1
|
Kobiyama K, Utsumi D, Kaku Y, Sasaki E, Yasui F, Okamura T, Onodera T, Tobuse AJ, Sakkour A, Amiry AF, Hayashi T, Temizoz B, Liu K, Negishi H, Toyama-Sorimachi N, Kohara M, Sawasaki T, Takagi J, Sato K, Takahashi Y, Yasutomi Y, Ishii KJ. Immunological analysis of LC16m8 vaccine: preclinical and early clinical insights into mpox. EBioMedicine 2025; 115:105703. [PMID: 40239465 PMCID: PMC12020844 DOI: 10.1016/j.ebiom.2025.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/19/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND The global mpox outbreak (2022-2024) highlights the need for effective and safe vaccines, particularly for vulnerable populations. The LC16m8 vaccine, an attenuated vaccinia virus strain for smallpox, shows promise in inducing immunity against the monkeypox virus (MPXV). METHODS We conducted a comprehensive immunological evaluation of LC16m8 in mice, non-human primates, and humans. FINDINGS LC16m8 induced strong humoural responses in BALB/c, C57BL/6J, and CAST/EiJ mice, targeting MPXV H3, A35, and M1R antigens, promoting germinal centre B cells and follicular helper T cells, essential for long-term immunity. Vaccinated CAST/EiJ mice showed reduced lung MPXV viral loads, demonstrating efficacy. In humans, LC16m8 enhanced neutralising antibodies against multiple MPXV clades, suggesting broad protection. In cynomolgus monkeys, systemic administration caused localised pox lesions without significantly affecting weight, temperature, or haematological parameters. INTERPRETATION This cross-species immunological analysis provides preclinical and early clinical insights into LC16m8's efficacy and safety against mpox. While LC16m8 enhanced antibody responses against MPXV clade Ia and Ib, further studies are required to evaluate its efficacy, particularly in naive and immunocompromised populations. FUNDING This research was supported by AMED under Grant Numbers JP243fa727002, JP243fa727001s0703, and JP243fa627001h0003 (K.J.I), JP24jf0126002, JP24fk0108690, JP243fa627001h0003, and JP243fa727002 (K.S), JP243fa727002 (Y.T.), JP243fa727002 and JP243fa627007h0003 (Y.Y.), and by the Research Support Project for Life Science and Drug Discovery (BINDS) from AMED under Grant Number JP23ama121011 (J.T.), and JP23ama121010 (T.S.), and by the Ministry of Education, Culture, Sports, Science and Technology in Japan under Grant Number 23K06577 (E.S.). AMED under Grant Number JP233fa827017 and JP243fa827017 (F.Y.), JP22fk0108501 (M.K.).
Collapse
Affiliation(s)
- Kouji Kobiyama
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Daichi Utsumi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Yu Kaku
- Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asuka Joy Tobuse
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Areej Sakkour
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Ahmad Faisal Amiry
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tomoya Hayashi
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Burcu Temizoz
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kaiwen Liu
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hideo Negishi
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Noriko Toyama-Sorimachi
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Human Immunology, International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Junichi Takagi
- Laboratory for Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kei Sato
- International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Division of Systems Virology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan; MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
| | - Ken J Ishii
- Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; International Vaccine Design Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan; The University of Tokyo Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Okita G, Suenaga K, Sakaguchi M, Murakami T. A novel oncolytic vaccinia virus with multiple gene modifications involved in viral replication and maturation increases safety for intravenous administration while maintaining proliferative potential in cancer cells. PLoS One 2025; 20:e0312205. [PMID: 40048445 PMCID: PMC11884718 DOI: 10.1371/journal.pone.0312205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/06/2024] [Indexed: 03/09/2025] Open
Abstract
To generate a novel oncolytic vaccinia virus with improved safety and productivity, the genome of smallpox vaccine strain LC16m8 was modified by a bacterial artificial chromosome system. By using LC16m8, a replicating virus homologous to the target virus, as a helper virus for the bacterial artificial chromosome system, we successfully recovered genome-edited infectious viruses. Oncolytic viruses with limited growth in normal cells were obtained by deleting the genes for vaccinia virus growth factor (VGF), extracellular signal-regulated kinase-activating protein (O1L), and ribonucleotide reductase (RNR) present in the viral genome. Furthermore, the amino acid residues of seven proteins involved in extracellular enveloped virus virion formation were replaced to the IHD-J strain sequence, which is known to highly express extracellular enveloped virus. In cultured cancer cells (HeLa), these modified viruses showed cytotoxicity and increased productivity, but it was confirmed that the cytotoxicity was suppressed in normal cells (normal human dermal fibroblasts). For in vivo safety evaluation, a modified virus (MD-RVV-ΔRR-EEV6) in which the VGF, O1L, and RNR genes of LC16m8 were deleted and the genes of six extracellular enveloped virus-associated proteins were replaced with sequences derived from IHD-J strain, and another modified virus (MD-RVV) lacking only the VGF and O1L were administered intravenously to severe combined immunodeficiency mice. In the MD-RVV administration, animals in all dose groups died by 40 days after virus administration. On the other hand, after MD-RVV-ΔRR-EEV6 administration, 3 out of 5 animals in the high and medium dose groups and all animals in the low dose group were still alive by day 71, the end of the observation period. These results demonstrate that genome editing of oncolytic vaccinia virus can delete genes involved in viral replication to improve safety in normal cells, while replacing genes involved in maturation improves proliferative potential in cancer cells.
Collapse
Affiliation(s)
- Go Okita
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Kiyotaka Suenaga
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Masashi Sakaguchi
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| | - Toshio Murakami
- Research Department, KM Biologics Co., Ltd., Kikuchi, Kumamoto, Japan
| |
Collapse
|
3
|
Li Y, Wang L, Chen S. An overview of the progress made in research into the Mpox virus. Med Res Rev 2025; 45:788-812. [PMID: 39318037 DOI: 10.1002/med.22085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Mpox is a zoonotic illness caused by the Mpox virus (MPXV), a member of the Orthopoxvirus family. Although a few cases have been reported outside Africa, it was originally regarded as an endemic disease limited to African countries. However, the Mpox outbreak of 2022 was remarkable in that the infection spread to more than 123 countries worldwide, causing thousands of infections and deaths. The ongoing Mpox outbreak has been declared as a public health emergency of international concern by the World Health Organization. For a better management and control of the epidemic, this review summarizes the research advances and important scientific findings on MPXV by reviewing the current literature on epidemiology, clinical characteristics, diagnostic methods, prevention and treatment measures, and animal models of MPXV. This review provides useful information to raise awareness about the transmission, symptoms, and protective measures of MPXV, serving as a theoretical guide for relevant institutions to control MPXV.
Collapse
Affiliation(s)
- Yansheng Li
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Shi Chen
- Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound lmaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Department of Critical Care Medicine, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Shen-Gunther J, Cai H, Wang Y. Genomic and Antigenic Differences Between Monkeypox Virus and Vaccinia Vaccines: Insights and Implications for Vaccinology. Int J Mol Sci 2025; 26:1428. [PMID: 40003895 PMCID: PMC11855751 DOI: 10.3390/ijms26041428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Amid the current multi-country mpox outbreak, analyzing monkeypox virus (MPXV) and vaccinia virus (VACV) genomes is vital for understanding evolutionary processes that may impact vaccine efficacy and design. This study aimed to elucidate the phylogenetic relationships and structural features of viral antigens, which are crucial for developing effective vaccines. By aligning 1903 MPXV genomes from the NCBI Virus repository (released between 2022 and 2024), an increase in phylogenetic diversity was observed compared to previous studies. These genomes were grouped into Clade I (25 genomes) and Clade IIB (1898 genomes), with a new Clade I sub-lineage emerging from samples collected in Sud-Kivu province, Democratic Republic of the Congo (DRC). Comparing six key MPXV neutralization determinants (A29, A35, B6, E8, H3, and M1) of a novel 2024 Clade I MPXV isolate to those of the 1996 Zaire isolate revealed remarkable sequence conservation despite spanning 28 years. Homology-based modeling of the Clade I MPXV antigens (A29, A35, E8, H3, and M1) showed high-match identities (84% to 99%) with VACV templates (current mpox vaccine), with several amino acid variants near potential antibody binding sites. Phylogenomic analysis, combined with structural modeling and variant profiling, has yielded valuable insights into the virus and vaccine, guiding vaccine design and functional studies.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Gynecologic Oncology & Molecular Medicine, Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Hong Cai
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Yufeng Wang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA;
- South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
5
|
Williamson AL. Approaches to Next-Generation Capripoxvirus and Monkeypox Virus Vaccines. Viruses 2025; 17:186. [PMID: 40006941 PMCID: PMC11861168 DOI: 10.3390/v17020186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Globally, there are two major poxvirus outbreaks: mpox, caused by the monkeypox virus, and lumpy skin disease, caused by the lumpy skin disease virus. While vaccines for both diseases exist, there is a need for improved vaccines. The original vaccines used to eradicate smallpox, which also protect from the disease now known as mpox, are no longer acceptable. This is mainly due to the risk of serious adverse events, particularly in HIV-positive people. The next-generation vaccine for mpox prevention is modified vaccinia Ankara, which does not complete the viral replication cycle in humans and, therefore, has a better safety profile. However, two modified vaccinia Ankara immunizations are needed to give good but often incomplete protection, and there are indications that the immune response will wane over time. A better vaccine that induces a long-lived response with only one immunization is desirable. Another recently available smallpox vaccine is LC16m8. While LC16m8 contains replicating vaccinia virus, it is a more attenuated vaccine than the original vaccines and has limited side effects. The commonly used lumpy skin disease vaccines are based on attenuated lumpy skin disease virus. However, an inactivated or non-infectious vaccine is desirable as the disease spreads into new territories. This article reviews novel vaccine approaches, including mRNA and subunit vaccines, to protect from poxvirus infection.
Collapse
Affiliation(s)
- Anna-Lise Williamson
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town 7925, South Africa;
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
6
|
Yasui F, Munekata K, Fujiyuki T, Kuraishi T, Yamaji K, Honda T, Gomi S, Yoneda M, Sanada T, Ishii K, Sakoda Y, Kida H, Hattori S, Kai C, Kohara M. Single Dose of Attenuated Vaccinia Viruses Expressing H5 Hemagglutinin Affords Rapid and Long-Term Protection Against Lethal Infection with Highly Pathogenic Avian Influenza A H5N1 Virus in Mice and Monkeys. Vaccines (Basel) 2025; 13:74. [PMID: 39852853 PMCID: PMC11769126 DOI: 10.3390/vaccines13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES In preparation for a potential pandemic caused by the H5N1 highly pathogenic avian influenza (HPAI) virus, pre-pandemic vaccines against several viral clades have been developed and stocked worldwide. Although these vaccines are well tolerated, their immunogenicity and cross-reactivity with viruses of different clades can be improved. METHODS To address this aspect, we generated recombinant influenza vaccines against H5-subtype viruses using two different strains of highly attenuated vaccinia virus (VACV) vectors. RESULTS rLC16m8-mcl2.2 hemagglutinin (HA) and rLC16m8-mcl2.3.4 HA consisted of a recombinant LC16m8 vector encoding the HA protein from clade 2.2 or clade 2.3.4 viruses (respectively); rDIs-mcl2.2 HA consisted of a recombinant DIs vector encoding the HA protein from clade 2.2. A single dose of rLC16m8-mcl2.2 HA showed rapid (1 week after vaccination) and long-term protection (20 months post-vaccination) in mice against the HPAI H5N1 virus. Moreover, cynomolgus macaques immunized with rLC16m8-mcl2.2 HA exhibited long-term protection when challenged with a heterologous clade of the HPAI H5N1 virus. Although the DIs strain is unable to grow in most mammalian cells, rDIs-mcl2.2 HA also showed rapid and long-lasting effects against HPAI H5N1 virus infection. Notably, the protective efficacy of rDIs-mcl2.2 HA was comparable to that of rLC16m8-mcl2.2 HA. Furthermore, these vaccines protected animals previously immunized with VACVs from a lethal challenge with the HPAI H5N1 virus. CONCLUSIONS These results suggest that both rLC16m8-mcl2.2 HA and rDIs-mcl2.2 HA are effective in preventing HPAI H5N1 virus infection, and rDIs-mcl2.2 HA is a promising vaccine candidate against H5 HA-subtype viruses.
Collapse
Affiliation(s)
- Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Keisuke Munekata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Fujiyuki
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takeshi Kuraishi
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Sumiko Gomi
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Misako Yoneda
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Koji Ishii
- Center for Quality Management Systems, National Institute of Infectious Diseases, 4-7-1, Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo 060-0818, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Kida
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
- International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Shosaku Hattori
- Animal Laboratory of Injurious Animals, The Institute of Medical Science, The University of Tokyo, 802, Tean Sude, Setouchi-cho, Oshima-gun, Kagoshima 894-1531, Japan
| | - Chieko Kai
- Infectious Disease Control Science, Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
7
|
Rojas JJ, Van Hoecke L, Conesa M, Bueno-Merino C, Del Canizo A, Riederer S, Barcia M, Brosinski K, Lehmann MH, Volz A, Saelens X, Sutter G. A new MVA ancestor-derived oncolytic vaccinia virus induces immunogenic tumor cell death and robust antitumor immune responses. Mol Ther 2024; 32:2406-2422. [PMID: 38734899 PMCID: PMC11286824 DOI: 10.1016/j.ymthe.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 04/10/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024] Open
Abstract
Vaccinia viruses (VACVs) are versatile therapeutic agents and different features of various VACV strains allow for a broad range of therapeutic applications. Modified VACV Ankara (MVA) is a particularly altered VACV strain that is highly immunogenic, incapable of replicating in mammalian hosts, and broadly used as a safe vector for vaccination. Alternatively, Western Reserve (WR) or Copenhagen (Cop) are VACV strains that efficiently replicate in cancer cells and, therefore, are used to develop oncolytic viruses. However, the immune evasion capacity of WR or Cop hinders their ability to elicit antitumor immune responses, which is crucial for efficacy in the clinic. Here, we describe a new VACV strain named Immune-Oncolytic VACV Ankara (IOVA), which combines efficient replication in cancer cells with induction of immunogenic tumor cell death (ICD). IOVA was engineered from an MVA ancestor and shows superior cytotoxicity in tumor cells. In addition, the IOVA genome incorporates mutations that lead to massive fusogenesis of tumor cells, which contributes to improved antitumor effects. In syngeneic mouse tumor models, the induction of ICD results in robust antitumor immunity directed against tumor neo-epitopes and eradication of large established tumors. These data present IOVA as an improved immunotherapeutic oncolytic vector.
Collapse
Affiliation(s)
- Juan J Rojas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain; Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany.
| | - Lien Van Hoecke
- VIB Center for Inflammation Research, VIB, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Miquel Conesa
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Carmen Bueno-Merino
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Ana Del Canizo
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Stephanie Riederer
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Maria Barcia
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona - UB, 08907 L'Hospitalet de Llobregat, Spain; Immunity, Inflammation, and Cancer Group, Oncobell Program, Institut d'Investigació Biomèdica de Bellvitge - IDIBELL, 08908 L'Hospitalet de Llobregat, Spain
| | - Katrin Brosinski
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Michael H Lehmann
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany
| | - Asisa Volz
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; Institute of Virology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium; VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, 9052 Ghent, Belgium
| | - Gerd Sutter
- Division of Virology, Institute for Infection Medicine and Zoonoses, Department of Veterinary Sciences, LMU Munich, 85764 Oberschleiβheim, Germany; German Center for Infection Research (DZIF), Partner Site Munich, 80539 Munich, Germany
| |
Collapse
|
8
|
Kim D, Lai CJ, Cha I, Jung JU. Current Progress of Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) Vaccine Development. Viruses 2024; 16:128. [PMID: 38257828 PMCID: PMC10818334 DOI: 10.3390/v16010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/03/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
SFTSV is an emerging tick-borne virus causing hemorrhagic fever with a case fatality rate (CFR) that can reach up to 27%. With endemic infection in East Asia and the recent spread of the vector tick to more than 20 states in the United States, the SFTSV outbreak is a globally growing public health concern. However, there is currently no targeted antiviral therapy or licensed vaccine against SFTSV. Considering the age-dependent SFTS pathogenesis and disease outcome, a sophisticated vaccine development approach is required to safeguard the elderly population from lethal SFTSV infection. Given the recent emergence of SFTSV, the establishment of animal models to study immunogenicity and protection from SFTS symptoms has only occurred recently. The latest research efforts have applied diverse vaccine development approaches-including live-attenuated vaccine, DNA vaccine, whole inactivated virus vaccine, viral vector vaccine, protein subunit vaccine, and mRNA vaccine-in the quest to develop a safe and effective vaccine against SFTSV. This review aims to outline the current progress in SFTSV vaccine development and suggest future directions to enhance the safety and efficacy of these vaccines, ensuring their suitability for clinical application.
Collapse
Affiliation(s)
- Dokyun Kim
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Chih-Jen Lai
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Inho Cha
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Jae U. Jung
- Cancer Biology Department, Infection Biology Program, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (D.K.); (C.-J.L.); (I.C.)
- Global Center for Pathogen and Human Health Research, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Grabenstein JD, Hacker A. Vaccines against mpox: MVA-BN and LC16m8. Expert Rev Vaccines 2024; 23:796-811. [PMID: 39188013 DOI: 10.1080/14760584.2024.2397006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Global outbreaks involving mpox clade IIb began in mid-2022. Today, clade IIb and clade I outbreaks continue. Reliable mpox vaccines can prevent serious mpox disease and death. AREAS COVERED Globally, two vaccines hold mpox indications, regardless of mpox viral clade: MVA-BN (Bavarian Nordic) and LC16m8 (KM Biologics). This review summarizes the human and pivotal animal data establishing safety and efficacy for MVA-BN and LC16m8, including real-world evidence gathered during mpox outbreaks from 2022 through 2024. EXPERT OPINION Some regulatory decisions for MVA-BN and LC16m8 followed pathways based on surrogate outcomes, including lethal-challenge studies in nonhuman primates, among other atypical aspects. Nonetheless, MVA-BN and LC16m8 hold unencumbered registration in multiple countries. Effectiveness of MVA-BN as primary preventive vaccination (PPV) in humans against clade IIb mpox is clear from real-world studies; effectiveness of LC16m8 against clade IIb is likely from surrogate endpoints. Effectiveness of MVA-BN and LC16m8 as PPV against more-lethal clade I is likely, based on animal-challenge studies with multiple orthopoxvirus species and other studies. Both vaccines have solid safety records. MVA-BN's replication incompetence favors adoption, whereas LC16m8 has more pediatric data. Additional real-world evidence, in additional geographic settings and special populations (e.g. pregnancy, immune suppression, atopic dermatitis), is needed.
Collapse
Affiliation(s)
| | - Adam Hacker
- Coalition for Epidemic Preparedness & Innovation, Oslo, Norway
| |
Collapse
|
10
|
Watanabe S, Yoshikawa T, Kaku Y, Kurosu T, Fukushi S, Sugimoto S, Nishisaka Y, Fuji H, Marsh G, Maeda K, Ebihara H, Morikawa S, Shimojima M, Saijo M. Construction of a recombinant vaccine expressing Nipah virus glycoprotein using the replicative and highly attenuated vaccinia virus strain LC16m8. PLoS Negl Trop Dis 2023; 17:e0011851. [PMID: 38100536 PMCID: PMC10756534 DOI: 10.1371/journal.pntd.0011851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/29/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic zoonotic virus that causes severe encephalitis and respiratory diseases and has a high mortality rate in humans (>40%). Epidemiological studies on various fruit bat species, which are natural reservoirs of the virus, have shown that NiV is widely distributed throughout Southeast Asia. Therefore, there is an urgent need to develop effective NiV vaccines. In this study, we generated recombinant vaccinia viruses expressing the NiV glycoprotein (G) or fusion (F) protein using the LC16m8 strain, and examined their antigenicity and ability to induce immunity. Neutralizing antibodies against NiV were successfully induced in hamsters inoculated with LC16m8 expressing NiV G or F, and the antibody titers were higher than those induced by other vaccinia virus vectors previously reported to prevent lethal NiV infection. These findings indicate that the LC16m8-based vaccine format has superior features as a proliferative vaccine compared with other poxvirus-based vaccines. Moreover, the data collected over the course of antibody elevation during three rounds of vaccination in hamsters provide an important basis for the clinical use of vaccinia virus-based vaccines against NiV disease. Trial Registration: NCT05398796.
Collapse
Affiliation(s)
- Shumpei Watanabe
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yoshihiro Kaku
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Takeshi Kurosu
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shuetsu Fukushi
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Satoko Sugimoto
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Yuki Nishisaka
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Hikaru Fuji
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Glenn Marsh
- Australian Centre for Disease Preparedness, CSIRO, Geelong, VIC, Australia
| | - Ken Maeda
- Division of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Hideki Ebihara
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Masayuki Shimojima
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
- Public Health Office, Health and Welfare Bureau, Sapporo Municipal Government, Sapporo, Hokkaido, Japan
| |
Collapse
|
11
|
Semenov DV, Vasileva NS, Dymova MA, Mishinov SV, Savinovskaya YI, Ageenko AB, Dome AS, Zinchenko ND, Stepanov GA, Kochneva GV, Richter VA, Kuligina EV. Transcriptome Changes in Glioma Cells upon Infection with the Oncolytic Virus VV-GMCSF-Lact. Cells 2023; 12:2616. [PMID: 37998351 PMCID: PMC10670333 DOI: 10.3390/cells12222616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Oncolytic virotherapy is a rapidly evolving approach that aims to selectively kill cancer cells. We designed a promising recombinant vaccinia virus, VV-GMCSF-Lact, for the treatment of solid tumors, including glioma. We assessed how VV-GMCSF-Lact affects human cells using immortalized and patient-derived glioma cultures and a non-malignant brain cell culture. Studying transcriptome changes in cells 12 h or 24 h after VV-GMCSF-Lact infection, we detected the common activation of histone genes. Additionally, genes associated with the interferon-gamma response, NF-kappa B signaling pathway, and inflammation mediated by chemokine and cytokine signaling pathways showed increased expression. By contrast, genes involved in cell cycle progression, including spindle organization, sister chromatid segregation, and the G2/M checkpoint, were downregulated following virus infection. The upregulation of genes responsible for Golgi vesicles, protein transport, and secretion correlated with reduced sensitivity to the cytotoxic effect of VV-GMCSF-Lact. Higher expression of genes encoding proteins, which participate in the maturation of pol II nuclear transcripts and mRNA splicing, was associated with an increased sensitivity to viral cytotoxicity. Genes whose expression correlates with the sensitivity of cells to the virus are important for increasing the effectiveness of cancer virotherapy. Overall, the results highlight molecular markers, biological pathways, and gene networks influencing the response of glioma cells to VV-GMCSF-Lact.
Collapse
Affiliation(s)
- Dmitriy V. Semenov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Natalia S. Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Sergey V. Mishinov
- Novosibirsk Research Institute of Traumatology and Orthopedics n.a. Ya.L. Tsivyan, Department of Neurosurgery, Frunze Street, 17, 630091 Novosibirsk, Russia;
| | - Yulya I. Savinovskaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Alisa B. Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Anton S. Dome
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Nikita D. Zinchenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Grigory A. Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Galina V. Kochneva
- State Research Center of Virology and Biotechnology “Vector”, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentyev Avenue, 8, 630090 Novosibirsk, Russia; (N.S.V.); (M.A.D.); (Y.I.S.); (A.B.A.); (A.S.D.); (N.D.Z.); (G.A.S.); (V.A.R.); (E.V.K.)
| |
Collapse
|
12
|
Hirani R, Noruzi K, Iqbal A, Hussaini AS, Khan RA, Harutyunyan A, Etienne M, Tiwari RK. A Review of the Past, Present, and Future of the Monkeypox Virus: Challenges, Opportunities, and Lessons from COVID-19 for Global Health Security. Microorganisms 2023; 11:2713. [PMID: 38004725 PMCID: PMC10673257 DOI: 10.3390/microorganisms11112713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Monkeypox, a rare but significant zoonotic and orthopoxviral disease, has garnered increasing attention due to its potential for human-to-human transmission and its recent resurgence in multiple countries throughout Europe, North America, and Oceania. The disease has emerged as a novel threat to the global health systems that are still striving to recover from the major shocks of the COVID-19 pandemic. The unusual manifestation of the illness highlights a substantial knowledge deficit and necessitates the immediate development of a public health action strategy, considering the epidemiological differences observed in the ongoing outbreak and the appearance of cases in non-endemic nations. This literature review aims to synthesize existing knowledge on monkeypox, encompassing its historical context, etiology, epidemiology, surveillance, prevention, transmission, clinical presentation, diagnosis, treatments, and recent outbreak. Particular attention is given to both advances and gaps in our understanding of monkeypox, and we point toward future directions for research and intervention efforts as pertains to vaccine development and distribution. Lastly, we will also review the recent outbreak through a sociopolitical lens as relates to decision-making strategies, especially given the lessons learned from COVID-19.
Collapse
Affiliation(s)
- Rahim Hirani
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| | - Kaleb Noruzi
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Aroubah Iqbal
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Anum S. Hussaini
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Rafay A. Khan
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Aleksandr Harutyunyan
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
| | - Mill Etienne
- School of Medicine, New York Medical College, Valhalla, NY 10595, USA; (R.H.); (A.I.); (R.A.K.)
- Department of Neurology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Graduate School of Biomedical Sciences, New York Medical College, Valhalla, NY 10595, USA
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
13
|
Kim EH, Park SJ. Emerging Tick-Borne Dabie bandavirus: Virology, Epidemiology, and Prevention. Microorganisms 2023; 11:2309. [PMID: 37764153 PMCID: PMC10536723 DOI: 10.3390/microorganisms11092309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Severe Fever with Thrombocytopenia Syndrome (SFTS), caused by Dabie bandavirus (SFTSV), is an emerging infectious disease first identified in China. Since its discovery, infections have spread throughout East Asian countries primarily through tick bites but also via transmission between animals and humans. The expanding range of ticks, the primary vectors for SFTSV, combined with migration patterns of tick-carrying birds, sets the stage for the global spread of this virus. SFTSV rapidly evolves due to continuous mutation and reassortment; currently, no approved vaccines or antiviral drugs are available. Thus, the threat this virus poses to global health is unmistakable. This review consolidates the most recent research on SFTSV, including its molecular characteristics, transmission pathways through ticks and other animals, as well as the progress in antiviral drug and vaccine development, encompassing animal models and clinical trials.
Collapse
Affiliation(s)
- Eun-Ha Kim
- Center for Study of Emerging and Re-Emerging Viruses, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Republic of Korea;
| | - Su-Jin Park
- Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
14
|
Perdiguero B, Pérez P, Marcos-Villar L, Albericio G, Astorgano D, Álvarez E, Sin L, Elena Gómez C, García-Arriaza J, Esteban M. Highly attenuated poxvirus-based vaccines against emerging viral diseases. J Mol Biol 2023:168173. [PMID: 37301278 DOI: 10.1016/j.jmb.2023.168173] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Although one member of the poxvirus family, variola virus, has caused one of the most devastating human infections worldwide, smallpox, the knowledge gained over the last 30 years on the molecular, virological and immunological mechanisms of these viruses has allowed the use of members of this family as vectors for the generation of recombinant vaccines against numerous pathogens. In this review, we cover different aspects of the history and biology of poxviruses with emphasis on their application as vaccines, from first- to fourth-generation, against smallpox, monkeypox, emerging viral diseases highlighted by the World Health Organization (COVID-19, Crimean-Congo haemorrhagic fever, Ebola and Marburg virus diseases, Lassa fever, Middle East respiratory syndrome and severe acute respiratory syndrome, Nipah and other henipaviral diseases, Rift Valley fever and Zika), as well as against one of the most concerning prevalent virus, the Human Immunodeficiency Virus, the causative agent of AcquiredImmunodeficiency Syndrome. We discuss the implications in human health of the 2022 monkeypox epidemic affecting many countries, and the rapid prophylactic and therapeutic measures adopted to control virus dissemination within the human population. We also describe the preclinical and clinical evaluation of the Modified Vaccinia virus Ankara and New York vaccinia virus poxviral strains expressing heterologous antigens from the viral diseases listed above. Finally, we report different approaches to improve the immunogenicity and efficacy of poxvirus-based vaccine candidates, such as deletion of immunomodulatory genes, insertion of host-range genes and enhanced transcription of foreign genes through modified viral promoters. Some future prospects are also highlighted.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Patricia Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Guillermo Albericio
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - David Astorgano
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Enrique Álvarez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Sin
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
| |
Collapse
|
15
|
Zhang Y, Zhou Y, Pei R, Chen X, Wang Y. Potential threat of human pathogenic orthopoxviruses to public health and control strategies. JOURNAL OF BIOSAFETY AND BIOSECURITY 2023; 5:1-7. [PMID: 36624850 PMCID: PMC9811937 DOI: 10.1016/j.jobb.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023] Open
Abstract
Orthopoxviruses (OPXVs) belong to a group of nucleo-cytoplasmic large DNA viruses. Human pathogenic OPXVs (hpOPXVs) include at least five viruses, among which smallpox virus and monkeypox virus are the most dangerous viral pathogens. Both viruses are classified as category-one human infectious pathogens in China. Although smallpox was globally eradicated in the 1980 s, it is still a top biosecurity threat owing to the possibility of either being leaked to the outside world from a laboratory or being weaponized by terrorists. Beginning in early May 2022, a sudden outbreak of monkeypox was concurrently reported in more than 100 disparate geographical areas, representing a public health emergency of international concern, as declared by the World Health Organization (WHO). In this review, we present the reasons for hpOPXVs such as monkeypox virus presenting a potential threat to public health. We then systematically review the historical and recent development of vaccines and drugs against smallpox and monkeypox. In the final section, we highlight the importance of viromics studies as an integral part of a forward defense strategy to eliminate the potential threat to public health from emerging or re-emerging hpOPXVs and their variants.
Collapse
Affiliation(s)
- Yongli Zhang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Rongjuan Pei
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China
| | - Xinwen Chen
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Innovation Center for Pathogen Research, Guangzhou Laboratory, Guangzhou 510320, China
| | - Yun Wang
- State Key Laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences. 44 Hongshancelu Avenue, Wuhan 430071, China,Corresponding author
| |
Collapse
|
16
|
Domán M, Fehér E, Varga-Kugler R, Jakab F, Bányai K. Animal Models Used in Monkeypox Research. Microorganisms 2022; 10:2192. [PMID: 36363786 PMCID: PMC9694439 DOI: 10.3390/microorganisms10112192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Monkeypox is an emerging zoonotic disease with a growing prevalence outside of its endemic area, posing a significant threat to public health. Despite the epidemiological and field investigations of monkeypox, little is known about its maintenance in natural reservoirs, biological implications or disease management. African rodents are considered possible reservoirs, although many mammalian species have been naturally infected with the monkeypox virus (MPXV). The involvement of domestic livestock and pets in spillover events cannot be ruled out, which may facilitate secondary virus transmission to humans. Investigation of MPXV infection in putative reservoir species and non-human primates experimentally uncovered novel findings relevant to the course of pathogenesis, virulence factors and transmission of MPXV that provided valuable information for designing appropriate prevention measures and effective vaccines.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | - Enikő Fehér
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
| | | | - Ferenc Jakab
- National Laboratory of Virology, Virological Research Group, Szentágothai Research Centre, University of Pécs, H-7624 Pécs, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, H-1143 Budapest, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary
| |
Collapse
|
17
|
Huang Y, Mu L, Wang W. Monkeypox: epidemiology, pathogenesis, treatment and prevention. Signal Transduct Target Ther 2022; 7:373. [PMID: 36319633 PMCID: PMC9626568 DOI: 10.1038/s41392-022-01215-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022] Open
Abstract
Monkeypox is a zoonotic disease that was once endemic in west and central Africa caused by monkeypox virus. However, cases recently have been confirmed in many nonendemic countries outside of Africa. WHO declared the ongoing monkeypox outbreak to be a public health emergency of international concern on July 23, 2022, in the context of the COVID-19 pandemic. The rapidly increasing number of confirmed cases could pose a threat to the international community. Here, we review the epidemiology of monkeypox, monkeypox virus reservoirs, novel transmission patterns, mutations and mechanisms of viral infection, clinical characteristics, laboratory diagnosis and treatment measures. In addition, strategies for the prevention, such as vaccination of smallpox vaccine, is also included. Current epidemiological data indicate that high frequency of human-to-human transmission could lead to further outbreaks, especially among men who have sex with men. The development of antiviral drugs and vaccines against monkeypox virus is urgently needed, despite some therapeutic effects of currently used drugs in the clinic. We provide useful information to improve the understanding of monkeypox virus and give guidance for the government and relative agency to prevent and control the further spread of monkeypox virus.
Collapse
Affiliation(s)
- Yong Huang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Mu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
18
|
Sakamoto A, Osawa H, Hashimoto H, Mizuno T, Hasyim AA, Abe YI, Okahashi Y, Ogawa R, Iyori M, Shida H, Yoshida S. A replication-competent smallpox vaccine LC16m8Δ-based COVID-19 vaccine. Emerg Microbes Infect 2022; 11:2359-2370. [PMID: 36069348 PMCID: PMC9527789 DOI: 10.1080/22221751.2022.2122580] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Viral vectors are a potent vaccine platform for inducing humoral and T-cell immune responses. Among the various viral vectors, replication-competent ones are less commonly used for coronavirus disease 2019 (COVID-19) vaccine development compared with replication-deficient ones. Here, we show the availability of a smallpox vaccine LC16m8Δ (m8Δ) as a replication-competent viral vector for a COVID-19 vaccine. M8Δ is a genetically stable variant of the licensed and highly effective Japanese smallpox vaccine LC16m8. Here, we generated two m8Δ recombinants: one harbouring a gene cassette encoding the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) glycoprotein, named m8Δ-SARS2(P7.5-S)-HA; and one encoding the S protein with a highly polybasic motif at the S1/S2 cleavage site, named m8Δ-SARS2(P7.5-SHN)-HA. M8Δ-SARS2(P7.5-S)-HA induced S-specific antibodies in mice that persisted for at least six weeks after a homologous boost immunization. All eight analysed serum samples displayed neutralizing activity against an S-pseudotyped virus at a level similar to that of serum samples from patients with COVID-19, and more than half (5/8) also had neutralizing activity against the Delta/B.1.617.2 variant of concern. Importantly, most serum samples also neutralized the infectious SARS-CoV-2 Wuhan and Delta/B.1.617.2 strains. In contrast, immunization with m8Δ-SARS2(P7.5-SHN)-HA elicited significantly lower antibody titres, and the induced antibodies had less neutralizing activity. Regarding T-cell immunity, both m8Δ recombinants elicited S-specific multifunctional CD8+ and CD4+ T-cell responses even after just a primary immunization. Thus, m8Δ provides an alternative method for developing a novel COVID-19 vaccine.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hiroaki Osawa
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hinata Hashimoto
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Tetsushi Mizuno
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan.,Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Ammar A Hasyim
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yu-Ichi Abe
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Yuto Okahashi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Ryohei Ogawa
- Department of Radiology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| | - Hisatoshi Shida
- Division of Molecular Virology, Institute of Immunological Science, Hokkaido University, Sapporo, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Ishikawa, Japan
| |
Collapse
|
19
|
Interferon α/β Decoy Receptor Encoded by a Variant in the Dryvax Smallpox Vaccine Contributes to Virulence and Correlates with Severe Vaccine Side Effects. mBio 2022; 13:e0010222. [PMID: 35189701 PMCID: PMC8903894 DOI: 10.1128/mbio.00102-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although providing long-lasting immunity, smallpox vaccination was associated with local and systemic reactions and rarely with severe complications, including progressive vaccinia and postvaccinia encephalitis. As the Dryvax smallpox vaccine consists of a population of variants, we investigated a particularly pathogenic isolate called clone 3 (CL3). Virus replication was monitored by inserting the gene encoding firefly luciferase (Luc) into the genomes of CL3 and ACAM2000, the second-generation smallpox vaccine derived from a less virulent clone. Greater luminescence occurred following intranasal or intraperitoneal inoculation of mice with CL3-Luc than ACAM2000-Luc. Previous genome sequencing of CL3 and ACAM2000 revealed numerous differences that could affect pathogenicity. We focused on a 4.2-kbp segment, containing several open reading frames, in CL3 that is absent from ACAM2000 and determined that lower virulence of the latter was associated with a truncation of the interferon α/β (IFN-α/β) decoy receptor. Truncation of the decoy receptor in CL3-Luc and repair of the truncated version in ACAM2000-Luc decreased and increased virulence, respectively. Blockade of the mouse type 1 IFN receptor increased the virulence of ACAM2000-Luc to that of CL3-Luc, consistent with the role of IFN in attenuating the former. The severities of disease following intracranial inoculation of immunocompetent mice and intraperitoneal inoculation of T cell-depleted mice were also greater in viruses expressing the full-length decoy receptor. Previous evidence for the low affinity of a similarly truncated decoy receptor for IFN and the presence of a full-length decoy receptor in virus isolated from a patient with progressive vaccinia support our findings.
Collapse
|
20
|
Effect of Serial Passage on the Pathogenicity and Immunogenicity of Vaccinia Virus LC16m8 Strain. BIOLOGY 2021; 10:biology10111158. [PMID: 34827150 PMCID: PMC8614788 DOI: 10.3390/biology10111158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/20/2023]
Abstract
The phenotype of an attenuated live vaccine depends on gene mutation achieved by, for example, many passages in cultured cells. Viral clones with preferable phenotypes are selected and the causative genetic mutation(s) are later identified. LC16m8 is an example of a highly attenuated smallpox vaccine that was developed and licensed in Japan in the 1970s. LC16m8 was obtained by the passaging of Lister strain, with indicators of small plaque formation and temperature sensitivity as virus phenotypes. This strain can replicate in mammalian cells and provides robust cellular and humoral immunity, as well as long-term immune memory. Recent studies using proteome-wide antigen arrays have revealed that antibody production against LC16m8 and other VACVs differs largely among individuals. Moreover, associations between SNPs in immune-related genes and immune outcomes have been increasingly found. These results lead to predicting adverse events of a vaccine, which is a purpose of vaccinomics. Studies on VACV will continue to contribute to the understanding of host-pathogen interactions and to development of a vaccine for other infectious and non-infectious diseases. Here, we review studies of VACV, including our recent research on LC16m8, with a focus on the phenotype and genotype, and we discuss future research directions.
Collapse
|
21
|
A highly attenuated vaccinia virus strain LC16m8-based vaccine for severe fever with thrombocytopenia syndrome. PLoS Pathog 2021; 17:e1008859. [PMID: 33534867 PMCID: PMC7886154 DOI: 10.1371/journal.ppat.1008859] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 02/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) caused by a species Dabie bandavirus (formerly SFTS virus [SFTSV]) is an emerging hemorrhagic infectious disease with a high case-fatality rate. One of the best strategies for preventing SFTS is to develop a vaccine, which is expected to induce both humoral and cellular immunity. We applied a highly attenuated but still immunogenic vaccinia virus strain LC16m8 (m8) as a recombinant vaccine for SFTS. Recombinant m8s expressing SFTSV nucleoprotein (m8-N), envelope glycoprotein precursor (m8-GPC), and both N and GPC (m8-N+GPC) in the infected cells were generated. Both m8-GPC- and m8-N+GPC-infected cells were confirmed to produce SFTSV-like-particles (VLP) in vitro, and the N was incorporated in the VLP produced by the infection of cells with m8-N+GPC. Specific antibodies to SFTSV were induced in mice inoculated with each of the recombinant m8s, and the mice were fully protected from lethal challenge with SFTSV at both 103 TCID50 and 105 TCID50. In mice that had been immunized with vaccinia virus strain Lister in advance of m8-based SFTSV vaccine inoculation, protective immunity against the SFTSV challenge was also conferred. The pathological analysis revealed that mice immunized with m8-GPC or m8-N+GPC did not show any histopathological changes without any viral antigen-positive cells, whereas the control mice showed focal necrosis with inflammatory infiltration with SFTSV antigen-positive cells in tissues after SFTSV challenge. The passive serum transfer experiments revealed that sera collected from mice inoculated with m8-GPC or m8-N+GPC but not with m8-N conferred protective immunity against lethal SFTSV challenge in naïve mice. On the other hand, the depletion of CD8-positive cells in vivo did not abrogate the protective immunity conferred by m8-based SFTSV vaccines. Based on these results, the recombinant m8-GPC and m8-N+GPC were considered promising vaccine candidates for SFTS. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging viral hemorrhagic fever with a high case-fatality rate (approximately 5% to >40%). Indigenous SFTS has been reported in China, Japan, South Korea, and Vietnam. Thus, the development of an effective vaccine for SFTS is urgently needed. Vaccinia virus (VAC) was previously used as a vaccine for smallpox. Unfortunately, after these strains, the so-called second generation of VAC used during the eradication campaign was associated with severe adverse events, and the third generation of VAC strains such as LC16m8 (m8) and modified vaccinia Ankara (MVA) was established. m8 is confirmed to be highly attenuated while still maintaining immunogenicity. m8 is licensed for use in healthy people in Japan. At the present time, approximately 100,000 people have undergone vaccination with m8 without experiencing any severe postvaccine complications. At present, third-generation VAC strains are attractive for a recombinant vaccine vector, especially for viral hemorrhagic infectious diseases, such as Ebola virus disease, Lassa fever, Crimean-Congo hemorrhagic fever, and SFTS. We investigated the practicality of an m8-based recombinant vaccine for SFTS as well as other promising recombinant VAC-based vaccines for viral hemorrhagic infectious diseases.
Collapse
|
22
|
Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, Amino N, Nakatake M, Kurosaki H, Mori M, Takeuchi M, Nakamura T. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 2021; 12:12/526/eaax7992. [PMID: 31941828 DOI: 10.1126/scitranslmed.aax7992] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
The immune status of the tumor microenvironment is a key indicator in determining the antitumor effectiveness of immunotherapies. Data support the role of activation and expansion of tumor-infiltrating lymphocytes (TILs) in increasing the benefit of immunotherapies in patients with solid tumors. We found that intratumoral injection of a tumor-selective oncolytic vaccinia virus encoding interleukin-7 (IL-7) and IL-12 into tumor-bearing immunocompetent mice activated the inflammatory immune status of previously poorly immunogenic tumors and resulted in complete tumor regression, even in distant tumor deposits. Mice achieving complete tumor regression resisted rechallenge with the same tumor cells, suggesting establishment of long-term tumor-specific immune memory. Combining this virotherapy with anti-programmed cell death-1 (PD-1) or anti-cytotoxic T lymphocyte antigen 4 (CTLA4) antibody further increased the antitumor activity as compared to virotherapy alone, in tumor models unresponsive to either of the checkpoint inhibitor monotherapies. These findings suggest that administration of an oncolytic vaccinia virus carrying genes encoding for IL-7 and IL-12 has antitumor activity in both directly injected and distant noninjected tumors through immune status changes rendering tumors sensitive to immune checkpoint blockade. The benefit of intratumoral IL-7 and IL-12 expression was also observed in humanized mice bearing human cancer cells. These data support further investigation in patients with non-inflamed solid tumors.
Collapse
Affiliation(s)
- Shinsuke Nakao
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan.
| | - Yukinori Arai
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Mamoru Tasaki
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Midori Yamashita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Ryuji Murakami
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Tatsuya Kawase
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Nobuaki Amino
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Motomu Nakatake
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Hajime Kurosaki
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Masamichi Mori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Masahiro Takeuchi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba 305-8585, Japan
| | - Takafumi Nakamura
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| |
Collapse
|
23
|
Omura N, Yoshikawa T, Fujii H, Shibamura M, Inagaki T, Kato H, Egawa K, Harada S, Yamada S, Takeyama H, Saijo M. A Novel System for Constructing a Recombinant Highly-Attenuated Vaccinia Virus Strain (LC16m8) Expressing Foreign Genes and Its Application for the Generation of LC16m8-Based Vaccines against Herpes Simplex Virus 2. Jpn J Infect Dis 2018; 71:229-233. [PMID: 29709968 DOI: 10.7883/yoken.jjid.2017.458] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A novel system was developed for generating highly attenuated vaccinia virus LC16m8 (m8, third-generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with a fluorescent signal. Using this system, recombinant m8s, which expressed herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB + gD), were generated, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with one of these recombinant m8s was confirmed by an immunofluorescent assay. Next, mice preinfected with one of the recombinant m8s were infected with HSV-2 at a lethal dose to examine the vaccine efficacy. The fatality rate among the mice preinfected with either the recombinant gB + gD- or gD-expressing m8 significantly decreased in comparison with the control. The survival rate in male and female mice preinfected with either the recombinant gB + gD- or gD-expressing m8 increased to 100% and 60%, respectively, while most of the control mice died. In summary, this new system may be applicable to creation of a novel m8-based vaccine.
Collapse
Affiliation(s)
- Natsumi Omura
- Department of Virology 1, National Institute of Infectious Diseases.,Department of Life Science and Medical Bioscience, Waseda University
| | - Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases
| | - Hikaru Fujii
- Department of Virology 1, National Institute of Infectious Diseases
| | - Miho Shibamura
- Department of Virology 1, National Institute of Infectious Diseases
| | - Takuya Inagaki
- Department of Virology 1, National Institute of Infectious Diseases.,Department of Life Science and Medical Bioscience, Waseda University
| | - Hirofumi Kato
- Department of Virology 1, National Institute of Infectious Diseases
| | - Kazutaka Egawa
- Department of Virology 1, National Institute of Infectious Diseases
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases
| | - Haruko Takeyama
- Department of Life Science and Medical Bioscience, Waseda University
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases
| |
Collapse
|
24
|
Construction and characterization of bacterial artificial chromosomes harboring the full-length genome of a highly attenuated vaccinia virus LC16m8. PLoS One 2018; 13:e0192725. [PMID: 29474493 PMCID: PMC5825015 DOI: 10.1371/journal.pone.0192725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
LC16m8 (m8), a highly attenuated vaccinia virus (VAC) strain, was developed as a smallpox vaccine, and its safety and immunogenicity have been confirmed. Here, we aimed to develop a system that recovers infectious m8 from a bacterial artificial chromosome (BAC) that retains the full-length viral genomic DNA (m8-BAC system). The infectious virus was successfully recovered from a VAC-BAC plasmid, named pLC16m8-BAC. Furthermore, the bacterial replicon-free virus was generated by intramolecular homologous recombination and was successfully recovered from a modified VAC-BAC plasmid, named pLC16m8.8S-BAC. Also, the growth of the recovered virus was indistinguishable from that of authentic m8. The full genome sequence of the plasmid, which harbors identical inverted terminal repeats (ITR) to that of authentic m8, was determined by long-read next-generation sequencing (NGS). The ITR contains x 18 to 32 of the 70 and x 30 to 45 of 54 base pair tandem repeats, and the number of tandem repeats was different between the ITR left and right. Since the virus recovered from pLC16m8.8S-BAC was expected to retain the identical viral genome to that of m8, including the ITR, a reference-based alignment following a short-read NGS was performed to validate the sequence of the recovered virus. Based on the pattern of coverage depth in the ITR, no remarkable differences were observed between the virus and m8, and the other region was confirmed to be identical as well. In summary, this new system can recover the virus, which is geno- and phenotypically indistinguishable from authentic m8.
Collapse
|
25
|
Iizuka I, Ami Y, Suzaki Y, Nagata N, Fukushi S, Ogata M, Morikawa S, Hasegawa H, Mizuguchi M, Kurane I, Saijo M. A Single Vaccination of Nonhuman Primates with Highly Attenuated Smallpox Vaccine, LC16m8, Provides Long-term Protection against Monkeypox. Jpn J Infect Dis 2017; 70:408-415. [PMID: 28003603 DOI: 10.7883/yoken.jjid.2016.417] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monkeypox virus (MPXV) causes human monkeypox (human MPX), which is a similar disease to smallpox in humans. A previous study showed that a single vaccination of monkeys with LC16m8, a highly attenuated smallpox vaccine, protected them from MPX from 4-5 weeks post-vaccination. In this study, we evaluated the long-term efficacy of a single vaccination with LC16m8 in a nonhuman primate model of MPXV infection. The monkeys were inoculated with either LC16m8, Lister (parental strain of LC16m8), or a mock-up vaccine, and then challenged with MPXV via a subcutaneous route, at 6 and 12 months after vaccination, which we compared with either Lister or the mock-up vaccination. The LC16m8 monkeys exhibited almost no MPX-associated symptoms, whereas most of the naïve monkeys died. LC16m8 generated the protective memory immune response against MPXV, as suggested by the immediate viremia reduction and the response of the IgG antibody. The results demonstrated that the vaccination of monkeys with a single dose of LC16m8 provided durable protection against MPXV for longer than one year after immunization. The results suggest that the vaccination of humans with LC16m8 could induce long-term protection against MPXV infection.
Collapse
Affiliation(s)
- Itoe Iizuka
- Laboratory of Special Pathogens, Department of Virology 1, National Institute of Infectious Diseases
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo
| | - Yasushi Ami
- Department of Experimental Animals Research, National Institute of Infectious Diseases
| | - Yuriko Suzaki
- Department of Experimental Animals Research, National Institute of Infectious Diseases
| | - Noriyo Nagata
- Department of Pathology, National Institute of Infectious Diseases
| | - Shuetsu Fukushi
- Laboratory of Special Pathogens, Department of Virology 1, National Institute of Infectious Diseases
| | - Momoko Ogata
- Laboratory of Special Pathogens, Department of Virology 1, National Institute of Infectious Diseases
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo
| | | | - Masayuki Saijo
- Laboratory of Special Pathogens, Department of Virology 1, National Institute of Infectious Diseases
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
26
|
Short-term clinical safety profile of brincidofovir: A favorable benefit-risk proposition in the treatment of smallpox. Antiviral Res 2017; 143:269-277. [PMID: 28093339 DOI: 10.1016/j.antiviral.2017.01.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 11/20/2022]
Abstract
Brincidofovir (BCV, CMX001) is an orally available, long-acting, broad-spectrum antiviral that has been evaluated in healthy subjects in Phase I studies and in hematopoietic cell transplant recipients and other immunocompromised patients in Phase II/III clinical trials for the prevention and treatment of cytomegalovirus and adenovirus infections. BCV has also shown in vitro activity against orthopoxviruses such as variola (smallpox) virus, and is under advanced development as a treatment for smallpox under the US FDA's 'Animal Rule'. The anticipated treatment regimen for smallpox is a total weekly dose of 200 mg administered orally for 3 consecutive weeks. To assess the benefit-to-risk profile of BCV for the treatment of smallpox, we evaluated short-term safety data associated with comparable doses from Phase I studies and from adult and pediatric subjects in the cytomegalovirus and adenovirus clinical programs. When administered at doses and durations similar to that proposed for the treatment of smallpox, BCV was generally well tolerated in both adults and pediatric subjects. The most common adverse events were mild gastrointestinal events and asymptomatic, transient, and reversible elevations in serum transaminases. The data presented herein indicate a favorable safety profile for BCV for the treatment of smallpox, and support its continued development for this indication.
Collapse
|
27
|
Trindade GDS, Emerson GL, Sammons S, Frace M, Govil D, Fernandes Mota BE, Abrahão JS, de Assis FL, Olsen-Rasmussen M, Goldsmith CS, Li Y, Carroll D, Guimarães da Fonseca F, Kroon E, Damon IK. Serro 2 Virus Highlights the Fundamental Genomic and Biological Features of a Natural Vaccinia Virus Infecting Humans. Viruses 2016; 8:v8120328. [PMID: 27973399 PMCID: PMC5192389 DOI: 10.3390/v8120328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/01/2016] [Accepted: 11/24/2016] [Indexed: 01/14/2023] Open
Abstract
Vaccinia virus (VACV) has been implicated in infections of dairy cattle and humans, and outbreaks have substantially impacted local economies and public health in Brazil. During a 2005 outbreak, a VACV strain designated Serro 2 virus (S2V) was collected from a 30-year old male milker. Our aim was to phenotypically and genetically characterize this VACV Brazilian isolate. S2V produced small round plaques without associated comets when grown in BSC40 cells. Furthermore, S2V was less virulent than the prototype strain VACV-Western Reserve (WR) in a murine model of intradermal infection, producing a tiny lesion with virtually no surrounding inflammation. The genome of S2V was sequenced by primer walking. The coding region spans 184,572 bp and contains 211 predicted genes. Mutations in envelope genes specifically associated with small plaque phenotypes were not found in S2V; however, other alterations in amino acid sequences within these genes were identified. In addition, some immunomodulatory genes were truncated in S2V. Phylogenetic analysis using immune regulatory-related genes, besides the hemagglutinin gene, segregated the Brazilian viruses into two clusters, grouping the S2V into Brazilian VACV group 1. S2V is the first naturally-circulating human-associated VACV, with a low passage history, to be extensively genetically and phenotypically characterized.
Collapse
Affiliation(s)
- Giliane de Souza Trindade
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Ginny L Emerson
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Scott Sammons
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Michael Frace
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Dhwani Govil
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | | | - Jônatas Santos Abrahão
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Felipe Lopes de Assis
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Melissa Olsen-Rasmussen
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Cynthia S Goldsmith
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Yu Li
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | - Darin Carroll
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| | | | - Erna Kroon
- Department of Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, MG CEP 31270-901, Brazil.
| | - Inger K Damon
- Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention (CCID/CDC), Atlanta, 30329-4027 GA, USA.
| |
Collapse
|
28
|
Genome Sequence of Vaccinia virus Strain Lister-Butantan, a Lister Vaccine Variant Used during a Smallpox Eradication Campaign in Brazil. GENOME ANNOUNCEMENTS 2016; 4:4/3/e00536-16. [PMID: 27340056 PMCID: PMC4919395 DOI: 10.1128/genomea.00536-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we report the 187.8-kb genome sequence of Vaccinia virus Lister-Butantan, which was used in Brazil during the WHO smallpox eradication campaign. Its genome showed an average similarity of 98.18% with the original Lister isolate, highlighting the low divergence among related Vaccinia virus vaccine strains, even after several passages in animals and cell culture.
Collapse
|
29
|
Abstract
Smallpox has shaped human history, from the earliest human civilizations well into the 20th century. With high mortality rates, rapid transmission, and serious long-term effects on survivors, smallpox was a much-feared disease. The eradication of smallpox represents an unprecedented medical victory for the lasting benefit of human health and prosperity. Concerns remain, however, about the development and use of the smallpox virus as a biological weapon, which necessitates the need for continued vaccine development. Smallpox vaccine development is thus a much-reviewed topic of high interest. This review focuses on the current state of smallpox vaccines and their context in biodefense efforts.
Collapse
Affiliation(s)
- Emily A Voigt
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| | | | - Gregory A Poland
- a Mayo Vaccine Research Group , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
30
|
Eto A, Saito T, Yokote H, Kurane I, Kanatani Y. Recent advances in the study of live attenuated cell-cultured smallpox vaccine LC16m8. Vaccine 2015; 33:6106-11. [PMID: 26319072 PMCID: PMC9533910 DOI: 10.1016/j.vaccine.2015.07.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/20/2015] [Accepted: 07/29/2015] [Indexed: 12/02/2022]
Abstract
LC16m8 is a live, attenuated, cell-cultured smallpox vaccine that was developed and licensed in Japan in the 1970s, but was not used in the campaign to eradicate smallpox. In the early 2000s, the potential threat of bioterrorism led to reconsideration of the need for a smallpox vaccine. Subsequently, LC16m8 production was restarted in Japan in 2002, requiring re-evaluation of its safety and efficacy. Approximately 50,000 children in the 1970s and about 3500 healthy adults in the 2000s were vaccinated with LC16m8 in Japan, and 153 adults have been vaccinated with LC16m8 or Dryvax in phase I/II clinical trials in the USA. These studies confirmed the safety and efficacy of LC16m8, while several studies in animal models have shown that LC16m8 protects the host against viral challenge. The World Health Organization Strategic Advisory Group of Experts on Immunization recommended LC16m8, together with ACAM2000, as a stockpile vaccine in 2013. In addition, LC16m8 is expected to be a viable alternative to first-generation smallpox vaccines to prevent human monkeypox.
Collapse
Affiliation(s)
- Akiko Eto
- Department of Health Crisis Management, National Institute of Public Health, 2-3-6 Minami, Wako-shi, 351-0197, Saitama, Japan
| | - Tomoya Saito
- Department of Health Crisis Management, National Institute of Public Health, 2-3-6 Minami, Wako-shi, 351-0197, Saitama, Japan
| | - Hiroyuki Yokote
- Chemo-Sero-Therapeutic Research Institute (Kaketsuken), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, 860-8568, Kumamoto, Japan
| | - Ichiro Kurane
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, 162-8640, Tokyo, Japan
| | - Yasuhiro Kanatani
- Department of Health Crisis Management, National Institute of Public Health, 2-3-6 Minami, Wako-shi, 351-0197, Saitama, Japan.
| |
Collapse
|
31
|
Nishiyama Y, Fujii T, Kanatani Y, Shinmura Y, Yokote H, Hashizume S. Freeze-dried live attenuated smallpox vaccine prepared in cell culture "LC16-KAKETSUKEN": Post-marketing surveillance study on safety and efficacy compliant with Good Clinical Practice. Vaccine 2015; 33:6120-7. [PMID: 26455406 DOI: 10.1016/j.vaccine.2015.09.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 08/28/2015] [Accepted: 09/18/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND In Japan, production of smallpox vaccine LC16m8 (named LC16-KAKETSUKEN) was restarted and was determined to be maintained as a national stockpile in March 2002. OBJECTIVE To conduct a post-marketing surveillance study of the vaccination of freeze-dried live attenuated smallpox vaccine prepared in cell culture LC16-KAKETSUKEN using attenuated vaccinia strain LC16m8. The study complied with Good Clinical Practice, focusing on a comparison between primary vaccinees and re-vaccinees. METHOD 268 personnel (261 males and 7 females) of the Japan Ground Self-Defense Force were inoculated with LC16-KAKETSUKEN and thereafter adverse events and efficacy were evaluated. RESULTS Among 268 vaccinee participants, the following vaccinees showed adverse events, none serious: 53 of 196 primary vaccinees (without previous smallpox vaccination), 4 of 71 re-vaccinees (with previous smallpox vaccination) and 1 vaccinee with unknown previous vaccination history. A breakdown of adverse events observed in this study (total 268 vaccinees) showed the following minor or mild adverse events: 52 (19.4%) swelling of axillary lymph node, 4 (1.5%) fever, 2 (0.7%) fatigue, 1 (0.4%) of rash, 14 (5.2%) erythema at the inoculation site, 1 (0.4%) swelling at the inoculation site and 1 (0.4%) autoinoculation. The incidence of adverse events for primary vaccinees (53/196; 27.0%) was significantly higher than for re-vaccinees (4/71; 5.6%). However, the proportion of vaccine take was significantly higher for primary vaccinees (185/196; 94.4%) than for re-vaccinees (58/71; 81.7%). Although the proportion of vaccine take of re-vaccinees was significantly lower than for primary vaccinees due to preexisting immunity by previous vaccination, no significant difference was found in neutralizing antibody titers between primary vaccinees and re-vaccinees at 1, 4 and 7 months after LC16-KAKETSUKEN vaccination. CONCLUSION The present post-marketing surveillance study compliant with Good Clinical Practice demonstrated the efficacy and safety of the smallpox vaccine LC16-KAKETSUKEN in an adult population. LC16-KAKETSUKEN is the sole currently available licensed smallpox vaccine for both adult and pediatric populations.
Collapse
Affiliation(s)
- Yasumasa Nishiyama
- Health Care Center, Japan Self-Defense Forces Central Hospital, 1-2-24 Ikeziri, Setagaya-ku, Tokyo 154-8532, Japan
| | - Tatsuya Fujii
- Health Care Center, Japan Self-Defense Forces Central Hospital, 1-2-24 Ikeziri, Setagaya-ku, Tokyo 154-8532, Japan
| | - Yasuhiro Kanatani
- National Institute of Public Health, 2-3-6 Minami, Wako-shi, Saitama 351-0197, Japan
| | - Yasuhiko Shinmura
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan.
| | - Hiroyuki Yokote
- The Chemo-Sero-Therapeutic Research Institute (Kaketsuken), 1-6-1 Okubo, Kita-ku, Kumamoto-shi, Kumamoto 860-8568, Japan
| | - So Hashizume
- Chiba University, 1-33, Yayoicho, Inage Ward, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
32
|
Vaccinia virus strain LC16m8 defective in the B5R gene keeps strong protection comparable to its parental strain Lister in immunodeficient mice. Vaccine 2015; 33:6112-9. [PMID: 26241947 DOI: 10.1016/j.vaccine.2015.07.076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Attenuated vaccinia virus strain, LC16m8, defective in the B5R envelope protein gene, is used as a stockpile smallpox vaccine strain in Japan against bioterrorism: the defect in the B5R gene mainly contributes to its highly attenuated properties. METHODS The protective activity of LC16m8 vaccine against challenge with a lethal dose of vaccinia Western Reserve strain was assessed in wild-type and immunodeficient mice lacking CD4, MHC class I, MHC class II or MHC class I and II antigens. RESULTS The immunization with LC16m8 induced strong protective activity comparable to that of its parent strain, Lister (Elstree) strain, in wild-type mice from 2 days to 1 year after vaccination, as well as in immunodeficient mice at 2 or 3 weeks after vaccination. These results implicated that the defect in the B5R gene hardly affected the potential activity of LC16m8 to induce innate, cell-mediated and humoral immunity, and that LC16m8 could be effective in immunodeficient patients. CONCLUSION LC16m8 with truncated B5 protein has an activity to induce immunity, such as innate immunity and subsequent cell-mediated and humoral immunity almost completely comparable to the activity of its parental strain Lister.
Collapse
|
33
|
Replicating poxviruses for human cancer therapy. J Microbiol 2015; 53:209-18. [PMID: 25845536 DOI: 10.1007/s12275-015-5041-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/04/2015] [Accepted: 03/19/2015] [Indexed: 01/29/2023]
Abstract
Naturally occurring oncolytic viruses are live, replication-proficient viruses that specifically infect human cancer cells while sparing normal cell counterparts. Since the eradication of smallpox in the 1970s with the aid of vaccinia viruses, the vaccinia viruses and other genera of poxviruses have shown various degrees of safety and efficacy in pre-clinical or clinical application for human anti-cancer therapeutics. Furthermore, we have recently discovered that cellular tumor suppressor genes are important in determining poxviral oncolytic tropism. Since carcinogenesis is a multi-step process involving accumulation of both oncogene and tumor suppressor gene abnormalities, it is interesting that poxvirus can exploit abnormal cellular tumor suppressor signaling for its oncolytic specificity and efficacy. Many tumor suppressor genes such as p53, ATM, and RB are known to play important roles in genomic fidelity/maintenance. Thus, tumor suppressor gene abnormality could affect host genomic integrity and likely disrupt intact antiviral networks due to accumulation of genetic defects, which would in turn result in oncolytic virus susceptibility. This review outlines the characteristics of oncolytic poxvirus strains, including vaccinia, myxoma, and squirrelpox virus, recent progress in elucidating the molecular connection between oncogene/tumor suppressor gene abnormalities and poxviral oncolytic tropism, and the associated preclinical/clinical implications. I would also like to propose future directions in the utility of poxviruses for oncolytic virotherapy.
Collapse
|
34
|
Sánchez-Sampedro L, Perdiguero B, Mejías-Pérez E, García-Arriaza J, Di Pilato M, Esteban M. The evolution of poxvirus vaccines. Viruses 2015; 7:1726-803. [PMID: 25853483 PMCID: PMC4411676 DOI: 10.3390/v7041726] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 02/07/2023] Open
Abstract
After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases.
Collapse
MESH Headings
- Animals
- History, 18th Century
- History, 19th Century
- History, 20th Century
- History, 21st Century
- Humans
- Poxviridae/immunology
- Poxviridae/isolation & purification
- Smallpox/prevention & control
- Smallpox Vaccine/history
- Smallpox Vaccine/immunology
- Smallpox Vaccine/isolation & purification
- Vaccines, Attenuated/history
- Vaccines, Attenuated/immunology
- Vaccines, Attenuated/isolation & purification
- Vaccines, Synthetic/history
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/isolation & purification
Collapse
Affiliation(s)
- Lucas Sánchez-Sampedro
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Ernesto Mejías-Pérez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain
| | - Mauro Di Pilato
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid-28049, Spain.
| |
Collapse
|
35
|
From lesions to viral clones: biological and molecular diversity amongst autochthonous Brazilian vaccinia virus. Viruses 2015; 7:1218-37. [PMID: 25785515 PMCID: PMC4379567 DOI: 10.3390/v7031218] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/05/2015] [Accepted: 03/09/2015] [Indexed: 02/02/2023] Open
Abstract
Vaccinia virus (VACV) has had an important role for humanity because of its use during the smallpox eradication campaign. VACV is the etiologic agent of the bovine vaccinia (BV), an emerging zoonosis that has been associated with economic, social, veterinary and public health problems, mainly in Brazil and India. Despite the current and historical VACV importance, there is little information about its circulation, prevalence, origins and maintenance in the environment, natural reservoirs and diversity. Brazilian VACV (VACV-BR) are grouped into at least two groups based on genetic and biological diversity: group 1 (G1) and group 2 (G2). In this study, we went to the field and investigated VACV clonal diversity directly from exanthemous lesions, during BV outbreaks. Our results demonstrate that the G1 VACV-BR were more frequently isolated. Furthermore, we were able to co-detect the two variants (G1 and G2) in the same sample. Molecular and biological analysis corroborated previous reports and confirmed the co-circulation of two VACV-BR lineages. The detected G2 clones presented exclusive genetic and biological markers, distinct to reference isolates, including VACV-Western Reserve. Two clones presented a mosaic profile, with both G1 and G2 features based on the molecular analysis of A56R, A26L and C23L genes. Indeed, some SNPs and INDELs in A56R nucleotide sequences were observed among clones of the same virus population, maybe as a result of an increased mutation rate in a mixed population. These results provide information about the diversity profile in VACV populations, highlighting its importance to VACV evolution and maintenance in the environment.
Collapse
|
36
|
Kidokoro M, Shida H. Vaccinia Virus LC16m8∆ as a Vaccine Vector for Clinical Applications. Vaccines (Basel) 2014; 2:755-71. [PMID: 26344890 PMCID: PMC4494248 DOI: 10.3390/vaccines2040755] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 09/16/2014] [Accepted: 09/28/2014] [Indexed: 01/14/2023] Open
Abstract
The LC16m8 strain of vaccinia virus, the active ingredient in the Japanese smallpox vaccine, was derived from the Lister/Elstree strain. LC16m8 is replication-competent and has been administered to over 100,000 infants and 3,000 adults with no serious adverse reactions. Despite this outstanding safety profile, the occurrence of spontaneously-generated large plaque-forming virulent LC16m8 revertants following passage in cell culture is a major drawback. We identified the gene responsible for the reversion and deleted the gene (B5R) from LC16m8 to derive LC16m8Δ. LC16m8∆ is non-pathogenic in immunodeficient severe combined immunodeficiency (SCID) mice, genetically-stable and does not reverse to a large-plaque phenotype upon passage in cell culture, even under conditions in which most LC16m8 populations are replaced by revertants. Moreover, LC16m8∆ is >500-fold more effective than the non-replicating vaccinia virus (VV), Modified Vaccinia Ankara (MVA), at inducing murine immune responses against pathogenic VV. LC16m8∆, which expresses the SIV gag gene, also induced anti-Gag CD8⁺ T-cells more efficiently than MVA and another non-replicating VV, Dairen I minute-pock variants (DIs). Moreover, LC16m8∆ expressing HIV-1 Env in combination with a Sendai virus vector induced the production of anti-Env antibodies and CD8⁺ T-cells. Thus, the safety and efficacy of LC16m8∆ mean that it represents an outstanding platform for the development of human vaccine vectors.
Collapse
Affiliation(s)
- Minoru Kidokoro
- Department of Virology III, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan.
| | - Hisatoshi Shida
- Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan.
| |
Collapse
|
37
|
Orba Y, Sasaki M, Yamaguchi H, Ishii A, Thomas Y, Ogawa H, Hang'ombe BM, Mweene AS, Morikawa S, Saijo M, Sawa H. Orthopoxvirus infection among wildlife in Zambia. J Gen Virol 2014; 96:390-394. [PMID: 25319753 DOI: 10.1099/vir.0.070219-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human monkeypox is a viral zoonosis caused by monkeypox virus, an orthopoxvirus (OPXV). The majority of human monkeypox cases have been reported in moist forested regions in West and Central Africa, particularly in the Democratic Republic of the Congo (DRC). In this study we investigated zoonotic OPXV infection among wild animals in Zambia, which shares a border with DRC, to assess the geographical distribution of OPXV. We screened for OPXV antibodies in sera from non-human primates (NHPs), rodents and shrews by ELISA, and performed real-time PCR to detect OPXV DNA in spleen samples. Serological analysis indicated that 38 of 259 (14.7 %) rodents, 14 of 42 (33.3 %) shrews and 4 of 188 (2.1 %) NHPs had antibodies against OPXV. The OPXV DNA could not be detected in spleens from any animals tested. Our results indicated that wild animals living in rural human habitation areas of Zambia have been infected with OPXV.
Collapse
Affiliation(s)
- Yasuko Orba
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Hiroki Yamaguchi
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| | - Akihiro Ishii
- Hokudai Center for Zoonosis Control in Zambia, PO Box 32379, Lusaka, Zambia
| | - Yuka Thomas
- Hokudai Center for Zoonosis Control in Zambia, PO Box 32379, Lusaka, Zambia
| | - Hirohito Ogawa
- Hokudai Center for Zoonosis Control in Zambia, PO Box 32379, Lusaka, Zambia
| | - Bernard M Hang'ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, PO Box 32379, Lusaka, Zambia
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjyuku-ku, Tokyo 162-8640, Japan
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan
| |
Collapse
|
38
|
Glycosylated and nonglycosylated complement control protein of the lister strain of vaccinia virus. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1330-8. [PMID: 25030055 DOI: 10.1128/cvi.00347-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vaccinia virus complement control protein (VCP) is a secreted viral protein that binds the C3b and C4b complement components and inhibits the classic and alternative complement pathways. Previously, we reported that an attenuated smallpox vaccine, LC16m8, which was derived from the Lister strain of vaccinia virus (VV-Lister), expressed a glycosylated form of VCP, whereas published sequence data at that time indicated that the VV-Lister VCP has no motif for N-linked glycosylation. We were interested in determining whether the glycosylation of VCP impairs its biological activity, possibly contributing to the attenuation of LC16m8, and the likely origin of the glycosylated VCP. Expression analysis indicated that VV-Lister contains substrains expressing glycosylated VCP and substrains expressing nonglycosylated VCP. Other strains of smallpox vaccine, as well as laboratory strains of vaccinia virus, all expressed nonglycosylated VCP. Individual Lister virus clones expressing either the glycosylated VCP or the nonglycosylated species were isolated, and partially purified VCP from the isolates were found to be functional equivalents in binding human C3b and C4b complement proteins and inhibiting hemolysis and in immunogenicity. Recombinant vaccinia viruses expressing FLAG-tagged glycosylated VCP (FLAG-VCPg) and nonglycosylated VCP (FLAG-VCP) were constructed based on the Western Reserve strain. Purified FLAG-VCP and FLAG-VCPg bind human C3b and C4b and blocked complement-mediated hemolysis. Our data suggest that glycosylation did not affect the biological activity of VCP and thus may not have contributed to the attenuation of LC16m8. In addition, the LC16m8 virus likely originated from a substrain of VV-Lister that expresses glycosylated VCP.
Collapse
|
39
|
Safety of attenuated smallpox vaccine LC16m8 in immunodeficient mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:1261-6. [PMID: 24990910 DOI: 10.1128/cvi.00199-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Freeze-dried live attenuated smallpox vaccine LC16m8 prepared in cell culture has been the sole smallpox vaccine licensed in Japan since 1975 and was recently recommended as a WHO stockpile vaccine. We evaluated the safety of recently remanufactured lots of LC16m8 using a series of immunodeficient mouse models. These models included suckling mice, severe combined immunodeficiency disease (SCID) mice, and wild-type mice treated with cyclosporine. LC16m8 showed extremely low virulence in each of the three mouse models compared with that of its parental strains, Lister and LC16mO. These results provide further evidence that LC16m8 is one of the safest replication-competent smallpox vaccines in the world and may be considered for use in immunodeficient patients.
Collapse
|
40
|
Ferguson BJ, Benfield CTO, Ren H, Lee VH, Frazer GL, Strnadova P, Sumner RP, Smith GL. Vaccinia virus protein N2 is a nuclear IRF3 inhibitor that promotes virulence. J Gen Virol 2013; 94:2070-2081. [PMID: 23761407 PMCID: PMC3749055 DOI: 10.1099/vir.0.054114-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the N2L gene (vΔN2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the vΔN2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, vΔN2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus.
Collapse
Affiliation(s)
- Brian J Ferguson
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Camilla T O Benfield
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Hongwei Ren
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Vivian H Lee
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK
| | - Gordon L Frazer
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Pavla Strnadova
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Rebecca P Sumner
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Geoffrey L Smith
- Department of Virology, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
41
|
Bhanuprakash V, Hosamani M, Venkatesan G, Balamurugan V, Yogisharadhya R, Singh RK. Animal poxvirus vaccines: a comprehensive review. Expert Rev Vaccines 2013; 11:1355-74. [PMID: 23249235 DOI: 10.1586/erv.12.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The family Poxviridae includes several viruses of medical and veterinary importance. Global concerted efforts combined with an intensive mass-vaccination campaign with highly efficaceious live vaccine of vaccinia virus have led to eradication of smallpox. However, orthopoxviruses affecting domestic animals continue to cause outbreaks in several endemic countries. Different kinds of vaccines starting from conventional inactivated/attenuated to recombinant protein-based vaccines have been used for control of poxvirus infections. Live virus homologous vaccines are currently in use for diseases including capripox, parapox, camelpox and fowlpox, and these vaccines are highly effective in eliciting (with the exception of parapoxviruses) long-lasting immunity. Attenuated strains of poxviruses have been exploited as vectored vaccines to deliver heterologous immunogens, many of them being licensed for use in animals. Worthy of note are vaccinia virus, fowlpox virus, capripoxvirus, parapoxvirus and canary pox, which have been successfully used for developing new-generation vaccines targeting many important pathogens. Remarkable features of these vaccines are thermostability and their ability to engender both cellular and humoral immune responses to the target pathogens. This article updates the important vaccines available for poxviruses of livestock and identifies some of the research gaps in the present context of poxvirus research.
Collapse
|
42
|
Zhang Q, Tian M, Feng Y, Zhao K, Xu J, Liu Y, Shao Y. Genomic sequence and virulence of clonal isolates of vaccinia virus Tiantan, the Chinese smallpox vaccine strain. PLoS One 2013; 8:e60557. [PMID: 23593246 PMCID: PMC3625194 DOI: 10.1371/journal.pone.0060557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 02/28/2013] [Indexed: 11/19/2022] Open
Abstract
Despite the worldwide eradication of smallpox in 1979, the potential bioterrorism threat from variola virus and the ongoing use of vaccinia virus (VACV) as a vector for vaccine development argue for continued research on VACV. In China, the VACV Tiantan strain (TT) was used in the smallpox eradication campaign. Its progeny strain is currently being used to develop a human immunodeficiency virus (HIV) vaccine. Here we sequenced the full genomes of five TT clones isolated by plaque purification from the TT (752-1) viral stock. Phylogenetic analysis with other commonly used VACV strains showed that TT (752-1) and its clones clustered and exhibited higher sequence diversity than that found in Dryvax clones. The ∼190 kbp genomes of TT appeared to encode 273 open reading frames (ORFs). ORFs located in the middle of the genome were more conserved than those located at the two termini, where many virulence and immunomodulation associated genes reside. Several patterns of nucleotide changes including point mutations, insertions and deletions were identified. The polymorphisms in seven virulence-associated proteins and six immunomodulation-related proteins were analyzed. We also investigated the neuro- and skin- virulence of TT clones in mice and rabbits, respectively. The TT clones exhibited significantly less virulence than the New York City Board of Health (NYCBH) strain, as evidenced by less extensive weight loss and morbidity in mice as well as produced smaller skin lesions and lower incidence of putrescence in rabbits. The complete genome sequences, ORF annotations, and phenotypic diversity yielded from this study aid our understanding of the Chinese historic TT strain and are useful for HIV vaccine projects employing TT as a vector.
Collapse
Affiliation(s)
- Qicheng Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
| | - Meijuan Tian
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Zhao
- National Vaccine and Serum Institute, Beijing, China
| | - Jing Xu
- National Vaccine and Serum Institute, Beijing, China
| | - Ying Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail: (YS); (YL)
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention (NCAIDS), Chinese Center for Disease Control and Prevention, Beijing, China
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin, China
- * E-mail: (YS); (YL)
| |
Collapse
|
43
|
|
44
|
Kennedy JS, Gurwith M, Yokote H, Greenberg RN. Reply to Friedman. J Infect Dis 2012. [DOI: 10.1093/infdis/jis454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
45
|
Abstract
Smallpox was eradicated using variant forms of vaccinia virus-based vaccines. One of these was Dryvax, a calf lymph vaccine derived from the New York City Board of Health strain. We used genome-sequencing technology to examine the genetic diversity of the population of viruses present in a sample of Dryvax. These studies show that the conserved cores of these viruses exhibit a lower level of sequence variation than do the telomeres. However, even though the ends of orthopoxviruses are more genetically plastic than the cores, there are still many telomeric genes that are conserved as intact open reading frames in the 11 genomes that we, and 4 genomes that others, have sequenced. Most of these genes likely modulate inflammation. Our sequencing also detected an evolving pattern of mutation, with some genes being highly fragmented by randomly assorting mutations (e.g., M1L), while other genes are intact in most viruses but have been disrupted in individual strains (e.g., I4L in strain DPP17). Over 85% of insertion and deletion mutations are associated with repeats, and a rare new isolate bearing a large deletion in the right telomere was identified. All of these strains cluster in dendrograms consistent with their origin but which also surprisingly incorporate horsepox virus. However, these viruses also exhibit a "patchy" pattern of polymorphic sites characteristic of recombinants. There is more genetic diversity detected within a vial of Dryvax than between variola virus major and minor strains, and our study highlights how propagation methods affect the genetics of orthopoxvirus populations.
Collapse
|
46
|
Grosenbach DW, Jordan R, Hruby DE. Development of the small-molecule antiviral ST-246 as a smallpox therapeutic. Future Virol 2011; 6:653-671. [PMID: 21837250 DOI: 10.2217/fvl.11.27] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246(®) (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the 'animal rule'). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency.
Collapse
Affiliation(s)
- Douglas W Grosenbach
- SIGA Technologies, Inc., 4575 SW Research Way, Suite 230, Corvallis, OR 97333, USA
| | | | | |
Collapse
|
47
|
Gordon SN, Cecchinato V, Andresen V, Heraud JM, Hryniewicz A, Parks RW, Venzon D, Chung HK, Karpova T, McNally J, Silvera P, Reimann KA, Matsui H, Kanehara T, Shinmura Y, Yokote H, Franchini G. Smallpox vaccine safety is dependent on T cells and not B cells. J Infect Dis 2011; 203:1043-53. [PMID: 21450994 PMCID: PMC3068024 DOI: 10.1093/infdis/jiq162] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/03/2010] [Indexed: 11/13/2022] Open
Abstract
The licensed smallpox vaccine, ACAM2000, is a cell culture derivative of Dryvax. Both ACAM2000 and Dryvax are administered by skin scarification and can cause progressive vaccinia, with skin lesions that disseminate to distal sites. We have investigated the immunologic basis of the containment of vaccinia in the skin with the goal to identify safer vaccines for smallpox. Macaques were depleted systemically of T or B cells and vaccinated with either Dryvax or an attenuated vaccinia vaccine, LC16m8. B cell depletion did not affect the size of skin lesions induced by either vaccine. However, while depletion of both CD4(+) and CD8(+) T cells had no adverse effects on LC16m8-vaccinated animals, it caused progressive vaccinia in macaques immunized with Dryvax. As both Dryvax and LC16m8 vaccines protect healthy macaques from a lethal monkeypox intravenous challenge, our data identify LC16m8 as a safer and effective alternative to ACAM2000 and Dryvax vaccines for immunocompromised individuals.
Collapse
Affiliation(s)
| | | | | | - Jean-Michel Heraud
- World Health Organization-National Influenza Laboratory, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | | | | | | | - Tatiana Karpova
- Fluorescence Imaging Facility, Laboratory of Receptor Biology, Gene Expression and Metabolism
| | - James McNally
- National Cancer Institute, Bethesda, and Southern Research Institute, Frederick
| | - Peter Silvera
- National Cancer Institute, Bethesda, and Southern Research Institute, Frederick
| | - Keith A. Reimann
- Division of Viral Pathogenesis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Hajime Matsui
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Tomomi Kanehara
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Yasuhiko Shinmura
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | - Hiroyuki Yokote
- The Chemo-Sero-Therapeutic Research Institute (KAKETSUKEN), Kumamoto, Japan
| | | |
Collapse
|
48
|
Hikichi M, Kidokoro M, Haraguchi T, Iba H, Shida H, Tahara H, Nakamura T. MicroRNA regulation of glycoprotein B5R in oncolytic vaccinia virus reduces viral pathogenicity without impairing its antitumor efficacy. Mol Ther 2011; 19:1107-15. [PMID: 21386827 DOI: 10.1038/mt.2011.36] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vaccinia virus, once widely used for smallpox vaccine, has recently been engineered and used as an oncolytic virus for cancer virotherapy. Their replication has been restricted to tumors by disrupting viral genes and complementing them with products that are found specifically in tumor cells. Here, we show that microRNA (miRNA) regulation also enables tumor-specific viral replication by altering the expression of a targeted viral gene. Since the deletion of viral glycoprotein B5R not only decreases viral pathogenicity but also impairs the oncolytic activity of vaccinia virus, we used miRNA-based gene regulation to suppress B5R expression through let-7a, a miRNA that is downregulated in many tumors. The expression of B5R and the replication of miRNA-regulated vaccinia virus (MRVV) with target sequences complementary to let-7a in the 3'-untranslated region (UTR) of the B5R gene depended on the endogenous expression level of let-7a in the infected cells. Intratumoral administration of MRVV in mice with human cancer xenografts that expressed low levels of let-7a resulted in tumor-specific viral replication and significant tumor regression without side effects, which were observed in the control virus. These results demonstrate that miRNA-based gene regulation is a potentially novel and versatile platform for engineering vaccinia viruses for cancer virotherapy.
Collapse
Affiliation(s)
- Mina Hikichi
- Core Facility for Therapeutic Vectors, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Kotwal GJ. Influence of glycosylation and oligomerization of vaccinia virus complement control protein on level and pattern of functional activity and immunogenicity. Protein Cell 2011; 1:1084-92. [PMID: 21213103 DOI: 10.1007/s13238-010-0139-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/23/2010] [Indexed: 11/25/2022] Open
Abstract
Vaccinia virus complement control protein (VCP) is one of the proteins encoded by vaccinia virus to modulate the host inflammatory response. VCP modulates the inflammatory response and protects viral habitat by inhibiting the classical and the alternative pathways of complement activation. The extended structure of VCP, mobility between its sequential domains, charge distribution and type of residues at the binding regions are factors that have been identified to influence its ability to bind to complement proteins. We report that a Lister strain of vaccinia virus encodes a VCP homolog (Lis VCP) that is functional, glycosylated, has two amino acids less than the well-characterized VCP from vaccinia virus WR strain (WR VCP), and the human smallpox inhibitor of complement enzymes (SPICE) from variola virus. The glycosylated VCP of Lister is immunogenic in contrast to the weak immunogenicity of the nonglycosylated VCP. Lis VCP is the only orthopoxviral VCP homolog found to be glycosylated, and we speculate that glycosylation influences its pattern of complement inhibition. We also correlate dimerization of VCP observed only in mammalian and baculovirus expression systems to higher levels of activity than monomers, observed in the yeast expression system.
Collapse
Affiliation(s)
- Girish J Kotwal
- Department of Pharmaceutical Sciences, Sullivan University College of Pharmacy, Louisville, KY, USA.
| |
Collapse
|
50
|
Abstract
The eradication of smallpox, one of the great triumphs of medicine, was accomplished through the prophylactic administration of live vaccinia virus, a comparatively benign relative of variola virus, the causative agent of smallpox. Nevertheless, recent fears that variola virus may be used as a biological weapon together with the present susceptibility of unimmunized populations have spurred the development of new-generation vaccines that are safer than the original and can be produced by modern methods. Predicting the efficacy of such vaccines in the absence of human smallpox, however, depends on understanding the correlates of protection. This review outlines the biology of poxviruses with particular relevance to vaccine development, describes protein targets of humoral and cellular immunity, compares animal models of orthopoxvirus disease with human smallpox, and considers the status of second- and third-generation smallpox vaccines.
Collapse
Affiliation(s)
- Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3210, USA.
| |
Collapse
|