1
|
Puglia I, Caporale M, Di Teodoro G, Spedicato M, Profeta F, Marcacci M, Di Pancrazio C, Valleriani F, Rossi E, Auerswald H, Lorusso A. Optimization of an infectious subgenomic amplicons reverse genetics protocol for the rescue of synthetic coronaviruses. J Virol Methods 2025; 336:115152. [PMID: 40188879 DOI: 10.1016/j.jviromet.2025.115152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025]
Abstract
Reverse genetics (rg) systems are indispensable tools for investigating the pathogenesis of RNA viruses, facilitating vaccine design, and advancing antiviral therapeutic strategies. In this study, we optimized the Infectious Subgenomic Amplicons (ISA) method for generating synthetic r-wt SARS-CoV-2 Wuhan-Hu-1. This system was validated by demonstrating the successful rescue of infectious viral particles from overlapping DNA fragments and their propagation in vitro. Sequencing confirmed 100 % identity of the recovered virus with the Wuhan-Hu-1 reference genome. Importantly, in vivo experiments using K18-hACE2 mice revealed that the r-wt SARS-CoV-2 Wuhan-Hu-1 strain caused clinical symptoms, weight loss, and mortality comparable to those induced by a virulent SARS-CoV-2 field variant. This ISA rg method offers a rapid and reproducible approach to generating synthetic coronaviruses, with potential applications in pathogenesis studies, antiviral testing, and vaccine development.
Collapse
Affiliation(s)
- Ilaria Puglia
- PhD National Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Marialuigia Caporale
- PhD National Programme in One Health approaches to infectious diseases and life science research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy; Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | | | - Massimo Spedicato
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Francesca Profeta
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Maurilia Marcacci
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | | | | | - Emanuela Rossi
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Heidi Auerswald
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy
| | - Alessio Lorusso
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise, Teramo, Italy.
| |
Collapse
|
2
|
Zhang M, Zhu Y, Li N, Aishanjiang K, Zhu S, Tang A, Li G, Liu G. Development of a monoclonal antibody-based colloidal gold immunochromatographic strip for rapid detection of feline coronavirus. Int J Biol Macromol 2025; 309:142683. [PMID: 40169048 DOI: 10.1016/j.ijbiomac.2025.142683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/02/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Feline infectious peritonitis (FIP), caused by feline coronavirus (FCoV), is a fatal disease with no effective vaccine. Early detection is crucial for FIP management, and a rapid, accurate diagnostic method is urgently needed. Hence, the purpose of this study was to establish a rapid, sensitive, specific immunochromatographic strip (ICS) for clinical detection of FIP. We selected the highly conserved N protein of FIPV and expressed recombinant N protein as an immunogen to prepare monoclonal antibodies (mAbs). Five mAbs specific to FIPV were produced. The antigenic epitopes recognized by the 2B10 and 10E7 mAbs used for ICS preparation were identified, and the structure and conservation of the epitopes were analyzed. Subsequently, we paired the 2B10 and 10E7 mAbs, assembled the ICS, and implemented several optimization measures. The specificity of the ICS was confirmed by positive reactions with FIPV-positive samples and negative reactions with FHV, FPV, and FCV. Sensitivity testing detected FIPV suspensions (TCID₅₀ = 106.5/mL) diluted to 1: 512. The ICS showed 98.3 % agreement with RT-PCR results in detecting 60 suspected samples and remained stable for 6 months at room temperature. In conclusion, this study developed a simple, sensitive, and specific ICS for the detection of FIPV.
Collapse
Affiliation(s)
- Miao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Yingqi Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Na Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Kelimujiang Aishanjiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Shiqiang Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Aoxing Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China
| | - Guoxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| | - Guangqing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Shanghai 200241, China.
| |
Collapse
|
3
|
Khumtong K, Rapichai W, Saejung W, Khamsingnok P, Meecharoen N, Ratanabunyong S, Dong HV, Tuanthap S, Rattanasrisomporn A, Choowongkomon K, Rungsuriyawiboon O, Rattanasrisomporn J. Colorimetric Reverse Transcription Loop-Mediated Isothermal Amplification with Xylenol Orange Targeting Nucleocapsid Gene for Detection of Feline Coronavirus Infection. Viruses 2025; 17:418. [PMID: 40143345 PMCID: PMC11946810 DOI: 10.3390/v17030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Feline infectious peritonitis (FIP), a devastating disease with near-complete mortality, is caused by the feline coronavirus (FCoV) and affects domestic cats worldwide. Herein, we report the development of a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay incorporating xylenol orange (XO) as a visual indicator for FCoV detection. The assay employed six oligonucleotide primers targeting regions of the nucleocapsid (N) gene. Under optimized conditions (65 °C, 60 min), amplification products were detected through pH-dependent colour changes in the XO dye. The RT-LAMP-XO assay exhibited high specificity for FCoV, with no cross-reactivity against other common feline viral pathogens. While the detection limit (1.7 × 101 copies/µL) was an order of magnitude higher than that of qPCR, the method offered advantages in simplicity and speed compared to existing diagnostic approaches. Although less sensitive than qPCR, the RT-LAMP-XO assay may serve as a rapid screening tool when used in combination with additional primer sets. These findings demonstrate the potential utility of XO-based RT-LAMP as a simple, visual detection method for FCoV infection.
Collapse
Affiliation(s)
- Kotchaporn Khumtong
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.K.); (W.S.)
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.R.); (P.K.); (H.V.D.)
| | - Witsanu Rapichai
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.R.); (P.K.); (H.V.D.)
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.R.); (K.C.)
| | - Wichayet Saejung
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.K.); (W.S.)
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.R.); (P.K.); (H.V.D.)
| | - Piyamat Khamsingnok
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.R.); (P.K.); (H.V.D.)
| | - Nianrawan Meecharoen
- Central Laboratory (CTL), Center for Veterinary Research and Innovation, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand;
| | - Siriluk Ratanabunyong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.R.); (K.C.)
| | - Hieu Van Dong
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.R.); (P.K.); (H.V.D.)
- Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Supansa Tuanthap
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Bangpra, Chonburi 20110, Thailand;
| | - Amonpun Rattanasrisomporn
- Interdisciplinary of Genetic Engineering and Bioinformatics, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; (S.R.); (K.C.)
| | - Oumaporn Rungsuriyawiboon
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand;
| | - Jatuporn Rattanasrisomporn
- Graduate Program in Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (K.K.); (W.S.)
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand; (W.R.); (P.K.); (H.V.D.)
| |
Collapse
|
4
|
Masters PS. Caution urged for work with newly constructed human coronavirus. Proc Natl Acad Sci U S A 2024; 121:e2415892121. [PMID: 39432791 PMCID: PMC11536158 DOI: 10.1073/pnas.2415892121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Affiliation(s)
- Paul S. Masters
- Laboratory of Viral Replication and Vector Biology, Wadsworth Center, New York State Department of Health, Slingerlands, NY12259
| |
Collapse
|
5
|
Gu G, Fung TS, Hung WT, Osterrieder N, Go YY. Development and characterization of reverse genetics systems of feline infectious peritonitis virus for antiviral research. Vet Res 2024; 55:124. [PMID: 39334482 PMCID: PMC11438400 DOI: 10.1186/s13567-024-01373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024] Open
Abstract
Feline infectious peritonitis (FIP) is a lethal, immune-mediated disease in cats caused by feline infectious peritonitis virus (FIPV), a biotype of feline coronavirus (FCoV). In contrast to feline enteric coronavirus (FECV), which exclusively infects enterocytes and causes diarrhea, FIPV specifically targets macrophages, resulting in the development of FIP. The transmission and infection mechanisms of this complex, invariably fatal disease remain unclear, with no effective vaccines or approved drugs for its prevention or control. In this study, a full-length infectious cDNA clone of the wild-type FIPV WSU79-1149 strain was constructed to generate recombinant FIPV (rFIPV-WT), which exhibited similar growth kinetics and produced infectious virus titres comparable to those of the parental wild-type virus. In addition, the superfold green fluorescent protein (msfGFP) and Renilla luciferase (Rluc) reporter genes were incorporated into the rFIPV-WT cDNA construct to generate reporter rFIPV-msfGFP and rFIPV-Rluc viruses. While the growth characteristics of the rFIPV-msfGFP virus were similar to those of its parental rFIPV-WT, the rFIPV-Rluc virus replicated more slowly, resulting in the formation of smaller plaques than did the rFIPV-WT and rFIPV-msfGFP viruses. In addition, by replacing the S, E, M, and ORF3abc genes with msfGFP and Rluc genes, the replicon systems repFIPV-msfGFP and repFIPV-Rluc were generated on the basis of the cDNA construct of rFIPV-WT. Last, the use of reporter recombinant viruses and replicons in antiviral screening assays demonstrated their high sensitivity for quantifying the antiviral effectiveness of the tested compounds. This integrated system promises to significantly streamline the investigation of virus replication within host cells, enabling efficient screening for anti-FIPV compounds and evaluating emerging drug-resistant mutations within the FIPV genome.
Collapse
Affiliation(s)
- Guoqian Gu
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - To Sing Fung
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | - Wong Tsz Hung
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, SAR, China
| | | | - Yun Young Go
- College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jiang H, Wang T, Kong L, Li B, Peng Q. Reverse Genetics Systems for Emerging and Re-Emerging Swine Coronaviruses and Applications. Viruses 2023; 15:2003. [PMID: 37896780 PMCID: PMC10611186 DOI: 10.3390/v15102003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Emerging and re-emerging swine coronaviruses (CoVs), including porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine acute diarrhea syndrome-CoV (SADS-CoV), cause severe diarrhea in neonatal piglets, and CoV infection is associated with significant economic losses for the swine industry worldwide. Reverse genetics systems realize the manipulation of RNA virus genome and facilitate the development of new vaccines. Thus far, five reverse genetics approaches have been successfully applied to engineer the swine CoV genome: targeted RNA recombination, in vitro ligation, bacterial artificial chromosome-based ligation, vaccinia virus -based recombination, and yeast-based method. This review summarizes the advantages and limitations of these approaches; it also discusses the latest research progress in terms of their use for virus-related pathogenesis elucidation, vaccine candidate development, antiviral drug screening, and virus replication mechanism determination.
Collapse
Affiliation(s)
- Hui Jiang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China
| | - Ting Wang
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingbao Kong
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| | - Qi Peng
- Nanchang Key Laboratory of Animal Virus and Genetic Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (H.J.); (T.W.)
- Institute of Pathogenic Microorganism, Jiangxi Agricultural University, Nanchang 330045, China
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
| |
Collapse
|
7
|
Buonavoglia A, Pellegrini F, Decaro N, Galgano M, Pratelli A. A One Health Perspective on Canine Coronavirus: A Wolf in Sheep’s Clothing? Microorganisms 2023; 11:microorganisms11040921. [PMID: 37110344 PMCID: PMC10143937 DOI: 10.3390/microorganisms11040921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Canine coronavirus (CCoV) is a positive-strand RNA virus generally responsible for mild-to-severe gastroenteritis in dogs. In recent years, new CCoVs with acquired pathogenic characteristics have emerged, turning the spotlight on the evolutionary potential of CCoVs. To date, two genotypes are known, CCoV type I and CCoV type II, sharing up to 96% nucleotide identity in the genome but highly divergent in the spike gene. In 2009, the detection of a novel CCoV type II, which likely originated from a double recombination event with transmissible gastroenteritis virus (TGEV), led to the proposal of a new classification: CCoV type IIa, including classical CCoVs and CCoV type IIb, including TGEV-like CCoV. Recently, a virus strictly correlated to CCoV was isolated from children with pneumonia in Malaysia. The HuPn-2018 strain, classified as a novel canine–feline-like recombinant virus, is supposed to have jumped from dogs into people. A novel CoV of canine origin, HuCCoV_Z19Haiti, closely related to the Malaysian strain was also detected in a man with fever after travel to Haiti, suggesting that infection with Malaysian-like strains may occur. These data and the emergence of highly pathogenic CoVs in humans underscore the significant threat that CoV spillovers pose to humans and how we should mitigate this hazard.
Collapse
Affiliation(s)
- Alessio Buonavoglia
- Dental School, Department of Biomedical and Neuromotor Sciences, Via Zamboni 33, 40126 Bologna, Italy
| | - Francesco Pellegrini
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Michela Galgano
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| | - Annamaria Pratelli
- Department of Veterinary Medicine, University Aldo Moro of Bari, Sp Casamassima Km 3, Valenzano, 70010 Bari, Italy
| |
Collapse
|
8
|
Zehr JD, Kosakovsky Pond SL, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic feline coronavirus phenotypes. Virus Evol 2023; 9:vead019. [PMID: 37038392 PMCID: PMC10082545 DOI: 10.1093/ve/vead019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Feline coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed feline enteric coronavirus [FECV]), with around 12 per cent developing into deadly feline infectious peritonitis (FIP; feline infectious peritonitis virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV- and FECV-specific signals of positive selection. We analyzed full-length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site (FCS) and the other within the fusion domain of Spike. We also found fifteen sites subject to positive selection associated with FIPV within Spike, eleven of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were fourteen sites (twelve novel sites) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 FCS and adjacent to C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype and included twenty-four positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV-wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that it is unlikely to be one singular 'switch' mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas 78352, France
| | - Ximena A Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Alexander G Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Annette Choi
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Gary R Whittaker
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laura B Goodman
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael J Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
9
|
Zehr JD, Pond SLK, Millet JK, Olarte-Castillo XA, Lucaci AG, Shank SD, Ceres KM, Choi A, Whittaker GR, Goodman LB, Stanhope MJ. Natural selection differences detected in key protein domains between non-pathogenic and pathogenic Feline Coronavirus phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523607. [PMID: 36712007 PMCID: PMC9882035 DOI: 10.1101/2023.01.11.523607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Feline Coronaviruses (FCoVs) commonly cause mild enteric infections in felines worldwide (termed Feline Enteric Coronavirus [FECV]), with around 12% developing into deadly Feline Infectious Peritonitis (FIP; Feline Infectious Peritonitis Virus [FIPV]). Genomic differences between FECV and FIPV have been reported, yet the putative genotypic basis of the highly pathogenic phenotype remains unclear. Here, we used state-of-the-art molecular evolutionary genetic statistical techniques to identify and compare differences in natural selection pressure between FECV and FIPV sequences, as well as to identify FIPV and FECV specific signals of positive selection. We analyzed full length FCoV protein coding genes thought to contain mutations associated with FIPV (Spike, ORF3abc, and ORF7ab). We identified two sites exhibiting differences in natural selection pressure between FECV and FIPV: one within the S1/S2 furin cleavage site, and the other within the fusion domain of Spike. We also found 15 sites subject to positive selection associated with FIPV within Spike, 11 of which have not previously been suggested as possibly relevant to FIP development. These sites fall within Spike protein subdomains that participate in host cell receptor interaction, immune evasion, tropism shifts, host cellular entry, and viral escape. There were 14 sites (12 novel) within Spike under positive selection associated with the FECV phenotype, almost exclusively within the S1/S2 furin cleavage site and adjacent C domain, along with a signal of relaxed selection in FIPV relative to FECV, suggesting that furin cleavage functionality may not be needed for FIPV. Positive selection inferred in ORF7b was associated with the FECV phenotype, and included 24 positively selected sites, while ORF7b had signals of relaxed selection in FIPV. We found evidence of positive selection in ORF3c in FCoV wide analyses, but no specific association with the FIPV or FECV phenotype. We hypothesize that some combination of mutations in FECV may contribute to FIP development, and that is unlikely to be one singular "switch" mutational event. This work expands our understanding of the complexities of FIP development and provides insights into how evolutionary forces may alter pathogenesis in coronavirus genomes.
Collapse
Affiliation(s)
- Jordan D. Zehr
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Sergei L. Kosakovsky Pond
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Jean K. Millet
- Université Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, 78352 Jouyen-Josas, France
| | - Ximena A. Olarte-Castillo
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Alexander G. Lucaci
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Stephen D. Shank
- Department of Biology, Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA 19122, USA
| | - Kristina M. Ceres
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Laura B. Goodman
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Michael J. Stanhope
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
10
|
Cook S, Castillo D, Williams S, Haake C, Murphy B. Serotype I and II Feline Coronavirus Replication and Gene Expression Patterns of Feline Cells-Building a Better Understanding of Serotype I FIPV Biology. Viruses 2022; 14:1356. [PMID: 35891338 PMCID: PMC9320447 DOI: 10.3390/v14071356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/27/2023] Open
Abstract
Feline infectious peritonitis (FIP) is a disease of domestic cats caused by the genetic variant of the feline coronavirus (FCoV) and feline infectious peritonitis virus (FIPV), currently grouped into two serotypes, I and II. Although serotype I FIPV is more prevalent in cats with FIP, serotype II has been more extensively studied in vitro due to the relative ease in propagating this viral serotype in culture systems. As a result, more is known about serotype II FIPV than the more biologically prevalent serotype I. The primary cell receptor for serotype II has been determined, while it remains unknown for serotype I. The recent development of a culture-adapted feline cell line that more effectively propagates serotype I FIPV, FCWF-4 CU, derived from FCWF-4 cells available through the ATCC, offers the potential for an improved understanding of serotype I FIPV biology. To learn more about FIPV receptor biology, we determined targeted gene expression patterns in feline cells variably permissive to replication of serotype I or II FIPV. We utilized normal feline tissues to determine the immunohistochemical expression patterns of two known coronavirus receptors, ACE2 and DC-SIGN. Lastly, we compared the global transcriptomes of the two closely related FCWF-4 cell lines and identified viral transcripts with potential importance for the differential replication kinetics of serotype I FIPV.
Collapse
Affiliation(s)
- Sarah Cook
- Graduate Group Integrative Pathobiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Diego Castillo
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| | - Sonyia Williams
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| | - Christine Haake
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Brian Murphy
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (D.C.); (S.W.); (B.M.)
| |
Collapse
|
11
|
Focosi D, Maggi F. Recombination in Coronaviruses, with a Focus on SARS-CoV-2. Viruses 2022; 14:1239. [PMID: 35746710 PMCID: PMC9228924 DOI: 10.3390/v14061239] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/07/2023] Open
Abstract
Recombination is a common evolutionary tool for RNA viruses, and coronaviruses are no exception. We review here the evidence for recombination in SARS-CoV-2 and reconcile nomenclature for recombinants, discuss their origin and fitness, and speculate how recombinants could make a difference in the future of the COVID-19 pandemics.
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy
| | - Fabrizio Maggi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
12
|
Wang W, Peng X, Jin Y, Pan JA, Guo D. Reverse genetics systems for SARS-CoV-2. J Med Virol 2022; 94:3017-3031. [PMID: 35324008 PMCID: PMC9088479 DOI: 10.1002/jmv.27738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID‐19) has caused severe public health crises and heavy economic losses. Limited knowledge about this deadly virus impairs our capacity to set up a toolkit against it. Thus, more studies on severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) biology are urgently needed. Reverse genetics systems, including viral infectious clones and replicons, are powerful platforms for viral research projects, spanning many aspects such as the rescues of wild‐type or mutant viral particles, the investigation of viral replication mechanism, the characterization of viral protein functions, and the studies on viral pathogenesis and antiviral drug development. The operations on viral infectious clones are strictly limited in the Biosafety Level 3 (BSL3) facilities, which are insufficient, especially during the pandemic. In contrast, the operation on the noninfectious replicon can be performed in Biosafety Level 2 (BSL2) facilities, which are widely available. After the outbreak of COVID‐19, many reverse genetics systems for SARS‐CoV‐2, including infectious clones and replicons are developed and given plenty of options for researchers to pick up according to the requirement of their research works. In this review, we summarize the available reverse genetics systems for SARS‐CoV‐2, by highlighting the features of these systems, and provide a quick guide for researchers, especially those without ample experience in operating viral reverse genetics systems.
Collapse
Affiliation(s)
- Wenhao Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Xiaoxue Peng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yunyun Jin
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| |
Collapse
|
13
|
Shehata AA, Attia YA, Rahman MT, Basiouni S, El-Seedi HR, Azhar EI, Khafaga AF, Hafez HM. Diversity of Coronaviruses with Particular Attention to the Interspecies Transmission of SARS-CoV-2. Animals (Basel) 2022; 12:ani12030378. [PMID: 35158701 PMCID: PMC8833600 DOI: 10.3390/ani12030378] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Coronaviruses are a broad group of viruses that may infect a wide range of animals, including humans. Despite the fact that each coronavirus has a limited host range, frequent interspecies transmission of coronaviruses across diverse hosts has resulted in a complex ecology. The recently discovered SARS-CoV-2 virus is the clearest evidence of the danger of a global pandemic spreading. Natural infection with SARS-CoV-2 has been reported in a variety of domestic and wild animals, which may complicate the virus’s epidemiology and influence its development. In this review, we discussed the potential determinants of SARS-CoV-2 interspecies transmission. Additionally, despite the efforts that have been made to control this pandemic and to implement the One Health policy, several problems, such as the role of animals in SARS-CoV-2 evolution and the dynamics of interspecies transmission, are still unanswered. Abstract In December 2019, the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in China with serious impacts on global health and economy that is still ongoing. Although interspecies transmission of coronaviruses is common and well documented, each coronavirus has a narrowly restricted host range. Coronaviruses utilize different receptors to mediate membrane fusion and replication in the cell cytoplasm. The interplay between the receptor-binding domain (RBD) of coronaviruses and their coevolution are determinants for host susceptibility. The recently emerged SARS-CoV-2 caused the coronavirus disease 2019 (COVID-19) pandemic and has also been reported in domestic and wild animals, raising the question about the responsibility of animals in virus evolution. Additionally, the COVID-19 pandemic might also substantially have an impact on animal production for a long time. In the present review, we discussed the diversity of coronaviruses in animals and thus the diversity of their receptors. Moreover, the determinants of the susceptibility of SARS-CoV-2 in several animals, with special reference to the current evidence of SARS-CoV-2 in animals, were highlighted. Finally, we shed light on the urgent demand for the implementation of the One Health concept as a collaborative global approach to mitigate the threat for both humans and animals.
Collapse
Affiliation(s)
- Awad A. Shehata
- Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt;
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany
| | - Youssef A. Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, P.O. Box 80208, Jeddah 21589, Saudi Arabia;
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, P.O. Box 80200, Jeddah 21589, Saudi Arabia
- Animal and Poultry Production Department, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt
| | - Md. Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt;
| | - Hesham R. El-Seedi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Esam I. Azhar
- Special Infectious Agents Unit—BSL3, King Fahd Medical Research Center and Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia;
| | - Asmaa F. Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt;
| | - Hafez M. Hafez
- Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany
- Correspondence:
| |
Collapse
|
14
|
Kong F, Wang Q, Kenney SP, Jung K, Vlasova AN, Saif LJ. Porcine Deltacoronaviruses: Origin, Evolution, Cross-Species Transmission and Zoonotic Potential. Pathogens 2022; 11:79. [PMID: 35056027 PMCID: PMC8778258 DOI: 10.3390/pathogens11010079] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging enteropathogenic coronavirus of swine that causes acute diarrhoea, vomiting, dehydration and mortality in seronegative neonatal piglets. PDCoV was first reported in Hong Kong in 2012 and its etiological features were first characterized in the United States in 2014. Currently, PDCoV is a concern due to its broad host range, including humans. Chickens, turkey poults, and gnotobiotic calves can be experimentally infected by PDCoV. Therefore, as discussed in this review, a comprehensive understanding of the origin, evolution, cross-species transmission and zoonotic potential of epidemic PDCoV strains is urgently needed.
Collapse
Affiliation(s)
- Fanzhi Kong
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China;
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Scott P. Kenney
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (S.P.K.); (K.J.); (A.N.V.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
15
|
Ghosh M, Basak S, Dutta S. Underlying selection for the diversity of spike protein sequences of SARS-CoV-2. IUBMB Life 2021; 74:213-220. [PMID: 34780121 PMCID: PMC8652778 DOI: 10.1002/iub.2577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023]
Abstract
The global spread of SARS-CoV-2 is fast moving and has caused a worldwide public health crisis. In the present article, we analyzed spike protein sequences of SARS-CoV-2 genomes to assess the impact of mutational diversity. We observed from amino acid usage patterns that spike proteins are associated with a diversity of mutational changes and most important underlying cause of variation of amino acid usage is the changes in hydrophobicity of spike proteins. The changing patterns of hydrophobicity of spike proteins over time and its influence on the receptor binding affinity provides crucial information on the SARS-CoV-2 interaction with human receptor. Our results also show that spike proteins have evolved to prefer more hydrophobic residues over time. The present study provides a comprehensive analysis of molecular sequence data to consider that mutational variants might play a crucial role in modulating the virulence and spread of the virus and has immediate implications for therapeutic strategies.
Collapse
Affiliation(s)
- Manisha Ghosh
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Surajit Basak
- Division of Bioinformatics, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
16
|
Cell Entry of Animal Coronaviruses. Viruses 2021; 13:v13101977. [PMID: 34696406 PMCID: PMC8540712 DOI: 10.3390/v13101977] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses (CoVs) are a group of enveloped positive-sense RNA viruses and can cause deadly diseases in animals and humans. Cell entry is the first and essential step of successful virus infection and can be divided into two ongoing steps: cell binding and membrane fusion. Over the past two decades, stimulated by the global outbreak of SARS-CoV and pandemic of SARS-CoV-2, numerous efforts have been made in the CoV research. As a result, significant progress has been achieved in our understanding of the cell entry process. Here, we review the current knowledge of this essential process, including the viral and host components involved in cell binding and membrane fusion, molecular mechanisms of their interactions, and the sites of virus entry. We highlight the recent findings of host restriction factors that inhibit CoVs entry. This knowledge not only enhances our understanding of the cell entry process, pathogenesis, tissue tropism, host range, and interspecies-transmission of CoVs but also provides a theoretical basis to design effective preventive and therapeutic strategies to control CoVs infection.
Collapse
|
17
|
Colina SE, Serena MS, Echeverría MG, Metz GE. Clinical and molecular aspects of veterinary coronaviruses. Virus Res 2021; 297:198382. [PMID: 33705799 PMCID: PMC7938195 DOI: 10.1016/j.virusres.2021.198382] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Coronaviruses are a large group of RNA viruses that infect a wide range of animal species. The replication strategy of coronaviruses involves recombination and mutation events that lead to the possibility of cross-species transmission. The high plasticity of the viral receptor due to a continuous modification of the host species habitat may be the cause of cross-species transmission that can turn into a threat to other species including the human population. The successive emergence of highly pathogenic coronaviruses such as the Severe Acute Respiratory Syndrome (SARS) in 2003, the Middle East Respiratory Syndrome Coronavirus in 2012, and the recent SARS-CoV-2 has incentivized a number of studies on the molecular basis of the coronavirus and its pathogenesis. The high degree of interrelatedness between humans and wild and domestic animals and the modification of animal habitats by human urbanization, has favored new viral spreads. Hence, knowledge on the main clinical signs of coronavirus infection in the different hosts and the distinctive molecular characteristics of each coronavirus is essential to prevent the emergence of new coronavirus diseases. The coronavirus infections routinely studied in veterinary medicine must be properly recognized and diagnosed not only to prevent animal disease but also to promote public health.
Collapse
Affiliation(s)
- Santiago Emanuel Colina
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina
| | - Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; CONICET (National Scientific and Technical Research Council), CCT La Plata, Argentina.
| |
Collapse
|
18
|
Niu X, Hou YJ, Jung K, Kong F, Saif LJ, Wang Q. Chimeric Porcine Deltacoronaviruses with Sparrow Coronavirus Spike Protein or the Receptor-Binding Domain Infect Pigs but Lose Virulence and Intestinal Tropism. Viruses 2021; 13:122. [PMID: 33477379 PMCID: PMC7829776 DOI: 10.3390/v13010122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) strain OH-FD22 infects poultry and shares high nucleotide identity with sparrow-origin deltacoronaviruses (SpDCoV) ISU73347 and HKU17 strains. We hypothesized that the spike (S) protein or receptor-binding domain (RBD) from these SpDCoVs would alter the host and tissue tropism of PDCoV. First, an infectious cDNA clone of PDCoV OH-FD22 strain (icPDCoV) was generated and used to construct chimeric icPDCoVs harboring the S protein of HKU17 (icPDCoV-SHKU17) or the RBD of ISU73347 (icPDCoV-RBDISU). To evaluate their pathogenesis, neonatal gnotobiotic pigs were inoculated orally/oronasally with the recombinant viruses or PDCoV OH-FD22. All pigs inoculated with icPDCoV or OH-FD22 developed severe diarrhea and shed viral RNA at moderate-high levels (7.62-10.56 log10 copies/mL) in feces, and low-moderate levels in nasal swabs (4.92-8.48 log10 copies/mL). No pigs in the icPDCoV-SHKU17 and icPDCoV-RBDISU groups showed clinical signs. Interestingly, low-moderate levels (5.07-7.06 log10 copies/mL) of nasal but not fecal viral RNA shedding were detected transiently at 1-4 days post-inoculation in 40% (2/5) of icPDCoV-SHKU17- and 50% (1/2) of icPDCoV-RBDISU-inoculated pigs. These results confirm that PDCoV infected both the upper respiratory and intestinal tracts of pigs. The chimeric viruses displayed an attenuated phenotype with the loss of tropism for the pig intestine. The SpDCoV S protein and RBD reduced viral replication in pigs, suggesting limited potential for cross-species spillover upon initial passage.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yixuan J. Hou
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kwonil Jung
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Fanzhi Kong
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, China
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA; (X.N.); (Y.J.H.); (K.J.); (F.K.); (L.J.S.)
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
19
|
Awadasseid A, Wu Y, Tanaka Y, Zhang W. SARS-CoV-2 variants evolved during the early stage of the pandemic and effects of mutations on adaptation in Wuhan populations. Int J Biol Sci 2021; 17:97-106. [PMID: 33390836 PMCID: PMC7757051 DOI: 10.7150/ijbs.47827] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The pandemic apparently started in December 2019 in Wuhan, China, and has since affected many countries worldwide, turning into a major global threat. Chinese researchers reported that SARS-CoV-2 could be classified into two major variants. They suggest that investigating the variations and characteristics of these variants might help assess risks and develop better treatment and prevention strategies. The two variants were named L-type and S-type, in which L-type was prevailed in an initial outbreak in Wuhan, Central China's Hubei Province, and S-type was phylogenetically older than L-type and less prevalent at an early stage, but with a later increase in frequency in Wuhan. There were 149 mutations in 103 sequenced SARS-CoV-2 genomes, 83 of which were nonsynonymous, leading to alteration in the amino acid sequence of proteins. Much effort is currently being devoted to elucidate whether or not these mutations affect viral transmissibility and virulence. In this review, we summarize the mutations in SARS-CoV-2 during the early phase of virus evolution and discuss the significance of the gene alterations in infections.
Collapse
Affiliation(s)
- Annoor Awadasseid
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
- Department of Biochemistry & Food Sciences, University of Kordofan, El-Obeid, 51111, Sudan
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China
| | - Yoshimasa Tanaka
- Center for Medical Innovation, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
20
|
Chepur SV, Pluzhnikov NN, Chubar OV, Bakulina LS, Litvinenko IV, Makarov VA, Gogolevsky AS, Myasnikov VA, Myasnikova IA, Al-Shehadat RI. Respiratory RNA Viruses: How to Be Prepared for an Encounter with New Pandemic Virus Strains. BIOLOGY BULLETIN REVIEWS 2021; 11. [PMCID: PMC8078390 DOI: 10.1134/s207908642102002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The characteristics of the biology of influenza viruses and coronavirus that determine the implementation of the infectious process are presented. With provision for pathogenesis of infection possible effects of serine proteinase inhibitors, heparin, and inhibitors of heparan sulfate receptors in the prevention of cell contamination by viruses are examined. It has been determined that chelators of metals of variable valency and antioxidants should be used for the reduction of replicative activity of viruses and anti-inflammatory therapy. The possibility of a pH-dependent impairment of glycosylation of cellular and viral proteins was traced for chloroquine and its derivatives. The use of low-toxicity drugs as part of adjunct therapy increases the effectiveness of synthetic antiviral drugs and interferons and ensures the safety of baseline therapy.
Collapse
Affiliation(s)
- S. V. Chepur
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - N. N. Pluzhnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - O. V. Chubar
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - L. S. Bakulina
- Burdenko Voronezh State Medical University, 394036 Voronezh, Russia
| | | | - V. A. Makarov
- Fundamentals of Biotechnology Federal Research Center, 119071 Moscow, Russia
| | - A. S. Gogolevsky
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - V. A. Myasnikov
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - I. A. Myasnikova
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| | - R. I. Al-Shehadat
- State Scientific Research Test Institute of Military Medicine of the Ministry of Defense of the Russian Federation, 195043 St. Petersburg, Russia
| |
Collapse
|
21
|
Noman A, Aqeel M, Khalid N, Hashem M, Alamari S, Zafar S, Qasim M, Irshad MK, Qari SH. Spike glycoproteins: Their significance for corona viruses and receptor binding activities for pathogenesis and viral survival. Microb Pathog 2020; 150:104719. [PMID: 33373693 PMCID: PMC7764473 DOI: 10.1016/j.micpath.2020.104719] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
The recent outbreak of Covid-19 is posing a severe threat to public health globally. Coronaviruses (CoVs) are the largest known group of positive-sense RNA viruses surviving on an extensive number of natural hosts. CoVs are enveloped and non-segmented viruses with a size between 80 and 120 nm. CoV attachment to the surface receptor and its subsequent entrance into cells is mediated by Spike glycoprotein (S). For enhanced CoV entry and successful pathogenesis of CoV, proteolytic processing and receptor-binding act synergistically for induction of large-scale S conformational changes. The shape, size and orientation of receptor-binding domains in viral attachment proteins are well conserved among viruses of different classes that utilize the same receptor. Therefore, investigations unraveling the distribution of cellular receptors with respect to CoV entry, structural aspects of glycoproteins and related conformational changes are highly significant for understanding virus invasion and infection spread. We present the characteristic features of CoV S-Proteins, their significance for CoVs and related receptor binding activities for pathogenesis and viral survival. We are analyzing the novel role of S-protein of CoVs along with their interactive receptors for improving host immunity and decreasing infection spread. This is hoped that presented information will open new ways in tackling coronavirus, especially for the ongoing epidemic.
Collapse
Affiliation(s)
- Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, School of Life Sciences, Lanzhou University, Lanzhou, 730000, Gansu, PR China.
| | - Noreen Khalid
- Department of Botany, Government College Women University Sialkot, Sialkot, Pakistan
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Saad Alamari
- King Khalid University, College of Science, Department of Biology, Abha, 61413, Saudi Arabia; Prince Sultan Bin Abdulaziz Center for Environmental and Tourism Research and Studies, King Khalid University, Abha, Saudi Arabia
| | - Saad Zafar
- District Headquarters Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Muhammad Qasim
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture & Biotechnology, Ministry of Agricultural and Rural Affairs, Zhejiang University, Hangzhou, 310058, PR China
| | - Muhammad Kashif Irshad
- Department of Environmental Sciences, Government College University, Faisalabad, Pakistan
| | - Sameer H Qari
- Biology Department, Aljumum University College, Umm Al - Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
22
|
Hadi-Alijanvand H, Rouhani M. Studying the Effects of ACE2 Mutations on the Stability, Dynamics, and Dissociation Process of SARS-CoV-2 S1/hACE2 Complexes. J Proteome Res 2020; 19:4609-4623. [PMID: 32786692 PMCID: PMC7640954 DOI: 10.1021/acs.jproteome.0c00348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Indexed: 01/16/2023]
Abstract
A highly infectious coronavirus, SARS-CoV-2, has spread in many countries. This virus recognizes its receptor, angiotensin-converting enzyme 2 (ACE2), using the receptor binding domain of its spike protein subunit S1. Many missense mutations are reported in various human populations for the ACE2 gene. In the current study, we predict the affinity of many ACE2 variants for binding to S1 protein using different computational approaches. The dissociation process of S1 from some variants of ACE2 is studied in the current work by molecular dynamics approaches. We study the relation between structural dynamics of ACE2 in closed and open states and its affinity for S1 protein of SARS-CoV-2.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department of Biological
Sciences, Institute for Advanced Studies
in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Maryam Rouhani
- Department of Biological
Sciences, Institute for Advanced Studies
in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| |
Collapse
|
23
|
Makarov V, Riabova O, Ekins S, Pluzhnikov N, Chepur S. The past, present and future of RNA respiratory viruses: influenza and coronaviruses. Pathog Dis 2020; 78:ftaa046. [PMID: 32860686 PMCID: PMC7499567 DOI: 10.1093/femspd/ftaa046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza virus and coronaviruses continue to cause pandemics across the globe. We now have a greater understanding of their functions. Unfortunately, the number of drugs in our armory to defend us against them is inadequate. This may require us to think about what mechanisms to address. Here, we review the biological properties of these viruses, their genetic evolution and antiviral therapies that can be used or have been attempted. We will describe several classes of drugs such as serine protease inhibitors, heparin, heparan sulfate receptor inhibitors, chelating agents, immunomodulators and many others. We also briefly describe some of the drug repurposing efforts that have taken place in an effort to rapidly identify molecules to treat patients with COVID-19. While we put a heavy emphasis on the past and present efforts, we also provide some thoughts about what we need to do to prepare for respiratory viral threats in the future.
Collapse
Affiliation(s)
- Vadim Makarov
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Olga Riabova
- Federal Research Center Fundamentals of Biotechnology of the Russian Academy of Sciences, 33-2 Leninsky Prospect, Moscow 119071, Russia
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC 27606, USA
| | - Nikolay Pluzhnikov
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| | - Sergei Chepur
- State Research Institute of Military Medicine of the Ministry of Defence of the Russian Federation, St Petersburg 195043, Russia
| |
Collapse
|
24
|
Sironi M, Hasnain SE, Rosenthal B, Phan T, Luciani F, Shaw MA, Sallum MA, Mirhashemi ME, Morand S, González-Candelas F. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2020; 84:104384. [PMID: 32473976 PMCID: PMC7256558 DOI: 10.1016/j.meegid.2020.104384] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/15/2022]
Abstract
In less than five months, COVID-19 has spread from a small focus in Wuhan, China, to more than 5 million people in almost every country in the world, dominating the concern of most governments and public health systems. The social and political distresses caused by this epidemic will certainly impact our world for a long time to come. Here, we synthesize lessons from a range of scientific perspectives rooted in epidemiology, virology, genetics, ecology and evolutionary biology so as to provide perspective on how this pandemic started, how it is developing, and how best we can stop it.
Collapse
Affiliation(s)
- Manuela Sironi
- Bioinformatics Unit, Scientific Institute IRCCS E. MEDEA, Bosisio Parini (LC), Italy.
| | - Seyed E Hasnain
- JH Institute of Molecular Medicine, Jamia Hamdard, Tughlakabad, New Delhi, India.
| | - Benjamin Rosenthal
- Animal Parasitic Disease Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, USA.
| | - Tung Phan
- Division of Clinical Microbiology, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Fabio Luciani
- University of New South Wales, Sydney, 2052, New South Wales, Australia.
| | - Marie-Anne Shaw
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, United Kingdom.
| | - M Anice Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil.
| | | | - Serge Morand
- Institute of Evolution Science of Montpellier, Case Courier 064, F-34095 Montpellier, France.
| | - Fernando González-Candelas
- Joint Research Unit Infection and Public Health FISABIO-University of Valencia, Institute for Integrative Systems Biology (I2SysBio) and CIBER in Epidemiology and Public Health, Valencia, Spain.
| |
Collapse
|
25
|
Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proc Natl Acad Sci U S A 2020; 117:25759-25770. [PMID: 32994342 DOI: 10.1073/pnas.2006299117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Human coronaviruses OC43 and HKU1 are respiratory pathogens of zoonotic origin that have gained worldwide distribution. OC43 apparently emerged from a bovine coronavirus (BCoV) spillover. All three viruses attach to 9-O-acetylated sialoglycans via spike protein S with hemagglutinin-esterase (HE) acting as a receptor-destroying enzyme. In BCoV, an HE lectin domain promotes esterase activity toward clustered substrates. OC43 and HKU1, however, lost HE lectin function as an adaptation to humans. Replaying OC43 evolution, we knocked out BCoV HE lectin function and performed forced evolution-population dynamics analysis. Loss of HE receptor binding selected for second-site mutations in S, decreasing S binding affinity by orders of magnitude. Irreversible HE mutations led to cooperativity in virus swarms with low-affinity S minority variants sustaining propagation of high-affinity majority phenotypes. Salvageable HE mutations induced successive second-site substitutions in both S and HE. Apparently, S and HE are functionally interdependent and coevolve to optimize the balance between attachment and release. This mechanism of glycan-based receptor usage, entailing a concerted, fine-tuned activity of two envelope protein species, is unique among CoVs, but reminiscent of that of influenza A viruses. Apparently, general principles fundamental to virion-sialoglycan interactions prompted convergent evolution of two important groups of human and animal pathogens.
Collapse
|
26
|
Tekes G, Ehmann R, Boulant S, Stanifer ML. Development of Feline Ileum- and Colon-Derived Organoids and Their Potential Use to Support Feline Coronavirus Infection. Cells 2020; 9:E2085. [PMID: 32932592 PMCID: PMC7563363 DOI: 10.3390/cells9092085] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 12/29/2022] Open
Abstract
Feline coronaviruses (FCoVs) infect both wild and domestic cat populations world-wide. FCoVs present as two main biotypes: the mild feline enteric coronavirus (FECV) and the fatal feline infectious peritonitis virus (FIPV). FIPV develops through mutations from FECV during a persistence infection. So far, the molecular mechanism of FECV-persistence and contributing factors for FIPV development may not be studied, since field FECV isolates do not grow in available cell culture models. In this work, we aimed at establishing feline ileum and colon organoids that allow the propagation of field FECVs. We have determined the best methods to isolate, culture and passage feline ileum and colon organoids. Importantly, we have demonstrated using GFP-expressing recombinant field FECV that colon organoids are able to support infection of FECV, which were unable to infect traditional feline cell culture models. These organoids in combination with recombinant FECVs can now open the door to unravel the molecular mechanisms by which FECV can persist in the gut for a longer period of time and how transition to FIPV is achieved.
Collapse
Affiliation(s)
- Gergely Tekes
- Institute of Virology, Justus Liebig University Giessen, 35390 Giessen, Germany
| | - Rosina Ehmann
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany;
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany;
- Research Group “Cellular Polarity and Viral Infection”, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| |
Collapse
|
27
|
Detection of Feline Coronavirus in Feline Effusions by Immunofluorescence Staining and Reverse Transcription Polymerase Chain Reaction. Pathogens 2020; 9:pathogens9090698. [PMID: 32854379 PMCID: PMC7559213 DOI: 10.3390/pathogens9090698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 11/30/2022] Open
Abstract
Feline coronavirus (FCoV), the pathogen for feline infectious peritonitis, is a lethal infectious agent that can cause effusions in the pleural and abdominal cavities in domestic cats. To study the epidemiology of FCoV in Taiwan, 81 FIP-suspected sick cats with effusive specimens were recruited to test for FCoV infection using immunofluorescence staining and reverse transcription-polymerase chain reaction as detection methods, and viral RNAs were recovered from the specimens to conduct genotyping and phylogenetic analysis based on the spike (S) protein gene. The results revealed that a total of 47 (47/81, 58%) of the sick cats were positive for FCoV in the effusion samples, of which 39 were successfully sequenced and comprised of 21 type I strains, 9 type II strains, and 9 co-infections. The signalment analysis of these sick cats revealed that only the sex of cats showed a significant association (odds ratio = 2.74, 95% confidence interval = 1.06–7.07, p = 0.03) with the infection of FCoV, while age and breed showed no association. FCoV-positive cats demonstrated a significantly lower albumin to globulin ratio than negative individuals (p = 0.0004). The partial S gene-based phylogenetic analysis revealed that the type I strains demonstrated genetic diversity forming several clades, while the type II strains were more conserved. This study demonstrates the latest epidemiological status of FCoV infection in the northern part of Taiwan among sick cats and presents comparisons of Taiwan and other countries.
Collapse
|
28
|
Abstract
Since the end of 2019, the global COVID-19 outbreak has once again made coronaviruses a hot topic. Vaccines are hoped to be an effective way to stop the spread of the virus. However, there are no clinically approved vaccines available for coronavirus infections. Reverse genetics technology can realize the operation of RNA virus genomes at the DNA level and provide new ideas and strategies for the development of new vaccines. In this review, we systematically describe the role of reverse genetics technology in studying the effects of coronavirus proteins on viral virulence and innate immunity, cell and tissue tropism and antiviral drug screening. An efficient reverse genetics platform is useful for obtaining the ideal attenuated strain to prepare an attenuated live vaccine.
Collapse
|
29
|
Cagliani R, Forni D, Clerici M, Sironi M. Computational Inference of Selection Underlying the Evolution of the Novel Coronavirus, Severe Acute Respiratory Syndrome Coronavirus 2. J Virol 2020; 94:e00411-20. [PMID: 32238584 PMCID: PMC7307108 DOI: 10.1128/jvi.00411-20] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/26/2020] [Indexed: 11/20/2022] Open
Abstract
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that recently emerged in China is thought to have a bat origin, as its closest known relative (BatCoV RaTG13) was described previously in horseshoe bats. We analyzed the selective events that accompanied the divergence of SARS-CoV-2 from BatCoV RaTG13. To this end, we applied a population genetics-phylogenetics approach, which leverages within-population variation and divergence from an outgroup. Results indicated that most sites in the viral open reading frames (ORFs) evolved under conditions of strong to moderate purifying selection. The most highly constrained sequences corresponded to some nonstructural proteins (nsps) and to the M protein. Conversely, nsp1 and accessory ORFs, particularly ORF8, had a nonnegligible proportion of codons evolving under conditions of very weak purifying selection or close to selective neutrality. Overall, limited evidence of positive selection was detected. The 6 bona fide positively selected sites were located in the N protein, in ORF8, and in nsp1. A signal of positive selection was also detected in the receptor-binding motif (RBM) of the spike protein but most likely resulted from a recombination event that involved the BatCoV RaTG13 sequence. In line with previous data, we suggest that the common ancestor of SARS-CoV-2 and BatCoV RaTG13 encoded/encodes an RBM similar to that observed in SARS-CoV-2 itself and in some pangolin viruses. It is presently unknown whether the common ancestor still exists and, if so, which animals it infects. Our data, however, indicate that divergence of SARS-CoV-2 from BatCoV RaTG13 was accompanied by limited episodes of positive selection, suggesting that the common ancestor of the two viruses was poised for human infection.IMPORTANCE Coronaviruses are dangerous zoonotic pathogens; in the last 2 decades, three coronaviruses have crossed the species barrier and caused human epidemics. One of these is the recently emerged SARS-CoV-2. We investigated how, since its divergence from a closely related bat virus, natural selection shaped the genome of SARS-CoV-2. We found that distinct coding regions in the SARS-CoV-2 genome evolved under conditions of different degrees of constraint and are consequently more or less prone to tolerate amino acid substitutions. In practical terms, the level of constraint provides indications about which proteins/protein regions are better suited as possible targets for the development of antivirals or vaccines. We also detected limited signals of positive selection in three viral ORFs. However, we warn that, in the absence of knowledge about the chain of events that determined the human spillover, these signals should not be necessarily interpreted as evidence of an adaptation to our species.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| |
Collapse
|
30
|
Cagliani R, Forni D, Clerici M, Sironi M. Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses. INFECTION GENETICS AND EVOLUTION 2020; 83:104353. [PMID: 32387562 PMCID: PMC7199688 DOI: 10.1016/j.meegid.2020.104353] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
In December 2019, a novel human-infecting coronavirus (SARS-CoV-2) was recognized in China. In a few months, SARS-CoV-2 has caused thousands of disease cases and deaths in several countries. Phylogenetic analyses indicated that SARS-CoV-2 clusters with SARS-CoV in the Sarbecovirus subgenus and viruses related to SARS-CoV-2 were identified from bats and pangolins. Coronaviruses have long and complex genomes with high plasticity in terms of gene content. To date, the coding potential of SARS-CoV-2 remains partially unknown. We thus used available sequences of bat and pangolin viruses to determine the selective events that shaped the genome structure of SARS-CoV-2 and to assess its coding potential. By searching for signals of significantly reduced variability at synonymous sites (dS), we identified six genomic regions, one of these corresponding to the programmed −1 ribosomal frameshift. The most prominent signal of dS reduction was observed within the E gene. A genome-wide analysis of conserved RNA structures indicated that this region harbors a putative functional RNA element that is shared with the SARS-CoV lineage. Additional signals of reduced dS indicated the presence of internal ORFs. Whereas the presence ORF9a (internal to N) was previously proposed by homology with a well characterized protein of SARS-CoV, ORF3h (for hypothetical, within ORF3a) was not previously described. The predicted product of ORF3h has 90% identity with the corresponding predicted product of SARS-CoV and displays features suggestive of a viroporin. Finally, analysis of the putative ORF10 revealed high dN/dS (3.82) in SARS-CoV-2 and related coronaviruses. In the SARS-CoV lineage, the ORF is predicted to encode a truncated protein and is neutrally evolving. These data suggest that ORF10 encodes a functional protein in SARS-CoV-2 and that positive selection is driving its evolution. Experimental analyses will be necessary to validate and characterize the coding and non-coding functional elements we identified. We analyzed the coding region of SARS-CoV-2 and related bat/pangolin viruses. We identified six regions of significantly low variability at sysnonymous sites. One of these corresponds to a conserved RNA structure shared with the SARS-CoV lineage. The dS reduction within ORF3a corresponds to a potential ORF encoding a viroporin. In SARS-CoV-2 and related viruses, the putative 3′ terminal ORF10 has high dN/dS.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy
| | - Mario Clerici
- Department of Physiopathology and Transplantation, University of Milan, Milan, Italy; Don C. Gnocchi Foundation ONLUS, IRCCS, Milan, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, Bosisio Parini, Italy.
| |
Collapse
|
31
|
HUANG B, TIAN K. Interspecies transmission and evolution of the emerging coronaviruses: perspectives from bat physiology and protein spatial structure. FRONTIERS OF AGRICULTURAL SCIENCE AND ENGINEERING 2020; 7:218. [DOI: 10.15302/j-fase-2020324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
32
|
[Basis of coronavirus infection, and SARS-CoV-2]. Uirusu 2020; 70:155-166. [PMID: 34544930 DOI: 10.2222/jsv.70.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Reverse Genetics for Type I Feline Coronavirus Field Isolate To Study the Molecular Pathogenesis of Feline Infectious Peritonitis. mBio 2018; 9:mBio.01422-18. [PMID: 30065095 PMCID: PMC6069117 DOI: 10.1128/mbio.01422-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Feline infectious peritonitis (FIP), one of the most important lethal infections of cats, is caused by feline infectious peritonitis virus (FIPV), the high-virulence biotype of feline coronaviruses (FCoVs). FIPVs are suggested to emerge from feline enteric coronaviruses (FECVs) by acquiring mutations in specific genes in the course of persistent infections. Although numerous studies identified mutations predicted to be responsible for the FECV-FIPV biotype switch, the presumed roles of specific genetic changes in FIP pathogenesis have not been confirmed experimentally. Reverse genetics systems established previously for serotype I and the less common serotype II FCoVs were based on cell culture-adapted FIPV strains which, however, were shown to be unsuitable for FIP pathogenesis studies in vivo To date, systems to produce and manipulate recombinant serotype I field viruses have not been developed, mainly because these viruses cannot be grown in vitro Here, we report the first reverse genetics system based on a serotype I FECV field isolate that is suitable to produce high-titer stocks of recombinant FECVs. We demonstrate that these recombinant viruses cause productive persistent infections in cats that are similar to what is observed in natural infections. The system provides an excellent tool for studying FCoVs that do not grow in standard cell culture systems and will greatly facilitate studies into the molecular pathogenesis of FIP. Importantly, the system could also be adapted for studies of other RNA viruses with large genomes whose production and characterization in vivo are currently hampered by the lack of in vitro propagation systems.IMPORTANCE The availability of recombinant serotype I FCoV field isolates that are amenable to genetic manipulation is key to studying the molecular pathogenesis of FIP, especially since previous studies using cell culture-adapted FIPVs had proven unsuccessful. To our knowledge, we report the first serotype I FECV field isolate-based reverse genetics system that allows the production of high-titer recombinant virus stocks that can be used for subsequent in vivo studies in cats. The system represents a milestone in FCoV research. It provides an essential tool for studying the molecular pathogenesis of FIP and, more specifically, the functions of specific gene products in causing a fundamentally different progression of disease following acquisition of specific mutations. The system developed in this study will also be useful for studying other coronaviruses or more distantly related RNA viruses with large genomes for which suitable in vitro culture systems are not available.
Collapse
|
34
|
Shirato K, Chang HW, Rottier PJM. Differential susceptibility of macrophages to serotype II feline coronaviruses correlates with differences in the viral spike protein. Virus Res 2018; 255:14-23. [PMID: 29936068 PMCID: PMC7114831 DOI: 10.1016/j.virusres.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/15/2018] [Accepted: 06/20/2018] [Indexed: 01/11/2023]
Abstract
Differences in the S protein modulate serotype II FCoV infection of macrophages. Critical residues in the spike S2 domain of type II FCoV affecting cell tropism. Cooperativity at 5 positions in the S protein modulates FCoV macrophage entry.
The ability to infect and replicate in monocytes/macrophages is a critically distinguishing feature between the two feline coronavirus (FCoV) pathotypes: feline enteric coronavirus (FECV; low-virulent) and feline infectious peritonitis virus (FIPV; lethal). Previously, by comparing serotype II strains FIPV 79-1146 and FECV 79-1683 and recombinant chimeric forms thereof in cultured feline bone marrow macrophages, we mapped this difference to the C-terminal part of the viral spike (S) protein (S2). In view of the later identified diagnostic difference in this very part of the S protein of serotype I FCoV pathotypes, the present study aimed to further define the contribution of the earlier observed ten amino acids difference to the serotype II virus phenotype in macrophages. Using targeted RNA recombination as a reverse genetics system we introduced the mutations singly and in combinations into the S gene and evaluated their effects on the infection characteristics of the mutant viruses in macrophages. While some of the single mutations had a significant effect, none of them fully reverted the infection phenotype. Only by combining five specific mutations the infections mediated by the FIPV and FECV spike proteins could be fully blocked or potentiated, respectively. Hence, the differential macrophage infection phenotype is caused by the cooperative effect of five mutations, which occur in five functionally different domains of the spike fusion subunit S2. The significance of these observations will be discussed, taking into account also some questions related to the identity of the virus strains used.
Collapse
Affiliation(s)
- Kazuya Shirato
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; Laboratory of Acute Respiratory Viral Diseases and Cytokines, Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo 208-0011, Japan.
| | - Hui-Wen Chang
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands; School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan.
| | - Peter J M Rottier
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands.
| |
Collapse
|
35
|
van Beurden SJ, Berends AJ, Krämer-Kühl A, Spekreijse D, Chénard G, Philipp HC, Mundt E, Rottier PJM, Verheije MH. A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination. Virol J 2017; 14:109. [PMID: 28606144 PMCID: PMC5468965 DOI: 10.1186/s12985-017-0775-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Avian coronavirus infectious bronchitis virus (IBV) is a respiratory pathogen of chickens that causes severe economic losses in the poultry industry worldwide. Major advances in the study of the molecular biology of IBV have resulted from the development of reverse genetics systems for the highly attenuated, cell culture-adapted, IBV strain Beaudette. However, most IBV strains, amongst them virulent field isolates, can only be propagated in embryonated chicken eggs, and not in continuous cell lines. METHODS We established a reverse genetics system for the IBV strain H52, based on targeted RNA recombination in a two-step process. First, a genomic and a chimeric synthetic, modified IBV RNA were co-transfected into non-susceptible cells to generate a recombinant chimeric murinized (m) IBV intermediate (mIBV). Herein, the genomic part coding for the spike glycoprotein ectodomain was replaced by that of the coronavirus mouse hepatitis virus (MHV), allowing for the selection and propagation of recombinant mIBV in murine cells. In the second step, mIBV was used as the recipient. To this end a recombination with synthetic RNA comprising the 3'-end of the IBV genome was performed by introducing the complete IBV spike gene, allowing for the rescue and selection of candidate recombinants in embryonated chicken eggs. RESULTS Targeted RNA recombination allowed for the modification of the 3'-end of the IBV genome, encoding all structural and accessory genes. A wild-type recombinant IBV was constructed, containing several synonymous marker mutations. The in ovo growth kinetics and in vivo characteristics of the recombinant virus were similar to those of the parental IBV strain H52. CONCLUSIONS Targeted RNA recombination allows for the generation of recombinant IBV strains that are not able to infect and propagate in continuous cell lines. The ability to introduce specific mutations holds promise for the development of rationally designed live-attenuated IBV vaccines and for studies into the biology of IBV in general.
Collapse
Affiliation(s)
- Steven J van Beurden
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Alinda J Berends
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Annika Krämer-Kühl
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Bemeroder Str. 31, 30559, Hannover, Germany
| | - Dieuwertje Spekreijse
- Boehringer Ingelheim Animal Health Operations, C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands
| | - Gilles Chénard
- Boehringer Ingelheim Animal Health Operations, C.J. van Houtenlaan 36, 1381 CP, Weesp, The Netherlands
| | - Hans-Christian Philipp
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Bemeroder Str. 31, 30559, Hannover, Germany
| | - Egbert Mundt
- Boehringer Ingelheim Veterinary Research Center GmbH & Co. KG, Bemeroder Str. 31, 30559, Hannover, Germany
| | - Peter J M Rottier
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - M Hélène Verheije
- Faculty of Veterinary Medicine, Department of Pathobiology, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Teeravechyan S, Frantz PN, Wongthida P, Chailangkarn T, Jaru-Ampornpan P, Koonpaew S, Jongkaewwattana A. Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res 2016; 226:152-171. [PMID: 27212685 PMCID: PMC7114553 DOI: 10.1016/j.virusres.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
Abstract
Emergence of the porcine epidemic diarrhea virus (PEDV) as a global threat to the swine industry underlies the urgent need for deeper understanding of this virus. To date, we have yet to identify functions for all the major gene products, much less grasp their implications for the viral life cycle and pathogenic mechanisms. A major reason is the lack of genetic tools for studying PEDV. In this review, we discuss the reverse genetics approaches that have been successfully used to engineer infectious clones of PEDV as well as other potential and complementary methods that have yet to be applied to PEDV. The importance of proper cell culture for successful PEDV propagation and maintenance of disease phenotype are addressed in our survey of permissive cell lines. We also highlight areas of particular relevance to PEDV pathogenesis and disease that have benefited from reverse genetics studies and pressing questions that await resolution by such studies. In particular, we examine the spike protein as a determinant of viral tropism, entry and virulence, ORF3 and its association with cell culture adaptation, and the nucleocapsid protein and its potential role in modulating PEDV pathogenicity. Finally, we conclude with an exploration of how reverse genetics can help mitigate the global impact of PEDV by addressing the challenges of vaccine development.
Collapse
Affiliation(s)
- Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phonphimon Wongthida
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand.
| |
Collapse
|
37
|
Kamau AN, Park JE, Park ES, Yu JE, Rho J, Shin HJ. Porcine amino peptidase N domain VII has critical role in binding and entry of porcine epidemic diarrhea virus. Virus Res 2016; 227:150-157. [PMID: 27732876 PMCID: PMC7114530 DOI: 10.1016/j.virusres.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 01/01/2023]
Abstract
To gain insights into mechanisms of PEDV-pAPN interactions, the present study aimed at identifying the domain that is critical for PEDV binding. Results showed PEDV infection was restricted to pAPN domain VII expressing NIH3T3 cells. PEDV harvested from pAPN or domain VII expressing NIH3T3 cells was induced indirect plaques in Vero cells. Our results demonstrate that PEDV recognizes pAPN and that the main interactive point is lodged within domain VII of the pAPN.
Porcine epidemic diarrhea virus (PEDV) infects swine intestinal cells causing enteric disease. Research has shown that the entry into these cells is through porcine aminopeptidase N (pAPN) receptor. To gain insights into mechanisms of PEDV-pAPN interactions, the present study aimed at identifying the domain that is critical for PEDV binding. To this end, NIH3T3 cell lines constitutively expressing pAPN or pAPN mutants were generated. The mutants were; domain VII deletion mutant and domains IV–VI deletion mutant. In the latter, domain VII was linked to the transmembrane segment through domain III. Results showed PEDV infection was restricted to pAPN and pAPN domain VII expressing NIH3T3 cells. Further, reducing PEDV titre 10 fold resulted in 37.8% decrease in foci indicating positive correlation. A time course test at 12, 24, 36, 48 and 60 h showed that foci increased 6 fold in the overall time range. Also, PEDV harvested from pAPN or domain VII expressing NIH3T3 cells was induced indirect plaques in Vero cells confirming successful entry and replication. Collectively, our results demonstrate that PEDV recognizes pAPN and that the main interactive point is lodged within domain VII of the pAPN. These findings are important for therapeutic development as well as creating a platform for future studies on PEDV.
Collapse
Affiliation(s)
- Anthony Ndirangu Kamau
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, 220 Gungdong, Yuseong, Daejeon, 305-764, Republic of Korea
| | - Jung-Eun Park
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, 220 Gungdong, Yuseong, Daejeon, 305-764, Republic of Korea
| | - Eui-Soon Park
- Department of Microbiology & Molecular Biology College of Bioscience & Biotechnology, 220 Gungdong, Yuseong, Daejeon, 305-764, Republic of Korea
| | - Jung-Eun Yu
- Department of Microbiology & Molecular Biology College of Bioscience & Biotechnology, 220 Gungdong, Yuseong, Daejeon, 305-764, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology & Molecular Biology College of Bioscience & Biotechnology, 220 Gungdong, Yuseong, Daejeon, 305-764, Republic of Korea
| | - Hyun-Jin Shin
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Chungnam National University, 220 Gungdong, Yuseong, Daejeon, 305-764, Republic of Korea; Research Institute of Veterinary Medicine, 220 Gungdong, Yuseong, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
38
|
Abstract
Coronaviruses (CoVs) have a remarkable potential to change tropism. This is particularly illustrated over the last 15 years by the emergence of two zoonotic CoVs, the severe acute respiratory syndrome (SARS)- and Middle East respiratory syndrome (MERS)-CoV. Due to their inherent genetic variability, it is inevitable that new cross-species transmission events of these enveloped, positive-stranded RNA viruses will occur. Research into these medical and veterinary important pathogens—sparked by the SARS and MERS outbreaks—revealed important principles of inter- and intraspecies tropism changes. The primary determinant of CoV tropism is the viral spike (S) entry protein. Trimers of the S glycoproteins on the virion surface accommodate binding to a cell surface receptor and fusion of the viral and cellular membrane. Recently, high-resolution structures of two CoV S proteins have been elucidated by single-particle cryo-electron microscopy. Using this new structural insight, we review the changes in the S protein that relate to changes in virus tropism. Different concepts underlie these tropism changes at the cellular, tissue, and host species level, including the promiscuity or adaptability of S proteins to orthologous receptors, alterations in the proteolytic cleavage activation as well as changes in the S protein metastability. A thorough understanding of the key role of the S protein in CoV entry is critical to further our understanding of virus cross-species transmission and pathogenesis and for development of intervention strategies.
Collapse
|
39
|
Abstract
Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed “discriminatory” mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies.
Collapse
Affiliation(s)
- G Tekes
- Institute of Virology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany.
| | - H-J Thiel
- Institute of Virology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
40
|
Yao S, Ou C, Liu X, Wang X, Yao Z, Liu J. Isolation of a novel serotype strain of infectious bronchitis virus ZZ2004 from ducks in China. Virus Genes 2016; 52:660-70. [PMID: 27164844 PMCID: PMC7089278 DOI: 10.1007/s11262-016-1352-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/03/2016] [Indexed: 01/03/2023]
Abstract
In chickens, the infectious bronchitis virus (IBV) often causes respiratory distress, a decrease in egg production, poor egg quality, and occasional nephritis. However, ZZ2004, a Chinese isolate of IBV, was obtained from ducks with clinical growth suppression and mild respiratory symptoms that had been reared with chickens in the central region of China. Virus isolation, virus neutralization testing, and RT-PCR were employed to identify the causative pathogen, while sequence alignment was used to analyze gene variations of the S1 subunit and M genes. The results showed that the ducks were infected with IBV due to the emergence of a dwarfing phenotype and the death of embryos between 48 and 144 h post-inoculation. RT-PCR also confirmed the presence of the expected fragment sizes of the S1 subunit and M genes by RT-PCR. Meanwhile, the results of the virus neutralization test indicated that the strains of JX/99/01, GD, SAIBK, LDT3 showed cross-reactivity with the ZZ2004 isolate, and hardly any cross-neutralization of IBV ZZ2004 was observed with the strains of M41, H120, Gray, Holte, or Aust-T. Phylogenetic analysis suggested that there were large differences between ZZ2004 and other IBV reference strains on the S1 subunit. Meanwhile, homologies in the nucleotide and amino acid sequences of the M gene of IBV ZZ2004 were 86.9–92.0 % and 91.1–93.9 %, respectively, compared with 35 other IBV reference strains derived from different regions. This result revealed that there were conspicuous variations among the selected strains. Furthermore, the results showed that the prevalent strains of IBV in ducks had no antigen homology with the vaccine strains widely used in China except the LDT3-strain, making it urgent to explore and develop new IBV vaccines.
Collapse
Affiliation(s)
- Sixin Yao
- College of Animal Science, Henan Institute of Science and Technology, Hualan Street, Xinxiang, 453003, Henan, PR China
| | - Changbo Ou
- College of Animal Science, Henan Institute of Science and Technology, Hualan Street, Xinxiang, 453003, Henan, PR China
| | - Xingyou Liu
- College of Animal Science, Henan Institute of Science and Technology, Hualan Street, Xinxiang, 453003, Henan, PR China. .,School of Life Science and Technology, Xinxiang University, Xinxiang, 453003, PR China.
| | - Xianwen Wang
- College of Animal Science, Henan Institute of Science and Technology, Hualan Street, Xinxiang, 453003, Henan, PR China
| | - Zonghui Yao
- College of Animal Science, Henan Institute of Science and Technology, Hualan Street, Xinxiang, 453003, Henan, PR China
| | - Jinjing Liu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, PR China
| |
Collapse
|
41
|
Animal Coronaviruses: A Brief Introduction. SPRINGER PROTOCOLS HANDBOOKS 2016. [PMCID: PMC7120424 DOI: 10.1007/978-1-4939-3414-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
|
42
|
Thiel V, Thiel HJ, Tekes G. Tackling feline infectious peritonitis via reverse genetics. Bioengineered 2014; 5:396-400. [PMID: 25482087 DOI: 10.4161/bioe.32133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Feline infectious peritonitis (FIP) is caused by feline coronaviruses (FCoVs) and represents one of the most important lethal infectious diseases of cats. To date, there is no efficacious prevention and treatment, and our limited knowledge on FIP pathogenesis is mainly based on analysis of experiments with field isolates. In a recent study, we reported a promising approach to study FIP pathogenesis using reverse genetics. We generated a set of recombinant FCoVs and investigated their pathogenicity in vivo. The set included the type I FCoV strain Black, a type I FCoV strain Black with restored accessory gene 7b, two chimeric type I/type II FCoVs and the highly pathogenic type II FCoV strain 79-1146. All recombinant FCoVs and the reference strain isolates were found to establish productive infections in cats. While none of the type I FCoVs and chimeric FCoVs induced FIP, the recombinant type II FCoV strain 79-1146 was as pathogenic as the parental isolate. Interestingly, an intact ORF 3c was confirmed to be restored in all viruses (re)isolated from FIP-diseased animals.
Collapse
Affiliation(s)
- Volker Thiel
- a Institute of Virology; Justus-Liebig-University Giessen ; Giessen , Germany
| | | | | |
Collapse
|
43
|
Pedersen NC. An update on feline infectious peritonitis: virology and immunopathogenesis. Vet J 2014; 201:123-32. [PMID: 24837550 PMCID: PMC7110662 DOI: 10.1016/j.tvjl.2014.04.017] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 03/24/2014] [Accepted: 04/27/2014] [Indexed: 11/18/2022]
Abstract
Feline infectious peritonitis (FIP) continues to be one of the most researched infectious diseases of cats. The relatively high mortality of FIP, especially for younger cats from catteries and shelters, should be reason enough to stimulate such intense interest. However, it is the complexity of the disease and the grudging manner in which it yields its secrets that most fascinate researchers. Feline leukemia virus infection was conquered in less than two decades and the mysteries of feline immunodeficiency virus were largely unraveled in several years. After a half century, FIP remains one of the last important infections of cats for which we have no single diagnostic test, no vaccine and no definitive explanations for how virus and host interact to cause disease. How can a ubiquitous and largely non-pathogenic enteric coronavirus transform into a highly lethal pathogen? What are the interactions between host and virus that determine both disease form (wet or dry) and outcome (death or resistance)? Why is it so difficult, and perhaps impossible, to develop a vaccine for FIP? What role do genetics play in disease susceptibility? This review will explore research conducted over the last 5 years that attempts to answer these and other questions. Although much has been learned about FIP in the last 5 years, the ultimate answers remain for yet more studies.
Collapse
Affiliation(s)
- Niels C Pedersen
- Center for Companion Animal Health, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
44
|
Recognition of the murine coronavirus genomic RNA packaging signal depends on the second RNA-binding domain of the nucleocapsid protein. J Virol 2014; 88:4451-65. [PMID: 24501403 DOI: 10.1128/jvi.03866-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The coronavirus nucleocapsid (N) protein forms a helical ribonucleoprotein with the viral positive-strand RNA genome and binds to the principal constituent of the virion envelope, the membrane (M) protein, to facilitate assembly and budding. Besides these structural roles, N protein associates with a component of the replicase-transcriptase complex, nonstructural protein 3, at a critical early stage of infection. N protein has also been proposed to participate in the replication and selective packaging of genomic RNA and the transcription and translation of subgenomic mRNA. Coronavirus N proteins contain two structurally distinct RNA-binding domains, an unusual characteristic among RNA viruses. To probe the functions of these domains in the N protein of the model coronavirus mouse hepatitis virus (MHV), we constructed mutants in which each RNA-binding domain was replaced by its counterpart from the N protein of severe acute respiratory syndrome coronavirus (SARS-CoV). Mapping of revertants of the resulting chimeric viruses provided evidence for extensive intramolecular interactions between the two RNA-binding domains. Through analysis of viral RNA that was packaged into virions we identified the second of the two RNA-binding domains as a principal determinant of MHV packaging signal recognition. As expected, the interaction of N protein with M protein was not affected in either of the chimeric viruses. Moreover, the SARS-CoV N substitutions did not alter the fidelity of leader-body junction formation during subgenomic mRNA synthesis. These results more clearly delineate the functions of N protein and establish a basis for further exploration of the mechanism of genomic RNA packaging. IMPORTANCE This work describes the interactions of the two RNA-binding domains of the nucleocapsid protein of a model coronavirus, mouse hepatitis virus. The main finding is that the second of the two domains plays an essential role in recognizing the RNA structure that allows the selective packaging of genomic RNA into assembled virions.
Collapse
|
45
|
Comparative sequence analysis of full-length genome of FIPV at different tissue passage levels. Virus Genes 2013; 47:490-7. [PMID: 23996606 PMCID: PMC7089344 DOI: 10.1007/s11262-013-0972-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/08/2013] [Indexed: 11/17/2022]
Abstract
Feline infectious
peritonitis virus (FIPV), an alpha Coronavirus, is the causative agent of a fatal immune mediated disease in cats. It is currently unclear if this virus circulates in the field or develops in felines that are infected with Feline enteric coronavirus. To better understand the genomic changes associated with viral adaptation, we sequenced the complete genomes of FIPV WSU 79-1146 at different tissue passage levels: passage 1, passage 8, and passage 50 tissue culture. Twenty-one amino acid differences were observed in the polyprotein 1a/ab between the different passages. Only one residue change was observed in the spike glycoprotein, which reverted back on subsequent passages, four changes were observed in the 3c protein, and one change was observed in each 3a, small membrane, nucleocapsid and 7a proteins. The mutation rate was calculated to be 5.08–6.3 × 10−6 nucleotides/site/passage in tissue culture suggesting a relatively stable virus. Our data show that FIPV has a low mutation rate as it is passed in cell culture but has the capacity for change specifically in nsp 2, 3c, and 7b as it is passed in cell culture.
Collapse
|
46
|
Li C, Li Z, Zou Y, Wicht O, van Kuppeveld FJM, Rottier PJM, Bosch BJ. Manipulation of the porcine epidemic diarrhea virus genome using targeted RNA recombination. PLoS One 2013; 8:e69997. [PMID: 23936367 PMCID: PMC3732256 DOI: 10.1371/journal.pone.0069997] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/13/2013] [Indexed: 01/06/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe economic losses in the swine industry in China and other Asian countries. Infection usually leads to an acute, often lethal diarrhea in piglets. Despite the impact of the disease, no system is yet available to manipulate the viral genome which has severely hampered research on this virus until today. We have established a reverse genetics system for PEDV based on targeted RNA recombination that allows the modification of the 3′-end of the viral genome, which encodes the structural proteins and the ORF3 protein. Using this system, we deleted the ORF3 gene entirely from the viral genome and showed that the ORF3 protein is not essential for replication of the virus in vitro. In addition, we inserted heterologous genes (i.e. the GFP and Renilla luciferase genes) at two positions in the viral genome, either as an extra expression cassette or as a replacement for the ORF3 gene. We demonstrated the expression of both GFP and Renilla luciferase as well as the application of these viruses by establishing a convenient and rapid virus neutralization assay. The new PEDV reverse genetics system will enable functional studies of the structural proteins and the accessory ORF3 protein and will allow the rational design and development of next generation PEDV vaccines.
Collapse
Affiliation(s)
- Chunhua Li
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Negatively charged residues in the endodomain are critical for specific assembly of spike protein into murine coronavirus. Virology 2013; 442:74-81. [PMID: 23628137 PMCID: PMC3772176 DOI: 10.1016/j.virol.2013.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 01/17/2023]
Abstract
Coronavirus spike (S) protein assembles into virions via its carboxy-terminus, which is composed of a transmembrane domain and an endodomain. Here, the carboxy-terminal charge-rich motif in the endodomain was verified to be critical for the specificity of S assembly into mouse hepatitis virus (MHV). Recombinant MHVs exhibited a range of abilities to accommodate the homologous S endodomains from the betacoronaviruses bovine coronavirus and human SARS-associated coronavirus, the alphacoronavirus porcine transmissible gastroenteritis virus (TGEV), and the gammacoronavirus avian infectious bronchitis virus respectively. Interestingly, in TGEV endodomain chimeras the reverting mutations resulted in stronger S incorporation into virions, and a net gain of negatively charged residues in the charge-rich motif accounted for the improvement. Additionally, MHV S assembly could also be rescued by the acidic carboxy-terminal domain of the nucleocapsid protein. These results indicate an important role for negatively charged endodomain residues in the incorporation of MHV S protein into assembled virions. Charge-rich motif in endodomain is a major determinant for coronavirus S assembly. MHV exhibited different accommodations to S endodomains from other coronaviruses. MHV with TGEV S endodomain improved S incorporation by reverting mutation. MHV S assembly could be partial restored by acidic carboxy-terminal domain of N. Negatively charged residues in endodomain are critical for S specific assembly.
Collapse
|
48
|
Human coronaviruses: Clinical features and phylogenetic analysis. Biomedicine (Taipei) 2013; 3:43-50. [PMID: 32289002 PMCID: PMC7103958 DOI: 10.1016/j.biomed.2012.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 11/23/2012] [Accepted: 12/19/2012] [Indexed: 12/19/2022] Open
Abstract
Strains of human coronavirus (HCoV), namely HCoV-OC43, HCoV-229E, HCoV-NL63, and HCoV-HKU1, primarily infect the upper respiratory and gastrointestinal tracts and are the most common cause of non-rhinovirus-induced common cold in humans. Although the manifestations of coronavirus infection (i.e., rhinorrhea, sneezing, cough, nasal obstruction, and bronchitis) are generally self-limiting in healthy adults, certain strains such as HCoV-NL63 and HCoV-HKU1 can cause severe lower respiratory tract infection and febrile seizure, especially in infants, people of advanced age, and immunocompromised hosts. In 2003, a novel HCoV strain was identified as the causative agent of the severe acute respiratory syndrome (SARS) epidemic that began in Asia in 2002. The strain has hence been referred to as SARS-CoV. In addition, as recently as September 2012, another novel HCoV, human betacoronavirus 2c EMC2012, was identified as being the cause of fever, renal failure, pneumonia, and severe respiratory distress in two patients in the Middle East. Phylogenetic analysis has revealed highly conserved sequences of ORF1ab, spike, nucleocapsid, and envelope protein genes, but not membrane protein genes, between human betacoronavirus 2c EMC2012 and SARS-CoV. This review focuses on the differences in the genomes of certain HCoV strains, the pathogenesis of said strains, and recent developments in the establishment of therapeutic agents that might aid in the treatment of patients with such infections.
Collapse
|
49
|
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4:1011-33. [PMID: 22816037 PMCID: PMC3397359 DOI: 10.3390/v4061011] [Citation(s) in RCA: 909] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S) mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes—A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.
Collapse
Affiliation(s)
- Sandrine Belouzard
- Center for Infection and Immunity of Lille, CNRS UMR8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France, 59000 Lille, France;
| | - Jean K. Millet
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (J.K.M.); (B.N.L.)
| | - Beth N. Licitra
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (J.K.M.); (B.N.L.)
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA; (J.K.M.); (B.N.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-607-253-4021; Fax: +1-607-253-3384
| |
Collapse
|
50
|
Genomic characterization of seven distinct bat coronaviruses in Kenya. Virus Res 2012; 167:67-73. [PMID: 22561208 PMCID: PMC7114443 DOI: 10.1016/j.virusres.2012.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/13/2012] [Accepted: 04/18/2012] [Indexed: 01/04/2023]
Abstract
To better understand the genetic diversity and genomic features of 41 coronaviruses (CoVs) identified from Kenya bats in 2006, seven CoVs as representatives of seven different phylogenetic groups identified from partial polymerase gene sequences, were subjected to extensive genomic sequencing. As a result, 15-16kb nucleotide sequences encoding complete RNA dependent RNA polymerase, spike, envelope, membrane, and nucleocapsid proteins plus other open reading frames (ORFs) were generated. Sequences analysis confirmed that the CoVs from Kenya bats are divergent members of Alphacoronavirus and Betacoronavirus genera. Furthermore, the CoVs BtKY22, BtKY41, and BtKY43 in Alphacoronavirus genus and BtKY24 in Betacoronavirus genus are likely representatives of 4 novel CoV species. BtKY27 and BtKY33 are members of the established bat CoV species in Alphacoronavirus genus and BtKY06 is a member of the established bat CoV species in Betacoronavirus genus. The genome organization of these seven CoVs is similar to other known CoVs from the same groups except for differences in the number of putative ORFs following the N gene. The present results confirm a significant diversity of CoVs circulating in Kenya bats. These Kenya bat CoVs are phylogenetically distant from any previously described human and animal CoVs. However, because of the examples of host switching among CoVs after relatively minor sequence changes in S1 domain of spike protein, a further surveillance in animal reservoirs and understanding the interface between host susceptibility is critical for predicting and preventing the potential threat of bat CoVs to public health.
Collapse
|