1
|
Roman-Sosa G, Meyer D, Dellarole M, Wengen DÀ, Lerch S, Postel A, Becher P. Virus-neutralizing monoclonal antibodies against bovine viral diarrhea virus and classical swine fever virus target conformational and linear epitopes on E2 glycoprotein subdomains. Microbiol Spectr 2025; 13:e0204124. [PMID: 39998231 PMCID: PMC11960116 DOI: 10.1128/spectrum.02041-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/12/2025] [Indexed: 02/26/2025] Open
Abstract
The envelope glycoprotein E2 of pestiviruses plays a crucial role in viral entry and elicits a virus-neutralizing humoral immune response. Consequently, the epitopes recognized by monoclonal antibodies (mAbs) on E2 are a significant focus in pestivirus research and diagnostics. In this study, we characterized a panel of murine mAbs against the E2 protein of classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV), two major pathogens for swine and cattle, respectively. The majority of mAbs neutralized the virus in vitro and recognized conformational epitopes, which were also detected by sera from infected animals. Notably, binding to these epitopes was retained after low-pH treatment, although conformational epitopes were disrupted upon disulfide bond reduction. The epitopes of the anti-CSFV mAbs were located in various domains of E2, including the interdomain linker sequences. Conversely, all but one of the anti-BVDV mAb epitopes were located in domain A. Moreover, the reactivity of one mAb suggests a conformational interdependence among the linker sequences of pestivirus E2. The panel of mAbs characterized in this study holds potential to support basic research on the mechanism of early pestivirus invasion and to assist in the design of E2-based diagnostic tools and vaccines. IMPORTANCE Classical swine fever virus (CSFV) and bovine viral diarrhea virus (BVDV), which belong to the family Flaviviridae, cause economically significant diseases in pigs and cattle. The pestivirus glycoprotein E2 is located on the viral surface and is targeted by antibodies that neutralize virus infection. Due to its variability, E2 is a useful antigen for the development of diagnostic tests to differentiate between infections caused by different pestiviruses. In the present study, two panels of monoclonal antibodies (mAbs) specifically reactive with either CSFV or BVDV E2 were characterized. Interestingly, the majority of mAbs neutralized the respective virus in vitro. Epitope mapping revealed that the mAbs recognized low-pH-resistant epitopes of conformational nature located in different domains of CSFV E2 (anti-CSFV mAbs) or in domain A of BVDV E2 (anti-BVDV mAbs). The recombinant proteins along with the characterized mAbs have the potential to develop improved pestivirus-specific diagnostic tests and vaccines.
Collapse
Affiliation(s)
- Gleyder Roman-Sosa
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
- EU & WOAH Reference Laboratory for Classical Swine Fever, University of Veterinary Medicine, Hannover, Germany
| | - Denise Meyer
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
- EU & WOAH Reference Laboratory for Classical Swine Fever, University of Veterinary Medicine, Hannover, Germany
| | | | - Doris à Wengen
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
- EU & WOAH Reference Laboratory for Classical Swine Fever, University of Veterinary Medicine, Hannover, Germany
| | - Susanne Lerch
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
| | - Alexander Postel
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
- EU & WOAH Reference Laboratory for Classical Swine Fever, University of Veterinary Medicine, Hannover, Germany
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Hannover, Germany
- EU & WOAH Reference Laboratory for Classical Swine Fever, University of Veterinary Medicine, Hannover, Germany
| |
Collapse
|
2
|
Feng YT, Yang CY, Wu L, Wang YC, Shen GW, Lin P. BmSPP is a virus resistance gene in Bombyx mori. Front Immunol 2024; 15:1377270. [PMID: 38585268 PMCID: PMC10995218 DOI: 10.3389/fimmu.2024.1377270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Signal peptide peptidase (SPP) is an intramembrane protease involved in a variety of biological processes, it participates in the processing of signal peptides after the release of the nascent protein to regulate the endoplasmic reticulum associated degradation (ERAD) pathway, binds misfolded membrane proteins, and aids in their clearance process. Additionally, it regulates normal immune surveillance and assists in the processing of viral proteins. Although SPP is essential for many viral infections, its role in silkworms remains unclear. Studying its role in the silkworm, Bombyx mori , may be helpful in breeding virus-resistant silkworms. Methods First, we performed RT-qPCR to analyze the expression pattern of BmSPP. Subsequently, we inhibited BmSPP using the SPP inhibitor 1,3-di-(N-carboxybenzoyl-L-leucyl-L-leucylaminopropanone ((Z-LL)2-ketone) and downregulated the expression of BmSPP using CRISPR/Cas9 gene editing. Furthermore, we assessed the impact of these interventions on the proliferation of Bombyx mori nucleopolyhedrovirus (BmNPV). Results We observed a decreased in the expression of BmSPP during viral proliferation. It was found that higher concentration of the inhibitor resulted in greater inhibition of BmNPV proliferation. The down-regulation of BmSPP in both in vivo and in vitro was found to affect the proliferation of BmNPV. In comparison to wild type silkworm, BmSPPKO silkworms exhibited a 12.4% reduction in mortality rate. Discussion Collectively, this work demonstrates that BmSPP plays a negative regulatory role in silkworm resistance to BmNPV infection and is involved in virus proliferation and replication processes. This finding suggests that BmSPP servers as a target gene for BmNPV virus resistance in silkworms and can be utilized in resistance breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Lin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Wu Y, Thomas GM, Thomsen M, Bahri S, Lieberman RL. Lipid environment modulates processivity and kinetics of a presenilin homolog acting on multiple substrates in vitro. J Biol Chem 2023; 299:105401. [PMID: 38270390 PMCID: PMC10679502 DOI: 10.1016/j.jbc.2023.105401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 01/26/2024] Open
Abstract
Intramembrane proteases (IPs) hydrolyze peptides in the lipid membrane. IPs participate in a number of cellular pathways including immune response and surveillance, and cholesterol biosynthesis, and they are exploited by viruses for replication. Despite their broad importance across biology, how activity is regulated in the cell to control protein maturation and release of specific bioactive peptides at the right place and right time remains largely unanswered, particularly for the intramembrane aspartyl protease (IAP) subtype. At a molecular biochemical level, different IAP homologs can cleave non-biological substrates, and there is no sequence recognition motif among the nearly 150 substrates identified for just one IAP, presenilin-1, the catalytic component of γ-secretase known for its involvement in the production of amyloid-β plaques associated with Alzheimer disease. Here we used gel-based assays combined with quantitative mass spectrometry and FRET-based kinetics assays to probe the cleavage profile of the presenilin homolog from the methanogen Methanoculleus marisnigri JR1 as a function of the surrounding lipid-mimicking environment, either detergent micelles or bicelles. We selected four biological IAP substrates that have not undergone extensive cleavage profiling previously, namely, the viral core protein of Hepatitis C virus, the viral core protein of Classical Swine Fever virus, the transmembrane segment of Notch-1, and the tyrosine receptor kinase ErbB4. Our study demonstrates a proclivity toward cleavage of substrates at positions of low average hydrophobicity and a consistent role for the lipid environment in modulating kinetic properties.
Collapse
Affiliation(s)
- Yuqi Wu
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Gwendell M Thomas
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Max Thomsen
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sara Bahri
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
| |
Collapse
|
4
|
Schwake C, Hyon M, Chishti AH. Signal peptide peptidase: A potential therapeutic target for parasitic and viral infections. Expert Opin Ther Targets 2022; 26:261-273. [PMID: 35235480 DOI: 10.1080/14728222.2022.2047932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Signal peptide peptidase (SPP) is a GxGD-type intramembrane-cleaving aspartyl protease responsible for clearing accumulating signal peptides in the endoplasmic reticulum. SPP is conserved among all kingdoms and is essential for maintaining cell homeostasis. Inhibition of SPP with selective inhibitors and the structurally similar HIV protease inhibitors results in signal peptide accumulation and subsequent cell death. Identification of SPP homologues in major human parasitic infections has opened a new therapeutic opportunity. Moreover, the essentiality of mammalian SPP-mediated viral protein processing during infection is emerging. AREAS COVERED This review introduces the discovery and biological function of human SPP enzymes and identify parasitic homologues as pharmacological targets of both SPP and HIV protease inhibitors. Later, the role of mammalian SPP during viral infection and how disruption of host SPP can be employed as a novel antiviral therapy are examined and discussed. EXPERT OPINION Parasitic and viral infections cause severe health and economic burden, exacerbated by the lack of new therapeutics in the pipeline. SPP has been shown to be essential for malaria parasite growth and encouraging evidence in other parasites demonstrates broad essentiality of these proteases as therapeutic targets. As drug resistant parasite and viruses emerge, SPP inhibition will provide a new generation of compounds to counter the growing threat of antimicrobial resistance.
Collapse
Affiliation(s)
- Christopher Schwake
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Michael Hyon
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Athar H Chishti
- Department of Developmental, Molecular, and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Chen X, Ding X, Zhu L, Zhang G. The identification of a B-cell epitope in bovine viral diarrhea virus (BVDV) core protein based on a mimotope obtained from a phage-displayed peptide library. Int J Biol Macromol 2021; 183:2376-2386. [PMID: 34111485 DOI: 10.1016/j.ijbiomac.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/03/2023]
Abstract
Bovine pestivirus A and B, previously known as bovine viral diarrhea virus (BVDV)-1 and 2, respectively, are important pathogens of cattle worldwide, which causes significant economic losses. B-cell epitopes in BVDV glycoprotein E2 and nonstructural protein NS2/3 have been extensively identified. In this study, we screened a 12-mer phage display peptide library using commercial goat anti-BVDV serum, and identified a mimotope "LTPHKHHKHLHA" referred to as P3. With sequence alignment, a putative B-cell epitope "77ESRKKLEKALLA88" termed as P3-BVDV1/2 residing in BVDV core protein was identified. The synthesized peptides of both P3 and P3-BVDV1/2 show strong reactivity with BVDV serum in immune blot assay. Immunization of mice with these individual peptides leads to the production of antibody that cannot neutralize virus infectivity. Thus for the first time we identified a B-cell epitope, "77ESRKKLEKALLA88", in BVDV core protein. Interestingly, the epitope was highly conserved in Pestivirus A, B, C, D, as well as emerging Pestivirus E and I, but highly variable in Pestiviruses H, G, F, and J, as well as unclassified Pestivirus originated from non-ruminant animals. Whether this putative B-cell epitope is implicated in pestivirus pathogenesis or evolution needs further investigations once large numbers of isolates are available in the future.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Cattle
- Cell Surface Display Techniques
- Diarrhea Virus 1, Bovine Viral/genetics
- Diarrhea Virus 1, Bovine Viral/immunology
- Diarrhea Virus 1, Bovine Viral/pathogenicity
- Diarrhea Virus 2, Bovine Viral/genetics
- Diarrhea Virus 2, Bovine Viral/immunology
- Diarrhea Virus 2, Bovine Viral/pathogenicity
- Dogs
- Epitope Mapping
- Epitopes, B-Lymphocyte/administration & dosage
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Female
- Immunization
- Immunogenicity, Vaccine
- Madin Darby Canine Kidney Cells
- Mice, Inbred BALB C
- Mutation
- Peptide Library
- Viral Core Proteins/administration & dosage
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Mice
Collapse
Affiliation(s)
- Xinye Chen
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiuyan Ding
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Liqian Zhu
- College of Life Sciences, Hebei University, Baoding 071002, China; College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
6
|
Abstract
Pestiviruses are members of the family Flaviviridae, a group of enveloped viruses that bud at intracellular membranes. Pestivirus particles contain three glycosylated envelope proteins, Erns, E1, and E2. Among them, E1 is the least characterized concerning both biochemical features and function. E1 from bovine viral diarrhea virus (BVDV) strain CP7 was analyzed with regard to its intracellular localization and membrane topology. Here, it is shown that even in the absence of other viral proteins, E1 is not secreted or expressed at the cell surface but localizes predominantly in the endoplasmic reticulum (ER). Using engineered chimeric transmembrane domains with sequences from E1 and vesicular stomatitis virus G protein, the E1 ER-retention signal could be narrowed down to six fully conserved polar residues in the middle part of the transmembrane domain of E1. Retention was observed even when several of these polar residues were exchanged for alanine. Mutations with a strong impact on E1 retention prevented recovery of infectious viruses when tested in the viral context. Analysis of the membrane topology of E1 before and after the signal peptide cleavage via a selective permeabilization and an in vivo labeling approach revealed that mature E1 is a typical type I transmembrane protein with a single span transmembrane anchor at its C terminus, whereas it adopts a hairpin-like structure with the C terminus located in the ER lumen when the precleavage situation is mimicked by blocking the cleavage site between E1 and E2. IMPORTANCE The shortage of specific antibodies against E1, making detection and further analysis of E1 difficult, resulted in a lack of knowledge on E1 compared to Erns and E2 with regard to biosynthesis, structure, and function. It is known that pestiviruses bud intracellularly. Here, we show that E1 contains its own ER retention signal: six fully conserved polar residues in the middle part of the transmembrane domain are shown to be the determinants for ER retention of E1. Moreover, those six polar residues could serve as a functional group that intensely affect the generation of infectious viral particles. In addition, the membrane topology of E1 has been determined. In this context, we also identified dynamic changes in membrane topology of E1 with the carboxy terminus located on the luminal side of the ER in the precleavage state and relocation of this sequence upon signal peptidase cleavage. Our work provides the first systematic analysis of the pestiviral E1 protein with regard to its biochemical and functional characteristics.
Collapse
|
7
|
The E rns Carboxyterminus: Much More Than a Membrane Anchor. Viruses 2021; 13:v13071203. [PMID: 34201636 PMCID: PMC8310223 DOI: 10.3390/v13071203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pestiviruses express the unique essential envelope protein Erns, which exhibits RNase activity, is attached to membranes by a long amphipathic helix, and is partially secreted from infected cells. The RNase activity of Erns is directly connected with pestivirus virulence. Formation of homodimers and secretion of the protein are hypothesized to be important for its role as a virulence factor, which impairs the host's innate immune response to pestivirus infection. The unusual membrane anchor of Erns raises questions with regard to proteolytic processing of the viral polyprotein at the Erns carboxy-terminus. Moreover, the membrane anchor is crucial for establishing the critical equilibrium between retention and secretion and ensures intracellular accumulation of the protein at the site of virus budding so that it is available to serve both as structural component of the virion and factor controlling host immune reactions. In the present manuscript, we summarize published as well as new data on the molecular features of Erns including aspects of its interplay with the other two envelope proteins with a special focus on the biochemistry of the Erns membrane anchor.
Collapse
|
8
|
Oetter KM, Kühn J, Meyers G. Charged Residues in the Membrane Anchor of the Pestiviral E rns Protein Are Important for Processing and Secretion of E rns and Recovery of Infectious Viruses. Viruses 2021; 13:v13030444. [PMID: 33801849 PMCID: PMC8002126 DOI: 10.3390/v13030444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/28/2022] Open
Abstract
The pestivirus envelope protein Erns is anchored in membranes via a long amphipathic helix. Despite the unusual membrane topology of the Erns membrane anchor, it is cleaved from the following glycoprotein E1 by cellular signal peptidase. This was proposed to be enabled by a salt bridge-stabilized hairpin structure (so-called charge zipper) formed by conserved charged residues in the membrane anchor. We show here that the exchange of one or several of these charged residues reduces processing at the Erns carboxy-terminus to a variable extend, but reciprocal mutations restoring the possibility to form salt bridges did not necessarily restore processing efficiency. When introduced into an Erns-only expression construct, these mutations enhanced the naturally occurring Erns secretion significantly, but again to varying extents that did not correlate with the number of possible salt bridges. Equivalent effects on both processing and secretion were also observed when the proteins were expressed in avian cells, which points at phylogenetic conservation of the underlying principles. In the viral genome, some of the mutations prevented recovery of infectious viruses or immediately (pseudo)reverted, while others were stable and neutral with regard to virus growth.
Collapse
|
9
|
Downstream Sequences Control the Processing of the Pestivirus E rns-E1 Precursor. J Virol 2020; 95:JVI.01905-20. [PMID: 33028718 DOI: 10.1128/jvi.01905-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
Like other enveloped viruses, pestiviruses employ cellular proteases for processing of their structural proteins. While typical signal peptidase cleavage motifs are present at the carboxy terminus of the signal sequence preceding Erns and the E1/E2 and E2/P7 sites, the Erns-E1 precursor is cleaved by signal peptidase at a highly unusual structure, in which the transmembrane sequence upstream of the cleavage site is replaced by an amphipathic helix. As shown before, the integrity of the amphipathic helix is crucial for efficient processing. The data presented here demonstrate that the E1 sequence downstream of this cleavage site is also important for the cleavage. Carboxy-terminal truncation of the E1 moiety as well as internal deletions in E1 reduced the cleavage efficiency to less than 30% of the wild-type (wt) level. Moreover, the C-terminal truncation by more than 30 amino acids resulted in strong secretion of the uncleaved fusion proteins. The reduced processing and increased secretion were even observed when 10 to 5 amino-terminal residues of E1 were left, whereas extensions by 1 or 3 E1 residues resulted in reduced processing but no significantly increased secretion. In contrast to the E1 sequences, a 10-amino-acid c-myc tag fused to the Erns C terminus had only marginal effect on secretion but was also not processed efficiently. Mutation of the von Heijne sequence upstream of E2 not only blocked the cleavage between E1 and E2 but also prevented the processing between Erns and E2. Thus, processing at the Erns-E1 site is a highly regulated process.IMPORTANCE Cellular signal peptidase (SPase) cleavage represents an important step in maturation of viral envelope proteins. Fine tuning of this system allows for establishment of concerted folding and processing processes in different enveloped viruses. We report here on SPase processing of the Erns-E1-E2 glycoprotein precursor of pestiviruses. Erns-E1 cleavage is delayed and only executed efficiently when the complete E1 sequence is present. C-terminal truncation of the Erns-E1 precursor impairs processing and leads to significant secretion of the protein. The latter is not detected when internal deletions preserving the E1 carboxy terminus are introduced, but also these constructs show impaired processing. Moreover, Erns-E1 is only processed after cleavage at the E1/E2 site. Thus, processing of the pestiviral glycoprotein precursor by SPase is done in an ordered way and depends on the integrity of the proteins for efficient cleavage. The functional importance of this processing scheme is discussed in the paper.
Collapse
|
10
|
Alzahrani N, Wu MJ, Shanmugam S, Yi M. Delayed by Design: Role of Suboptimal Signal Peptidase Processing of Viral Structural Protein Precursors in Flaviviridae Virus Assembly. Viruses 2020; 12:v12101090. [PMID: 32993149 PMCID: PMC7601889 DOI: 10.3390/v12101090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
The Flaviviridae virus family is classified into four different genera, including flavivirus, hepacivirus, pegivirus, and pestivirus, which cause significant morbidity and mortality in humans and other mammals, including ruminants and pigs. These are enveloped, single-stranded RNA viruses sharing a similar genome organization and replication scheme with certain unique features that differentiate them. All viruses in this family express a single polyprotein that encodes structural and nonstructural proteins at the N- and C-terminal regions, respectively. In general, the host signal peptidase cleaves the structural protein junction sites, while virus-encoded proteases process the nonstructural polyprotein region. It is known that signal peptidase processing is a rapid, co-translational event. Interestingly, certain signal peptidase processing site(s) in different Flaviviridae viral structural protein precursors display suboptimal cleavage kinetics. This review focuses on the recent progress regarding the Flaviviridae virus genus-specific mechanisms to downregulate signal peptidase-mediated processing at particular viral polyprotein junction sites and the role of delayed processing at these sites in infectious virus particle assembly.
Collapse
|
11
|
Absence of Signal Peptide Peptidase, an Essential Herpes Simplex Virus 1 Glycoprotein K Binding Partner, Reduces Virus Infectivity In Vivo. J Virol 2019; 93:JVI.01309-19. [PMID: 31511378 DOI: 10.1128/jvi.01309-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
We previously reported that herpes simplex virus (HSV) glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. Binding of gK to SPP is required for HSV-1 infectivity in vitro SPP is a member of the γ-secretase family, and mice lacking SPP are embryonic lethal. To determine how SPP affects HSV-1 infectivity in vivo, the SPP gene was deleted using a tamoxifen-inducible Cre recombinase driven by the ubiquitously expressed ROSA26 promoter. SPP mRNA was reduced by more than 93% in the cornea and trigeminal ganglia (TG) and by 99% in the liver of tamoxifen-injected mice, while SPP protein expression was reduced by 90% compared to the level in control mice. Mice lacking SPP had significantly less HSV-1 replication in the eye as well as reduced gK, UL20, ICP0, and gB transcripts in the cornea and TG compared to levels in control mice. In addition, reduced infiltration of CD45+, CD4+, CD8+, F4/80+, CD11c+, and NK1.1+ T cells was observed in the cornea and TG of SPP-inducible knockout mice compared to that in control mice. Finally, in the absence of SPP, latency was significantly reduced in SPP-inducible knockout mice compared to that in control mice. Thus, in this study we have generated SPP-inducible knockout mice and shown that the absence of SPP affects virus replication in the eye of ocularly infected mice and that this reduction is correlated with the interaction of gK and SPP. These results suggest that blocking this interaction may have therapeutic potential in treating HSV-1-associated eye disease.IMPORTANCE Glycoprotein K (gK) is an essential and highly conserved HSV-1 protein. Previously, we reported that gK binds to SPP, an endoplasmic reticulum (ER) protein, and blocking this binding reduces virus infectivity in vitro and also affects gK and UL20 subcellular localization. To evaluate the function of gK binding to SPP in vivo, we generated SPP-inducible knockout mice and observed the following in the absence of SPP: (i) that significantly less HSV-1 replication was seen in ocularly infected mice than in control mice; (ii) that expression of various HSV-1 genes and cellular infiltrates in the eye and trigeminal ganglia of infected mice was less than that in control mice; and (iii) that latency was significantly reduced in infected mice. Thus, blocking of gK binding to SPP may be a useful tool to control HSV-1-induced eye disease in patients with herpes stromal keratitis (HSK).
Collapse
|
12
|
Important roles of C-terminal residues in degradation of capsid protein of classical swine fever virus. Virol J 2019; 16:127. [PMID: 31694654 PMCID: PMC6833258 DOI: 10.1186/s12985-019-1238-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/03/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Capsid (C) protein plays an important role in the replication of classical swine fever virus (CSFV). The ubiquitin proteasome system (UPS) involves in replication of many viruses via modulation of viral proteins. The relationship of CSFV with UPS is poorly understood and the impact of 26S proteasome on C protein has never been reported before. METHODS In this study, fused C protein with an EGFP tag is expressed in PK-15 and 3D4/2 cells. MG132 and 3-methyladenine (3-MA) are used to detect the roles of 26S proteasome and autophagolysosome in expression levels of C protein. Truncated and mutant C proteins are used to find the exact residues responsible for the degradation of C protein. Immunoprecipitaion is performed to find whether C protein is ubiquitinated or not. RESULTS C-EGFP protein expresses in a cleaved form at a low level and is degraded by 26S proteasome which could be partly inhibited by MG132. C-terminal residues play more important roles in the degradation of C protein than N-terminal residues. Residues 260 to 267, especially M260 and L261, are crucial for the degradation. In addition, C-terminal residues 262 to 267 determine cleavage efficiency of C protein. CONCLUSIONS CSFV C protein is degraded by 26S proteasome in a ubiquitin-independent manner. Last 8 residues at C-terminus of immature C protein play a major role in proteasomal degradation of CSFV C protein and determine the cleavage efficiency of C protein by signal peptide peptidase (SPP). Our findings provide valuable help for fully understanding degradation process of C protein and contribute to fully understanding the role of C protein in CSFV replication.
Collapse
|
13
|
Goraya MU, Ziaghum F, Chen S, Raza A, Chen Y, Chi X. Role of innate immunity in pathophysiology of classical swine fever virus infection. Microb Pathog 2018; 119:248-254. [DOI: 10.1016/j.micpath.2018.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 12/25/2022]
|
14
|
Hirano J, Okamoto T, Sugiyama Y, Suzuki T, Kusakabe S, Tokunaga M, Fukuhara T, Sasai M, Tougan T, Matsunaga Y, Yamashita K, Sakai Y, Yamamoto M, Horii T, Standley DM, Moriishi K, Moriya K, Koike K, Matsuura Y. Characterization of SPP inhibitors suppressing propagation of HCV and protozoa. Proc Natl Acad Sci U S A 2017; 114:E10782-E10791. [PMID: 29187532 PMCID: PMC5740650 DOI: 10.1073/pnas.1712484114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Signal peptide peptidase (SPP) is an intramembrane aspartic protease involved in the maturation of the core protein of hepatitis C virus (HCV). The processing of HCV core protein by SPP has been reported to be critical for the propagation and pathogenesis of HCV. Here we examined the inhibitory activity of inhibitors for γ-secretase, another intramembrane cleaving protease, against SPP, and our findings revealed that the dibenzoazepine-type structure in the γ-secretase inhibitors is critical for the inhibition of SPP. The spatial distribution showed that the γ-secretase inhibitor compound YO-01027 with the dibenzoazepine structure exhibits potent inhibiting activity against SPP in vitro and in vivo through the interaction of Val223 in SPP. Treatment with this SPP inhibitor suppressed the maturation of core proteins of all HCV genotypes without the emergence of drug-resistant viruses, in contrast to the treatment with direct-acting antivirals. YO-01027 also efficiently inhibited the propagation of protozoa such as Plasmodium falciparum and Toxoplasma gondii These data suggest that SPP is an ideal target for the development of therapeutics not only against chronic hepatitis C but also against protozoiasis.
Collapse
Affiliation(s)
- Junki Hirano
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| | - Yukari Sugiyama
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tatsuya Suzuki
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Shinji Kusakabe
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Makoto Tokunaga
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Miwa Sasai
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Takahiro Tougan
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasue Matsunaga
- Planning and Promotion Office for University-Industry Collaboration, Osaka University, Osaka 565-0871, Japan
| | | | - Yusuke Sakai
- Department of Veterinary Pathology, Yamaguchi University, Yamaguchi 753-0841, Japan
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Toshihiro Horii
- Department of Molecular Protozoology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, University of Yamanashi, Yamanashi 400-8510, Japan
| | - Kyoji Moriya
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Yoshiharu Matsuura
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan;
| |
Collapse
|
15
|
Radtke C, Tews BA. Retention and topology of the bovine viral diarrhea virus glycoprotein E2. J Gen Virol 2017; 98:2482-2494. [PMID: 28874234 DOI: 10.1099/jgv.0.000912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pestiviruses are enveloped viruses that bud intracellularly. They have three envelope glycoproteins, Erns, E1, and E2. E2 is the receptor binding protein and the main target for neutralizing antibodies. Both Erns and E2 are retained intracellularly. Here, E2 of the bovine viral diarrhea virus (BVDV) strain CP7 was used to study the membrane topology and intracellular localization of the protein. E2 is localized in the ER and there was no difference between E2 expressed alone or in the context of the viral polyprotein. The mature E2 protein was found to possess a single span transmembrane anchor. For the mapping of a retention signal CD72-E2 fusion proteins, as well as E2 alone were analysed. This confirmed the importance of the transmembrane domain and arginine 355 for intracellular retention, but also revealed a modulating effect on retention through the cytoplasmic tail of the E2 protein, especially through glutamine 370. Mutants with a strong impact on retention were tested in the viral context and we were able to rescue BVDV with certain mutations that in E2 alone impaired intracellular retention and lead to export of E2 to the cells surface.
Collapse
Affiliation(s)
- Christina Radtke
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Südufer 10, 17493 Greifswald - Insel Riems, Germany.,Present address: Department of Pharmacology, University Medicine of Greifswald, Center of Drug Absorption and Transport (C_DAT), Felix-Hausdorff Straße 3, 17487 Greifswald, Germany
| | - Birke Andrea Tews
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
16
|
Signal peptide peptidase and SPP-like proteases - Possible therapeutic targets? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [PMID: 28624439 DOI: 10.1016/j.bbamcr.2017.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Signal peptide peptidase (SPP) and the four homologous SPP-like proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 are GxGD-type intramembrane-cleaving proteases (I-CLIPs). In addition to divergent subcellular localisations, distinct differences in the mechanistic properties and substrate requirements of individual family members have been unravelled. SPP/SPPL proteases employ a catalytic mechanism related to that of the γ-secretase complex. Nevertheless, differential targeting of SPP/SPPL proteases and γ-secretase by inhibitors has been demonstrated. Furthermore, also within the SPP/SPPL family significant differences in the sensitivity to currently available inhibitory compounds have been reported. Though far from complete, our knowledge on pathophysiological functions of SPP/SPPL proteases, in particular based on studies in mice, has been significantly increased over the last years. Based on this, inhibition of distinct SPP/SPPL proteases has been proposed as a novel therapeutic concept e.g. for the treatment of autoimmunity and viral or protozoal infections, as we will discuss in this review. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
|
17
|
Kleine Büning M, Meyer D, Austermann-Busch S, Roman-Sosa G, Rümenapf T, Becher P. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins. Genome Biol Evol 2017; 9:817-829. [PMID: 28338950 PMCID: PMC5381556 DOI: 10.1093/gbe/evx046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins.
Collapse
Affiliation(s)
- Maximiliane Kleine Büning
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | - Denise Meyer
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | - Sophia Austermann-Busch
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | | | - Tillmann Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Austria
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
18
|
Okamoto T. [Signal peptide peptidase participates in propagation and pathogenesis of hepatitis C virus]. Uirusu 2017; 67:49-58. [PMID: 29593153 DOI: 10.2222/jsv.67.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hepatitis C virus (HCV) is a blood-borne virus and causes chronic infection leading to development of steatosis, cirrhosis and hepatocellular carcinoma. However, molecular mechanisms of induction of liver diseases by HCV infection are still unclear. This review focuses on thevirological significance of processing of HCV core protein by signal peptide peptidase in propagation and pathogenesis of HCV.
Collapse
Affiliation(s)
- Toru Okamoto
- Department of Molecular Virology, Research Institute for Microbial Diseases
| |
Collapse
|
19
|
RNA interference screening of interferon-stimulated genes with antiviral activities against classical swine fever virus using a reporter virus. Antiviral Res 2016; 128:49-56. [PMID: 26868874 DOI: 10.1016/j.antiviral.2016.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 01/10/2023]
Abstract
Classical swine fever (CSF) caused by classical swine fever virus (CSFV) is a highly contagious and often fatal disease of pigs, which leads to significant economic losses in many countries. Viral infection can induce the production of interferons (IFNs), giving rise to the transcription of hundreds of IFN-stimulated genes (ISGs) to exert antiviral effects. Although numerous ISGs have been identified to possess antiviral activities against different viruses, rare anti-CSFV ISGs have been reported to date. In this study, to screen anti-CSFV ISGs, twenty-one ISGs reported previously were individually knocked down using small interfering RNAs (siRNAs) followed by infection with a reporter CSFV expressing Renilla luciferase (Rluc). As a result, four novel anti-CSFV ISGs were identified, including natural-resistance-associated macrophage protein 1 (NRAMP1), cytosolic 5'-nucleotidase III A (NT5C3A), chemokine C-X-C motif ligand 10 (CXCL10), and 2'-5'-oligoadenylate synthetase 1 (OAS1), which were further verified to exhibit antiviral activities against wild-type CSFV. We conclude that the reporter virus is a useful tool for efficient screening anti-CSFV ISGs.
Collapse
|
20
|
Ran Y, Ladd GZ, Ceballos-Diaz C, Jung JI, Greenbaum D, Felsenstein KM, Golde TE. Differential Inhibition of Signal Peptide Peptidase Family Members by Established γ-Secretase Inhibitors. PLoS One 2015; 10:e0128619. [PMID: 26046535 PMCID: PMC4457840 DOI: 10.1371/journal.pone.0128619] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
The signal peptide peptidases (SPPs) are biomedically important proteases implicated as therapeutic targets for hepatitis C (human SPP, (hSPP)), plasmodium (Plasmodium SPP (pSPP)), and B-cell immunomodulation and neoplasia (signal peptide peptidase like 2a, (SPPL2a)). To date, no drug-like, selective inhibitors have been reported. We use a recombinant substrate based on the amino-terminus of BRI2 fused to amyloid β 1-25 (Aβ1-25) (FBA) to develop facile, cost-effective SPP/SPPL protease assays. Co-transfection of expression plasmids expressing the FBA substrate with SPP/SPPLs were conducted to evaluate cleavage, which was monitored by ELISA, Western Blot and immunoprecipitation/MALDI-TOF Mass spectrometry (IP/MS). No cleavage is detected in the absence of SPP/SPPL overexpression. Multiple γ-secretase inhibitors (GSIs) and (Z-LL)2 ketone differentially inhibited SPP/SPPL activity; for example, IC50 of LY-411,575 varied from 51±79 nM (on SPPL2a) to 5499±122 nM (on SPPL2b), while Compound E showed inhibition only on hSPP with IC50 of 1465±93 nM. Data generated were predictive of effects observed for endogenous SPPL2a cleavage of CD74 in a murine B-Cell line. Thus, it is possible to differentially inhibit SPP family members. These SPP/SPPL cleavage assays will expedite the search for selective inhibitors. The data also reinforce similarities between SPP family member cleavage and cleavage catalyzed by γ-secretase.
Collapse
Affiliation(s)
- Yong Ran
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
- * E-mail: (YR); (TG)
| | - Gabriela Z. Ladd
- College of Pharmacy, University of Florida, Gainesville, Florida, United States of America
| | - Carolina Ceballos-Diaz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Joo In Jung
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Doron Greenbaum
- Pennsylvania Drug Discovery Institute, Philadelphia, Pennsylvania, United States of America
| | - Kevin M. Felsenstein
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
| | - Todd E. Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, College of Medicine University of Florida, Gainesville, Florida, United States of America
- * E-mail: (YR); (TG)
| |
Collapse
|
21
|
Abstract
Pestiviruses are among the economically most important pathogens of livestock. The biology of these viruses is characterized by unique and interesting features that are both crucial for their success as pathogens and challenging from a scientific point of view. Elucidation of these features at the molecular level has made striking progress during recent years. The analyses revealed that major aspects of pestivirus biology show significant similarity to the biology of human hepatitis C virus (HCV). The detailed molecular analyses conducted for pestiviruses and HCV supported and complemented each other during the last three decades resulting in elucidation of the functions of viral proteins and RNA elements in replication and virus-host interaction. For pestiviruses, the analyses also helped to shed light on the molecular basis of persistent infection, a special strategy these viruses have evolved to be maintained within their host population. The results of these investigations are summarized in this chapter.
Collapse
Affiliation(s)
- Norbert Tautz
- Institute for Virology and Cell Biology, University of Lübeck, Lübeck, Germany
| | - Birke Andrea Tews
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Gregor Meyers
- Institut für Immunologie, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
22
|
Ji W, Guo Z, Ding NZ, He CQ. Studying classical swine fever virus: Making the best of a bad virus. Virus Res 2015; 197:35-47. [DOI: 10.1016/j.virusres.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/04/2023]
|
23
|
Gladue DP, O'Donnell V, Fernandez-Sainz IJ, Fletcher P, Baker-Branstetter R, Holinka LG, Sanford B, Carlson J, Lu Z, Borca MV. Interaction of structural core protein of classical swine fever virus with endoplasmic reticulum-associated degradation pathway protein OS9. Virology 2014; 460-461:173-9. [PMID: 25010283 DOI: 10.1016/j.virol.2014.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/09/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
Abstract
Classical swine fever virus (CSFV) Core protein is involved in virus RNA protection, transcription regulation and virus virulence. To discover additional Core protein functions a yeast two-hybrid system was used to identify host proteins that interact with Core. Among the identified host proteins, the osteosarcoma amplified 9 protein (OS9) was further studied. Using alanine scanning mutagenesis, the OS9 binding site in the CSFV Core protein was identified, between Core residues (90)IAIM(93), near a putative cleavage site. Truncated versions of Core were used to show that OS9 binds a polypeptide representing the 12 C-terminal Core residues. Cells transfected with a double-fluorescent labeled Core construct demonstrated that co-localization of OS9 and Core occurred only on unprocessed forms of Core protein. A recombinant CSFV containing Core protein where residues (90)IAIM(93) were substituted by alanines showed no altered virulence in swine, but a significant decreased ability to replicate in cell cultures.
Collapse
Affiliation(s)
- D P Gladue
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - V O'Donnell
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | | | - P Fletcher
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - R Baker-Branstetter
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA; Plum Island Animal Disease Center, DHS, Greenport, NY 11944, USA.
| | - L G Holinka
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - B Sanford
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - J Carlson
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| | - Z Lu
- Plum Island Animal Disease Center, DHS, Greenport, NY 11944, USA.
| | - M V Borca
- Plum Island Animal Disease Center, ARS, USDA, Greenport, NY 11944, USA.
| |
Collapse
|
24
|
Allen SJ, Mott KR, Ghiasi H. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo. Exp Eye Res 2014; 123:8-15. [PMID: 24768597 DOI: 10.1016/j.exer.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/25/2014] [Accepted: 04/03/2014] [Indexed: 01/06/2023]
Abstract
Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology.
Collapse
Affiliation(s)
- Sariah J Allen
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, CA
| | - Kevin R Mott
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, CA
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Los Angeles, CA.
| |
Collapse
|
25
|
Binding of HSV-1 glycoprotein K (gK) to signal peptide peptidase (SPP) is required for virus infectivity. PLoS One 2014; 9:e85360. [PMID: 24465545 PMCID: PMC3896391 DOI: 10.1371/journal.pone.0085360] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 11/19/2022] Open
Abstract
Glycoprotein K (gK) is a virion envelope protein of herpes simplex virus types 1 (HSV-1) and 2 (HSV-2), which plays important roles in virion entry, morphogenesis and egress. Two-hybrid and pull-down assays were utilized to demonstrate that gK and no other HSV-1 genes specifically binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. SPP dominant negative mutants, shRNA against SPP significantly reduced HSV-1 replication in vitro. SPP also affected lysosomes and ER responses to HSV-1 infection. Thus, in this study we have shown for the first time that gK, despite its role in fusion and egress, is also involved in binding the cytoplasmic protein SPP. These results also suggest that SPP plays an important role in viral replication and possibly virus pathogenesis. This makes SPP unique in that its function appears to be required by the virus as no other protein can compensate its loss in terms of viral replication.
Collapse
|
26
|
Voss M, Schröder B, Fluhrer R. Mechanism, specificity, and physiology of signal peptide peptidase (SPP) and SPP-like proteases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2828-39. [PMID: 24099004 DOI: 10.1016/j.bbamem.2013.03.033] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/25/2013] [Accepted: 03/29/2013] [Indexed: 01/09/2023]
Abstract
Signal peptide peptidase (SPP) and the homologous SPP-like (SPPL) proteases SPPL2a, SPPL2b, SPPL2c and SPPL3 belong to the family of GxGD intramembrane proteases. SPP/SPPLs selectively cleave transmembrane domains in type II orientation and do not require additional co-factors for proteolytic activity. Orthologues of SPP and SPPLs have been identified in other vertebrates, plants, and eukaryotes. In line with their diverse subcellular localisations ranging from the ER (SPP, SPPL2c), the Golgi (SPPL3), the plasma membrane (SPPL2b) to lysosomes/late endosomes (SPPL2a), the different members of the SPP/SPPL family seem to exhibit distinct functions. Here, we review the substrates of these proteases identified to date as well as the current state of knowledge about the physiological implications of these proteolytic events as deduced from in vivo studies. Furthermore, the present knowledge on the structure of intramembrane proteases of the SPP/SPPL family, their cleavage mechanism and their substrate requirements are summarised. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Matthias Voss
- Adolf Butenandt Institute for Biochemistry, Ludwig-Maximilians University Munich, Schillerstr. 44, 80336 Munich, Germany
| | | | | |
Collapse
|
27
|
Ye J. Roles of regulated intramembrane proteolysis in virus infection and antiviral immunity. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1828:2926-32. [PMID: 24099010 PMCID: PMC3837687 DOI: 10.1016/j.bbamem.2013.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/24/2023]
Abstract
Regulated intramembrane proteolysis (RIP) is a signaling mechanism through which transmembrane precursor proteins are cleaved to liberate their cytoplasmic and/or luminal/extracellular fragments from membranes so that these fragments are able to function at a new location. Recent studies have indicated that this proteolytic reaction plays an important role in host-virus interaction. On one hand, RIP transfers the signal from the endoplasmic reticulum (ER) to nucleus to activate antiviral genes in response to alteration of the ER caused by viral infection. On the other hand, RIP can be hijacked by virus to process transmembrane viral protein precursors and to destroy transmembrane antiviral proteins. Understanding this Yin and Yang side of RIP may lead to new strategies to combat viral infection. This article is part of a Special Issue entitled: Intramembrane Proteases.
Collapse
Affiliation(s)
- Jin Ye
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9046, USA.
| |
Collapse
|
28
|
Molecular biology of bovine viral diarrhea virus. Biologicals 2013; 41:2-7. [DOI: 10.1016/j.biologicals.2012.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/27/2012] [Accepted: 07/06/2012] [Indexed: 11/21/2022] Open
|
29
|
Selection of classical swine fever virus with enhanced pathogenicity reveals synergistic virulence determinants in E2 and NS4B. J Virol 2012; 86:8602-13. [PMID: 22674973 DOI: 10.1128/jvi.00551-12] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Classical swine fever virus (CSFV) is the causative agent of classical swine fever (CSF), a highly contagious disease of pigs. There are numerous CSFV strains that differ in virulence, resulting in clinical disease with different degrees of severity. Low-virulent and moderately virulent isolates cause a mild and often chronic disease, while highly virulent isolates cause an acute and mostly lethal hemorrhagic fever. The live attenuated vaccine strain GPE(-) was produced by multiple passages of the virulent ALD strain in cells of swine, bovine, and guinea pig origin. With the aim of identifying the determinants responsible for the attenuation, the GPE(-) vaccine virus was readapted to pigs by serial passages of infected tonsil homogenates until prolonged viremia and typical signs of CSF were observed. The GPE(-)/P-11 virus isolated from the tonsils after the 11th passage in vivo had acquired 3 amino acid substitutions in E2 (T830A) and NS4B (V2475A and A2563V) compared with the virus before passages. Experimental infection of pigs with the mutants reconstructed by reverse genetics confirmed that these amino acid substitutions were responsible for the acquisition of pathogenicity. Studies in vitro indicated that the substitution in E2 influenced virus spreading and that the changes in NS4B enhanced the viral RNA replication. In conclusion, the present study identified residues in E2 and NS4B of CSFV that can act synergistically to influence virus replication efficiency in vitro and pathogenicity in pigs.
Collapse
|
30
|
Riedel C, Lamp B, Heimann M, König M, Blome S, Moennig V, Schüttler C, Thiel HJ, Rümenapf T. The core protein of classical Swine Fever virus is dispensable for virus propagation in vitro. PLoS Pathog 2012; 8:e1002598. [PMID: 22457622 PMCID: PMC3310793 DOI: 10.1371/journal.ppat.1002598] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 02/07/2012] [Indexed: 01/12/2023] Open
Abstract
Core protein of Flaviviridae is regarded as essential factor for nucleocapsid formation. Yet, core protein is not encoded by all isolates (GBV- A and GBV- C). Pestiviruses are a genus within the family Flaviviridae that affect cloven-hoofed animals, causing economically important diseases like classical swine fever (CSF) and bovine viral diarrhea (BVD). Recent findings describe the ability of NS3 of classical swine fever virus (CSFV) to compensate for disabling size increase of core protein (Riedel et al., 2010). NS3 is a nonstructural protein possessing protease, helicase and NTPase activity and a key player in virus replication. A role of NS3 in particle morphogenesis has also been described for other members of the Flaviviridae (Patkar et al., 2008; Ma et al., 2008). These findings raise questions about the necessity and function of core protein and the role of NS3 in particle assembly. A reverse genetic system for CSFV was employed to generate poorly growing CSFVs by modification of the core gene. After passaging, rescued viruses had acquired single amino acid substitutions (SAAS) within NS3 helicase subdomain 3. Upon introduction of these SAAS in a nonviable CSFV with deletion of almost the entire core gene (Vp447Δc), virus could be rescued. Further characterization of this virus with regard to its physical properties, morphology and behavior in cell culture did not reveal major differences between wildtype (Vp447) and Vp447Δc. Upon infection of the natural host, Vp447Δc was attenuated. Hence we conclude that core protein is not essential for particle assembly of a core-encoding member of the Flaviviridae, but important for its virulence. This raises questions about capsid structure and necessity, the role of NS3 in particle assembly and the function of core protein in general. Virus particles of members of the Flaviviridae consist of an inner complex of viral RNA genome and core protein that together form the nucleocapsid, and an outer lipid layer containing the viral glycoproteins. Functional analyses of core protein of the classical swine fever virus (CSFV), a pestivirus related to hepatitis C virus (HCV), led to the observation that crippling mutations or even complete deletion of the core gene were compensated by single amino acid substitutions in the helicase domain of non-structural protein 3 (NS3). NS3 is well conserved among the Flaviviridae and acts as protease and helicase. In addition to its essential role in RNA replication, NS3 apparently organizes the incorporation of RNA into budding virus particles. Characterization of core deficient CSFV particles (Vp447Δc) revealed that the lack of core had no effect with regard to thermostability, size, density, and morphology. Vp447Δc was fully attenuated in the natural host. Our results provide evidence that core protein is not essential for virus assembly. Hence, Vp447Δc might help to explain the enigmatic existence of GB viruses -A and -C, close relatives of HCV that do not encode an apparent core protein.
Collapse
Affiliation(s)
- Christiane Riedel
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Benjamin Lamp
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Manuela Heimann
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Matthias König
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Sandra Blome
- Institute of Virology, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Volker Moennig
- Institute of Virology, Stiftung Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Christian Schüttler
- Institute of Virology, Faculty of Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Heinz-Jürgen Thiel
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
| | - Tillmann Rümenapf
- Institute of Virology, Faculty of Veterinary Medicine, Justus-Liebig Universität, Giessen, Germany
- * E-mail:
| |
Collapse
|
31
|
Sakoda Y. [Pestivirus]. Uirusu 2011; 61:239-248. [PMID: 22916570 DOI: 10.2222/jsv.61.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Members of the genus Pestivirus, are causative agents of economically important diseases for livestock and wild animals that occur worldwide, such as bovine viral diarrhea, classical swine fever, and border disease of sheep. Pestivirus have novel insertions of host genes in the viral genome and functions of unique viral proteins, N(pro) and E(rns), related to the pathogenicity although genomic structure is closely related to the other viruses of Flaviviridae family, especially hepatitis C virus. In this review, recent studies on the molecular basis of pathogenicity of pestivirus infections were summarized.
Collapse
Affiliation(s)
- Yoshihiro Sakoda
- Laboratory of Microbiology, Graduate School of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Sapporo 060-0818, Japan.
| |
Collapse
|
32
|
Sequence variability of HCV Core region: Important predictors of HCV induced pathogenesis and viral production. INFECTION GENETICS AND EVOLUTION 2011; 11:543-56. [PMID: 21292033 DOI: 10.1016/j.meegid.2011.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/17/2011] [Accepted: 01/21/2011] [Indexed: 02/07/2023]
|
33
|
Zhang X, Xu J, Sun Y, Li S, Li N, Yang S, He F, Huang JH, Ling LJ, Qiu HJ. Identification of a linear epitope on the capsid protein of classical swine fever virus. Virus Res 2011; 156:134-40. [PMID: 21255622 PMCID: PMC7114404 DOI: 10.1016/j.virusres.2011.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 01/13/2011] [Accepted: 01/13/2011] [Indexed: 12/12/2022]
Abstract
The capsid (C) protein of Classical swine fever virus (CSFV) is proposed to play an essential role in the replication and translation of the viral RNA. In this study, a monoclonal antibody (mAb) directed against the C protein was generated with the recombinant C protein expressed in Escherichia coli as immunogen. IFA and IPMA analysis showed that the native C protein of CSFV virions was reactive to the mAb. By truncating the C protein, we identified a linear epitope recognized by the mAb, corresponding to amino acids 61TQDGLYHNKN70 of the CSFV C protein, which is well conserved among pestiviruses. Laser confocal analysis showed that the C protein mainly locates in the cellular nucleoplasm and nucleolus of PK-15 cells. The results have implications for further study of CSFV replication.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, 150001 Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gladue DP, Holinka LG, Fernandez-Sainz IJ, Prarat MV, O'Donnell V, Vepkhvadze NG, Lu Z, Risatti GR, Borca MV. Interaction between Core protein of classical swine fever virus with cellular IQGAP1 protein appears essential for virulence in swine. Virology 2011; 412:68-74. [PMID: 21262517 DOI: 10.1016/j.virol.2010.12.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/28/2010] [Accepted: 12/30/2010] [Indexed: 02/08/2023]
Abstract
Here we show that IQGAP1, a cellular protein that plays a pivotal role as a regulator of the cytoskeleton interacts with Classical Swine Fever Virus (CSFV) Core protein. Sequence analyses identified residues within CSFV Core protein (designated as areas I, II, III and IV) that maintain homology to regions within the matrix protein of Moloney Murine Leukemia Virus (MMLV) that mediate binding to IQGAP1 [EMBO J, 2006 25:2155]. Alanine-substitution within Core regions I, II, III and IV identified residues that specifically mediate the Core-IQGAP1 interaction. Recombinant CSFV viruses harboring alanine substitutions at residues (207)ATI(209) (I), (210)VVE(212) (II), (213)GVK(215) (III), or (232)GLYHN(236) (IV) have defective growth in primary swine macrophage cultures. In vivo, substitutions of residues in areas I and III yielded viruses that were completely attenuated in swine. These data shows that the interaction of Core with an integral component of cytoskeletal regulation plays a role in the CSFV cycle.
Collapse
Affiliation(s)
- D P Gladue
- Plum Island Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Greenport, NY 11944, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Characterization of essential domains and plasticity of the classical Swine Fever virus Core protein. J Virol 2010; 84:11523-31. [PMID: 20702631 DOI: 10.1128/jvi.00699-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Pestiviruses are pathogens of cloven-hoofed animals, belonging to the Flaviviridae. The pestiviral particle consists of a lipid membrane containing the three envelope glycoproteins Erns, E1, and E2 and a nucleocapsid of unknown symmetry, which is composed of the Core protein and the viral positive-sense RNA genome. The positively charged pestiviral Core protein consists of 86 to 89 amino acids. To analyze the organization of essential domains, N- and C-terminal truncations, as well as internal deletions, were introduced into the Core coding sequence in the context of an infectious cDNA clone of classical swine fever virus strain Alfort. Amino acids 179 to 180, 194 to 198, and 208 to 212 proved to be of special importance for the generation of progeny virus. The results of transcomplementation of a series of C-terminally truncated Core molecules indicate the importance of Ala255 at the C terminus. The plasticity of Core protein was examined by the construction of concatemeric arrays of Core coding regions and the insertion of up to three yellow fluorescent protein (YFP) genes between two Core genes. Even a Core fusion protein with more than 10-fold-increased molecular mass was integrated into the viral particle and supported the production of infectious progeny virus. The unexpected plasticity of Core protein brings into question the formation of a regular icosahedric particle and supports the idea of a histone-like protein-RNA interaction. All viruses with a duplicated Core gene were unstable and reverted to the wild-type sequence. Interestingly, a nonviable YFP-Core construct was rescued by a mutation within the C-terminal domain of the nonstructural protein NS3.
Collapse
|
36
|
Signal peptide peptidase (SPP) assembles with substrates and misfolded membrane proteins into distinct oligomeric complexes. Biochem J 2010; 427:523-34. [PMID: 20196774 PMCID: PMC2860808 DOI: 10.1042/bj20091005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SPP (signal peptide peptidase) is an aspartyl intramembrane cleaving protease, which processes a subset of signal peptides, and is linked to the quality control of ER (endoplasmic reticulum) membrane proteins. We analysed SPP interactions with signal peptides and other membrane proteins by co-immunoprecipitation assays. We found that SPP interacts specifically and tightly with a large range of newly synthesized membrane proteins, including signal peptides, preproteins and misfolded membrane proteins, but not with all co-expressed type II membrane proteins. Signal peptides are trapped by the catalytically inactive SPP mutant SPPD/A. Preproteins and misfolded membrane proteins interact with both SPP and the SPPD/A mutant, and are not substrates for SPP-mediated intramembrane proteolysis. Proteins interacting with SPP are found in distinct complexes of different sizes. A signal peptide is mainly trapped in a 200 kDa SPP complex, whereas a preprotein is predominantly found in a 600 kDa SPP complex. A misfolded membrane protein is detected in 200, 400 and 600 kDa SPP complexes. We conclude that SPP not only processes signal peptides, but also collects preproteins and misfolded membrane proteins that are destined for disposal.
Collapse
|
37
|
Bintintan I, Meyers G. A new type of signal peptidase cleavage site identified in an RNA virus polyprotein. J Biol Chem 2010; 285:8572-84. [PMID: 20093364 DOI: 10.1074/jbc.m109.083394] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pestiviruses, a group of enveloped positive strand RNA viruses belonging to the family Flaviviridae, express their genes via a polyprotein that is subsequently processed by proteases. The structural protein region contains typical signal peptidase cleavage sites. Only the site at the C terminus of the glycoprotein E(rns) is different because it does not contain a hydrophobic transmembrane region but an amphipathic helix functioning as the E(rns) membrane anchor. Despite the absence of a hydrophobic region, the site between the C terminus of E(rns) and E1, the protein located downstream in the polyprotein, is cleaved by signal peptidase, as demonstrated by mutagenesis and inhibitor studies. Thus, E(rns)E1 is processed at a novel type of signal peptidase cleavage site showing a different membrane topology. Prevention of glycosylation or introduction of mutations into the C-terminal region of E(rns) severely impairs processing, presumably by preventing proper membrane interaction or disturbing a conformation critical for the protein to be accepted as a substrate by signal peptidase.
Collapse
Affiliation(s)
- Ioana Bintintan
- Institut für Immunologie, Friedrich-Loeffler-Institut, Paul-Ehrlich-Strasse 28, D-72001 Tübingen, Germany
| | | |
Collapse
|
38
|
Genetic analysis of the carboxy-terminal region of the hepatitis C virus core protein. J Virol 2009; 84:1666-73. [PMID: 20007277 DOI: 10.1128/jvi.02043-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) is a liver-tropic pathogen with severe health consequences for infected individuals. Chronic HCV infection can progress to cirrhosis and hepatocellular carcinoma and is a leading indicator for liver transplantation. The HCV core protein is an essential component of the infectious virus particle, but many aspects of its role remain undefined. The C-terminal region of the core protein acts as a signal sequence for the E1 glycoprotein and undergoes dual processing events during infectious virus assembly. The exact C terminus of the mature, virion-associated core protein is not known. Here, we performed genetic analyses to map the essential determinants of the HCV core C-terminal region, as well as to define the minimal length of the protein that can function for infectious virus production in trans.
Collapse
|
39
|
Tamura T, Kuroda M, Oikawa T, Kyozuka J, Terauchi K, Ishimaru Y, Abe K, Asakura T. Signal peptide peptidases are expressed in the shoot apex of rice, localized to the endoplasmic reticulum. PLANT CELL REPORTS 2009; 28:1615-1621. [PMID: 19688213 DOI: 10.1007/s00299-009-0760-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/15/2009] [Accepted: 07/29/2009] [Indexed: 05/28/2023]
Abstract
Signal peptide peptidase (SPP) is a multi-transmembrane aspartic proteinase involved in regulated intramembrane proteolysis, which is implicated in fundamental life processes such as immunological response, cell signaling, tissue differentiation, and embryogenesis. In this study, we identified two rice SPPs: OsSPP1 and OsSPP2. Green fluorescent protein-fused OsSPP1 and OsSPP2 were localized to the ER in cultured plant cells. In situ hybridization showed that OsSPPs were strongly expressed in vegetative shoot apex, young panicle, developing panicle, and the early developing florets. Undifferentiated cells, which have the potential to differentiate into all of the aerial parts of the plant are presented in the shoot apex. OsSPPs are located in both the undifferentiated cells, and the early differentiated cells at the shoot apex. These results suggest that rice SPPs have an important function in differentiation and development at the shoot apex. The expression of the shoot apex and ER localization is equal to dicot Arabidopsis thaliana, and will have common crucial roles in plant.
Collapse
Affiliation(s)
- Tomoko Tamura
- Department of Applied Biological Chemistry, The University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pène V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg AR. Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat 2009; 16:705-15. [PMID: 19281487 DOI: 10.1111/j.1365-2893.2009.01118.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) core protein is believed to play critical roles in the virus morphogenesis and pathogenesis. In HCV polyprotein, core protein terminates with a signal peptide followed by E1 envelope protein. It has remained unclear whether cleavage by host cell signal peptidase (SP) at the core-E1 junction to generate the complete form of core protein, which is anchored in the endoplasmic reticulum membrane, is absolutely required for cleavage within the signal peptide by host cell signal peptide peptidase (SPP) to liberate the mature form of core protein, which is then free for trafficking to lipid droplets. In this study, the possible sources of disagreement in published reports have been examined, and we conclude that a product generated upon inhibition of SP-catalysed cleavage at the core-E1 junction in heterologous expression systems was incorrectly identified as mature core protein. Moreover, inhibition of this cleavage in the most relevant model of human hepatoma cells replicating a full-length HCV genome was shown to abolish interaction of core protein with lipid droplets and production of infectious progeny virus. These results firmly establish that SPP-catalysed liberation of mature core protein is absolutely dependent on prior cleavage by SP at the correct core-E1 site to generate the complete form of core protein, consistent with this obligatory order of processing playing a role in HCV infectious cycle.
Collapse
Affiliation(s)
- V Pène
- INSERM, Equipe Avenir Virologie de l'hépatite C, Institut Cochin, Paris, France
| | | | | | | | | |
Collapse
|
41
|
Wegelt A, Reimann I, Zemke J, Beer M. New insights into processing of bovine viral diarrhea virus glycoproteins Erns and E1. J Gen Virol 2009; 90:2462-2467. [DOI: 10.1099/vir.0.012559-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is a member of the genus Pestivirus within the family Flaviviridae. Its single-stranded RNA encodes a polyprotein that is cleaved co- and post-translationally by viral and cellular proteases. However, the cleavage between the envelope proteins Erns and E1 is still unexplained. In this study, an Erns–E1 protein could be identified and characterized with a new E1-specific antiserum. With bicistronic constructs bearing a deletion in the Erns-encoding region and expressing Erns or the Erns–E1 protein, it could be shown that this protein is not essential for virus replication. Furthermore, two putative cleavage sites were mutated in eukaryotic expression plasmids, as well as in full-length cDNA constructs. The mutation of position P3 of a potential signal peptide peptidase site abolished cleavage completely and no infectious virus progeny could be observed, indicating that cleavage of the Erns–E1 protein is indispensable for virus growth.
Collapse
Affiliation(s)
- Anne Wegelt
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Johanna Zemke
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Suedufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
42
|
Porntrakulpipat S, Supankong S, Chatchawanchonteera A, Pakdee P. RNA interference targeting nucleocapsid protein (C) inhibits classical swine fever virus replication in SK-6 cells. Vet Microbiol 2009; 142:41-4. [PMID: 19850420 DOI: 10.1016/j.vetmic.2009.09.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The application of RNA interference (RNAi) strategy for controlling classical swine fever could become a promising alternative to the conventional eradication measures, as it was recently shown for foot-and-mouth disease (Chen et al., 2004), influenza (Ge et al., 2003), porcine reproductive and respiratory syndrome (He et al., 2007) and porcine transmissible gastroenteritis (Zhou et al., 2007). The use of synthetic siRNA which is corresponding to nucleotides 1130-1148 of the CSF virus strain Alfort, targeting the nucleocapsid protein (C) was investigated to show the inhibition of CSF virus replication. It could be shown that the virus titer of infected cells, which had been mock-transfected or transfected with control (non-silence) RNA were not affected. These data indicate that siRNA_253 is able to inhibit viral replication.
Collapse
Affiliation(s)
- S Porntrakulpipat
- Department of Medicine, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | | | | | | |
Collapse
|
43
|
Abstract
Proteolysis in cellular membranes to liberate effector domains from their transmembrane anchors is a well-studied regulatory mechanism in animal biology and disease. By contrast, the function of intramembrane proteases in unicellular organisms has received little attention. Recent progress has now established that intramembrane proteases execute pivotal roles in a range of pathogens, from regulating Mycobacterium tuberculosis envelope composition, cholera toxin production, bacterial adherence and conjugation, to malaria parasite invasion, fungal virulence, immune evasion by parasitic amoebae and hepatitis C virus assembly. These advances raise the exciting possibility that intramembrane proteases may serve as targets for combating a wide range of infectious diseases. This Review focuses on summarizing the advances, evaluating the limitations and highlighting the promise of this newly emerging field.
Collapse
Affiliation(s)
- Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
44
|
Identification of cellular genes affecting the infectivity of foot-and-mouth disease virus. J Virol 2009; 83:6681-8. [PMID: 19369337 DOI: 10.1128/jvi.01729-08] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Foot-and-mouth disease virus (FMDV) produces one of the most infectious of all livestock diseases, causing extensive economic loss in areas of breakout. Like other viral pathogens, FMDV recruits proteins encoded by host cell genes to accomplish the entry, replication, and release of infectious viral particles. To identify such host-encoded proteins, we employed an antisense RNA strategy and a lentivirus-based library containing approximately 40,000 human expressed sequence tags (ESTs) to randomly inactivate chromosomal genes in a bovine kidney cell line (LF-BK) that is highly susceptible to FMDV infection and then isolated clones that survived multiple rounds of exposure to the virus. Here, we report the identification of ESTs whose expression in antisense orientation limited host cell killing by FMDV and restricted viral propagation. The role of one such EST, that of ectonucleoside triphosphate diphosphohydrolase 6 (NTPDase6; also known as CD39L2), a membrane-associated ectonucleoside triphosphate diphosphohydrolase that previously was not suspected of involvement in the propagation of viral pathogens and which we now show is required for normal synthesis of FMDV RNA and proteins, is described in this report.
Collapse
|
45
|
Parvanova I, Epiphanio S, Fauq A, Golde TE, Prudêncio M, Mota MM. A small molecule inhibitor of signal peptide peptidase inhibits Plasmodium development in the liver and decreases malaria severity. PLoS One 2009; 4:e5078. [PMID: 19337374 PMCID: PMC2659798 DOI: 10.1371/journal.pone.0005078] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/05/2009] [Indexed: 11/18/2022] Open
Abstract
The liver stage of Plasmodium's life cycle is the first, obligatory step in malaria infection. Decreasing the hepatic burden of Plasmodium infection decreases the severity of disease and constitutes a promising strategy for malaria prophylaxis. The efficacy of the gamma-secretase and signal peptide peptidase inhibitor LY411,575 in targeting Plasmodium liver stages was evaluated both in human hepatoma cell lines and in mouse primary hepatocytes. LY411,575 was found to prevent Plasmodium's normal development in the liver, with an IC50 of approximately 80 nM, without affecting hepatocyte invasion by the parasite. In vivo results with a rodent model of malaria showed that LY411,575 decreases the parasite load in the liver and increases by 55% the resistance of mice to cerebral malaria, one of the most severe malaria-associated syndromes. Our data show that LY411,575 does not exert its effect via the Notch signaling pathway suggesting that it may interfere with Plasmodium development through an inhibition of the parasite's signal peptide peptidase. We therefore propose that selective signal peptide peptidase inhibitors could be potentially used for preventive treatment of malaria in humans.
Collapse
Affiliation(s)
- Iana Parvanova
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Sabrina Epiphanio
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Abdul Fauq
- Department of Neuroscience, Mayo Clinic, College of Medicine, Jacksonville, Florida, United States of America
| | - Todd E. Golde
- Department of Neuroscience, Mayo Clinic, College of Medicine, Jacksonville, Florida, United States of America
| | - Miguel Prudêncio
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Maria M. Mota
- Unidade de Malária, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
46
|
Robakis T, Bak B, Lin SH, Bernard DJ, Scheiffele P. An internal signal sequence directs intramembrane proteolysis of a cellular immunoglobulin domain protein. J Biol Chem 2008; 283:36369-76. [PMID: 18981173 DOI: 10.1074/jbc.m807527200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precursor proteolysis is a crucial mechanism for regulating protein structure and function. Signal peptidase (SP) is an enzyme with a well defined role in cleaving N-terminal signal sequences but no demonstrated function in the proteolysis of cellular precursor proteins. We provide evidence that SP mediates intraprotein cleavage of IgSF1, a large cellular Ig domain protein that is processed into two separate Ig domain proteins. In addition, our results suggest the involvement of signal peptide peptidase (SPP), an intramembrane protease, which acts on substrates that have been previously cleaved by SP. We show that IgSF1 is processed through sequential proteolysis by SP and SPP. Cleavage is directed by an internal signal sequence and generates two separate Ig domain proteins from a polytopic precursor. Our findings suggest that SP and SPP function are not restricted to N-terminal signal sequence cleavage but also contribute to the processing of cellular transmembrane proteins.
Collapse
Affiliation(s)
- Thalia Robakis
- Department of Physiology & Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
47
|
Murray CL, Jones CT, Rice CM. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis. Nat Rev Microbiol 2008; 6:699-708. [PMID: 18587411 PMCID: PMC2764292 DOI: 10.1038/nrmicro1928] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viruses of the Flaviviridae family, including hepatitis C, dengue and bovine viral diarrhoea, are responsible for considerable morbidity and mortality worldwide. Recent advances in our understanding of virion assembly have uncovered commonalities among distantly related members of this family. We discuss the emerging hypothesis that physical virion components are not alone in forming the infectious particle, but that non-structural proteins are intimately involved in orchestrating morphogenesis. Pinpointing the roles of Flaviviridae proteins in virion production could reveal new avenues for antiviral therapeutics.
Collapse
|
48
|
Urban S, Shi Y. Core principles of intramembrane proteolysis: comparison of rhomboid and site-2 family proteases. Curr Opin Struct Biol 2008; 18:432-41. [PMID: 18440799 PMCID: PMC2572676 DOI: 10.1016/j.sbi.2008.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/13/2008] [Indexed: 11/30/2022]
Abstract
Cleavage of proteins within their membrane-spanning segments is an ancient regulatory mechanism that has evolved to control a myriad of cellular processes in all forms of life. Although three mechanistic families of enzymes have been discovered that catalyze hydrolysis within the water-excluding environment of the membrane, how they achieve this improbable reaction has been both a point of controversy and skepticism. The crystal structures of rhomboid and site-2 protease, two different classes of intramembrane proteases, have been solved recently. Combined with current biochemical analyses, this advance provides an unprecedented view of how nature has solved the problem of facilitating hydrolysis within membranes in two independent instances. We focus on detailing the similarities between these unrelated enzymes to define core biochemical principles that govern this conserved regulatory mechanism.
Collapse
Affiliation(s)
- Sinisa Urban
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
49
|
Targett-Adams P, Hope G, Boulant S, McLauchlan J. Maturation of hepatitis C virus core protein by signal peptide peptidase is required for virus production. J Biol Chem 2008; 283:16850-9. [PMID: 18424431 DOI: 10.1074/jbc.m802273200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Complete maturation of hepatitis C virus (HCV) core protein requires coordinate cleavage by signal peptidase and an intramembrane protease, signal peptide peptidase. We show that reducing the intracellular levels of signal peptide peptidase lowers the titer of infectious virus released from cells, indicating that it plays an important role in virus production. Proteolysis by the enzyme at a signal peptide between core and the E1 glycoprotein is needed to permit targeting of core to lipid droplets. From mutagenesis studies, introducing mutations into the core-E1 signal peptide delayed the appearance of signal peptide peptidase-processed core until between 48 and 72 h after the beginning of the infectious cycle. Accumulation of mature core at these times coincided with its localization to lipid droplets and a rise in titer of infectious HCV. Therefore, processing of core by signal peptide peptidase is a critical event in the virus life cycle. To study the stage in virus production that may be blocked by interfering with intramembrane cleavage of core, we examined the distribution of viral RNA in cells harboring the core-E1 signal peptide mutant. Results revealed that colocalization of core with HCV RNA required processing of the protein by signal peptide peptidase. Our findings provide new insights into the sequence requirements for proteolysis by signal peptide peptidase. Moreover, they offer compelling evidence for a function for an intramembrane protease to facilitate the association of core with viral genomes, thereby creating putative sites for assembly of nascent virus particles.
Collapse
Affiliation(s)
- Paul Targett-Adams
- MRC Virology Unit, Institute of Virology, Glasgow G11 5JR, United Kingdom
| | | | | | | |
Collapse
|
50
|
Tamura T, Asakura T, Uemura T, Ueda T, Terauchi K, Misaka T, Abe K. Signal peptide peptidase and its homologs in Arabidopsis thaliana- plant tissue-specific expression and distinct subcellular localization. FEBS J 2007; 275:34-43. [DOI: 10.1111/j.1742-4658.2007.06170.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|