1
|
Li Y, Xiao J, Li C, Yang M. Memory inflation: Beyond the acute phase of viral infection. Cell Prolif 2024; 57:e13705. [PMID: 38992867 PMCID: PMC11628752 DOI: 10.1111/cpr.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Memory inflation is confirmed as the most commonly dysregulation of host immunity with antigen-independent manner in mammals after viral infection. By generating large numbers of effector/memory and terminal differentiated effector memory CD8+ T cells with diminished naïve subsets, memory inflation is believed to play critical roles in connecting the viral infection and the onset of multiple diseases. Here, we reviewed the current understanding of memory inflated CD8+ T cells in their distinct phenotypic features that different from exhausted subsets; the intrinsic and extrinsic roles in regulating the formation of memory inflation; and the key proteins in maintaining the expansion and proliferation of inflationary populations. More importantly, based on the evidences from both clinic and animal models, we summarized the potential mechanisms of memory inflation to trigger autoimmune neuropathies, such as Guillain-Barré syndrome and multiple sclerosis; the correlations of memory inflation between tumorigenesis and resistance of tumour immunotherapies; as well as the effects of memory inflation to facilitate vascular disease progression. To sum up, better understanding of memory inflation could provide us an opportunity to beyond the acute phase of viral infection, and shed a light on the long-term influences of CD8+ T cell heterogeneity in dampen host immune homeostasis.
Collapse
Affiliation(s)
- Yanfei Li
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
| | - Jie Xiao
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chen Li
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Mu Yang
- School of Basic Medical SciencesChengdu University of Traditional Chinese MedicineChengduChina
- Centre for Translational Research in Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
2
|
Ohnezeit D, Huang J, Westerkamp U, Brinschwitz V, Schmidt C, Günther T, Czech-Sioli M, Weißelberg S, Schlemeyer T, Nakel J, Mai J, Schreiner S, Schneider C, Friedel CC, Schwanke H, Brinkmann MM, Grundhoff A, Fischer N. Merkel cell polyomavirus small tumor antigen contributes to immune evasion by interfering with type I interferon signaling. PLoS Pathog 2024; 20:e1012426. [PMID: 39110744 PMCID: PMC11333005 DOI: 10.1371/journal.ppat.1012426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/19/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the causative agent of the majority of Merkel cell carcinomas (MCC). The virus has limited coding capacity, with its early viral proteins, large T (LT) and small T (sT), being multifunctional and contributing to infection and transformation. A fundamental difference in early viral gene expression between infection and MCPyV-driven tumorigenesis is the expression of a truncated LT (LTtr) in the tumor. In contrast, sT is expressed in both conditions and contributes significantly to oncogenesis. Here, we identified novel functions of early viral proteins by performing genome-wide transcriptome and chromatin studies in primary human fibroblasts. Due to current limitations in infection and tumorigenesis models, we mimic these conditions by ectopically expressing sT, LT or LTtr, individually or in combination, at different time points. In addition to its known function in cell cycle and inflammation modulation, we reveal a fundamentally new function of sT. We show that sT regulates the type I interferon (IFN) response downstream of the type I interferon receptor (IFNAR) by interfering with the interferon-stimulated gene factor 3 (ISGF3)-induced interferon-stimulated gene (ISG) response. Expression of sT leads to a reduction in the expression of interferon regulatory factor 9 (IRF9) which is a central component of the ISGF3 complex. We further show that this function of sT is conserved in BKPyV. We provide a first mechanistic understanding of which early viral proteins trigger and control the type I IFN response, which may influence MCPyV infection, persistence and, during MCC progression, regulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Denise Ohnezeit
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiabin Huang
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ute Westerkamp
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Veronika Brinschwitz
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudia Schmidt
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Manja Czech-Sioli
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samira Weißelberg
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tabea Schlemeyer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Mai
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | - Sabrina Schreiner
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Institute of Virology, Freiburg, Germany
| | | | - Caroline C. Friedel
- Institute of Informatics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hella Schwanke
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Santamorena MM, Tischer-Zimmermann S, Bonifacius A, Mireisz CNM, Costa B, Khan F, Kulkarni U, Lauruschkat CD, Sampaio KL, Stripecke R, Blasczyk R, Maecker-Kolhoff B, Kraus S, Schlosser A, Cicin-Sain L, Kalinke U, Eiz-Vesper B. Engineered HCMV-infected APCs enable the identification of new immunodominant HLA-restricted epitopes of anti-HCMV T-cell immunity. HLA 2024; 103:e15541. [PMID: 38923358 DOI: 10.1111/tan.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.
Collapse
Affiliation(s)
- Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fawad Khan
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Renata Stripecke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Institute of Translational Immuno-oncology, Cologne, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
4
|
Zangger N, Oxenius A. T cell immunity to cytomegalovirus infection. Curr Opin Immunol 2022; 77:102185. [DOI: 10.1016/j.coi.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
5
|
Davidson S, Yu CH, Steiner A, Ebstein F, Baker PJ, Jarur-Chamy V, Hrovat Schaale K, Laohamonthonkul P, Kong K, Calleja DJ, Harapas CR, Balka KR, Mitchell J, Jackson JT, Geoghegan ND, Moghaddas F, Rogers KL, Mayer-Barber KD, De Jesus AA, De Nardo D, Kile BT, Sadler AJ, Poli MC, Krüger E, Goldbach Mansky R, Masters SL. Protein kinase R is an innate immune sensor of proteotoxic stress via accumulation of cytoplasmic IL-24. Sci Immunol 2022; 7:eabi6763. [PMID: 35148201 PMCID: PMC11036408 DOI: 10.1126/sciimmunol.abi6763] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Proteasome dysfunction can lead to autoinflammatory disease associated with elevated type I interferon (IFN-αβ) and NF-κB signaling; however, the innate immune pathway driving this is currently unknown. Here, we identified protein kinase R (PKR) as an innate immune sensor for proteotoxic stress. PKR activation was observed in cellular models of decreased proteasome function and in multiple cell types from patients with proteasome-associated autoinflammatory disease (PRAAS). Furthermore, genetic deletion or small-molecule inhibition of PKR in vitro ameliorated inflammation driven by proteasome deficiency. In vivo, proteasome inhibitor-induced inflammatory gene transcription was blunted in PKR-deficient mice compared with littermate controls. PKR also acted as a rheostat for proteotoxic stress by triggering phosphorylation of eIF2α, which can prevent the translation of new proteins to restore homeostasis. Although traditionally known as a sensor of RNA, under conditions of proteasome dysfunction, PKR sensed the cytoplasmic accumulation of a known interactor, interleukin-24 (IL-24). When misfolded IL-24 egress into the cytosol was blocked by inhibition of the endoplasmic reticulum-associated degradation pathway, PKR activation and subsequent inflammatory signaling were blunted. Cytokines such as IL-24 are normally secreted from cells; therefore, cytoplasmic accumulation of IL-24 represents an internal danger-associated molecular pattern. Thus, we have identified a mechanism by which proteotoxic stress is detected, causing inflammation observed in the disease PRAAS.
Collapse
Affiliation(s)
- Sophia Davidson
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Chien-Hsiung Yu
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Annemarie Steiner
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
- Institute of Structural Biology, University Hospital Bonn, Bonn 53127, Germany
| | - Frédéric Ebstein
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald 17475, Germany
| | - Paul J. Baker
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Valentina Jarur-Chamy
- Immunogenetics and Translational Immunology Program. Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
| | - Katja Hrovat Schaale
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Pawat Laohamonthonkul
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Klara Kong
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Dale J. Calleja
- Ubiquitin Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Cassandra R. Harapas
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Katherine R. Balka
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jacob Mitchell
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Jacob T. Jackson
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Niall D. Geoghegan
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Fiona Moghaddas
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kelly L. Rogers
- Centre for Dynamic Imaging, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Adriana A. De Jesus
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Dominic De Nardo
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Benjamin T. Kile
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Anthony J. Sadler
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - M. Cecilia Poli
- Immunogenetics and Translational Immunology Program. Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago, Chile
- Division of Pediatric Immunology, Allergy, and Rheumatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elke Krüger
- University Medicine Greifswald, Institute of Medical Biochemistry and Molecular Biology, Greifswald 17475, Germany
| | - Raphaela Goldbach Mansky
- Translational Autoinflammatory Disease Studies (TADS), Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Seth L. Masters
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
6
|
Barik S. Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2. Int J Mol Sci 2022; 23:ijms23010489. [PMID: 35008916 PMCID: PMC8745392 DOI: 10.3390/ijms23010489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/28/2021] [Accepted: 12/31/2021] [Indexed: 12/31/2022] Open
Abstract
Virus infection of eukaryotes triggers cellular innate immune response, a major arm of which is the type I interferon (IFN) family of cytokines. Binding of IFN to cell surface receptors triggers a signaling cascade in which the signal transducer and activator of transcription 2 (STAT2) plays a key role, ultimately leading to an antiviral state of the cell. In retaliation, many viruses counteract the immune response, often by the destruction and/or inactivation of STAT2, promoted by specific viral proteins that do not possess protease activities of their own. This review offers a summary of viral mechanisms of STAT2 subversion with emphasis on degradation. Some viruses also destroy STAT1, another major member of the STAT family, but most viruses are selective in targeting either STAT2 or STAT1. Interestingly, degradation of STAT2 by a few viruses requires the presence of both STAT proteins. Available evidence suggests a mechanism in which multiple sites and domains of STAT2 are required for engagement and degradation by a multi-subunit degradative complex, comprising viral and cellular proteins, including the ubiquitin–proteasomal system. However, the exact molecular nature of this complex and the alternative degradation mechanisms remain largely unknown, as critically presented here with prospective directions of future study.
Collapse
Affiliation(s)
- Sailen Barik
- EonBio, 3780 Pelham Drive, Mobile, AL 36619, USA
| |
Collapse
|
7
|
Kasahara M. Role of immunoproteasomes and thymoproteasomes in health and disease. Pathol Int 2021; 71:371-382. [PMID: 33657242 DOI: 10.1111/pin.13088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022]
Abstract
The proteasome is a multisubunit protease that degrades intracellular proteins into small peptides. Besides playing a pivotal role in many cellular processes indispensable for survival, it is involved in the production of peptides presented by major histocompatibility complex class I molecules. In addition to the standard proteasome shared in all eukaryotes, jawed vertebrates have two specialized forms of proteasome known as immunoproteasomes and thymoproteasomes. The immunoproteasome, which contains cytokine-inducible catalytic subunits with distinct cleavage specificities, produces peptides presented by class I molecules more efficiently than the standard proteasome. The thymoproteasome, which contains a unique catalytic subunit β5t, is a tissue-specific proteasome expressed exclusively in cortical thymic epithelial cells. It plays a critical role in CD8+ cytotoxic T cell development via positive selection. This review provides a brief overview on the structure and function of these specialized forms of proteasome and their involvement in human disease.
Collapse
Affiliation(s)
- Masanori Kasahara
- Department of Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido, Japan
| |
Collapse
|
8
|
Liu Q, Yu YY, Wang HY, Wang JF, He XJ. The IFN-γ-induced immunoproteasome is suppressed in highly pathogenic porcine reproductive and respiratory syndrome virus-infected alveolar macrophages. Vet Immunol Immunopathol 2020; 226:110069. [PMID: 32535163 DOI: 10.1016/j.vetimm.2020.110069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 11/19/2022]
Abstract
Highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) evades cytotoxic T lymphocyte (CTL) responses through interactions between viral Nsp1α and Nsp4 and β2 M heavy and light chains, respectively, of swine leukocyte antigen class (SLA)-I. However, whether the immunoproteasome (i-proteasome) complex, which is an important component of the antigen delivery pathway that functions by mediating peptide production, is also affected by viral infection is unknown. In this study, we investigated the effects of HP-PRRSV (HuN4-F5) infection on IFN-γ-induced i-proteasome expression using a cell culture system (alveolar macrophages, AMs). We found that this virus inhibited the expression of IFN-γ-induced i-proteasome subunits LMP2, LMP7, and MECL-1 at the mRNA and protein level. In addition, expression levels of the i-proteasome regulatory subunits PSME1 and PSME2 in the HP-PRRSV HuN4-F5-infected group were also significantly decreased compared to those in the uninfected group. However, there was no significant difference in the expression of proteasome subunits PSMB5, PSMB6, and PSMB7 between HP-PRRSV HuN4-F5-infected and uninfected groups. This study provides insight into the mechanisms underlying immune regulation by HP-PRRSV; specifically, this virus affects the antigen-processing machinery by suppressing IFN-γ-induced i-proteasome expression in infected AMs.
Collapse
Affiliation(s)
- Qiang Liu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China.
| | - Yue-Yang Yu
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China.
| | - Huai-Yu Wang
- Nanchong Key Laboratory of Disease Prevention, Control and Detection in Livestock and Poultry, Nanchong Vocational and Technical College, Nanchong 637131, China.
| | - Jing-Fei Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| | - Xi-Jun He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China.
| |
Collapse
|
9
|
Le-Trilling VTK, Trilling M. Ub to no good: How cytomegaloviruses exploit the ubiquitin proteasome system. Virus Res 2020; 281:197938. [PMID: 32198076 DOI: 10.1016/j.virusres.2020.197938] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 12/17/2022]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous member of the Betaherpesvirinae subfamily, causing life-threatening diseases in individuals with impaired, immature, or senescent immunity. Accordingly, HIV-infected AIDS patients, transplant recipients, and congenitally infected neonates frequently suffer from symptomatic episodes of HCMV replication. Like all viruses, HCMV has a split relationship with the host proteome. Efficient virus replication can only be achieved if proteins involved in intrinsic, innate, and adaptive immune responses are sufficiently antagonized. Simultaneously, the abundance and function of proteins involved in the synthesis of chemical building blocks required for virus production, such as nucleotides, amino acids, and fatty acids, must be preserved or even enriched. The ubiquitin (Ub) proteasome system (UPS) constitutes one of the most relevant protein decay systems of eukaryotic cells. In addition to the regulation of the turn-over and abundance of thousands of proteins, the UPS also generates the majority of peptides presented by major histocompatibility complex (MHC) molecules to allow surveillance by T lymphocytes. Cytomegaloviruses exploit the UPS to regulate the abundance of viral proteins and to manipulate the host proteome in favour of viral replication and immune evasion. After summarizing the current knowledge of CMV-mediated misuse of the UPS, we discuss the evolution of viral proteins utilizing the UPS for the degradation of defined target proteins. We propose two alternative routes of adapter protein development and their mechanistic consequences.
Collapse
Affiliation(s)
| | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
10
|
Becker T, Le-Trilling VTK, Trilling M. Cellular Cullin RING Ubiquitin Ligases: Druggable Host Dependency Factors of Cytomegaloviruses. Int J Mol Sci 2019; 20:E1636. [PMID: 30986950 PMCID: PMC6479302 DOI: 10.3390/ijms20071636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus that frequently causes morbidity and mortality in individuals with insufficient immunity, such as transplant recipients, AIDS patients, and congenitally infected newborns. Several antiviral drugs are approved to treat HCMV infections. However, resistant HCMV mutants can arise in patients receiving long-term therapy. Additionally, side effects and the risk to cause birth defects limit the use of currently approved antivirals against HCMV. Therefore, the identification of new drug targets is of clinical relevance. Recent work identified DNA-damage binding protein 1 (DDB1) and the family of the cellular cullin (Cul) RING ubiquitin (Ub) ligases (CRLs) as host-derived factors that are relevant for the replication of human and mouse cytomegaloviruses. The first-in-class CRL inhibitory compound Pevonedistat (also called MLN4924) is currently under investigation as an anti-tumor drug in several clinical trials. Cytomegaloviruses exploit CRLs to regulate the abundance of viral proteins, and to induce the proteasomal degradation of host restriction factors involved in innate and intrinsic immunity. Accordingly, pharmacological blockade of CRL activity diminishes viral replication in cell culture. In this review, we summarize the current knowledge concerning the relevance of DDB1 and CRLs during cytomegalovirus replication and discuss chances and drawbacks of CRL inhibitory drugs as potential antiviral treatment against HCMV.
Collapse
Affiliation(s)
- Tanja Becker
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| | | | - Mirko Trilling
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Essen, Germany.
| |
Collapse
|
11
|
Galinato M, Shimoda K, Aguiar A, Hennig F, Boffelli D, McVoy MA, Hertel L. Single-Cell Transcriptome Analysis of CD34 + Stem Cell-Derived Myeloid Cells Infected With Human Cytomegalovirus. Front Microbiol 2019; 10:577. [PMID: 30949159 PMCID: PMC6437045 DOI: 10.3389/fmicb.2019.00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid cells are important sites of lytic and latent infection by human cytomegalovirus (CMV). We previously showed that only a small subset of myeloid cells differentiated from CD34+ hematopoietic stem cells is permissive to CMV replication, underscoring the heterogeneous nature of these populations. The exact identity of resistant and permissive cell types, and the cellular features characterizing the latter, however, could not be dissected using averaging transcriptional analysis tools such as microarrays and, hence, remained enigmatic. Here, we profile the transcriptomes of ∼7000 individual cells at day 1 post-infection using the 10× genomics platform. We show that viral transcripts are detectable in the majority of the cells, suggesting that virion entry is unlikely to be the main target of cellular restriction mechanisms. We further show that viral replication occurs in a small but specific sub-group of cells transcriptionally related to, and likely derived from, a cluster of cells expressing markers of Colony Forming Unit – Granulocyte, Erythrocyte, Monocyte, Megakaryocyte (CFU-GEMM) oligopotent progenitors. Compared to the remainder of the population, CFU-GEMM cells are enriched in transcripts with functions in mitochondrial energy production, cell proliferation, RNA processing and protein synthesis, and express similar or higher levels of interferon-related genes. While expression levels of the former are maintained in infected cells, the latter are strongly down-regulated. We thus propose that the preferential infection of CFU-GEMM cells may be due to the presence of a pre-established pro-viral environment, requiring minimal optimization efforts from viral effectors, rather than to the absence of specific restriction factors. Together, these findings identify a potentially new population of myeloid cells permissive to CMV replication, and provide a possible rationale for their preferential infection.
Collapse
Affiliation(s)
- Melissa Galinato
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Kristen Shimoda
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Alexis Aguiar
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Fiona Hennig
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Dario Boffelli
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Hertel
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| |
Collapse
|
12
|
Basler M, Mundt S, Groettrup M. The immunoproteasome subunit LMP7 is required in the murine thymus for filling up a hole in the T cell repertoire. Eur J Immunol 2017; 48:419-429. [PMID: 29067678 DOI: 10.1002/eji.201747282] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/22/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Cells of hematopoietic origin express high levels of the immunoproteasome, a cytokine-inducible variant of the proteasome which has been implicated in regulating inflammatory responses and antigen presentation. In the thymus, medullary thymic epithelial cells (mTECs) and cortical thymic epithelial cells (cTECs) do express different proteasome subunits exerting chymotrypsin-like activities suggesting distinct functions in thymic T cell selection. Employing the lymphocytic choriomeningitis virus (LCMV) infection model, we could show that the immunoproteasome subunit LMP7 was absolutely required for the generation of LCMV GP118-125 -specific T cells although the class I mediated presentation of GP118-125 was not dependent on LMP7. Using bone marrow chimeras and adoptive transfer of LMP7-deficient CD8+ T cells into RAG1-deficient mice we show that LMP7-deficient mice lacked GP118-125 -specific T cell precursors and that LMP7 was required in radioresistant cells - most likely thymic epithelial cells - to enable their selection. Since LMP7 is strongly expressed in negatively selecting mTECs but barely in positively selecting cTECs our data suggest that LMP7 was required to avoid excessive negative selection of GP118-125 -specific T cell precursors. Taken together, this study demonstrates that the immunoproteasome is a crucial factor for filling up holes within the cytotoxic T cell repertoire.
Collapse
Affiliation(s)
- Michael Basler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Sarah Mundt
- Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| | - Marcus Groettrup
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Division of Immunology, Department of Biology, University of Konstanz, D-78457, Konstanz, Germany
| |
Collapse
|
13
|
Pulmonary immunity to viruses. Clin Sci (Lond) 2017; 131:1737-1762. [PMID: 28667071 DOI: 10.1042/cs20160259] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/31/2017] [Accepted: 04/06/2017] [Indexed: 12/28/2022]
Abstract
Mucosal surfaces, such as the respiratory epithelium, are directly exposed to the external environment and therefore, are highly susceptible to viral infection. As a result, the respiratory tract has evolved a variety of innate and adaptive immune defenses in order to prevent viral infection or promote the rapid destruction of infected cells and facilitate the clearance of the infecting virus. Successful adaptive immune responses often lead to a functional state of immune memory, in which memory lymphocytes and circulating antibodies entirely prevent or lessen the severity of subsequent infections with the same virus. This is also the goal of vaccination, although it is difficult to vaccinate in a way that mimics respiratory infection. Consequently, some vaccines lead to robust systemic immune responses, but relatively poor mucosal immune responses that protect the respiratory tract. In addition, adaptive immunity is not without its drawbacks, as overly robust inflammatory responses may lead to lung damage and impair gas exchange or exacerbate other conditions, such as asthma or chronic obstructive pulmonary disease (COPD). Thus, immune responses to respiratory viral infections must be strong enough to eliminate infection, but also have mechanisms to limit damage and promote tissue repair in order to maintain pulmonary homeostasis. Here, we will discuss the components of the adaptive immune system that defend the host against respiratory viral infections.
Collapse
|
14
|
Immunoproteasome induction is suppressed in hepatitis C virus-infected cells in a protein kinase R-dependent manner. Exp Mol Med 2016; 48:e270. [PMID: 27833096 PMCID: PMC5133375 DOI: 10.1038/emm.2016.98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/11/2016] [Indexed: 02/08/2023] Open
Abstract
By changing the relative abundance of generated antigenic peptides through alterations in the proteolytic activity, interferon (IFN)-γ-induced immunoproteasomes influence the outcome of CD8+ cytotoxic T lymphocyte responses. In the present study, we investigated the effects of hepatitis C virus (HCV) infection on IFN-γ-induced immunoproteasome expression using a HCV infection cell culture system. We found that, although IFN-γ induced the transcriptional expression of mRNAs encoding the β1i/LMP2, β2i/MECL-1 and β5i/LMP7 immunoproteasome subunits, the formation of immunoproteasomes was significantly suppressed in HCV-infected cells. This finding indicated that immunoproteasome induction was impaired at the translational or posttranslational level by HCV infection. Gene silencing studies showed that the suppression of immunoproteasome induction is essentially dependent on protein kinase R (PKR). Indeed, the generation of a strictly immunoproteasome-dependent cytotoxic T lymphocyte epitope was impaired in in vitro processing experiments using isolated 20S proteasomes from HCV-infected cells and was restored by the silencing of PKR expression. In conclusion, our data point to a novel mechanism of immune regulation by HCV that affects the antigen-processing machinery through the PKR-mediated suppression of immunoproteasome induction in infected cells.
Collapse
|
15
|
Eggensperger S, Tampé R. The transporter associated with antigen processing: a key player in adaptive immunity. Biol Chem 2016; 396:1059-72. [PMID: 25781678 DOI: 10.1515/hsz-2014-0320] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/02/2015] [Indexed: 01/05/2023]
Abstract
The adaptive immune system co-evolved with sophisticated pathways of antigen processing for efficient clearance of viral infections and malignant transformation. Antigenic peptides are primarily generated by proteasomal degradation and translocated into the lumen of the endoplasmic reticulum (ER) by the transporter associated with antigen processing (TAP). In the ER, peptides are loaded onto major histocompatibility complex I (MHC I) molecules orchestrated by a multisubunit peptide-loading complex (PLC). Peptide-MHC I complexes are targeted to the cell surface for antigen presentation to cytotoxic T cells, which eventually leads to the elimination of virally infected or malignantly transformed cells. Here, we review MHC I mediated antigen processing with a primary focus on the function and structural organization of the heterodimeric ATP-binding cassette (ABC) transporter TAP1/2. We discuss recent data on the molecular transport mechanism of the antigen translocation complex with respect to structural and biochemical information of other ABC exporters. We further summarize how TAP provides a scaffold for the assembly of the macromolecular PLC, thereby coupling peptide translocation with MHC I loading. TAP inhibition by distinct viral evasins highlights the important role of TAP in adaptive immunity.
Collapse
|
16
|
van de Weijer ML, Luteijn RD, Wiertz EJHJ. Viral immune evasion: Lessons in MHC class I antigen presentation. Semin Immunol 2015; 27:125-37. [PMID: 25887630 DOI: 10.1016/j.smim.2015.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 03/13/2015] [Indexed: 12/19/2022]
Abstract
The MHC class I antigen presentation pathway enables cells infected with intracellular pathogens to signal the presence of the invader to the immune system. Cytotoxic T lymphocytes are able to eliminate the infected cells through recognition of pathogen-derived peptides presented by MHC class I molecules at the cell surface. In the course of evolution, many viruses have acquired inhibitors that target essential stages of the MHC class I antigen presentation pathway. Studies on these immune evasion proteins reveal fascinating strategies used by viruses to elude the immune system. Viral immunoevasins also constitute great research tools that facilitate functional studies on the MHC class I antigen presentation pathway, allowing the investigation of less well understood routes, such as TAP-independent antigen presentation and cross-presentation of exogenous proteins. Viral immunoevasins have also helped to unravel more general cellular processes. For instance, basic principles of ER-associated protein degradation via the ubiquitin-proteasome pathway have been resolved using virus-induced degradation of MHC class I as a model. This review highlights how viral immunoevasins have increased our understanding of MHC class I-restricted antigen presentation.
Collapse
Affiliation(s)
| | - Rutger D Luteijn
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
17
|
Brinkmann MM, Dağ F, Hengel H, Messerle M, Kalinke U, Čičin-Šain L. Cytomegalovirus immune evasion of myeloid lineage cells. Med Microbiol Immunol 2015; 204:367-82. [PMID: 25776081 DOI: 10.1007/s00430-015-0403-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 02/28/2015] [Indexed: 12/23/2022]
Abstract
Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Viral Immune Modulation Research Group, Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124, Brunswick, Germany
| | | | | | | | | | | |
Collapse
|
18
|
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol 2015; 6:21. [PMID: 25688236 PMCID: PMC4310299 DOI: 10.3389/fmicb.2015.00021] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/08/2015] [Indexed: 11/13/2022] Open
Abstract
During viral infection, proper regulation of immune responses is necessary to ensure successful viral clearance with minimal host tissue damage. Proteasomes play a crucial role in the generation of antigenic peptides for presentation on MHC class I molecules, and thus activation of CD8 T cells, as well as activation of the NF-κB pathway. A specialized type of proteasome called the immunoproteasome is constitutively expressed in hematopoietic cells and induced in non-immune cells during viral infection by interferon signaling. The immunoproteasome regulates CD8 T cell responses to many viral epitopes during infection. Accumulating evidence suggests that the immunoproteasome may also contribute to regulation of proinflammatory cytokine production, activation of the NF-κB pathway, and management of oxidative stress. Many viruses have mechanisms of interfering with immunoproteasome function, including prevention of transcriptional upregulation of immunoproteasome components as well as direct interaction of viral proteins with immunoproteasome subunits. A better understanding of the role of the immunoproteasome in different cell types, tissues, and hosts has the potential to improve vaccine design and facilitate the development of effective treatment strategies for viral infections.
Collapse
Affiliation(s)
- Mary K McCarthy
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA
| | - Jason B Weinberg
- Department of Microbiology and Immunology, University of Michigan Ann Arbor, MI, USA ; Department of Pediatrics and Communicable Diseases, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
19
|
Camargo R, Faria LO, Kloss A, Favali CBF, Kuckelkorn U, Kloetzel PM, de Sá CM, Lima BD. Trypanosoma cruzi infection down-modulates the immunoproteasome biosynthesis and the MHC class I cell surface expression in HeLa cells. PLoS One 2014; 9:e95977. [PMID: 24752321 PMCID: PMC3994161 DOI: 10.1371/journal.pone.0095977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Generally, Trypanosoma cruzi infection in human is persistent and tends to chronicity, suggesting that the parasite evade the immune surveillance by down regulating the intracellular antigen processing routes. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome. However, upon IFN-γ stimulation, the catalytic constitutive subunits of the proteasome are replaced by the subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 to form the immunoproteasome. In this scenario, we analyzed whether the expression and activity of the constitutive and the immunoproteasome as well as the expression of other components of the MHC class I pathway are altered during the infection of HeLa cells with T. cruzi. By RT-PCR and two-dimensional gel electrophoresis analysis, we showed that the expression and composition of the constitutive proteasome is not affected by the parasite. In contrast, the biosynthesis of the β1i, β2i, β5i immunosubunits, PA28β, TAP1 and the MHC class I molecule as well as the proteasomal proteolytic activities were down-regulated in infected-IFN-γ-treated cell cultures. Taken together, our results provide evidence that the protozoan T. cruzi specifically modulates its infection through an unknown posttranscriptional mechanism that inhibits the expression of the MHC class I pathway components.
Collapse
Affiliation(s)
- Ricardo Camargo
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Liliam O. Faria
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Alexander Kloss
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Cecília B. F. Favali
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Ulrike Kuckelkorn
- Institute für Biochimie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Cezar Martins de Sá
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Beatriz D. Lima
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
- * E-mail:
| |
Collapse
|
20
|
The carboxy terminal region of the human cytomegalovirus immediate early 1 (IE1) protein disrupts type II inteferon signaling. Viruses 2014; 6:1502-24. [PMID: 24699362 PMCID: PMC4014707 DOI: 10.3390/v6041502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/07/2014] [Accepted: 03/07/2014] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) activate the first lines of defense against viruses, and promote innate and adaptive immune responses to viruses. We report that the immediate early 1 (IE1) protein of human cytomegalovirus (HCMV) disrupts signaling by IFNγ. The carboxyl-terminal region of IE1 is required for this function. We found no defect in the initial events in IFNγ signaling or in nuclear accumulation of signal transducer and activator of transcription 1 (STAT1) in IE1-expressing cells. Moreover, we did not observe an association between disruption of IFNγ signaling and nuclear domain 10 (ND10) disruption. However, there is reduced binding of STAT1 homodimers to target gamma activated sequence (GAS) elements in the presence of IE1. Co-immunoprecipitation studies failed to support a direct interaction between IE1 and STAT1, although these studies revealed that the C-terminal region of IE1 was required for interaction with STAT2. Together, these results indicate that IE1 disrupts IFNγ signaling by interfering with signaling events in the nucleus through a novel mechanism.
Collapse
|
21
|
Zimmermann A, Hauka S, Maywald M, Le VTK, Schmidt SK, Däubener W, Hengel H. Checks and balances between human cytomegalovirus replication and indoleamine-2,3-dioxygenase. J Gen Virol 2013; 95:659-670. [PMID: 24337170 DOI: 10.1099/vir.0.061994-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite a rigorous blockade of interferon-γ (IFN-γ) signalling in infected fibroblasts as a mechanism of immune evasion by human cytomegalovirus (HCMV), IFN-γ induced indoleamine-2,3-dioxygenase (IDO) has been proposed to represent the major antiviral restriction factor limiting HCMV replication in epithelial cells. Here we show that HCMV efficiently blocks transcription of IFN-γ-induced IDO mRNA both in infected fibroblasts and epithelial cells even in the presence of a preexisting IFN-induced antiviral state. This interference results in severe suppression of IDO bioactivity in HCMV-infected cells and restoration of vigorous HCMV replication. Depletion of IDO expression nonetheless substantially alleviated the antiviral impact of IFN-γ treatment in both cell types. These findings highlight the effectiveness of this IFN-γ induced effector gene in restricting HCMV productivity, but also the impact of viral counter-measures.
Collapse
Affiliation(s)
- Albert Zimmermann
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Sebastian Hauka
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Marco Maywald
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Vu Thuy Khanh Le
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen 45147, Germany
| | - Silvia K Schmidt
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Walter Däubener
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany
| |
Collapse
|
22
|
Trilling M, Le VTK, Rashidi-Alavijeh J, Katschinski B, Scheller J, Rose-John S, Androsiac GE, Jonjić S, Poli V, Pfeffer K, Hengel H. “Activated” STAT Proteins: A Paradoxical Consequence of Inhibited JAK-STAT Signaling in Cytomegalovirus-Infected Cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:447-58. [DOI: 10.4049/jimmunol.1203516] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Immune regulation and evasion of Mammalian host cell immunity during viral infection. INDIAN JOURNAL OF VIROLOGY : AN OFFICIAL ORGAN OF INDIAN VIROLOGICAL SOCIETY 2013; 24:1-15. [PMID: 24426252 DOI: 10.1007/s13337-013-0130-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 02/15/2013] [Indexed: 12/18/2022]
Abstract
The mammalian host immune system has wide array of defence mechanisms against viral infections. Depending on host immunity and the extent of viral persistence, either the host immune cells might clear/restrict the viral load and disease progression or the virus might evade host immunity by down regulating host immune effector response(s). Viral antigen processing and presentation in the host cells through major histocompatibility complex (MHC) elicit subsequent anti-viral effector T cell response(s). However, modulation of such response(s) might generate one of the important viral immune evasion strategies. Viral peptides are mostly generated by proteolytic cleavage in the cytosol of the infected host cells. CD8(+) T lymphocytes play critical role in the detection of viral infection by recognizing these peptides displayed at the plasma membrane by MHC-I molecules. The present review summarises the current knowledge on the regulation of mammalian host innate and adaptive immune components, which are operative in defence mechanisms against viral infections and the variety of strategies that viruses have evolved to escape host cell immunity. The understanding of viral immune evasion strategies is important for designing anti-viral immunotherapies.
Collapse
|
24
|
Trilling M, Le VTK, Hengel H. Interplay between CMVs and interferon signaling: implications for pathogenesis and therapeutic intervention. Future Microbiol 2012; 7:1269-82. [PMID: 23075446 DOI: 10.2217/fmb.12.109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Most human individuals are latently infected with human CMV, a prototypic β-herpesvirus, frequently acquired during early childhood. In the absence of adequate immune control, the otherwise asymptomatic infection causes life-threatening disease. To enable efficient replication and to maintain lifelong latency in immunocompetent hosts, CMVs have evolved numerous molecules mediating immune evasive properties, targeting both innate and adaptive immune responses. Upon infection, cells secrete interferons (IFNs), which initiate an extremely fast signal transduction cascade upon binding to their cognate receptors, culminating in a pronounced change in the cellular gene expression profile. This response leads to the establishment of an intracellular antimicrobial state and to the recruitment, as well as stimulation, of the adaptive immune system. Unfortunately, CMVs impede the IFN system by interfering with its induction, signaling and downstream effector functions. This review aims to present our current understanding of such cytomegaloviral IFN-evasive properties, their pathogenic implications and potential for therapeutic exploitation.
Collapse
Affiliation(s)
- Mirko Trilling
- Institute for Virology, Robert-Koch-Haus, Universität Duisburg-Essen, Virchowstraße 179, D-45147, Essen, Germany
| | - Vu Thuy Khanh Le
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
25
|
Al-Ali A, Timoshenko O, Martin BA, Sweet C. Role of mutations identified in ORFs M27, M36, m139, m141, and m143 in the temperature-sensitive phenotype of murine cytomegalovirus mutanttsm5. J Med Virol 2012; 84:912-22. [DOI: 10.1002/jmv.23273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
26
|
Identification of DNA-damage DNA-binding protein 1 as a conditional essential factor for cytomegalovirus replication in interferon-γ-stimulated cells. PLoS Pathog 2011; 7:e1002069. [PMID: 21698215 PMCID: PMC3116810 DOI: 10.1371/journal.ppat.1002069] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/29/2011] [Indexed: 01/17/2023] Open
Abstract
The mouse cytomegaloviral (MCMV) protein pM27 represents an indispensable factor for viral fitness in vivo selectively, antagonizing signal transducer and activator of transcription 2 (STAT2)-mediated interferon signal transduction. We wished to explore by which molecular mechanism pM27 accomplishes this effect. We demonstrate that pM27 is essential and sufficient to curtail the protein half-life of STAT2 molecules. Pharmacologic inhibition of the proteasome restored STAT2 amounts, leading to poly-ubiquitin-conjugated STAT2 forms. PM27 was found in complexes with an essential host ubiquitin ligase complex adaptor protein, DNA-damage DNA-binding protein (DDB) 1. Truncation mutants of pM27 showed a strict correlation between DDB1 interaction and their ability to degrade STAT2. SiRNA-mediated knock-down of DDB1 restored STAT2 in the presence of pM27 and strongly impaired viral replication in interferon conditioned cells, thus phenocopying the growth attenuation of M27-deficient virus. In a constructive process, pM27 recruits DDB1 to exploit ubiquitin ligase complexes catalyzing the obstruction of the STAT2-dependent antiviral state of cells to permit viral replication.
Collapse
|
27
|
Lacaze P, Forster T, Ross A, Kerr LE, Salvo-Chirnside E, Lisnic VJ, López-Campos GH, García-Ramírez JJ, Messerle M, Trgovcich J, Angulo A, Ghazal P. Temporal profiling of the coding and noncoding murine cytomegalovirus transcriptomes. J Virol 2011; 85:6065-76. [PMID: 21471238 PMCID: PMC3126304 DOI: 10.1128/jvi.02341-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 03/28/2011] [Indexed: 12/20/2022] Open
Abstract
The global transcriptional program of murine cytomegalovirus (MCMV), involving coding, noncoding, and antisense transcription, remains unknown. Here we report an oligonucleotide custom microarray platform capable of measuring both coding and noncoding transcription on a genome-wide scale. By profiling MCMV wild-type and immediate-early mutant strains in fibroblasts, we found rapid activation of the transcriptome by 6.5 h postinfection, with absolute dependency on ie3, but not ie1 or ie2, for genomic programming of viral gene expression. Evidence is also presented to show, for the first time, genome-wide noncoding and bidirectional transcription at late stages of MCMV infection.
Collapse
Affiliation(s)
- Paul Lacaze
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Thorsten Forster
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Alan Ross
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
| | - Lorraine E. Kerr
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Eliane Salvo-Chirnside
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| | - Vanda Juranic Lisnic
- Department of Histology and Embryology, Faculty of Medicine, Rijeka University, Croatia
| | | | - José J. García-Ramírez
- Department of Inorganic and Organic Chemistry and Biochemistry, Medical School, Regional Center for Biomedical Research, University of Castilla—La Mancha, Avenida de Almansa 14, 02006 Albacete, Spain
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Joanne Trgovcich
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210
| | - Ana Angulo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Peter Ghazal
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, The University of Edinburgh, Darwin Building, King's Buildings Campus, Mayfield Road, Edinburgh, United Kingdom
| |
Collapse
|
28
|
Chen X, Xu C, Zhang F, Ma J. Microarray approach reveals the relevance of interferon signaling pathways with rat liver restoration post 2/3 hepatectomy at cellular level. J Interferon Cytokine Res 2011; 30:525-39. [PMID: 20626293 DOI: 10.1089/jir.2009.0111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunomodulator interferons are assumed not only to fight tumor progress but also to inhibit liver regeneration by inactivating Kupffer cells. The potential mechanism is still poorly characterized. In particular, the relevance of interferon signaling to liver regeneration at cellular level still remains unknown. In this study, 8 types of rat liver cells from the regenerating liver at 10 recovery time points were separately isolated by percoll density gradient centrifugation and immunomagnetic bead. Transcription profiles of interferon-signaling pathway genes in each cell type along the time course of liver restoration were detected using Rat Genome 230 2.0 Array covering about 12,727 known genes. The chip data demonstrated that hepatocyte mainly up-regulated the IFN-alpha1-mediated JAK/STAT pathway genes; biliary epithelial cell mostly expressed the IFN-beta1-mediated p38 MAPK pathway genes; while the IFN-gamma-activated JAK/STAT pathway genes were down-regulated particularly in HSC, KC, and DC during liver regeneration. It is inferred that STAT3, in contrast to STAT1, seemingly takes a more active role in IFN-alpha1-mediated JAK/STAT pathway in hepatocyte; IFN-beta1-mediated p38 MAPK pathway possibly to some extent affects inflammation and apoptosis of biliary epithelial cell during liver regeneration; IFN-gamma-induced JAK/STAT pathway may be associated with the attenuated apoptosis induction in HSC, KC, and DC. Our data suggested that a better understanding about how interferon signals at liver cell level might be helpful in developing an effective approach to protecting against the inhibition of regeneration.
Collapse
Affiliation(s)
- Xiaoguang Chen
- College of Life Science and Technology, Xinjiang University, Urmuqi, China
| | | | | | | |
Collapse
|
29
|
Hutchinson S, Sims S, O'Hara G, Silk J, Gileadi U, Cerundolo V, Klenerman P. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus. PLoS One 2011; 6:e14646. [PMID: 21304910 PMCID: PMC3033404 DOI: 10.1371/journal.pone.0014646] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/06/2011] [Indexed: 01/08/2023] Open
Abstract
Murine cytomegalovirus (MCMV) is an important animal model of human cytomegalovirus (HCMV), a β-Herpesvirus that infects the majority of the world's population and causes disease in neonates and immunocompromised adults. CD8+ T cells are a major part of the immune response to MCMV and HCMV. Processing of peptides for presentation to CD8+ T cells may be critically dependent on the immunoproteasome, expression of which is affected by MCMV. However, the overall importance of the immunoproteasome in the generation of immunodominant peptides from MCMV is not known. We therefore examined the role of the immunoproteasome in stimulation of CD8+ T cell responses to MCMV – both conventional memory responses and those undergoing long-term expansion or “inflation”. We infected LMP7−/− and C57BL/6 mice with MCMV or with newly-generated recombinant vaccinia viruses (rVVs) encoding the immunodominant MCMV protein M45 in either full-length or epitope-only minigene form. We analysed CD8+ T cell responses using intracellular cytokine stain (ICS) and MHC Class I tetramer staining for a panel of MCMV-derived epitopes. We showed a critical role for immunoproteasome in MCMV affecting all epitopes studied. Interestingly we found that memory “inflating” epitopes demonstrate reduced immunoproteasome dependence compared to non-inflating epitopes. M45-specific responses induced by rVVs remain immunoproteasome-dependent. These results help to define a critical restriction point for CD8+ T cell epitopes in natural cytomegalovirus (CMV) infection and potentially in vaccine strategies against this and other viruses.
Collapse
Affiliation(s)
- Sarah Hutchinson
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Stuart Sims
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Geraldine O'Hara
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Jon Silk
- Weatherall Institute of Molecular Medicine, Molecular Immunology Group, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Uzi Gileadi
- Weatherall Institute of Molecular Medicine, Molecular Immunology Group, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Weatherall Institute of Molecular Medicine, Molecular Immunology Group, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, United Kingdom
| | - Paul Klenerman
- Nuffield Department of Clinical Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Sorokin AV, Kim ER, Ovchinnikov LP. Proteasome system of protein degradation and processing. BIOCHEMISTRY (MOSCOW) 2010; 74:1411-42. [PMID: 20210701 DOI: 10.1134/s000629790913001x] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special "label" can get into it. A polyubiquitin chain plays the role of the "label": degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the "labeled" molecule, it is released and labels another molecule. This process has been named "Ub-dependent protein degradation". In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers' attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
31
|
Abstract
Herpesviruses have evolved several effective strategies to counter the host immune response. Chief among these is inhibition of the host MHC class I antigen processing and presentation pathway, thereby reducing the presentation of virus-derived epitopes on the surface of the infected cell. This review summarizes the mechanisms used by herpesviruses to achieve this goal, including shut-down of MHC class I molecule synthesis, blockage of proteasome-mediated peptide generation and prevention of TAP-mediated peptide transport. Furthermore, herpesvirus proteins can retain MHC class I molecules in the endoplasmic reticulum, or direct their retrograde translocation from the endoplasmic reticulum or endocytosis from the plasma membrane, with subsequent degradation. The resulting down-regulation of cell surface MHC class I peptide complexes thwarts the ability of cytotoxic T lymphocytes to recognize and eliminate virus-infected cells. The subversion of the natural killer cell response by herpesvirus proteins and microRNAs is also discussed.
Collapse
Affiliation(s)
- Bryan D Griffin
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
32
|
Eisemann J, Prechtel AT, Mühl-Zürbes P, Steinkasserer A, Kummer M. Herpes simplex virus type I infection of mature dendritic cells leads to reduced LMP7-mRNA-expression levels. Immunobiology 2009; 214:861-7. [PMID: 19619915 DOI: 10.1016/j.imbio.2009.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mature dendritic cells (mDCs) are the most potent antigen presenting cells within the human immune system known today. However, several viruses, including herpes simplex virus type 1 (HSV-1) have developed numerous immune escape mechanisms, such as the avoidance of peptide presentation through the major histocompatibility complex (MHC) class I to CD8(+) cytotoxic T-cells. Within the MHC class I pathway, the majority of antigenic peptides are generated by the proteasome, a multicatalytic protease complex. Upon exposure to IFN-gamma, the constitutive proteasome is partially replaced by the immunoproteasome, which contains the IFN-gamma-inducible subunits LMP2, MECL1 and LMP7. In this study, we report the downregulation of LMP7 on mRNA level in HSV-1 infected mDCs. Interestingly, this reduction was not vhs-mediated since using a virus strain lacking the vhs gene we obtained similar results. However, on protein level, LMP7-expression was not affected, which is probably due the high stability of the LMP7 protein. Also the incorporation of LMP7 into the immunoproteasome was not affected by HSV-1. However, for the in vivo situation, in which DC reside for a prolonged time period in peripheral tissues, the reduced LMP7-mRNA level could be of biological importance, since the virus could escape/hide from immune system of the host and establish latency processes.
Collapse
Affiliation(s)
- Jutta Eisemann
- Department of Dermatology, University Hospital Erlangen, Germany
| | | | | | | | | |
Collapse
|
33
|
Human immunodeficiency virus type 1 Gag p24 alters the composition of immunoproteasomes and affects antigen presentation. J Virol 2009; 83:7049-61. [PMID: 19403671 DOI: 10.1128/jvi.00327-09] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteasomes are the major source of proteases responsible for the generation of peptides bound to major histocompatibility complex class I molecules. Antigens, adjuvants, and cytokines can modulate the composition and enzymatic activity of proteasomes and thus alter the epitopes generated. In the present study, we examined the effect of human immunodeficiency virus type 1 (HIV-1) p24 on proteasomes from a dendritic cell line (JAWS II), from a macrophage cell line (C2.3), and from murine primary bone marrow-derived macrophages and dendritic cells. HIV-1 p24 downregulated PA28beta and the beta2i subunit of the immunoproteasome complex in JAWS II cells but did not decrease the immunoproteasome subunits in macrophages, whereas in primary dendritic cells, PA28alpha, beta2i, and beta5i were downregulated. Exposure of JAWS II cells and primary dendritic cells to HIV-1 p24 for 90 min significantly decreased the presentation of ovalbumin to a SIINFEKL-specific CD8(+) T-cell hybridoma. The decrease in antigen presentation and the downmodulation of the immunoproteasome subunits in JAWS II cells and primary dendritic cells could be overcome by pretreating the cells with gamma interferon for 6 h or by exposing the cells to HIV-1 p24 encapsulated in liposomes containing lipid A. These results suggest that early antigen processing kinetics could influence the immunogenicity of CD8(+) T-cell epitopes generated.
Collapse
|
34
|
Miller-Kittrell M, Sparer TE. Feeling manipulated: cytomegalovirus immune manipulation. Virol J 2009; 6:4. [PMID: 19134204 PMCID: PMC2636769 DOI: 10.1186/1743-422x-6-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/09/2009] [Indexed: 02/03/2023] Open
Abstract
No one likes to feel like they have been manipulated, but in the case of cytomegalovirus (CMV) immune manipulation, we do not really have much choice. Whether you call it CMV immune modulation, manipulation, or evasion, the bottom line is that CMV alters the immune response in such a way to allow the establishment of latency with lifelong shedding. With millions of years of coevolution within their hosts, CMVs, like other herpesviruses, encode numerous proteins that can broadly influence the magnitude and quality of both innate and adaptive immune responses. These viral proteins include both homologues of host proteins, such as MHC class I or chemokine homologues, and proteins with little similarity to any other known proteins, such as the chemokine binding protein. Although a strong immune response is launched against CMV, these virally encoded proteins can interfere with the host's ability to efficiently recognize and clear virus, while others induce or alter specific immune responses to benefit viral replication or spread within the host. Modulation of host immunity allows survival of both the virus and the host. One way of describing it would be a kind of "mutually assured survival" (as opposed to MAD, Mutually Assured Destruction). Evaluation of this relationship provides important insights into the life cycle of CMV as well as a greater understanding of the complexity of the immune response to pathogens in general.
Collapse
Affiliation(s)
- Mindy Miller-Kittrell
- Department of Microbiology, University of Tennessee, 1414 Cumberland Ave, Knoxville, TN, USA.
| | | |
Collapse
|
35
|
Faria LO, Lima BD, de Sá CM. Trypanosoma cruzi: effect of the infection on the 20S proteasome in non-immune cells. Exp Parasitol 2008; 120:261-8. [PMID: 18789322 DOI: 10.1016/j.exppara.2008.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 07/23/2008] [Accepted: 08/14/2008] [Indexed: 11/17/2022]
Abstract
Human infection with the protozoan Trypanosoma cruzi leads to Chagas disease. After 10-20 years of the normal acute phase, this disease develops to a chronic phase characterized mainly by dilated congestive cardiomyopathy. The mechanisms involved in the chronic phase are poorly understood, and it has been suggested that the parasite evades immune surveillance by down regulating the MHC class I antigen processing pathway. Here we analyzed whether composition or expression of the 20S proteasome, the major proteinase responsible for the generation of MHC class I ligands, were altered upon infection of HeLa cells by T. cruzi. Two-dimensional gel electrophoresis and RT-PCR experiments comparing non-infected and infected cells did not show differences between the composition of 20S proteasome or expression of its subunits. However, the proteasome's trypsin- and chymotrypsin-like activities were 2.5 and 3.6 times higher in infected cells than in non-infected cells. Our results suggest that in vitro T. cruzi infection of human or rat cells do not alter the expression of 20S proteasomal subunits or particle composition, and fails to induce the formation of immunoproteasome. However, a significant increase in the trypsin- and chymotrypsin-like activities of the host proteasome was observed.
Collapse
Affiliation(s)
- Liliam O Faria
- Departamento de Biologia Celular, Universidade de Brasília, Laboratório Biologia do Gene, ICC Ala Sul, Asa Norte 70910-900, Brasília, DF, Brazil.
| | | | | |
Collapse
|
36
|
Le VTK, Trilling M, Zimmermann A, Hengel H. Mouse cytomegalovirus inhibits beta interferon (IFN-beta) gene expression and controls activation pathways of the IFN-beta enhanceosome. J Gen Virol 2008; 89:1131-1141. [PMID: 18420790 DOI: 10.1099/vir.0.83538-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have investigated beta interferon (IFN-beta) and IFN-alpha4 gene expression and activation of related transcription factors in mouse cytomegalovirus (MCMV)-infected fibroblasts. mRNA analysis demonstrated an initial phase of IFN gene induction upon MCMV infection, which was followed by a sustained MCMV-mediated simultaneous downregulation of IFN-beta and IFN-alpha4 gene expression. The induction of IFN transcription resulted from the activation of the components of the IFN-beta enhanceosome, i.e. IFN regulatory factor (IRF) 3, nuclear factor (NF)-kappaB, activating transcription factor (ATF)-2 and c-Jun. Activation of the transcription factors occurred rapidly and in a sequential order upon infection, but only lasted a while. As a consequence, IFN-alpha/beta gene expression became undetectable 6 h post-infection and throughout the MCMV replication cycle. This effect is based on an active interference since restimulation of IFN gene induction by further external stimuli (e.g. Sendai virus infection) was completely abolished. This inhibition required MCMV gene expression and was not observed in cells infected with UV-inactivated MCMV virions. The efficiency of inhibition is achieved by a concerted blockade of IkappaBalpha degradation and a lack of nuclear accumulation of IRF3 and ATF-2/c-Jun. Using an MCMV mutant lacking pM27, a signal transducer and activator of transcription (STAT) 2-specific inhibitor of Jak/STAT signalling, we found that the initial phase of IFN induction and the subsequent inhibition does not depend on the positive-IFN feedback loop. Our findings indicate that the MCMV-mediated downregulation of IFN transcription in fibroblasts relies on a large arsenal of inhibitory mechanisms targeting each pathway that contributes to the multiprotein enhanceosome complex.
Collapse
Affiliation(s)
- Vu Thuy Khanh Le
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| | - Mirko Trilling
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| | - Albert Zimmermann
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| | - Hartmut Hengel
- Heinrich-Heine-Universität Düsseldorf, Institut für Virologie, 40225 Düsseldorf, Germany
| |
Collapse
|
37
|
Steers NJ, Alving CR, Rao M. Modulation of immunoproteasome subunits by liposomal lipid A. Vaccine 2008; 26:2849-59. [DOI: 10.1016/j.vaccine.2008.03.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 03/13/2008] [Accepted: 03/20/2008] [Indexed: 11/26/2022]
|
38
|
Bergeron M, Blanchette J, Rouleau P, Olivier M. Abnormal IFN-gamma-dependent immunoproteasome modulation by Trypanosoma cruzi-infected macrophages. Parasite Immunol 2008; 30:280-92. [PMID: 18312504 DOI: 10.1111/j.1365-3024.2008.01022.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteasomes are the main producers of Ag loaded onto MHC class I molecules. Following IFN-gamma stimulation however, the constitutive subunits of the proteasome are replaced by the immunosubunits low molecular weight protein 2 (LMP2), multicatalytic endopeptidase complex-like 1 and low molecular weight protein 7 (LMP7), which generally heighten the immunogenecity of proteasome generated epitopes. Given that Trypanosoma cruzi, the aetiological agent of Chagas' disease, elicits a T(helper)1 response from its host if the infection is to be contained, the aim of this study was to verify whether this parasite modulates J774 and B10R mouse macrophage (MuPhi) immunoproteasome subunit and MHC class I expressions and, if so, identify the mechanism(s) responsible for that modulation. Results show that T. cruzi infection of mouse MuPhi reduces IFN-gamma-mediated immunoproteasome synthesis, along with MHC class I mRNA synthesis and cell surface expression. The infection by T. cruzi induces the release of reactive oxygen species (ROS) from MuPhi, and those ROS significantly inhibit protein tyrosine phosphatase activity, thereby leading to the activation of the SAPK/JNK signalling pathway, which is responsible for the observed IFN-gamma-mediated immunoproteasome synthesis and MHC class I down-regulation. To our knowledge, this is the first report that specifically identifies a mechanism by which a pathogen achieves immunoproteasome down-modulation.
Collapse
Affiliation(s)
- M Bergeron
- Centre de recherche en infectiologie, Centre hospitalier universitaire de Québec, Pavillon CHUL, Québec, Canada
| | | | | | | |
Collapse
|
39
|
Mohr CA, Cîcîn-Saîn L, Wagner M, Sacher T, Schnee M, Ruzsics Z, Koszinowski UH. Engineering of cytomegalovirus genomes for recombinant live herpesvirus vaccines. Int J Med Microbiol 2008; 298:115-25. [PMID: 17702650 DOI: 10.1016/j.ijmm.2007.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The advances of sequence knowledge and genetic engineering hold a great promise for a rational approach to vaccine development. Herpesviruses are important pathogens of all vertebrates. They cause acute and chronic infections and persist in their hosts for life. In man there are eight herpesviruses known and most of them can be linked to diseases. To date only one licensed vaccine against a human herpesvirus exists and there is no proven successful concept on rational design for herpesvirus vaccines available. Here, we use new reverse genetic systems, based on the 230-kb mouse cytomegalovirus genome to explore new methods of vaccine delivery and of virus attenuation. With regard to virus delivery, we show that the bacterial transfer of the infectious DNA in vivo is theoretically possible but not yet a practical option. With regard to a rational approach of virus attenuation, we consider a selective deletion of viral genes that modulate the immune response of the host.
Collapse
Affiliation(s)
- Christian A Mohr
- Max von Pettenkofer-Institut, Pettenkoferstrasse 9a, D-80336 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Type I interferons (IFN-alpha/beta) were originally discovered by their strong and direct antiviral activity [A. Isaacs, J. Lindenmann, Virus interference. I. The interferon, Proc. R. Soc. Lond. B Biol. Sci. 147 (1957) 258-267]. (see review by J. Lindenmann on p. 719, in this issue). Nevertheless, only very recently it was entirely realized that viruses would not succeed without efficient tools to undermine this potent host defense system. Current investigations are revealing an astonishing variety of viral IFN antagonistic strategies targeting virtually all parts of the IFN system, often in a highly specific manner. Viruses were found to interfere with induction of IFN synthesis, IFN-induced signaling events, the antiviral effector proteins, or simply shut off the host cell macromolecule synthesis machinery to avoid booting of the antiviral host defense. Here, we will describe a few well-characterized examples to illustrate the sophisticated and often multi-layered anti-IFN mechanisms employed by viruses.
Collapse
Affiliation(s)
- Friedemann Weber
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Universität Freiburg, D-79008 Freiburg, Germany.
| | | |
Collapse
|
41
|
Li Q, Means R, Lang S, Jung JU. Downregulation of gamma interferon receptor 1 by Kaposi's sarcoma-associated herpesvirus K3 and K5. J Virol 2007; 81:2117-27. [PMID: 17166914 PMCID: PMC1865953 DOI: 10.1128/jvi.01961-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 11/27/2006] [Indexed: 11/20/2022] Open
Abstract
Upon viral infection, the major defense mounted by the host immune system is activation of the interferon (IFN)-mediated antiviral pathway. In order to complete their life cycles, viruses must modulate the host IFN-mediated immune response. The K3 and K5 proteins of a human tumor-inducing herpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), have been shown to downregulate the surface expression of host immune modulatory receptors by increasing their endocytosis rates, which leads to suppression of cell-mediated immunity. In this report, we demonstrate that K3 and K5 both specifically target gamma interferon receptor 1 (IFN-gammaR1) and induce its ubiquitination, endocytosis, and degradation, resulting in downregulation of IFN-gammaR1 surface expression and, thereby, inhibition of IFN-gamma action. Mutational analysis indicated that K5 appeared to downregulate IFN-gammaR1 more strongly than K3 and that the amino-terminal ring finger motif and the carboxyl-terminal region of K5 were necessary for IFN-gammaR1 downregulation. These results suggest that KSHV K3 and K5 suppress both cytokine-mediated and cell-mediated immunity, which ensures efficient viral avoidance of host immune controls.
Collapse
Affiliation(s)
- Qinglin Li
- Tumor Virology Division, New England Regional Primate Research Center, Department of Microbiology and Molecular Genetics, Harvard Medical School, 1 Pine Hill Drive, Southborough, MA 01772, USA
| | | | | | | |
Collapse
|
42
|
Sweet C, Ball K, Morley PJ, Guilfoyle K, Kirby M. Mutations in the temperature-sensitive murine cytomegalovirus (MCMV) mutantstsm5 andtsm30: A study of genes involved in immune evasion, DNA packaging and processing, and DNA replication. J Med Virol 2007; 79:285-99. [PMID: 17245727 DOI: 10.1002/jmv.20797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A murine cytomegalovirus (MCMV) temperature-sensitive (ts) mutant, tsm5, of the K181 (Birmingham) strain, showed approximately 10-fold and approximately 10,000-fold reductions in yields at the permissive (33 degrees C) and non-permissive temperature (40 degrees C), respectively. It did not replicate to detectable levels in any tissue of 1-week-old Balb/c mice for up to 21 days following i.p. inoculation with 4 x 10(3) pfu although it did replicate, albeit with considerably delayed kinetics, in SCID mice. tsm5 expressed all kinetic classes of transcript (immediate-early, early and late) both in vitro at the non-permissive temperature and in vivo. To identify mutations contributing to this phenotype, chimaeric viruses produced from overlapping cosmids generated from tsm5 and the Smith strain of MCMV were examined. A virus, Smith/tsm5DGIK, comprising the central conserved region of the tsm5 genome, was not attenuated at 33 or 37 degrees C but was ts at 40 degrees C, although not to the same extent as tsm5. In contrast to tsm5, this chimaeric virus replicated to similar levels as parental viruses in adult BALB/c mice. These results suggested that genes contributing to reduced replication at 33 degrees C and lack of replication in vivo are located at the ends of the tsm5 genome while those contributing to the ts phenotype are located in the central conserved region of the genome. Sequencing of some immune evasion genes known to be located at the 3' or 5' ends of the MCMV genome showed that no mutations were present in ORFs m04, m06, M33, M37, m38.5, m144, m152, or m157 although mutations were found in M27 (A658S) and M36Ex1 (V54I). tsm5 made few capsids at 40 degrees C and these lacked DNA. DNA synthesis was significantly reduced in tsm5-infected cells at 40 degrees C although DNA cleavage occurred with close to wt efficiency. Sequencing of the herpesvirus conserved cis-acting elements, pac1 and pac2, and genes involved in DNA packaging and cleavage located in the central core region of the genome identified few point mutations. Two were identified that alter the encoded protein in tsm5 ORFs M98 (P324S) and M56 (G439R). Furthermore, a point mutation (C890Y) was identified in M70, the primase. Another mutant, tsm30, which is also defective in DNA packaging and processing, has a point mutation in M52 (D494N). Thus, a number of mutations have been identified in tsm5 that suggests that it is defective in genes involved in immune evasion, DNA replication and DNA encapsidation.
Collapse
Affiliation(s)
- Clive Sweet
- School of Biosciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | |
Collapse
|
43
|
Makedonas G, Betts MR. Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2006; 28:209-19. [PMID: 16932955 DOI: 10.1007/s00281-006-0025-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/16/2006] [Indexed: 01/12/2023]
Affiliation(s)
- George Makedonas
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
44
|
Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, Hipp MS, Groettrup M. The UBA Domains of NUB1L Are Required for Binding but Not for Accelerated Degradation of the Ubiquitin-like Modifier FAT10. J Biol Chem 2006; 281:20045-54. [PMID: 16707496 DOI: 10.1074/jbc.m603063200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Proteins selected for degradation are labeled with multiple molecules of ubiquitin and are subsequently cleaved by the 26 S proteasome. A family of proteins containing at least one ubiquitin-associated (UBA) domain and one ubiquitin-like (UBL) domain have been shown to act as soluble ubiquitin receptors of the 26 S proteasome and introduce a new level of specificity into the degradation system. They bind ubiquitylated proteins via their UBA domains and the 26 S proteasome via their UBL domain and facilitate the contact between substrate and protease. NEDD8 ultimate buster-1 long (NUB1L) belongs to this class of proteins and contains one UBL and three UBA domains. We recently reported that NUB1L interacts with the ubiquitin-like modifier FAT10 and accelerates its degradation and that of its conjugates. Here we show that a deletion mutant of NUB1L lacking the UBL domain is still able to bind FAT10 but not the proteasome and no longer accelerates FAT10 degradation. A version of NUB1L lacking all three UBA domains, on the other hand, looses the ability to bind FAT10 but is still able to interact with the proteasome and accelerates the degradation of FAT10. The degradation of a FAT10 mutant containing only the C-terminal UBL domain is also still accelerated by NUB1L, even though the two proteins do not interact. In addition, we show that FAT10 and either one of its UBL domains alone can interact directly with the 26 S proteasome. We propose that NUB1L not only acts as a linker between the 26 S proteasome and ubiquitin-like proteins, but also as a facilitator of proteasomal degradation.
Collapse
Affiliation(s)
- Gunter Schmidtke
- Division of Immunology, Department of Biology, University of Konstanz, Universitaetsstr. 10, D-78457 Konstanz, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Fan RS, Yu DJ, Sun DR. Numbers and activities of CD56 + T cells and natural killer cells in cirrhotic livers with hepatitis C. Shijie Huaren Xiaohua Zazhi 2006; 14:1836-1838. [DOI: 10.11569/wcjd.v14.i18.1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the numbers and anti-tumor activities of CD56+ T cells and natural killer (NK) cells in cirrhotic liver with hepatitis C (HC).
METHODS: Hepatic mononuclear cells (MNC) were isolated from liver specimens obtained from the patients (n = 16) with HC-induced cirrhosis by liver biopsy. In addition, the numbers of CD56+ T cells and natural killer cells were determined by flow cytometry. Liver MNC and peripheral blood mononuclear cells (PBMC) were co-cultured with the interleukin-2 (IL-2), respectively, and the production of interferon-g (IFN-g) and the antitumor activity were measured.
RESULTS: The percentages of CD56+ T cells among hepatic MNC in health individuals, HC and HC-induced cirrhosis patients were 20.4% ± 6.2%, 11.2% ± 3.1% and 5.0% ± 1.6%, respectively; the proportions of NK cells among liver MNC in the three groups were 31.1% ± 9.7%, 31.6% ± 8.3% and 18.3% ± 5.4%, respectively; the productions of IFN-g in the three groups were 7.4 ± 2.4, 3.2 ± 1.8 and 1.9 ± 0.5 mg/L, respectively; the anti-tumor activities hepatic MNC in the three groups were 61.1% ± 17.1%, 59.2% ± 14.6%, and 26.7% ± 8.5%, respectively. For the above four groups of parameters, the changes in HC-induced cirrhosis patients was the most significant (P < 0.05).
CONCLUSION: The numbers and anti-tumor activities of CD56+T cells and NK cells are decreased in cirrhotic livers with HC.
Collapse
|
46
|
Kuebler JF, Czech-Schmidt G, Leonhardt J, Ure BM, Petersen C. Type-I but not type-II interferon receptor knockout mice are susceptible to biliary atresia. Pediatr Res 2006; 59:790-4. [PMID: 16641200 DOI: 10.1203/01.pdr.0000219860.96732.09] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The etiology of biliary atresia (BA) is not yet understood, but recent studies have shown inflammation with an up-regulated interferon (IFN) activity in the intra- and extrahepatic bile ducts of patients with BA. These findings support an inflammatory/infectious cause of BA as mimicked in our infective murine model. To study the role of the IFN receptors in our model, we used mice with inactivated INF-alpha/beta receptor A129, with inactivated IFN-gamma receptor G129, or inactivation of both interferon receptors AG129 as well as the wild type controls W129. Mice were infected with rotavirus within 48h of birth and 7 d postpartum. The incidence of BA in each group was determined during a 3 wk period. In the second week the virus load was measured. BA incidence was 76% in A129 and 67% in AG129 animals, whereas in the G129 group only 33% of the pups developed BA. The wild type presented with a BA-incidence of 15%, while 7 d old mice failed to develop BA. There was no significant difference in the virus load of the livers between the groups independent of clinical symptoms. In conclusion, inactivation of type I INF-receptor significantly increases the incidence of BA following postpartal rotavirus infection. This effect is independent of the presence of type II-INF-receptors. Thus, in our model a type I IFN-linked deregulation of the innate immune system appears to be crucial for the induction of biliary atresia.
Collapse
Affiliation(s)
- Joachim F Kuebler
- Department of Pediatric Surgery, Medical School Hannover, 30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
47
|
Seliger B, Ritz U, Ferrone S. Molecular mechanisms of HLA class I antigen abnormalities following viral infection and transformation. Int J Cancer 2005; 118:129-38. [PMID: 16003759 DOI: 10.1002/ijc.21312] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In humans as in other animal species, CD8+ cytotoxic T lymphocytes (CTLs) play an important if not the major role in controlling virus-infected and malignant cell growth. The interactions between CD8+ T cells and target cells are mediated by human leukocyte antigen (HLA) class I antigens loaded with viral and tumor antigen-derived peptides along with costimulatory receptor/ligand stimuli. Thus, to escape from CD8+ T-cell recognition and destruction, viruses and tumor cells have developed strategies to inhibit the expression and/or function of HLA class I antigens. In contrast, cells with downregulated MHC class I surface expression can be recognized by NK cells, although NK cell-mediated lysis could be abrogated by the expression of inhibiting NK cell receptors. This review discusses the molecular mechanisms utilized by viruses to inhibit the formation, transport and/or expression of HLA class I antigen/peptide complexes on the cell surface. The knowledge about viral interference with MHC class I antigen presentation is not only crucial to understand the pathogenesis of viral diseases, but contributes also to the design of novel strategies to counteract the escape mechanisms utilized by viruses. These investigations may eventually lead to the development of effective immunotherapies to control viral infections and virus-associated malignant diseases.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University, Halle, Germany.
| | | | | |
Collapse
|
48
|
McCormick AL, Meiering CD, Smith GB, Mocarski ES. Mitochondrial cell death suppressors carried by human and murine cytomegalovirus confer resistance to proteasome inhibitor-induced apoptosis. J Virol 2005; 79:12205-17. [PMID: 16160147 PMCID: PMC1211555 DOI: 10.1128/jvi.79.19.12205-12217.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus carries a mitochondria-localized inhibitor of apoptosis (vMIA) that is conserved in primate cytomegaloviruses. We find that inactivating mutations within UL37x1, which encodes vMIA, do not substantially affect replication in TownevarATCC (Towne-BAC), a virus that carries a functional copy of the betaherpesvirus-conserved viral inhibitor of caspase 8 activation, the UL36 gene product. In Towne-BAC infection, vMIA reduces susceptibility of infected cells to intrinsic death induced by proteasome inhibition. vMIA is sufficient to confer resistance to proteasome inhibition when expressed independent of viral infection. Murine cytomegalovirus m38.5, whose position in the viral genome is analogous to UL37x1, exhibits mitochondrial association and functions in much the same manner as vMIA in inhibiting intrinsic cell death. This work suggests a common role for vMIA in rodent and primate cytomegaloviruses, modulating the threshold of virus-infected cells to intrinsic cell death.
Collapse
Affiliation(s)
- A Louise McCormick
- Department of Microbiology & Immunology, Fairchild Science Building, Stanford University School of Medicine, Stanford, CA 95304-5124, USA
| | | | | | | |
Collapse
|
49
|
Ambagala APN, Solheim JC, Srikumaran S. Viral interference with MHC class I antigen presentation pathway: the battle continues. Vet Immunol Immunopathol 2005; 107:1-15. [PMID: 15978672 DOI: 10.1016/j.vetimm.2005.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 03/25/2005] [Accepted: 04/06/2005] [Indexed: 01/15/2023]
Abstract
CD8+ cytotoxic T lymphocytes (CTLs) play a critical role in the defense against viral infections. In general, CD8+ CTLs recognize antigenic peptides in the context of the major histocompatibility complex (MHC) class I molecule. The MHC class I molecules are expressed on almost all the nucleated cells in the body. The trimolecular complex consisting of the class I heavy chain, beta2-microglobulin and the peptide are generated by the MHC class I antigen presentation pathway. This pathway is designed to sample the intracellular milieu and present the information to the CTLs trafficking the area. This rigorous sampling of intracellular environment enables the CTLs to quickly identify and eliminate the cells that synthesize non-self proteins as a result of a viral infection. Many viruses, including several viruses of veterinary importance, have evolved astounding strategies to interfere with the MHC class I antigen presentation pathway, as a means of evading the CTL response of the host. This review focuses on the diverse mechanisms of viral evasion of the MHC class I antigen presentation pathway with particular emphasis on viruses of veterinary importance.
Collapse
Affiliation(s)
- Aruna P N Ambagala
- Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, NE 68583-0905, USA
| | | | | |
Collapse
|
50
|
Hengel H, Koszinowski UH, Conzelmann KK. Viruses know it all: new insights into IFN networks. Trends Immunol 2005; 26:396-401. [PMID: 15922665 DOI: 10.1016/j.it.2005.05.004] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 04/22/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
Co-evolution of viruses with their hosts for millions of years has led to a host immune system of high complexity and, likewise, sophisticated viral mechanisms to antagonize immunity. Early cytokines, such as interferons (IFNs), which integrate innate and adaptive immune responses, are essential targets for viruses. Viral antagonists that interfere with numerous components of the IFN system provide superb tools to explore the pathways and the connectivity of the IFN network. Here, the inhibition of type I IFN production by negative strand RNA viruses and IFN signaling by cytomegalovirus are discussed, illustrating unappreciated links between type I and type II IFN signaling. Viral principles might pave the way to develop new therapeutics to modulate immune functions.
Collapse
Affiliation(s)
- Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf, Germany
| | | | | |
Collapse
|