence for RTA occupancy of the minimal RTA-responsive region of the ORF6 promoter, yet RTA was found to complex with a portion of the right origin of lytic replication (oriLyt-R) that contains predicted RTA recognition elements. RTA occupancy of select regions of the MHV-68 genome was also evaluated in our novel in vivo RTA biotinylation system. Streptavidin isolation of RTA-Bio confirmed complex formation with oriLyt-R in LPS-treated primary splenocytes from BirA mice infected with MHV68 RTA-Bio. We demonstrate the utility of reactivation-inducible B cells coupled with in vivo RTA biotinylation for mechanistic investigations of the interplay of host signaling with RTA.
Collapse
Affiliation(s)
- Alexis L Santana
- The Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA.
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Varvara Kirillov
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Laraib Malik
- Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Qiwen Dong
- Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Roman Sinayev
- Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Kenneth B Marcu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
- Biomedical Research Foundation Academy of Athens (BRFAA), Athens 115 27, Greece.
- Biochemistry and Cell Biology Dept., Stony Brook University, Stony Brook, NY 11794, USA.
- Department of Pathology, Health Sciences Center, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
7
|
Tegument Protein ORF45 Plays an Essential Role in Virion Morphogenesis of Murine Gammaherpesvirus 68. J Virol 2016; 90:7587-7592. [PMID: 27226376 DOI: 10.1128/jvi.03231-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/17/2016] [Indexed: 12/29/2022] Open
Abstract
Tegument proteins play critical roles in herpesvirus morphogenesis. ORF45 is a conserved tegument protein of gammaherpesviruses; however, its role in virion morphogenesis is largely unknown. In this work, we determined the ultrastructural localization of murine gammaherpesvirus 68 (MHV-68) ORF45 and found that this protein was incorporated into virions around the site of host-derived vesicles. Notably, the absence of ORF45 inhibited nucleocapsid egress and blocked cytoplasmic virion maturation, demonstrating that ORF45 is essential for MHV-68 virion morphogenesis.
Collapse
|
8
|
Wang YP, Huang LP, Du WJ, Wei YW, Wu HL, Feng L, Liu CM. Targeting the pseudorabies virus DNA polymerase processivity factor UL42 by RNA interference efficiently inhibits viral replication. Antiviral Res 2016; 132:219-24. [PMID: 27387827 DOI: 10.1016/j.antiviral.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 11/15/2022]
Abstract
RNA interference (RNAi) is a conserved gene-silencing mechanism in which small interfering RNAs (siRNAs) induce the sequence-specific degradation of homologous RNAs. It has been shown to be a novel and effective antiviral therapy against a wide range of viruses. The pseudorabies virus (PRV) processivity factor UL42 can enhance the catalytic activity of the DNA polymerase and is essential for viral replication, thus it may represent a potential drug target of antiviral therapy against PRV infection. Here, we synthesized three siRNAs (siR-386, siR-517, and siR-849) directed against UL42 and determined their antiviral activities in cell culture. We first examined the kinetics of UL42 expression and found it was expressed with early kinetics during PRV replication. We verified that siR-386, siR-517, and siR-849 efficiently inhibited UL42 expression in an in vitro transfection system, thereby validating their inhibitory effects. Furthermore, we confirmed that these three siRNAs induced potent inhibitory effects on UL42 expression after PRV infection, comparable to the positive control siRNA, siR-1046, directed against the PRV DNA polymerase, the UL30 gene product, which is essential for virus replication. In addition, PRV replication was markedly reduced upon downregulation of UL42 expression. These results indicate that UL42-targeted RNAi efficiently inhibits target gene expression and impairs viral replication. This study provides a new clue for the design of an intervention strategy against herpesviruses by targeting their processivity factors.
Collapse
Affiliation(s)
- Yi-Ping Wang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Li-Ping Huang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Wen-Juan Du
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Yan-Wu Wei
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Hong-Li Wu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Li Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China
| | - Chang-Ming Liu
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin 150001, China.
| |
Collapse
|
9
|
Absence of the uracil DNA glycosylase of murine gammaherpesvirus 68 impairs replication and delays the establishment of latency in vivo. J Virol 2015; 89:3366-79. [PMID: 25589640 DOI: 10.1128/jvi.03111-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Uracil DNA glycosylases (UNG) are highly conserved proteins that preserve DNA fidelity by catalyzing the removal of mutagenic uracils. All herpesviruses encode a viral UNG (vUNG), and yet the role of the vUNG in a pathogenic course of gammaherpesvirus infection is not known. First, we demonstrated that the vUNG of murine gammaherpesvirus 68 (MHV68) retains the enzymatic function of host UNG in an in vitro class switch recombination assay. Next, we generated a recombinant MHV68 with a stop codon in ORF46/UNG (ΔUNG) that led to loss of UNG activity in infected cells and a replication defect in primary fibroblasts. Acute replication of MHV68ΔUNG in the lungs of infected mice was reduced 100-fold and was accompanied by a substantial delay in the establishment of splenic latency. Latency was largely, yet not fully, restored by an increase in virus inoculum or by altering the route of infection. MHV68 reactivation from latent splenocytes was not altered in the absence of the vUNG. A survey of host UNG activity in cells and tissues targeted by MHV68 indicated that the lung tissue has a lower level of enzymatic UNG activity than the spleen. Taken together, these results indicate that the vUNG plays a critical role in the replication of MHV68 in tissues with limited host UNG activity and this vUNG-dependent expansion, in turn, influences the kinetics of latency establishment in distal reservoirs. IMPORTANCE Herpesviruses establish chronic lifelong infections using a strategy of replicative expansion, dissemination to latent reservoirs, and subsequent reactivation for transmission and spread. We examined the role of the viral uracil DNA glycosylase, a protein conserved among all herpesviruses, in replication and latency of murine gammaherpesvirus 68. We report that the viral UNG of this murine pathogen retains catalytic activity and influences replication in culture. The viral UNG was impaired for productive replication in the lung. This defect in expansion at the initial site of acute replication was associated with a substantial delay of latency establishment in the spleen. The levels of host UNG were substantially lower in the lung compared to the spleen, suggesting that herpesviruses encode a viral UNG to compensate for reduced host enzyme levels in some cell types and tissues. These data suggest that intervention at the site of initial replicative expansion can delay the establishment of latency, a hallmark of chronic herpesvirus infection.
Collapse
|
10
|
Meng QW, Zhang ZP, Wang W, Tian J, Xiao ZG. Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs. Virol J 2011; 8:556. [PMID: 22188662 PMCID: PMC3296551 DOI: 10.1186/1743-422x-8-556] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 12/22/2011] [Indexed: 11/25/2022] Open
Abstract
Background Avian leukosis virus (ALV) is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi) is considered an effective antiviral strategy. Results In this study, the avian leukosis virus subgroup J (ALV-J) proviral genome, including the gag genes, were treated as targets for RNAi. Four pairs of miRNA sequences were designed and synthesized that targeted different regions of the gag gene. The screened target (i.e., the gag genes) was shown to effectively suppress the replication of ALV-J by 19.0-77.3%. To avoid the generation of escape variants during virus infection, expression vectors of multi-target miRNAs were constructed using the multi-target serial strategy (against different regions of the gag, pol, and env genes). Multi-target miRNAs were shown to play a synergistic role in the inhibition of ALV-J replication, with an inhibition efficiency of viral replication ranging from 85.0-91.2%. Conclusion The strategy of multi-target miRNAs might be an effective method for inhibiting ALV replication and the acquisition of resistant mutations.
Collapse
Affiliation(s)
- Qing-Wen Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No, 427 Maduan Street, Nangang District, Harbin 150001, People's Republic of China.
| | | | | | | | | |
Collapse
|
11
|
Singh J, Kaur H, Kaushik A, Peer S. A Review of Antisense Therapeutic Interventions for Molecular Biological Targets in Various Diseases. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.294.315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Haq K, Brisbin JT, Thanthrige-Don N, Heidari M, Sharif S. Transcriptome and proteome profiling of host responses to Marek's disease virus in chickens. Vet Immunol Immunopathol 2010; 138:292-302. [PMID: 21067815 DOI: 10.1016/j.vetimm.2010.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kamran Haq
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
13
|
Arav-Boger R. Treatment for Kaposi sarcoma herpesvirus: great challenges with promising accomplishments. Virus Genes 2009; 38:195-203. [DOI: 10.1007/s11262-008-0325-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 12/30/2008] [Indexed: 01/28/2023]
|
14
|
Lambeth LS, Zhao Y, Smith LP, Kgosana L, Nair V. Targeting Marek's disease virus by RNA interference delivered from a herpesvirus vaccine. Vaccine 2009; 27:298-306. [PMID: 18977264 DOI: 10.1016/j.vaccine.2008.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/26/2008] [Accepted: 10/02/2008] [Indexed: 10/21/2022]
Abstract
Live attenuated herpesvirus vaccines such as herpesvirus of turkey (HVT) have been used since 1970 for the control of Marek's disease (MD), a highly infectious lymphoproliferative disease of poultry. Despite the success of these vaccines in reducing losses from the disease, Marek's disease virus (MDV) strains have shown a continuing increase in virulence, presumably due to the inability of the current vaccines in preventing MDV replication. The highly specific and effective nature of RNA interference (RNAi) makes this technology particularly attractive for new antiviral strategies. In order to exploit the power of RNAi-mediated suppression of MDV replication in vivo delivered through existing vaccines, we engineered recombinant HVT expressing short hairpin RNA (shRNA) against MDV genes gB and UL29. The levels of protection induced by the RNAi-expressing HVT against virulent virus challenge were similar to the parent pHVT3 virus. However, chickens vaccinated with recombinant HVT expressing shRNA showed moderate reduction of challenge virus replication in blood and feather samples. Delivery of RNAi-based gene silencing through live attenuated vaccines for reducing replication of pathogenic viruses is a novel approach for the control of infectious diseases.
Collapse
Affiliation(s)
- Luke S Lambeth
- Division of Microbiology, Institute for Animal Health, High Street, Compton, Berkshire RG20 7NN, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Mages J, Freimüller K, Lang R, Hatzopoulos AK, Guggemoos S, Koszinowski UH, Adler H. Proteins of the secretory pathway govern virus productivity during lytic gammaherpesvirus infection. J Cell Mol Med 2008; 12:1974-89. [PMID: 18194452 PMCID: PMC2673020 DOI: 10.1111/j.1582-4934.2008.00235.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/08/2007] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Diseases caused by gammaherpesviruses continue to be a challenge for human health and antiviral treatment. Most of the commonly used antiviral drugs are directed against viral gene products. However, the emergence of drug-resistant mutations ma limit the effectiveness of these drugs. Since viruses require a host cell to propagate, the search for host cell targets is an interesting alternative. METHODS In this study, we infected three different cell types (fibroblasts, endothelial precursor cells and macrophages with a murine gammaherpesvirus and analysed the host cell response for changes either common to all or unique to a particular cell type using oligonucleotide microarrays. RESULTS The analysis revealed a number of genes whose transcription was significantly up- or down-regulated in either one or two of the cell types tested. After infection, only two genes, Lman1 (also known as ERGIC53) an synaptobrevin-like 1 (sybl1) were significantly up-regulated in all three cell types, suggestive for a general role for the virus life cycl independent of the cell type. Both proteins have been implicated in cellular exocytosis and transport of glycoproteins through the secretory pathway. To test the significance of the observed up-regulation, the functionality of these proteins was modulated, and the effect on virus replication was monitored. Inhibition of either Lman1 or sybl1 resulted in a significant reduction in virus production. CONCLUSIONS This suggests that proteins of the secretory pathway which appear to be rate limiting for virus production may represent new targets for intervention.
Collapse
Affiliation(s)
- J Mages
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University MunichMunich, Germany
| | - K Freimüller
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF, National Research Center for Environment and HealthMunich, Germany
| | - R Lang
- Institute of Medical Microbiology, Immunology and Hygiene, Technical University MunichMunich, Germany
| | - A K Hatzopoulos
- Institute of Clinical Molecular Biology and Tumor Genetics, GSF, National Research Center for Environment and HealthMunich, Germany
- Vanderbilt University Medical Center, Departments of Medicine and Cell & Developmental BiologyNashville, TN, USA
| | - S Guggemoos
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF, National Research Center for Environment and HealthMunich, Germany
| | - U H Koszinowski
- Vanderbilt University Medical Center, Departments of Medicine and Cell & Developmental BiologyNashville, TN, USA
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University MunichMunich, Germany
| | - H Adler
- Institute of Molecular Immunology, Clinical Cooperation Group Hematopoietic Cell Transplantation, GSF, National Research Center for Environment and HealthMunich, Germany
| |
Collapse
|
16
|
Malizia AP, Keating DT, Smith SM, Walls D, Doran PP, Egan JJ. Alveolar epithelial cell injury with Epstein-Barr virus upregulates TGFbeta1 expression. Am J Physiol Lung Cell Mol Physiol 2008; 295:L451-L460. [PMID: 18621908 DOI: 10.1152/ajplung.00376.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation, and ECM protein deposition. Epstein-Barr virus (EBV) has previously been localized to alveolar epithelial cells of IPF patients and is associated with a poor prognosis. In this study, we utilized a microarray-based differential gene expression analysis strategy to identify molecular drivers of EBV-associated lung fibrosis. Two cell lines, primary human alveolar epithelial cells type 2 and A549 cells, were infected with EBV. EBV lytic phase induction increased active and total transforming growth factor-beta1 (TGFbeta1) transcript expression in association with reduced cell proliferation and increased caspase 3/7 activity. Exposing EBV-infected cells to ganciclovir resulted in TGFbeta1 deregulation and reduced expression of EBV early response genes, BRLF1 and BZLF1. We targeted the BRLF1 and BZLF1 gene products, Rta and Zta, by silencing RNA, and this resulted in the normalization of TGFbeta1 transcript and cell proliferation levels. Our study using a viral cell line model complements existing human and animal model data and further provides evidence to suggest that viral epithelial cell injury may play a role in IPF.
Collapse
Affiliation(s)
- Andrea P Malizia
- Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae Univ. Hospital, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
17
|
Chen M, Payne WS, Hunt H, Zhang H, Holmen SL, Dodgson JB. Inhibition of Marek's disease virus replication by retroviral vector-based RNA interference. Virology 2008; 377:265-72. [DOI: 10.1016/j.virol.2008.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 02/07/2008] [Accepted: 03/15/2008] [Indexed: 10/21/2022]
|
18
|
Dang LT, Kondo H, Hirono I, Aoki T. Inhibition of red seabream iridovirus (RSIV) replication by small interfering RNA (siRNA) in a cell culture system. Antiviral Res 2008; 77:142-9. [DOI: 10.1016/j.antiviral.2007.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 11/26/2022]
|
19
|
Xu X, Guo H, Xiao C, Zha Y, Shi Z, Xia X, Tu C. In vitro inhibition of classical swine fever virus replication by siRNAs targeting Npro and NS5B genes. Antiviral Res 2008; 78:188-93. [PMID: 18262291 DOI: 10.1016/j.antiviral.2007.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 11/05/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
Classical swine fever (CSF) is a highly contagious disease of pigs, which causes important economic losses worldwide. In the present study, the specific effect of RNA interference on the replication of CSF virus (CSFV) was explored. Three species of small interfering RNA (siRNA), targeting different regions of CSFV Npro and NS5B genes, were prepared by in vitro transcription. After transfection of PK-15 cells with each of the siRNAs followed by infection with CSFV, the viral proliferation within the cells was examined by indirect immunofluorescence microscopy. At 72 h post-infection, only a few siRNA-treated cells were positive for viral antigen staining, while most untreated virus-infected cells were positive. Treatment with the siRNAs caused a 4-12-fold reduction in viral genome copy number as assessed by real time RT-PCR. Transfection with the siRNAs also suppressed the production of infectious virus by up to 467-fold as assessed by TCID50 assay. These results suggested that the three species of siRNAs can efficiently inhibit CSFV genome replication and infectious virus production, with the inhibition persisting for 72-84 h.
Collapse
Affiliation(s)
- Xingran Xu
- Institute of Veterinary Sciences, Academy of Military Medical Sciences, 1068 Qinglong Road, Changchun 130062, China
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
SIAH-1 interacts with the Kaposi's sarcoma-associated herpesvirus-encoded ORF45 protein and promotes its ubiquitylation and proteasomal degradation. J Virol 2007; 82:2230-40. [PMID: 18077711 DOI: 10.1128/jvi.02285-07] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), also referred to as human herpesvirus 8, is a potentially tumorigenic virus implicated in the etiology of Kaposi's sarcoma, primary effusion lymphoma, and some forms of multicentric Castleman's disease. The open reading frame 45 (ORF45) protein, encoded by the KSHV genome, is capable of inhibiting virus-dependent interferon induction and appears to be essential for both early and late stages of infection. In the present study, we show, both in yeast two-hybrid assays and in mammalian cells, that the ORF45 protein interacts with the cellular ubiquitin E3 ligase family designated seven in absentia homologue (SIAH). We provide evidence that SIAH-1 promotes the degradation of KSHV ORF45 through a RING domain-dependent mechanism and via the ubiquitin-proteasome system. Furthermore, our data indicate the involvement of SIAH-1 in the regulation of the expression of ORF45 in KSHV-infected cells. Since the availability of KSHV ORF45 is expected to influence the course of KSHV infection, our findings identify a novel biological role for SIAH proteins as modulators of virus infection.
Collapse
|
22
|
Birmingham A, Anderson E, Sullivan K, Reynolds A, Boese Q, Leake D, Karpilow J, Khvorova A. A protocol for designing siRNAs with high functionality and specificity. Nat Protoc 2007; 2:2068-78. [PMID: 17853862 DOI: 10.1038/nprot.2007.278] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective gene silencing by the RNA interference (RNAi) pathway requires a comprehensive understanding of the elements that influence small interfering RNA (siRNA) functionality and specificity. These include (i) sequence space restrictions that define the boundaries of siRNA targeting, (ii) structural and sequence features required for efficient siRNA performance, (iii) mechanisms that underlie nonspecific gene modulation and (iv) additional features specific to the intended use (i.e., inclusion of native sugar or base chemical modifications for increased stability or specificity, vector design, etc.). Attention to each of these factors enhances siRNA performance and heightens overall confidence in the output of RNAi-mediated functional genomic studies. Here, we provide a detailed protocol explaining the methodologies used for manual and web-based design of siRNAs.
Collapse
|
23
|
Zhu FX, Li X, Zhou F, Gao SJ, Yuan Y. Functional characterization of Kaposi's sarcoma-associated herpesvirus ORF45 by bacterial artificial chromosome-based mutagenesis. J Virol 2006; 80:12187-96. [PMID: 17035322 PMCID: PMC1676278 DOI: 10.1128/jvi.01275-06] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Accepted: 09/27/2006] [Indexed: 12/17/2022] Open
Abstract
Open reading frame 45 (ORF45) of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an immediate-early protein. This protein is also present in virions as a tegument protein. ORF45 protein interacts with interferon regulatory factor 7 (IRF-7) and inhibits virus-induced type I interferon production by blocking activation of IRF-7. To define further the function of ORF45 and the mechanism underlying its action, we constructed an ORF45-null recombinant virus genome (BAC-stop45) by using a bacterial artificial chromosome (BAC) system. Stable 293T cells carrying the BAC36 (wild type) and BAC-stop45 genomes were generated. When monolayers of 293T BAC36 and 293T BAC-stop45 cells were induced with 12-O-tetradecanoylphorbol-13-acetate and sodium butyrate, no significant difference was found between them in overall viral gene expression and lytic DNA replication, but induced 293T BAC-stop45 cells released 10-fold fewer virions to the medium than did 293T BAC36 cells. When ORF45-null virus was used to infect cells, lower infectivity was observed than for wild-type BAC36. These results suggest that KSHV ORF45 plays roles in both early and late stages of viral infection, probably in viral ingress and egress.
Collapse
Affiliation(s)
- Fan Xiu Zhu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
24
|
Zhao ZF, Yang H, Han DW, Zhao LF, Zhang GY, Zhang Y, Liu MS. Inhibition of hepatitis B virus expression and replication by RNA interference in HepG2.2.15. World J Gastroenterol 2006; 12:6046-9. [PMID: 17009407 PMCID: PMC4124416 DOI: 10.3748/wjg.v12.i37.6046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe the inhibition of hepatitis B virus replication and expression by transfecting vector-based small interference RNA (siRNA) pGenesil-HBV X targeting HBV X gene region into HepG2.2.15 cells.
METHODS: pGenesil-HBV X was constructed and transfected into HepG2.2.15 cells via lipofection. HBV antigen secretion was determined 24, 48, and 72 h after transfection by time-resolved immunofluorometric assays (TRFIA). HBV replication was examined by fluorescence quantitative PCR, and the expression of cytoplasmic viral proteins was determined by immunohistochemistry.
RESULTS: The secretion of HBsAg and HBeAg into the supernatant was found to be inhibited by 28.5% and 32.2% (P < 0.01), and by 38.67% (P < 0.05) and 42.86% (P < 0.01) at 48 h and 72 h after pGenesil-HBV X transfection, respectively. Immunohistochemical staining for cytoplasmic HBsAg showed a similar decline in HepG2.2.15 cells 48 h after transfection. The number of HBV genomes within culture supernatants was also significantly decreased 48 h and 72 h post-transfection as quantified by fluorescence PCR (P < 0.05).
CONCLUSION: In HepG2.2.15 cells, HBV replication and expression is inhibited by vector-based siRNA pGenesil-HBV X targeting the HBV X coding region.
Collapse
Affiliation(s)
- Zhong-Fu Zhao
- Institute of Hepatology, Changzhi Medical College, Changzhi 046000, Shanxi Province, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Upton JW, Speck SH. Evidence for CDK-dependent and CDK-independent functions of the murine gammaherpesvirus 68 v-cyclin. J Virol 2006; 80:11946-59. [PMID: 17005668 PMCID: PMC1676255 DOI: 10.1128/jvi.01722-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma-2 herpesviruses encode homologues of mammalian D-type cyclins (v-cyclins), which likely function to manipulate the cell cycle, thereby providing a cellular environment conducive to virus replication and/or reactivation from latency. We have previously shown that the v-cyclin of murine gammaherpesvirus 68 is an oncogene that binds and activates cellular cyclin-dependent kinases (CDKs) and is required for efficient reactivation from latency. To determine the contribution of v-cyclin-mediated cell cycle regulation to the viral life cycle, recombinant viruses in which specific point mutations (E133V or K104E) were introduced into the v-cyclin open reading frame were generated, resulting in the disruption of CDK binding and activation. While in vitro growth of these mutant viruses was unaffected, lytic replication in the lungs following low-dose intranasal inoculation was attenuated for both mutants deficient in CDK binding as well as virus in which the entire v-cyclin open reading frame was disrupted by the insertion of a translation termination codon. This replication defect was not apparent in spleens of mice following intraperitoneal inoculation, suggesting a cell type- and/or route-specific dependence on v-cyclin-CDK interactions during the acute phase of virus infection. Notably, although a v-cyclin-null virus was highly attenuated for reactivation from latency, the E133V v-cyclin CDK-binding mutant exhibited only a modest defect in virus reactivation from splenocytes, and neither the E133V nor K104E v-cyclin mutants were compromised in reactivation from peritoneal exudate cells. Taken together, these data suggest that lytic replication and reactivation in vivo are differentially regulated by CDK-dependent and CDK-independent functions of v-cyclin, respectively.
Collapse
Affiliation(s)
- Jason W Upton
- Department of Microbiology and Immunology, Emory University School of Medicine, 1462 Clifton Road, Suite 429, Atlanta, GA 30322, USA
| | | |
Collapse
|
26
|
Abstract
RNA interference (RNAi) is a sequence-specific gene-silencing mechanism that has been proposed to function as a defence mechanism of eukaryotic cells against viruses and transposons. RNAi was first observed in plants in the form of a mysterious immune response to viral pathogens. But RNAi is more than just a response to exogenous genetic material. Small RNAs termed microRNA (miRNA) regulate cellular gene expression programs to control diverse steps in cell development and physiology. The discovery that exogenously delivered short interfering RNA (siRNA) can trigger RNAi in mammalian cells has made it into a powerful technique for generating genetic knock-outs. It also raises the possibility to use RNAi technology as a therapeutic tool against pathogenic viruses. Indeed, inhibition of virus replication has been reported for several human pathogens including human immunodeficiency virus, the hepatitis B and C viruses and influenza virus. We reviewed the field of antiviral RNAi research in 2003 (Haasnoot et al. 2003), but many new studies have recently been published. In this review, we present a complete listing of all antiviral strategies published up to and including December 2004. The latest developments in the RNAi field and their antiviral application are described.
Collapse
Affiliation(s)
- Volker Erdmann
- Institute of Chemistry/Biochemistry, Free University Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Jan Barciszewski
- Institute of Bioorganic Chemistry, Polish Academy of Scienes, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Jürgen Brosius
- Institute of Experimental Pathology, Molecular Neurobiology (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149 Münster, Germany
| |
Collapse
|
27
|
van Rij RP, Andino R. The silent treatment: RNAi as a defense against virus infection in mammals. Trends Biotechnol 2006; 24:186-93. [PMID: 16503061 DOI: 10.1016/j.tibtech.2006.02.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/25/2005] [Accepted: 02/13/2006] [Indexed: 12/22/2022]
Abstract
RNA interference (RNAi) is a mechanism for sequence-specific gene silencing guided by double-stranded RNA. In plants and insects it is well established that RNAi is instrumental in the response to viral infections; whether RNAi has a similar function in mammals is under intense investigation. Recent studies to address this question have identified some unanticipated interactions between the RNAi machinery and mammalian viruses. Furthermore, introduction of virus-specific small interfering RNAs (siRNAs) into cells, thus programming the RNAi machinery to target viruses, is an effective therapeutic approach to inhibit virus replication in vitro and in animal models. Although several issues remain to be addressed, such as delivery and viral escape, these findings hold tremendous potential for the development of RNAi-based antiviral therapeutics.
Collapse
Affiliation(s)
- Ronald P van Rij
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-2280, USA
| | | |
Collapse
|
28
|
Dash S, Haque S, Joshi V, Prabhu R, Hazari S, Fermin C, Garry R. HCV-hepatocellular carcinoma: new findings and hope for effective treatment. Microsc Res Tech 2006; 68:130-48. [PMID: 16276514 DOI: 10.1002/jemt.20227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present here a comprehensive review of the current literature plus our own findings about in vivo and in vitro analysis of hepatitis C virus (HCV) infection, viral pathogenesis, mechanisms of interferon action, interferon resistance, and development of new therapeutics. Chronic HCV infection is a major risk factor for the development of human hepatocellular carcinoma. Standard therapy for chronic HCV infection is the combination of interferon alpha and ribavirin. A significant number of chronic HCV patients who cannot get rid of the virus infection by interferon therapy experience long-term inflammation of the liver and scarring of liver tissue. Patients who develop cirrhosis usually have increased risk of developing liver cancer. The molecular details of why some patients do not respond to standard interferon therapy are not known. Availability of HCV cell culture model has increased our understanding on the antiviral action of interferon alpha and mechanisms of interferon resistance. Interferons alpha, beta, and gamma each inhibit replication of HCV, and the antiviral action of interferon is targeted to the highly conserved 5'UTR used by the virus to translate protein by internal ribosome entry site mechanism. Studies from different laboratories including ours suggest that HCV replication in selected clones of cells can escape interferon action. Both viral and host factors appear to be involved in the mechanisms of interferon resistance against HCV. Since interferon therapy is not effective in all chronic hepatitis C patients, alternative therapeutic strategies are needed to treat chronic hepatitis C patients not responding to interferon therapy. We also reviewed the recent development of new alternative therapeutic strategies for chronic hepatitis C, which may be available in clinical use within the next decade. There is hope that these new agents along with interferon will prevent the occurrence of hepatocellular carcinoma due to chronic persistent hepatitis C virus infection. This review is not inclusive of all important scientific publications due to space limitation.
Collapse
Affiliation(s)
- Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Liu J, Chen I, Chua H, Du Q, Kwang J. Inhibition of porcine circovirus type 2 replication in mice by RNA interference. Virology 2006; 347:422-33. [PMID: 16427679 PMCID: PMC7126151 DOI: 10.1016/j.virol.2005.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Revised: 11/17/2005] [Accepted: 12/06/2005] [Indexed: 11/29/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the primary causative agent of an emerging swine disease, postweaning multisystemic wasting syndrome (PMWS) for which no antiviral treatment is available. To exploit the possibility of using RNA interference (RNAi) as a therapeutic approach against the disease, plasmid-borne short hairpin RNAs (shRNAs) were generated to target the PCV2 genome. Transfection of these shRNAs into cultured PK15 cells caused a significant reduction in viral RNA production that was accompanied by inhibiting viral DNA replication and protein synthesis in infected cells. The effect was further tested in vivo in a mouse model that has been developed for PCV2 infection. Mice injected with shRNA before PCV2 infection showed substantially decreased microscopic lesions in inguinal lymph nodes compared to controls. In situ hybridization and immunohistochemical analyses showed that shRNA caused a significant inhibition in the level of viral DNA and protein synthesis detected in the lymph nodes of the treated mice relative to the controls. Taken together, these results indicate that shRNAs are capable of inhibiting PCV2 infection in vitro as well as in vivo and thus may constitute an effective therapeutic strategy for PCV2 infection.
Collapse
|
30
|
Zhen Z, Bradel-Tretheway B, Sumagin S, Bidlack JM, Dewhurst S. The human herpesvirus 6 G protein-coupled receptor homolog U51 positively regulates virus replication and enhances cell-cell fusion in vitro. J Virol 2005; 79:11914-24. [PMID: 16140767 PMCID: PMC1212626 DOI: 10.1128/jvi.79.18.11914-11924.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is a ubiquitous T-lymphotropic betaherpesvirus that encodes two G protein-coupled receptor homologs, U12 and U51. HHV-6A U51 has been reported to bind to CC chemokines including RANTES, but the biological function of U51 remains uncertain. In this report, we stably expressed short interfering RNAs (siRNAs) specific for U51 in human T cells and then infected these cells with HHV-6. Viral DNA replication was reduced 50-fold by the U51 siRNA, and virally induced cytopathic effects were also inhibited. In contrast, viral replication and syncytium formation were unaltered in cells that expressed a scrambled derivative of the siRNA or an irrelevant siRNA and were restored to normal when a human codon-optimized derivative of U51 was introduced into cells containing the U51 siRNA. To examine the mechanism whereby U51 might contribute to viral replication, we explored the signaling characteristics of U51. None of the chemokines and opioids tested was able to induce G protein coupling by U51, and no evidence for opioid ligand binding by U51 was obtained. The effect of U51 on cell-cell fusion was also evaluated; these studies showed that U51 enhanced cell fusion mediated by the G protein of vesicular stomatitis virus. However, a U51-specific antiserum had no virus-neutralizing activity, suggesting that U51 may not be involved in the initial interaction between the virus particle and host cell. Overall, these studies suggest that HHV-6 U51 is a positive regulator of virus replication in vitro, perhaps because it may promote membrane fusion and facilitates cell-cell spread of this highly cell-associated virus.
Collapse
MESH Headings
- Antibodies, Viral
- Base Sequence
- Cell Line
- DNA, Viral/genetics
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/immunology
- Herpesvirus 6, Human/physiology
- Humans
- In Vitro Techniques
- Membrane Fusion/genetics
- Membrane Fusion/physiology
- RNA, Small Interfering/genetics
- Receptors, Chemokine/antagonists & inhibitors
- Receptors, Chemokine/genetics
- Receptors, Chemokine/immunology
- Receptors, Chemokine/physiology
- Receptors, G-Protein-Coupled/antagonists & inhibitors
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/immunology
- Receptors, G-Protein-Coupled/physiology
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Receptors, Virus/physiology
- Transfection
- Viral Proteins/antagonists & inhibitors
- Viral Proteins/genetics
- Viral Proteins/immunology
- Viral Proteins/physiology
- Virus Replication/genetics
- Virus Replication/physiology
Collapse
Affiliation(s)
- Zhu Zhen
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
31
|
Sánchez AB, Perez M, Cornu T, de la Torre JC. RNA interference-mediated virus clearance from cells both acutely and chronically infected with the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 2005; 79:11071-81. [PMID: 16103158 PMCID: PMC1193575 DOI: 10.1128/jvi.79.17.11071-11081.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Several arenaviruses, including Lassa fever virus, cause severe, often lethal hemorrhagic fever in humans. No licensed vaccines are available in the United States, and currently there is no efficacious therapy to treat this viral infection. Therefore the importance of developing effective antiviral approaches to combat pathogenic arenaviruses is clear. Moreover, the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important model for the study of viral persistence and associated diseases, as well as for exploring therapies to treat viral chronic infections. The use of small interfering RNAs (siRNAs) to downregulate gene expression via RNA interference (RNAi) has emerged as a powerful genetic tool for the study of gene function. In addition, the successful use of siRNAs to target a variety of animal viruses has led us to consider RNAi as a potential novel antiviral strategy. We have investigated the use of RNAi therapy against LCMV. Here, we show that siRNAs targeting sequences within the viral L polymerase and Z mRNAs inhibit LCMV multiplication in cultured cells. Unexpectedly, the antiviral efficacy of RNAi-based therapy against LCMV was highly dependent on the method used to deliver effector siRNA molecules. Thus, transfection of chemically synthesized siRNA pools to L and Z was ineffective in preventing virus multiplication. In contrast, targeting of the same viral L and Z gene products with siRNAs produced inside cells using a replication-deficient recombinant adenovirus expression system inhibited LCMV multiplication very efficiently. Notably, transduction with the replication-deficient recombinant adenovirus expression system to Z and L effectively cured persistently LCMV-infected cells, suggesting the feasibility of using RNAi therapy to combat viral chronic infections by riboviruses.
Collapse
Affiliation(s)
- Ana B Sánchez
- Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
32
|
Prabhu R, Vittal P, Yin Q, Flemington E, Garry R, Robichaux WH, Dash S. Small interfering RNA effectively inhibits protein expression and negative strand RNA synthesis from a full-length hepatitis C virus clone. J Med Virol 2005; 76:511-9. [PMID: 15977238 DOI: 10.1002/jmv.20391] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hepatitis C virus (HCV) infection is usually treated with the combination of interferon and ribavirin, but only a small fraction of patients develop a sustained remission. There is need for the development of specific molecular approaches for the treatment of chronic HCV infection. We propose that RNA interference is highly effective antiviral strategy that offers great potential for the treatment of HCV infection. Three plasmid constructs expressing small interfering RNAs (siRNAs) targeted to sequences encoding the structural gene (E2) and non-structural genes (NS3, NS5B) of HCV1a genome were prepared. Antiviral properties of siRNAs against the HCV1a strain were studied in a transient replication model that involved the use of a transcription plasmid containing the full-length HCV genome and an adenovirus expressing T7 RNA polymerase. We found that siRNAs targeted to the E2, NS3 and NS5B regions of the HCV genome efficiently inhibited expression of the HCV core and NS5A protein measured by Western blot analysis and immunocytochemical staining. Intracytoplasmic immunization of siRNAs in HCV-transfected cells efficiently degraded genomic positive strand HCV RNA, as shown by ribonuclease protection assay (RPA). All three siRNAs efficiently inhibited synthesis of replicative negative strand HCV RNA in the transfected cells. A control siRNA plasmid against a Epstein--Barr virus latency gene did not inhibit protein expression and negative strand HCV RNA. These results suggest that RNAi is an effective and alternative approach that can be used to inhibit HCV expression and replication.
Collapse
Affiliation(s)
- Ramesh Prabhu
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Li T, Zhang Y, Fu L, Yu C, Li X, Li Y, Zhang X, Rong Z, Wang Y, Ning H, Liang R, Chen W, Babiuk LA, Chang Z. siRNA targeting the leader sequence of SARS-CoV inhibits virus replication. Gene Ther 2005; 12:751-61. [PMID: 15772689 PMCID: PMC7091583 DOI: 10.1038/sj.gt.3302479] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
SARS-CoV (the SARS-Associated Coronavirus) was reported as a novel virus member in the coronavirus family, which was the cause of severe acute respiratory syndrome. Coronavirus replication occurs through a unique mechanism employing Leader sequence in the transcripts when initiating transcription from the genome. Therefore, we cloned the Leader sequence from SARS-CoV(BJ01), which is identical to that identified from SARS-CoV(HKU-39849), and constructed specific siRNA targeting the Leader sequence. Using EGFP and RFP reporter genes fused with the cloned SARS-CoV Leader sequence, we demonstrated that the siRNA targeting the Leader sequence decreased the mRNA abundance and protein expression levels of the reporter genes in 293T cells. By stably expressing the siRNA in Vero E6 cells, we provided data that the siRNA could effectively and specifically decrease the mRNA abundance of SARS-CoV genes as analyzed by RT-PCR and Northern blot. Our data indicated that the siRNA targeting the Leader sequence inhibited the replication of SARS-CoV in Vero E6 cells by silencing gene expression. We further demonstrated, via transient transfection experiments, that the siRNA targeting the Leader sequence had a much stronger inhibitory effect on SARS-CoV replication than the siRNAs targeting the Spike gene or the antisense oligodeoxynucleotides did. This report provides evidence that targeting Leader sequence using siRNA could be a powerful tool in inhibiting SARS-CoV replication.
Collapse
Affiliation(s)
- T Li
- Department of Biological Sciences and Biotechnology, Institute of Biomedicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ji J, Wernli M, Mielgo A, Buechner SA, Erb P. Fas-ligand gene silencing in basal cell carcinoma tissue with small interfering RNA. Gene Ther 2005; 12:678-84. [PMID: 15660112 DOI: 10.1038/sj.gt.3302453] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basal cell carcinoma (BCC) is the most frequent cancer in the Caucasian population. Cells of BCC strongly express Fas-ligand (FasL), a member of the tumor necrosis family, which induces apoptosis in Fas receptor-expressing cells. It has been suggested that by expression of FasL, BCC cells may evade the attack of Fas-positive immune effector cells allowing the tumor to expand. Thus, downregulation of FasL should prime BCC to the assault of immune effector cells. Recently, it has been shown that RNA interference is a highly successful approach to specifically silence a gene of interest in single cells and some animal models. However, RNAi in human tissues has not been shown so far. Here, we provide evidence that small interfering RNAs (siRNAs) efficiently transfect tumor tissue ex vivo and silence the gene of interest. We demonstrate that a specific siRNA efficiently downregulates FasL not only in FasL-positive indicator cells but also in surgically excised BCC tissue at both the protein and the mRNA level. The successful transfection of tumor tissues with siRNAs now allows to test the function of the molecule under study and opens up the investigation of other target genes in the tumor.
Collapse
Affiliation(s)
- J Ji
- Institute for Medical Microbiology, University of Basel, Basel, Switzerland
| | | | | | | | | |
Collapse
|
35
|
Xie J, Lü L, Deng M, Weng S, Zhu J, Wu Y, Gan L, Chan SM, He J. Inhibition of reporter gene and Iridovirus-tiger frog virus in fish cell by RNA interference. Virology 2005; 338:43-52. [PMID: 15932766 DOI: 10.1016/j.virol.2005.04.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 04/23/2005] [Accepted: 04/30/2005] [Indexed: 11/27/2022]
Abstract
We describe the specific silencing of reporter gene lacZ in FHM cells (muscle cells of fathead minnow, a fish cell line) by either expressing small hairpin RNAs (shRNAs) from plasmids or transfecting small interfering RNAs (siRNAs) transcribed in vitro. Two types of dsRNAs could inhibit reporter gene expression, and siRNAs were more effective, while both of them worked very well in HeLa cells. siRNAs were tested for silencing expression of the major capsid protein (MCP) encoded by tiger frog virus (TFV), an iridovirus causing severe disease in fish. siRNAs targeting mcp gene effectively inhibited TFV replication in fish cells as demonstrated by reduced mcp RNA level, postponed emergence of cytopathogenic effect, as well as reduced TFV titer and particles in cells. The results suggest that the siRNA method suppressed TFV efficiently in fish cells, providing a potential approach to the therapy of aquaculture viral diseases.
Collapse
Affiliation(s)
- Junfeng Xie
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jia Q, Chernishof V, Bortz E, Mchardy I, Wu TT, Liao HI, Sun R. Murine gammaherpesvirus 68 open reading frame 45 plays an essential role during the immediate-early phase of viral replication. J Virol 2005; 79:5129-41. [PMID: 15795297 PMCID: PMC1069521 DOI: 10.1128/jvi.79.8.5129-5141.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) has been developed as a model for the human gammaherpesviruses Epstein-Barr virus and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus (HHV-8/KSHV), which are associated with several types of human diseases. Open reading frame 45 (ORF45) is conserved among the members of the Gammaherpesvirinae subfamily and has been suggested to be a virion tegument protein. The repression of ORF45 expression by small interfering RNAs inhibits MHV-68 viral replication. However, the gene product of MHV-68 ORF45 and its function have not yet been well characterized. In this report, we show that MHV-68 ORF45 is a phosphorylated nuclear protein. We constructed an ORF45-null MHV-68 mutant virus (45STOP) by the insertion of translation termination codons into the portion of the gene encoding the N terminus of ORF45. We demonstrated that the ORF45 protein is essential for viral gene expression immediately after the viral genome enters the nucleus. These defects in viral replication were rescued by providing ORF45 in trans or in an ORF45-null revertant (45STOP.R) virus. Using a transcomplementation assay, we showed that the function of ORF45 in viral replication is conserved with that of its KSHV homologue. Finally, we found that the C-terminal 23 amino acids that are highly conserved among the Gammaherpesvirinae subfamily are critical for the function of ORF45 in viral replication.
Collapse
Affiliation(s)
- Qingmei Jia
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Dillon CP, Sandy P, Nencioni A, Kissler S, Rubinson DA, Van Parijs L. Rnai as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 2005; 67:147-73. [PMID: 15709955 DOI: 10.1146/annurev.physiol.67.040403.130716] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Over the past four years RNA interference (RNAi) has exploded onto the research scene as a new approach to manipulate gene expression in mammalian systems. More recently, RNAi has garnered much interest as a potential therapeutic strategy. In this review, we briefly summarize the current understanding of RNAi biology and examine how RNAi has been used to study the genetic basis of physiological and disease processes in mammalian systems. We also explore some of the new developments in the use of RNAi for disease therapy and highlight the key challenges that currently limit its application in the laboratory, as well as in the clinical setting.
Collapse
Affiliation(s)
- Christopher P Dillon
- Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Pavlova I, Lin CY, Speck SH. Murine gammaherpesvirus 68 Rta-dependent activation of the gene 57 promoter. Virology 2005; 333:169-79. [PMID: 15708602 DOI: 10.1016/j.virol.2004.12.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 10/19/2004] [Accepted: 12/17/2004] [Indexed: 11/29/2022]
Abstract
The Rta homolog encoded by murine gammaherpesvirus 68 (gammaHV68) gene 50 is essential for virus replication and is capable of driving virus reactivation from the S11 latently infected B lymphoma cell line. Here we characterize Rta activation of gammaHV68 gene 57, which is abundantly transcribed during the early phase of virus replication. Infection of murine fibroblasts with an Rta null virus demonstrated that transcription of gene 57 is dependent on Rta expression. Analysis of the gene 57 promoter identified 2 distinct regions that are Rta responsive, either in the context of the gene 57 promoter or when cloned upstream of a heterologous promoter. Sequence analysis of these regions revealed homology to known Rta-responsive cis-elements in the closely related Kaposi's sarcoma-associated viral (KSHV) genome. In addition, two candidate binding sites for the cellular transcription factor RBP-Jkappa/CBF1 were also identified in one of the Rta-responsive regions, which may play a role in mediating Rta transactivation similar to that observed in some KSHV Rta-responsive genes. Overall, analysis of the gammaHV68 gene 57 promoter suggests that mechanisms of Rta activation are conserved among gamma2-herpesviruses.
Collapse
Affiliation(s)
- Iglika Pavlova
- Division for Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, NE, Atlanta, GA 30329, USA
| | | | | |
Collapse
|
39
|
Zhao MM, An DR, Huang GH, He ZH, Chen JY. A viral protein suppresses siRNA-directed interference in tobacco mosaic virus infection. Acta Biochim Biophys Sin (Shanghai) 2005; 37:248-53. [PMID: 15806291 DOI: 10.1111/j.1745-7270.2005.00036.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Plant viruses encode suppressors of post-transcriptional gene silencing (PTGS), an adaptive defense response that limits virus replication and its spread in plants. The helper component proteinase (HC-Pro) of the potato virus A (PVA, genus Potyvirus) suppresses PTGS of silenced transgenes. Here, the effect of HC-Pro on siRNA-directed interference in the tobacco mosaic virus (TMV) was examined by using a transient Agrobacterium tumefaciens-based delivery system in intact tissues. It was shown that the interference effect was completely blocked by co-infiltration with HC-Pro plus siRNA constructs in both systemic and hypersensitive hosts. In the system host, all plants agro-infiltrated with HC-Pro plus siRNA constructs displayed the same symptoms as the negative control. Meanwhile, TMV RNA accumulation was found to be abundant in the upper leaves using reverse transcriptase-PCR (RT-PCR) and Northern blot assays. On the contrary, plants agro-infiltrated with the siRNA construct alone were free of symptoms. Therefore, our study suggests that the transient expression of HC-Pro inhibited the siRNA-directed host defenses against TMV infection.
Collapse
Affiliation(s)
- Ming-Min Zhao
- College of Plant Protection, North West Science and Technology University of Agriculture and Forestry, Shaanxi 712100, China
| | | | | | | | | |
Collapse
|
40
|
Abstract
RNA interference (RNAi) is now an umbrella term referring to post-transcriptional gene silencing mediated by either degradation or translation arrest of target RNA. This process is initiated by double-stranded RNA with sequence homology driving specificity. The discovery that 21-23 nucleotide RNA duplexes (small-interfering RNAs, siRNAs) mediate RNAi in mammalian cells opened the door to the therapeutic use of siRNAs. While much work remains to optimize delivery and maintain specificity, the therapeutic advantages of siRNAs for treatment of viral infection, dominant disorders, cancer, and neurological disorders show great promise.
Collapse
Affiliation(s)
- R C C Ryther
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
41
|
Colbère-Garapin F, Blondel B, Saulnier A, Pelletier I, Labadie K. Silencing viruses by RNA interference. Microbes Infect 2005; 7:767-75. [PMID: 15820151 PMCID: PMC7110879 DOI: 10.1016/j.micinf.2005.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Accepted: 12/15/2004] [Indexed: 12/23/2022]
Abstract
Post-transcriptional gene silencing (PTGS) makes possible new approaches for studying the various steps of the viral cycle. Plus-strand RNA viruses appear to be attractive targets for small interfering RNAs (siRNAs), as their genome functions as both mRNA and replication template. PTGS creates an alternative to classic reverse genetics for viruses with either negative-strand or double-stranded RNA genomes and for those with a large genome. PTGS allows modification of the expression of a given cellular gene as a means to elucidate its role in the viral cycle and in virus-host cell interactions, and to investigate cellular pathways involved in viral pathogenesis. It also allows the creation of new animal models of human diseases. In addition, PTGS already appears to be a promising new therapeutic tool to fight viral multiplication and dissemination through the host and to prevent inflammation and virus-induced pathogenesis, including virus-induced tumorigenesis.
Collapse
Affiliation(s)
- Florence Colbère-Garapin
- Laboratoire des Virus Entérotropes et Stratégies Antivirales, Institut Pasteur, 75724 Paris cedex 15, France.
| | | | | | | | | |
Collapse
|
42
|
Azorsa DO, Mousses S, Caplen NJ. Gene silencing through RNA interference: Potential for therapeutics and functional genomics. Int J Pept Res Ther 2005. [DOI: 10.1007/s10989-005-4900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Dave RS, Pomerantz RJ. Antiviral effects of human immunodeficiency virus type 1-specific small interfering RNAs against targets conserved in select neurotropic viral strains. J Virol 2004; 78:13687-96. [PMID: 15564478 PMCID: PMC533941 DOI: 10.1128/jvi.78.24.13687-13696.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA interference, a natural biological phenomenon mediated by small interfering RNAs (siRNAs), has been demonstrated in recent studies to be an effective strategy against human immunodeficiency virus type 1 (HIV-1). In the present study, we used 21-bp chemically synthesized siRNA duplexes whose sequences were derived from the gp41 gene, nef, tat, and rev regions of viral RNA. These sequences are conserved in select neurotropic strains of HIV-1 (JR-FL, JR-CSF, and YU-2). The designed siRNAs exerted a potent antiviral effect on these HIV-1 strains. The antiviral effect was mediated at the RNA level (as observed by the down-regulation of the HIV-1-specific spliced transcript generating a 1.2-kbp reverse transcription [RT]-PCR product) as well as viral assembly on the cell membrane. Spliced transcripts (apart from the most abundant transcript generating a 1.2-kbp RT-PCR product) arising from an unspliced precursor likely contributed, albeit to a lesser extent, to the antiviral effect. The resultant progeny viruses had infectivities similar to that of input virus. We therefore conclude that these siRNAs interfere with the processing of the unspliced transcripts for the gp41 gene, tat, rev, and nef, eventually affecting viral assembly and leading to the overall inhibition of viral production. Apart from using the gp41 gene as a target, the conservation of each of these targets in the above-mentioned viral strains, as well as several primary isolates, would enable these siRNAs to be used as potent antiviral tools for investigations with cells derived from the central nervous system in order to evaluate their therapeutic potential and assess their utility in inhibiting HIV-1 neuropathogenesis and neuroinvasion.
Collapse
MESH Headings
- Antiviral Agents/pharmacology
- Base Sequence
- Brain/virology
- Cells, Cultured
- Cerebrospinal Fluid/virology
- Gene Products, nef/chemistry
- Gene Products, nef/genetics
- Gene Products, nef/metabolism
- Gene Products, rev/chemistry
- Gene Products, rev/genetics
- Gene Products, rev/metabolism
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/metabolism
- HIV Envelope Protein gp41/chemistry
- HIV Envelope Protein gp41/genetics
- HIV Envelope Protein gp41/metabolism
- HIV-1/chemistry
- HIV-1/genetics
- HIV-1/metabolism
- HeLa Cells
- Humans
- Macrophages/virology
- Monocytes/virology
- RNA Interference
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- nef Gene Products, Human Immunodeficiency Virus
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Rajnish S Dave
- Dorrance H. Hamilton Laboratories, Center for Human Virology and Biodefense, Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Thomas Jefferson University, 1020 Locust St., Suite 329, Philadelphia, PA 19107, USA
| | | |
Collapse
|
44
|
Gao X, Wang H, Sairenji T. Inhibition of Epstein-Barr virus (EBV) reactivation by short interfering RNAs targeting p38 mitogen-activated protein kinase or c-myc in EBV-positive epithelial cells. J Virol 2004; 78:11798-806. [PMID: 15479821 PMCID: PMC523256 DOI: 10.1128/jvi.78.21.11798-11806.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Latent Epstein-Barr virus (EBV) is reactivated by 12-O-tetradecanoylphorbol-13-acetate (TPA) in EBV-infected cells. In this study, we found that TPA up-regulated phosphorylation of p38, a mitogen-activated protein kinase, and activated c-myc mRNA in EBV-positive epithelial GT38 cells. The EBV immediate-early gene BZLF1 mRNA and its product ZEBRA protein were induced following TPA treatment. Protein kinase C inhibitors, 1-(5-isoquinolinesulphonyl)-2, 5-dimethylpiperazine (H7) and staurosporine, inhibited the induction of p38 phosphorylation and the activation of c-Myc by TPA. The p38 inhibitor SB203580 blocked both p38 phosphorylation and ZEBRA expression by TPA. Pretreatment of GT38 cells with the nitric oxide (NO) donor S-nitroso-N-acetylpenicillamine inhibited p38 phosphorylation and c-Myc activation by TPA, suggesting that NO may inhibit EBV reactivation via both p38 and c-Myc. By using short interfering RNA (siRNA) targeting either p38 or c-myc, we found that p38 or c-myc siRNA specifically inhibited expression of the respective gene and also suppressed the induction of ZEBRA and EBV early antigen. The interferon (IFN)-responsive gene expression tests ruled out the possibility that the antiviral effect of siRNA is dependent on IFN. Our present study demonstrates for the first time that either p38 or c-myc siRNA can efficiently inhibit TPA-induced EBV reactivation in GT38 cells, indicating that p38- and/or c-myc-associated signaling pathways may play critical roles in the disruption of EBV latency by TPA.
Collapse
Affiliation(s)
- Xiangrong Gao
- Division of Biosignaling, Department of Biomedical Sciences, School of Life Science, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | | | | |
Collapse
|
45
|
Yoon JS, Kim SH, Shin MC, Hong SK, Jung YT, Khang IG, Shin WS, Kim CC, Paik SY. Inhibition of herpesvirus-6B RNA replication by short interference RNAs. BMB Rep 2004; 37:383-5. [PMID: 15469723 DOI: 10.5483/bmbrep.2004.37.3.383] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RNA interference (RNAi) is a process of sequence-specific gene silencing, which is initiated by double-stranded RNA (dsRNA). RNAi may also serve as an antiviral system in vertebrates. This study describes the inhibition of herpesvirus-6B (HHV-6B) replication by short interference RNAs (siRNAs) that are targeted to the U38 sequence that encodes DNA polymerase. When virus-infected SupT1 cells were treated by siRNA, these cells blocked the cytopathic effect (CPE) and detected the HHV-6B antibody-negative in indirect immunofluorescence assays (IFA). Our result suggests that RNAi can efficiently block Herpesvirus-6B replication.
Collapse
Affiliation(s)
- Jong-Sub Yoon
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul 137-701, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bhuyan PK, Karikò K, Capodici J, Lubinski J, Hook LM, Friedman HM, Weissman D. Short interfering RNA-mediated inhibition of herpes simplex virus type 1 gene expression and function during infection of human keratinocytes. J Virol 2004; 78:10276-81. [PMID: 15367593 PMCID: PMC516413 DOI: 10.1128/jvi.78.19.10276-10281.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
RNA interference (RNAi) is an antiviral mechanism that is activated when double-stranded RNA is cleaved into fragments, called short interfering RNA (siRNA), that prime an inducible gene silencing enzyme complex. We applied RNAi against a herpes simplex virus type 1 (HSV-1) gene, glycoprotein E, which mediates cell-to-cell spread and immune evasion. In an in vitro model of infection, human keratinocytes were transfected with siRNA specific for glycoprotein E and then infected with wild-type HSV-1. RNAi-mediated gene silencing reproduced the small plaque phenotype of a gE-deletion mutant virus. The specificity of gene targeting was demonstrated by flow cytometry and Northern blot analyses. Exogenous siRNA can suppress HSV-1 glycoprotein E expression and function during active infection in vitro through RNAi. This work establishes RNAi as a genetic tool for the study of HSV and provides a foundation for development of RNAi as a novel antiviral therapy.
Collapse
Affiliation(s)
- Prakash K Bhuyan
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Wang Q, Carmichael GG. Effects of length and location on the cellular response to double-stranded RNA. Microbiol Mol Biol Rev 2004; 68:432-52, table of contents. [PMID: 15353564 PMCID: PMC515255 DOI: 10.1128/mmbr.68.3.432-452.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Since double-stranded RNA (dsRNA) has not until recently generally been thought to be deliberately expressed in cells, it has commonly been assumed that the major source of cellular dsRNA is viral infections. In this view, the cellular responses to dsRNA would be natural and perhaps ancient antiviral responses. While the cell may certainly react to some dsRNAs as an antiviral response, this does not represent the only response or even, perhaps, the major one. A number of recent observations have pointed to the possibility that dsRNA molecules are not seen only as evidence of viral infection or recognized for degradation because they cannot be translated. In some instances they may also play important roles in normal cell growth and function. The purpose of this review is to outline our current understanding of the fate of dsRNA in cells, with a focus on the apparent fact that their fates and functions appear to depend critically not only on where in the cell dsRNA molecules are found, but also on how long they are and perhaps on how abundant they are.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030-3301, USA
| | | |
Collapse
|
48
|
Lu A, Zhang H, Zhang X, Wang H, Hu Q, Shen L, Schaffhausen BS, Hou W, Li L. Attenuation of SARS coronavirus by a short hairpin RNA expression plasmid targeting RNA-dependent RNA polymerase. Virology 2004; 324:84-9. [PMID: 15183056 PMCID: PMC7127537 DOI: 10.1016/j.virol.2004.03.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2004] [Revised: 02/02/2004] [Accepted: 03/23/2004] [Indexed: 01/24/2023]
Abstract
Severe acute respiratory syndrome (SARS) is a highly contagious and sometimes a lethal disease, which spread over five continents in 2002–2003. Laboratory analysis showed that the etiologic agent for SARS is a new type of coronavirus. Currently, there is no specific treatment for this disease. RNA interference (RNAi) is a recently discovered antiviral mechanism in plant and animal cells that induces a specific degradation of double-stranded RNA. Here, we provide evidences that RNAi targeting at coronavirus RNA-dependent RNA polymerase (RDRP) using short hairpin RNA (shRNA) expression plasmids can specifically inhibit expression of extraneous coronavirus RDRP in 293 and HeLa cells. Moreover, this construct significantly reduced the plaque formation of SARS coronaviruses in Vero-E6 cells. The data may suggest a new approach for treatment of SARS patients.
Collapse
Affiliation(s)
- Aili Lu
- Peking University Stem Cell Center and Department of Cell Biology and Genetics, Peking University Health Science Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Jia Q, Wu TT, Liao HI, Chernishof V, Sun R. Murine gammaherpesvirus 68 open reading frame 31 is required for viral replication. J Virol 2004; 78:6610-20. [PMID: 15163752 PMCID: PMC416517 DOI: 10.1128/jvi.78.12.6610-6620.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) is genetically related to the human gammaherpesviruses, Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) and Epstein-Barr virus (EBV). It has been proposed as a model for gammaherpesvirus infection and pathogenesis. Open reading frame 31 (ORF31) is conserved among the Beta- and Gammaherpesvirinae subfamily, and there is no known mammalian homologue of this protein. The function of MHV-68 ORF31 and its viral homologues has not yet been determined. We described here a primary characterization of this protein and its requirement for lytic replication. The native MHV-68 ORF31 was detected at peak levels by 24 h postinfection, and the FLAG-tagged and green fluorescent protein fusion ORF31 were localized in the cytoplasm and nucleus in a diffuse pattern. Two independent experimental approaches were then utilized to demonstrate that ORF31 was required for lytic replication. First, small interfering RNA generated against ORF31 expression blocked protein expression and virus production in transfected cells. Then, two-independent bacterial artificial chromosome-derived ORF31-null MHV-68 mutants (31STOP) were generated and found to be defective in virus production in fibroblast cells. This defect can be rescued in trans by MHV-68 ORF31 and importantly by its KSHV homologue. A repair virus of 31STOP was also generated by homologous recombination in fibroblast cells. Finally, we showed that the defect in ORF31 blocked late lytic protein expression. Our results demonstrate that MHV-68 ORF31 is required for viral lytic replication, and its function is conserved in its KSHV homologue.
Collapse
Affiliation(s)
- Qingmei Jia
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
50
|
Chang Y, Chang SS, Lee HH, Doong SL, Takada K, Tsai CH. Inhibition of the Epstein–Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 2004; 85:1371-1379. [PMID: 15166418 DOI: 10.1099/vir.0.79886-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epstein–Barr virus (EBV) reactivation into the lytic cycle plays certain roles in the development of EBV-associated diseases, so an effective strategy to block the viral lytic cycle may be of value to reduce the disease risk or to improve the clinical outcome. This study examined whether the EBV lytic cycle could be inhibited using RNA interference (RNAi) directed against the essential viral gene Zta. In cases of EBV reactivation triggered by chemicals or by exogenous Rta, Zta-targeted RNAi prevented the induction of Zta and its downstream genes and further blocked the lytic replication of viral genomes. This antiviral effect of RNAi was not likely to be mediated by activation of the interferon pathway, as phosphorylation of STAT1 was not induced. In addition, novel EBV-infected epithelial cells showing constitutive activation of the lytic cycle were cloned; such established lytic infection was also suppressed by Zta-targeted RNAi. These results indicate that RNAi can be used to inhibit the EBV lytic cycle effectively in vitro and could also be of potential use to develop anti-EBV treatments.
Collapse
Affiliation(s)
- Yao Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 714, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Shih-Shin Chang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 714, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Heng-Huan Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 714, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Shin-Lian Doong
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 714, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| | - Kenzo Takada
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 714, Number 1, Section 1, Jen-Ai Road, Taipei, Taiwan
| |
Collapse
|