1
|
Defoirdt T. Resistance to quorum sensing inhibition spreads more slowly during host infection than antibiotic resistance. Gut Microbes 2025; 17:2476582. [PMID: 40066860 PMCID: PMC11901357 DOI: 10.1080/19490976.2025.2476582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Antibiotic resistance is a rising problem and new and sustainable strategies to combat bacterial (intestinal) infections are therefore urgently needed. One promising strategy under intense investigation is the inhibition of quorum sensing, bacterial cell-to-cell communication with small molecules. A key question with respect to the application of quorum sensing inhibition is whether it will impose selective pressure for the spread of resistance. It was recently shown that resistance to quorum sensing inhibition will spread more slowly during infection of a host than resistance to traditional antibiotics.
Collapse
Affiliation(s)
- Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
2
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Xu W, Jalomo-Khayrova E, Gumerov VM, Ross PA, Köbel TS, Schindler D, Bange G, Zhulin IB, Sourjik V. Specificities of Chemosensory Receptors in the Human Gut Microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637667. [PMID: 39990360 PMCID: PMC11844446 DOI: 10.1101/2025.02.11.637667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The human gut is rich in metabolites and harbors a complex microbial community, yet the sensory repertoire of its commensal bacteria remains largely uncharacterized. Here we systematically mapped ligand specificities of extracytoplasmic sensory domains from twenty members of the human gut microbiota, with a primary focus on the abundant and physiologically important class of Clostridia. We identified diverse metabolites as specific stimuli for three major functional classes of transmembrane receptors. We further characterized novel subsets of sensors belonging to the Cache superfamily, specific for lactate, dicarboxylic acids, and for uracil and short-chain fatty acids (SCFAs), respectively, and investigated the evolution of their ligand specificity. Structural and biochemical analysis of the newly described dCache_1UR domain revealed an independent binding of uracil and SCFA at distinct modules. Altogether, we could identify or predict specificities for over a half of the Cache-type chemotactic sensors in the selected gut commensals, with the carboxylic acids representing the largest class of ligands. Among those, the most commonly found specificities were for lactate and formate, indicating particular importance of these metabolites in the human gut microbiome and consistent with their observed beneficial impact on the growth of selected bacterial species.
Collapse
Affiliation(s)
- Wenhao Xu
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Ekaterina Jalomo-Khayrova
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg 35043, Germany
| | - Vadim M Gumerov
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Patricia A. Ross
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Tania S. Köbel
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Daniel Schindler
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg 35043, Germany
| | - Igor B. Zhulin
- Department of Microbiology and Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43210, USA
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
- Center for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
4
|
Wu F, Lin S, Luo H, Wang C, Liu J, Zhu X, Pang Y. Noncontact microbiota transplantation by core-shell microgel-enabled nonleakage envelopment. SCIENCE ADVANCES 2025; 11:eadr7373. [PMID: 39908366 DOI: 10.1126/sciadv.adr7373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 01/06/2025] [Indexed: 02/07/2025]
Abstract
Transplantation of beneficial bacteria to specific microbiota has been widely exploited to treat diseases by reshaping a healthy microbial structure. However, direct exposure of exogenous bacteria in vivo suffers from low bioavailability and infection risk. Here, we describe a noncontact microbiota transplantation system (NMTS) by core-shell microgel-enabled nonleakage envelopment. Bacteria are encapsulated into the core of core-shell microgels via two-step light-initiated emulsion polymerization of gelatin methacrylate. NMTS is versatile for biocontainment of diverse strains, showing near complete encapsulation and negligible influence on bacterial activity. As a proof-of-concept study on probiotic transplantation to the gut microbiota, NMTS demonstrates the shielding effect to protect sealed bacteria from intraluminal insults of low pH and bile acid, the toughness to prevent bacterial leakage during entire gastrointestinal passage and reduce infection risk, and the permeability to release beneficial metabolites and reconstruct a balanced intestinal microbial structure, proposing a contactless fashion for advanced microbiota transplantation.
Collapse
Affiliation(s)
- Feng Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sisi Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huilong Luo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Jinyao Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Fang X, Chen Y, Hu L, Gu S, Zhu J, Hang Y, Cao X, Xiao Y, Luo H, Zhao C, Xiao L, Zhong Q. Modulation of virulence and metabolic profiles in Klebsiella pneumoniae under indole-mediated stress response. Front Cell Infect Microbiol 2025; 15:1546991. [PMID: 39963410 PMCID: PMC11830697 DOI: 10.3389/fcimb.2025.1546991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Indole, a crucial bacterial signaling molecule, plays a fundamental role in regulating various physiological processes within bacteria, including growth, acid tolerance, biofilm development, motility, and other cellular functions. Its regulatory influence extends beyond indole-producing bacteria, significantly impacting the physiological activities in non-indole-producing species. In this study, we demonstrate that indole enhances the pathogenicity and viability of Klebsiella pneumoniae using the Galleria mellonella infection model and serum killing assay. Concurrently, indole has varying effects on biofilm formation in K. pneumoniae, with some strains showing enhanced biofilm formation ability. To elucidate the underlying molecular mechanisms, transcriptome analysis revealed that indole exposure in K. pneumoniae led to the upregulation of genes associated with pili formation and iron acquisition systems, while simultaneously inducing oxidative stress responses. Additionally, our analysis uncovered extensive metabolic remodeling. Specifically, we observed significant upregulation of genes involved in simple carbohydrate utilization pathways, including those responsible for galactose, mannose, and maltose metabolism, as well as enhanced expression of genes associated with pyrimidine biosynthesis. These findings collectively indicate that indole enhances the intestinal colonization and pathogenicity of K. pneumoniae primarily by modulation of fimbriae expression and metabolic pathway regulation.
Collapse
Affiliation(s)
- Xueyao Fang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanhui Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Longhua Hu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shumin Gu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junqi Zhu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yaping Hang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xingwei Cao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanping Xiao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hong Luo
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuwen Zhao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lianhua Xiao
- Department of Marriage and Pregnancy, Ganzhou Zhanggong District Maternal and Child Health Hospital, Ganzhou, Jiangxi, China
| | - Qiaoshi Zhong
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
6
|
Nunzi E, Pariano M, Costantini C, Garaci E, Puccetti P, Romani L. Host-microbe serotonin metabolism. Trends Endocrinol Metab 2025; 36:83-95. [PMID: 39142913 DOI: 10.1016/j.tem.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.
Collapse
Affiliation(s)
- Emilia Nunzi
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Marilena Pariano
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Paolo Puccetti
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy; Casa di cura San Raffaele, Sulmona, L'Aquila, Italy.
| |
Collapse
|
7
|
Wan J, Gao X, Liu F. Regulatory role of the Cpx ESR in bacterial behaviours. Virulence 2024; 15:2404951. [PMID: 39292643 PMCID: PMC11790278 DOI: 10.1080/21505594.2024.2404951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 09/20/2024] Open
Abstract
The envelope demarcates the boundary between bacterial cell and its environment, providing a place for bacteria to transport nutrients and excrete metabolic waste, while buffering external environmental stress. Envelope stress responses (ESRs) are important tools for bacteria to sense and repair envelope damage. In this review, we discussed evidence that indicates the important role of the Cpx ESR in pathogen-host interactions, including environmental stress sensing and responses, modulation of bacterial virulence, antimicrobial resistance, and inter-kingdom signaling.
Collapse
Affiliation(s)
- Jiajia Wan
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Xuejun Gao
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Feng Liu
- College of Animal Sciences, Yangtze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Sun H, Huang D, Pang Y, Chen J, Kang C, Zhao M, Yang B. Key roles of two-component systems in intestinal signal sensing and virulence regulation in enterohemorrhagic Escherichia coli. FEMS Microbiol Rev 2024; 48:fuae028. [PMID: 39537200 PMCID: PMC11644481 DOI: 10.1093/femsre/fuae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 11/12/2024] [Indexed: 11/16/2024] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that infects humans by colonizing the large intestine. Upon reaching the large intestine, EHEC mediates local signal recognition and the transcriptional regulation of virulence genes to promote adherence and colonization in a highly site-specific manner. Two-component systems (TCSs) represent an important strategy used by EHEC to couple external stimuli with the regulation of gene expression, thereby allowing EHEC to rapidly adapt to changing environmental conditions. An increasing number of studies published in recent years have shown that EHEC senses a variety of host- and microbiota-derived signals present in the human intestinal tract and coordinates the expression of virulence genes via multiple TCS-mediated signal transduction pathways to initiate the disease-causing process. Here, we summarize how EHEC detects a wide range of intestinal signals and precisely regulates virulence gene expression through multiple signal transduction pathways during the initial stages of infection, with a particular emphasis on the key roles of TCSs. This review provides valuable insights into the importance of TCSs in EHEC pathogenesis, which has relevant implications for the development of antibacterial therapies against EHEC infection.
Collapse
Affiliation(s)
- Hongmin Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Yu Pang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Jingnan Chen
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Chenbo Kang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Mengjie Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin 300457, China
| |
Collapse
|
9
|
Zhou Z, Yang J, Liu Q, Gao J, Ji W. Patho-immunological mechanisms of atopic dermatitis: The role of the three major human microbiomes. Scand J Immunol 2024; 100:e13403. [PMID: 39267301 DOI: 10.1111/sji.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/17/2024]
Abstract
Atopic dermatitis (AD) is a genetically predisposed allergic inflammatory dermatosis with chronic, pruritic, and recurrent features. Patients with AD have dry and itchy skin, often accompanied by chronic eczematous lesions, allergic rhinitis, or asthma, which has a considerable impact on their daily lives. With advances in genome sequencing technology, it has been demonstrated that microorganisms are involved in this disease, and the microorganisms associated with AD are attracting considerable research attention. An increasing number of studies conducted in recent years have demonstrated that an imbalanced microbiome in AD patients has substantial impact on disease prognosis, and the causes are closely tied to various immune mechanisms. However, the involvement of microorganisms in the pathogenesis of AD remains poorly understood. In this paper, we review the advances in research on the immunological mechanisms of the skin microbiome, intestinal microbiome, and lung microbiome that are related to AD prognosis and immunotherapy protocols. It is hoped that this approach will lay the foundation for exploring the pathogenesis of and emerging treatments for AD.
Collapse
Affiliation(s)
- Zhaosen Zhou
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qin Liu
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Gao
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenting Ji
- Department of Nursing in Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
10
|
Russo MA, Puccetti M, Costantini C, Giovagnoli S, Ricci M, Garaci E, Romani L. Human and gut microbiota synergy in a metabolically active superorganism: a cardiovascular perspective. Front Cardiovasc Med 2024; 11:1411306. [PMID: 39465131 PMCID: PMC11502352 DOI: 10.3389/fcvm.2024.1411306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Despite significant advances in diagnosis and treatment over recent decades, cardiovascular disease (CVD) remains one of the leading causes of morbidity and mortality in Western countries. This persistent burden is partly due to the incomplete understanding of fundamental pathogenic mechanisms, which limits the effectiveness of current therapeutic interventions. In this context, recent evidence highlights the pivotal role of immuno-inflammatory activation by the gut microbiome in influencing cardiovascular disorders, potentially opening new therapeutic avenues. Indeed, while atherosclerosis has been established as a chronic inflammatory disease of the arterial wall, accumulating data suggest that immune system regulation and anti-inflammatory pathways mediated by gut microbiota metabolites play a crucial role in a range of CVDs, including heart failure, pericardial disease, arrhythmias, and cardiomyopathies. Of particular interest is the emerging understanding of how tryptophan metabolism-by both host and microbiota-converges on the Aryl hydrocarbon Receptor (AhR), a key regulator of immune homeostasis. This review seeks to enhance our understanding of the role of the immune system and inflammation in CVD, with a focus on how gut microbiome-derived tryptophan metabolites, such as indoles and their derivatives, contribute to cardioimmunopathology. By exploring these mechanisms, we aim to facilitate the development of novel, microbiome-centered strategies for combating CVD.
Collapse
Affiliation(s)
| | - Matteo Puccetti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Enrico Garaci
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- San Raffaele Research Center, Sulmona, L’Aquila, Italy
| |
Collapse
|
11
|
Ranhotra HS. Discrete interplay of gut microbiota L-tryptophan metabolites in host biology and disease. Mol Cell Biochem 2024; 479:2273-2290. [PMID: 37861881 DOI: 10.1007/s11010-023-04867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
The gut microbiota and the host maintain a conjoint relationship and together achieve optimal physiology via a multitude of interactive signalling cues. Dietary-derived L-tryptophan (L-trp) is enzymatically metabolized by the resident symbiotic gut microbiota to indole and various indole derivatives. Indole and indole metabolites secreted by the gut bacteria act locally in the intestinal cells as well as distally and modulate tissue-specific functions which are beneficial to the host. Functions attributed to these microbial indole metabolites in the host include regulation of intestinal permeability, immunity and mucosal roles, inflammation, and insulin sensitivity. On the other hand, dysregulation of gut microbiota L-trp metabolism compromises the optimal availability of indole and indole metabolites and can induce the onset of metabolic disorders, inflammation, liver steatosis, and decrease gut barrier integrity. Gut dysbiosis is regarded as one of the prime reasons for this deregulated microbial-derived indole metabolites. A number of indole metabolites from the gut bacteria have been identified recently displaying variable affinity towards xenobiotic nuclear receptors. Microbial metabolite mimicry concept can be used to design and develop novel indole-moiety-containing compounds with higher affinity towards the receptors and efficacy in preclinical studies. Such compounds may serve as therapeutic drugs in clinical trials in the future. In this article, I review L-trp metabolism in the host and gut microbiota and the various physiological functions, patho-physiologies associated with the microbial-released indole metabolites in the host, including the metabolite mimicry-based concept to develop tailored indole-containing novel experimental drugs.
Collapse
Affiliation(s)
- Harmit S Ranhotra
- Department of Biochemistry, St. Edmund's College, Shillong, 793 003, India.
| |
Collapse
|
12
|
Sun SS, He TT, Zhang SY, Yu XJ, Chen C, Laghari ZA, Nie P, Xie HX. T3SS protein EsrC binds to the lacI-like operator of type 1 fimbrial operon to suppress adhesion of Edwardsiella piscicida. Appl Environ Microbiol 2024; 90:e0086224. [PMID: 39058035 PMCID: PMC11337838 DOI: 10.1128/aem.00862-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Type 1 fimbria, the short hair-like appendage assembled on the bacterial surface, plays a pivotal role in adhesion and invasion in Edwardsiella piscicida. The type III secretion system (T3SS), another bacterial surface appendage, facilitates E. piscicida's replication in vivo by delivering effectors into host cells. Our previous research demonstrated that E. piscicida T3SS protein EseJ inhibits adhesion and invasion of E. piscicida by suppressing type 1 fimbria. However, how EseJ suppresses type 1 fimbria remains elusive. In this study, a lacI-like operator (nt -245 to -1 of fimA) upstream of type 1 fimbrial operon in E. piscicida was identified, and EseJ inhibits type 1 fimbria through the lacI-like operator. Moreover, through DNA pull-down and electrophoretic mobility shift assay, an AraC-type T3SS regulator, EsrC, was screened and verified to bind to nt -145 to -126 and nt -50 to -1 of fimA, suppressing type 1 fimbria. EseJ is almost abolished upon the depletion of EsrC. EsrC and EseJ impede type 1 fimbria expression. Intriguingly, nutrition and microbiota-derived indole activate type 1 fimbria through downregulating T3SS, alleviating EsrC or EseJ's inhibitory effect on lacI-like operator of type 1 fimbrial operon. By this study, it is revealed that upon entering the gastrointestinal tract, rich nutrients and indole downregulate T3SS and thereof upregulate type 1 fimbria, stimulating efficient adhesion and invasion; upon being internalized into epithelium, the limit in indole and nutrition switches on T3SS and thereof switches off type 1 fimbria, facilitating effector delivery to guarantee E. piscicida's survival/replication in vivo.IMPORTANCEIn this work, we identified the lacI-like operator of type 1 fimbrial operon in E. piscicida, which was suppressed by the repressors-T3SS protein EseJ and EsrC. We unveiled that E. piscicida upregulates type 1 fimbria upon sensing rich nutrition and the microbiota-derived indole, thereof promoting the adhesion of E. piscicida. The increase of indole and nutrition promotes type 1 fimbria by downregulating T3SS. The decrease in EseJ and EsrC alleviates their suppression on type 1 fimbria, and vice versa.
Collapse
Affiliation(s)
- Shan Shan Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tian Tian He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiu-Jun Yu
- MRC Center for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Chang Chen
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Zubair Ahmed Laghari
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hai Xia Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
13
|
Pham C, Stogios PJ, Savchenko A, Mahadevan R. Design and Characterization of a Generalist Biosensor for Indole Derivatives. ACS Synth Biol 2024; 13:2246-2252. [PMID: 38875315 DOI: 10.1021/acssynbio.3c00736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Transcription factor (TF)-based biosensors are useful synthetic biology tools for applications in a variety of areas of biotechnology. A major challenge of biosensor circuits is the limited repertoire of identified and well-characterized TFs for applications of interest, in addition to the challenge of optimizing selected biosensors. In this work, we implement the IclR family repressor TF TtgV from Pseudomonas putida DOT-T1E as an indole-derivative biosensor in Escherichia coli. We optimize the genetic circuit utilizing different components, providing insights into biosensor design and expanding on previous studies investigating this TF. We discover novel physiologically relevant ligands of TtgV, such as skatole. The broad specificity of TtgV makes it a useful target for directed evolution and protein engineering toward desired specificity. TtgV, as an indole-derivative biosensor, is a promising genetic component for the detection of compounds with biological activities relevant to health and the gut microbiome.
Collapse
Affiliation(s)
- Chester Pham
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3H7, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3H7, Canada
| |
Collapse
|
14
|
Zeng Z, Lv B, Tang YE, Sun H, Li S, He Y, Wang J, Wang Z. Effects of dietary selenized glucose on intestinal microbiota and tryptophan metabolism in rats: Assessing skatole reduction potential. ENVIRONMENTAL RESEARCH 2024; 252:118874. [PMID: 38579995 DOI: 10.1016/j.envres.2024.118874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
3-Methylindole (Skatole), a degradation product of tryptophan produced by intestinal microbial activity, significantly contributes to odor nuisance. Its adverse effects on animal welfare, human health, and environmental pollution have been noted. However, it is still unclear whether the intestinal microbiota mediates the impact of selenium (Se) on skatole production and what the underlying mechanisms remain elusive. A selenized glucose (SeGlu) derivative is a novel organic selenium compound. In this study, a diverse range of dietary SeGlu-treated levels, including SeGlu-deficient (CK), SeGlu-adequate (0.15 mg Se per L), and SeGlu-supranutritional (0.4 mg Se per L) conditions, were used to investigate the complex interaction of SeGlu on intestinal microbiome and serum metabolome changes in male Sprague-Dawley (SD) rats. The study showed that SeGlu supplementation enhanced the antioxidant ability in rats, significantly manifested in the increases of the activity of catalase (CAT) and glutathione peroxidase (GSH-Px), while no change in the level of malonaldehyde (MDA). Metagenomic sequencing analysis verified that the SeGlu treatment group significantly increased the abundance of beneficial microorganisms such as Clostridium, Ruminococcus, Faecalibacterium, Lactobacillus, and Alloprevotella while reducing the abundance of opportunistic pathogens such as Bacteroides and Alistipes significantly. Further metabolomic analysis revealed phenylalanine, tyrosine, and tryptophan biosynthesis changes in the SeGlu treatment group. Notably, the biosynthesis of indole, a critical pathway, was affected by SeGlu treatment, with several crucial enzymes implicated. Correlation analysis demonstrated strong associations between specific bacterial species - Treponema, Bacteroides, and Ruminococcus, and changes in indole and derivative concentrations. Moreover, the efficacy of SeGlu-treated fecal microbiota was confirmed through fecal microbiota transplantation, leading to a decrease in the concentration of skatole in rats. Collectively, the analysis of microbiota and metabolome response to diverse SeGlu levels suggests that SeGlu is a promising dietary additive in modulating intestinal microbiota and reducing odor nuisance in the livestock and poultry industry.
Collapse
Affiliation(s)
- Zhi Zeng
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Bo Lv
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yun-E Tang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Huimin Sun
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Shunfeng Li
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Yuan He
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Juan Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Zhi Wang
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| |
Collapse
|
15
|
Huang Z, Wells JM, Fogliano V, Capuano E. Microbial tryptophan catabolism as an actionable target via diet-microbiome interactions. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38950607 DOI: 10.1080/10408398.2024.2369947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
In recent years, the role of microbial tryptophan (Trp) catabolism in host-microbiota crosstalk has become a major area of scientific interest. Microbiota-derived Trp catabolites positively contribute to intestinal and systemic homeostasis by acting as ligands of aryl hydrocarbon receptor and pregnane X receptor, and as signaling molecules in microbial communities. Accumulating evidence suggests that microbial Trp catabolism could be therapeutic targets in treating human diseases. A number of bacteria and metabolic pathways have been identified to be responsible for the conversion of Trp in the intestine. Interestingly, many Trp-degrading bacteria can benefit from the supplementation of specific dietary fibers and polyphenols, which in turn increase the microbial production of beneficial Trp catabolites. Thus, this review aims to highlight the emerging role of diets and food components, i.e., food matrix, fiber, and polyphenol, in modulating the microbial catabolism of Trp and discuss the opportunities for potential therapeutic interventions via specifically designed diets targeting the Trp-microbiome axis.
Collapse
Affiliation(s)
- Zhan Huang
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Jerry M Wells
- Host-Microbe Interactomics Group, Department of Animal Sciences, Wageningen University, Wageningen, the Netherlands
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Edoardo Capuano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
16
|
Wang C, Defoirdt T, Rajkovic A. The impact of indole and mucin on sporulation, biofilm formation, and enterotoxin production in foodborne Clostridium perfringens. J Appl Microbiol 2024; 135:lxae083. [PMID: 38544331 DOI: 10.1093/jambio/lxae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
AIMS Indole and mucin are compounds found in the host environment as they are produced by the host or by the host-associated microbiota. This study investigated whether indole and mucin impact Clostridium perfringens growth and sporulation, as well as enterotoxin production and biofilm formation. METHODS AND RESULTS There was no impact on growth of Cl. perfringens for up to 400 µM indole and 240 mg/l mucin, and neither indole nor mucin affected sporulation. Reverse-transcriptase qPCR showed that mucin strongly upregulated the expression of Cl. perfringens enterotoxin (up to 121-fold increase), whereas indole had a much more modest effect (2-fold). This was also reflected in increased Cl. perfringens enterotoxin levels in mucin-treated Cl. perfringens (as assessed by a reversed passive latex agglutination assay). Finally, mucin and indole significantly increased biofilm formation of Cl. perfringens, although the effect size was relatively small (less than 1.5 fold). CONCLUSION These results indicate that Cl. perfringens can sense its presence in a host environment by responding to mucin, and thereby markedly increased enterotoxin production.
Collapse
Affiliation(s)
- Chao Wang
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Andreja Rajkovic
- Research Unit Food Microbiology and Food Preservation, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
17
|
Zhang L, Guo L, Cui Z, Ju F. Exploiting predatory bacteria as biocontrol agents across ecosystems. Trends Microbiol 2024; 32:398-409. [PMID: 37951768 DOI: 10.1016/j.tim.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
Predatory bacteria have been increasingly known for their ubiquity in environments and great functional potentials in controlling unwanted microorganisms. Fundamental understanding of the predation mechanisms, population dynamics, and interaction patterns underlying bacterial predation is required for wise exploitation of predatory bacteria for enhancing ecoenvironmental, animal, and human health. Here, we review the recent achievements on applying predatory bacteria in different systems as biocontrol agents and living antibiotics as well as new findings in their phylogenetic diversity and predation mechanisms. We finally propose critical issues that deserve priority research and highlight the necessity to combine classic culture-based and advanced culture-independent approaches to push research frontiers of bacterial predation across ecosystems for promising biocontrol and therapy strategies towards a sustainable ecoenvironment and health.
Collapse
Affiliation(s)
- Lu Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Lingyun Guo
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, China
| | - Feng Ju
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
18
|
Scott SA, Fu J, Chang PV. Dopamine receptor D2 confers colonization resistance via microbial metabolites. Nature 2024; 628:180-185. [PMID: 38480886 PMCID: PMC11097147 DOI: 10.1038/s41586-024-07179-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/07/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.
Collapse
Affiliation(s)
- Samantha A Scott
- Department of Microbiology, Cornell University, Ithaca, NY, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Jingjing Fu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Pamela V Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA.
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
- Cornell Center for Immunology, Cornell University, Ithaca, NY, USA.
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Yamamoto M, Ogura H, Kuda T, Xia Y, Nakamura A, Takahashi H, Inoue J, Takayanagi S. Detection of typical indigenous gut bacteria related to kanpyo Lagenaria siceraria var. hispida powder in murine caecum and human faecal cultures. 3 Biotech 2024; 14:118. [PMID: 38524237 PMCID: PMC10959864 DOI: 10.1007/s13205-024-03960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Kanpyo (KP) is an edible dried product produced by peeling the fruit of the gourd Lagenaria siceraria var. hispida; it is used in the traditional Japanese cuisine. The health functionality of KP due to its rich dietary fibre is expected to include a possible combined effect of KP-responsive indigenous gut bacteria (KP-RIB). However, its effect on the gut microbiota is unclear. To determine the effects of the KP on the gut microbiota and their host, Institute of Cancer Research mice were fed a high-sucrose diet containing no fibre (NF) or 5% (w/w) KP for 14 days, and their caecal microbiota was analysed by 16S rRNA (V4) amplicon sequencing. Higher faecal frequency and weight and lower spleen weight and spleen tumour necrosis factor-α levels were observed in KP-fed mice than in NF-fed mice (p < 0.05). KP increased and decreased the abundance of short-chain fatty acid producer Lachnospiraceae and obesity-inflammation related Allobaculum species, respectively. In the case of human faecal cultures, stool samples from five healthy volunteers were inoculated and incubated at 37 °C for 24 h anaerobically; 3.2% (w/v) KP suppressed putrefactive compounds (indole, phenol, and ammonia). KP increased butyrate-producer Faecalibacterium, acetate/lactate-producer Bifidobacterium, and Lachnospira. Furthermore, KP cultures showed high antioxidant and RAW264.7 macrophage cell activation capacities. These results suggest that KP-RIB and KP intake may synergistically affect host health. However, further studies are required to clarify the synergistic effects of KP and KP-RIB.
Collapse
Affiliation(s)
- Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hikaru Ogura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Junji Inoue
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| | - Shu Takayanagi
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| |
Collapse
|
20
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
21
|
Joyce SA, Clarke DJ. Microbial metabolites as modulators of host physiology. Adv Microb Physiol 2024; 84:83-133. [PMID: 38821635 DOI: 10.1016/bs.ampbs.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The gut microbiota is increasingly recognised as a key player in influencing human health and changes in the gut microbiota have been strongly linked with many non-communicable conditions in humans such as type 2 diabetes, obesity and cardiovascular disease. However, characterising the molecular mechanisms that underpin these associations remains an important challenge for researchers. The gut microbiota is a complex microbial community that acts as a metabolic interface to transform ingested food (and other xenobiotics) into metabolites that are detected in the host faeces, urine and blood. Many of these metabolites are only produced by microbes and there is accumulating evidence to suggest that these microbe-specific metabolites do act as effectors to influence human physiology. For example, the gut microbiota can digest dietary complex polysaccharides (such as fibre) into short-chain fatty acids (SCFA) such as acetate, propionate and butyrate that have a pervasive role in host physiology from nutrition to immune function. In this review we will outline our current understanding of the role of some key microbial metabolites, such as SCFA, indole and bile acids, in human health. Whilst many studies linking microbial metabolites with human health are correlative we will try to highlight examples where genetic evidence is available to support a specific role for a microbial metabolite in host health and well-being.
Collapse
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David J Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
22
|
Zechner EL, Kienesberger S. Microbiota-derived small molecule genotoxins: host interactions and ecological impact in the gut ecosystem. Gut Microbes 2024; 16:2430423. [PMID: 39558480 PMCID: PMC11581169 DOI: 10.1080/19490976.2024.2430423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
The human intestinal tract is densely colonized by a microbial community that is subject to intense competition. Bacteria in this complex habitat seek to outcompete their neighbors for nutrients and eliminate competitors with antibacterial toxins. Antagonism can be mediated by diverse effectors including toxic proteins and small molecule inhibitors that are released extracellularly or delivered by specialized secretion systems to targeted cells. Two prototypical microbiota-derived enterotoxins, colibactin and tilimycin, and the newly discovered family of indolimines represent an expanding group of non-proteinaceous small molecules which specifically target DNA. In addition to cell killing, they generate mutations and genome instability in intoxicated microbes and host cells alike. They have been studied in detail because of their direct toxicity to human cells and important etiological roles in intestinal pathologies. Increasing evidence, however, reveals that these commensal genotoxins are also mediators of interbacterial antagonism, which impacts gut microbial ecology. In this review, we illustrate the functional versatility of commensal genotoxins in the gut ecosystem.
Collapse
Affiliation(s)
- Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sabine Kienesberger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
23
|
van Vorstenbosch R, van Munster K, Pachen D, Mommers A, Stavropoulos G, van Schooten FJ, Ponsioen C, Smolinska A. The Detection of Primary Sclerosing Cholangitis Using Volatile Metabolites in Fecal Headspace and Exhaled Breath. Metabolites 2023; 14:23. [PMID: 38248826 PMCID: PMC10819709 DOI: 10.3390/metabo14010023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Up to 5% of inflammatory bowel disease patients may at some point develop primary sclerosing cholangitis (PSC). PSC is a rare liver disease that ultimately results in liver damage, cirrhosis and liver failure. It typically remains subclinical until irreversible damage has been inflicted. Hence, it is crucial to screen IBD patients for PSC, but its early detection is challenging, and the disease's etiology is not well understood. This current study aimed at the early detection of PSC in an IBD population using Volatile Organic Compounds in fecal headspace and exhaled breath. To this aim, fecal material and exhaled breath were collected from 73 patients (n = 16 PSC/IBD; n = 8 PSC; n = 49 IBD), and their volatile profile were analyzed using Gas Chromatography-Mass Spectrometry. Using the most discriminatory features, PSC detection resulted in areas under the ROC curve (AUCs) of 0.83 and 0.84 based on fecal headspace and exhaled breath, respectively. Upon data fusion, the predictive performance increased to AUC 0.92. The observed features in the fecal headspace relate to detrimental microbial dysbiosis and exogenous exposure. Future research should aim for the early detection of PSC in a prospective study design.
Collapse
Affiliation(s)
- Robert van Vorstenbosch
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Kim van Munster
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Danielle Pachen
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Alex Mommers
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Georgios Stavropoulos
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Frederik-Jan van Schooten
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| | - Cyriel Ponsioen
- Department of Gastroenterology and Hepathology, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands; (K.v.M.); (C.P.)
| | - Agnieszka Smolinska
- Department of Toxicology, Nutrition and Toxicology Research Institute, Maastricht University, 6229 ER Maastricht, The Netherlands; (D.P.); (A.M.); (F.-J.v.S.)
| |
Collapse
|
24
|
Louis M, Tahrioui A, Tremlett CJ, Clamens T, Leprince J, Lefranc B, Kipnis E, Grandjean T, Bouffartigues E, Barreau M, Defontaine F, Cornelis P, Feuilloley MG, Harmer NJ, Chevalier S, Lesouhaitier O. The natriuretic peptide receptor agonist osteocrin disperses Pseudomonas aeruginosa biofilm. Biofilm 2023; 5:100131. [PMID: 37252226 PMCID: PMC10220261 DOI: 10.1016/j.bioflm.2023.100131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
Biofilms are highly tolerant to antimicrobials and host immune defense, enabling pathogens to thrive in hostile environments. The diversity of microbial biofilm infections requires alternative and complex treatment strategies. In a previous work we demonstrated that the human Atrial Natriuretic Peptide (hANP) displays a strong anti-biofilm activity toward Pseudomonas aeruginosa and that the binding of hANP by the AmiC protein supports this effect. This AmiC sensor has been identified as an analog of the human natriuretic peptide receptor subtype C (h-NPRC). In the present study, we evaluated the anti-biofilm activity of the h-NPRC agonist, osteocrin (OSTN), a hormone that displays a strong affinity for the AmiC sensor at least in vitro. Using molecular docking, we identified a pocket in the AmiC sensor that OSTN reproducibly docks into, suggesting that OSTN might possess an anti-biofilm activity as well as hANP. This hypothesis was validated since we observed that OSTN dispersed established biofilm of P. aeruginosa PA14 strain at the same concentrations as hANP. However, the OSTN dispersal effect is less marked than that observed for the hANP (-61% versus -73%). We demonstrated that the co-exposure of P. aeruginosa preformed biofilm to hANP and OSTN induced a biofilm dispersion with a similar effect to that observed with hANP alone suggesting a similar mechanism of action of these two peptides. This was confirmed by the observation that OSTN anti-biofilm activity requires the activation of the complex composed by the sensor AmiC and the regulator AmiR of the ami pathway. Using a panel of both P. aeruginosa laboratory reference strains and clinical isolates, we observed that the OSTN capacity to disperse established biofilms is highly variable from one strain to another. Taken together, these results show that similarly to the hANP hormone, OSTN has a strong potential to be used as a tool to disperse P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Melissande Louis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Ali Tahrioui
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Courtney J. Tremlett
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Thomas Clamens
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Jérôme Leprince
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Benjamin Lefranc
- PRIMACEN, University of Rouen Normandy, 76821, Mont-Saint-Aignan, France
| | - Eric Kipnis
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Teddy Grandjean
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, University Lille, F-59000, Lille, France
| | - Emeline Bouffartigues
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Magalie Barreau
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Florian Defontaine
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Pierre Cornelis
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Marc G.J. Feuilloley
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Nicholas J. Harmer
- Living Systems Institute, Stocker Road, University of Exeter, Exeter, EX4 4QD, UK
| | - Sylvie Chevalier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, CBSA UR4312, 27000, Evreux, France
| |
Collapse
|
25
|
Bosnjak M, Karpe AV, Van TTH, Kotsanas D, Jenkin GA, Costello SP, Johanesen P, Moore RJ, Beale DJ, Srikhanta YN, Palombo EA, Larcombe S, Lyras D. Multi-omics analysis of hospital-acquired diarrhoeal patients reveals biomarkers of enterococcal proliferation and Clostridioides difficile infection. Nat Commun 2023; 14:7737. [PMID: 38007555 PMCID: PMC10676382 DOI: 10.1038/s41467-023-43671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023] Open
Abstract
Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.
Collapse
Affiliation(s)
- Marijana Bosnjak
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Avinash V Karpe
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Thi Thu Hao Van
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - Despina Kotsanas
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Grant A Jenkin
- Department of Infectious Diseases, Monash Health, Clayton, Victoria, Australia
| | - Samuel P Costello
- Department of Gastroenterology, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Priscilla Johanesen
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Robert J Moore
- School of Science, RMIT University, Bundoora, Victoria, Australia
| | - David J Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Yogitha N Srikhanta
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Sarah Larcombe
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Dena Lyras
- Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
26
|
Jayaraman S, Adhilaxmi Kannan M, Rajendhran N, John GJ, Ramasamy T. Indole-3-acetic acid impacts biofilm formation and virulence production of Pseudomonas aeruginosa. BIOFOULING 2023; 39:800-815. [PMID: 37853689 DOI: 10.1080/08927014.2023.2269537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Bacterial pathogenesis involves complex mechanisms contributing to virulence and persistence of infections. Understanding the multifactorial nature of bacterial infections is crucial for developing effective interventions. The present study investigated the efficacy of indole-3-acetic acid (IAA) against Pseudomonas aeruginosa with various end points including antibacterial activity, minimum inhibitory concentration (MIC), virulence factor production, biofilm inhibition, bacterial cell detachment, and viability assays. Results showed significant biofilm inhibition, bacterial cell detachment, and modest effects on bacterial viability. Microscopic analysis confirmed the disintegrated biofilm matrix, supporting the inhibitory effect of IAA. Additionally, molecular docking studies revealed potential mechanisms of action through active bond interactions between IAA and virulence proteins. These findings highlight IAA as an effective antibiofilm agent against P. aeruginosa.
Collapse
Affiliation(s)
- Sudharshini Jayaraman
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Monika Adhilaxmi Kannan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Nandhini Rajendhran
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Georrge J John
- Department of Bioinformatics, University of North Bengal, Raja Rammohunpur, West Bengal, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
27
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Schriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota-produced indole metabolites disrupt mitochondrial function and inhibit Cryptosporidium parvum growth. Cell Rep 2023; 42:112680. [PMID: 37384526 PMCID: PMC10530208 DOI: 10.1016/j.celrep.2023.112680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 07/01/2023] Open
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. To explore microbial influences on susceptibility, we screened 85 microbiota-associated metabolites for their effects on Cryptosporidium parvum growth in vitro. We identify eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B6 precursor, and indoles. Growth restriction of C. parvum by indoles does not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impairs host mitochondrial function and reduces total cellular ATP, as well as directly reducing the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole-producing bacteria, delays life cycle progression of the parasite in vitro and reduces the severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites impair mitochondrial function and contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence A Schriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elizabeth A Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kelli L VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Thaddeus S Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan T Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Shaw C, Hess M, Weimer BC. Microbial-Derived Tryptophan Metabolites and Their Role in Neurological Disease: Anthranilic Acid and Anthranilic Acid Derivatives. Microorganisms 2023; 11:1825. [PMID: 37512997 PMCID: PMC10384668 DOI: 10.3390/microorganisms11071825] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The gut microbiome provides the host access to otherwise indigestible nutrients, which are often further metabolized by the microbiome into bioactive components. The gut microbiome can also shift the balance of host-produced compounds, which may alter host health. One precursor to bioactive metabolites is the essential aromatic amino acid tryptophan. Tryptophan is mostly shunted into the kynurenine pathway but is also the primary metabolite for serotonin production and the bacterial indole pathway. Balance between tryptophan-derived bioactive metabolites is crucial for neurological homeostasis and metabolic imbalance can trigger or exacerbate neurological diseases. Alzheimer's, depression, and schizophrenia have been linked to diverging levels of tryptophan-derived anthranilic, kynurenic, and quinolinic acid. Anthranilic acid from collective microbiome metabolism plays a complex but important role in systemic host health. Although anthranilic acid and its metabolic products are of great importance for host-microbe interaction in neurological health, literature examining the mechanistic relationships between microbial production, host regulation, and neurological diseases is scarce and at times conflicting. This narrative review provides an overview of the current understanding of anthranilic acid's role in neurological health and disease, with particular focus on the contribution of the gut microbiome, the gut-brain axis, and the involvement of the three major tryptophan pathways.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Matthias Hess
- Department of Animal Science, College of Agricultural and Environmental Sciences, University of California Davis, Davis, CA 95616, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
29
|
Shen Y, Gao S, Fan Q, Zuo J, Wang Y, Yi L, Wang Y. New antibacterial targets: Regulation of quorum sensing and secretory systems in zoonotic bacteria. Microbiol Res 2023; 274:127436. [PMID: 37343493 DOI: 10.1016/j.micres.2023.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
Quorum sensing (QS) is a communication mechanism that controls bacterial communication and can influence the transcriptional expression of multiple genes through one or more signaling molecules, thereby coordinating the population response of multiple bacterial pathogens. Secretion systems (SS) play an equally important role in bacterial information exchange, relying on the secretory systems to secrete proteins that act as virulence factors to promote adhesion to host cells. Eight highly efficient SS have been described, all of which are involved in the secretion or transfer of virulence factors, and the effector proteins they secrete play a key role in the virulence and pathogenicity of bacteria. It has been shown that many bacterial SS are directly or indirectly regulated by QS and thus influence bacterial virulence and antibiotic resistance. This review describes the relationship between QS and SS of several common zoonotic pathogenic bacteria and outlines the molecular mechanisms of how QS systems regulate SS, to provide a theoretical basis for the study of bacterial pathogenicity and the development of novel antibacterial drugs.
Collapse
Affiliation(s)
- Yamin Shen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Shuji Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China
| | - Li Yi
- Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Henan Engineering Research Center of Livestock and Poultry Emerging Disease Detection and Control, Luoyang, China.
| |
Collapse
|
30
|
Basic A, Dahlén G. Microbial metabolites in the pathogenesis of periodontal diseases: a narrative review. FRONTIERS IN ORAL HEALTH 2023; 4:1210200. [PMID: 37388417 PMCID: PMC10300593 DOI: 10.3389/froh.2023.1210200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/31/2023] [Indexed: 07/01/2023] Open
Abstract
The purpose of this narrative review is to highlight the importance of microbial metabolites in the pathogenesis of periodontal diseases. These diseases, involving gingivitis and periodontitis are inflammatory conditions initiated and maintained by the polymicrobial dental plaque/biofilm. Gingivitis is a reversible inflammatory condition while periodontitis involves also irreversible destruction of the periodontal tissues including the alveolar bone. The inflammatory response of the host is a natural reaction to the formation of plaque and the continuous release of metabolic waste products. The microorganisms grow in a nutritious and shielded niche in the periodontal pocket, protected from natural cleaning forces such as saliva. It is a paradox that the consequences of the enhanced inflammatory reaction also enable more slow-growing, fastidious, anaerobic bacteria, with often complex metabolic pathways, to colonize and thrive. Based on complex food chains, nutrient networks and bacterial interactions, a diverse microbial community is formed and established in the gingival pocket. This microbiota is dominated by anaerobic, often motile, Gram-negatives with proteolytic metabolism. Although this alternation in bacterial composition often is considered pathologic, it is a natural development that is promoted by ecological factors and not necessarily a true "dysbiosis". Normal commensals are adapting to the gingival crevice when tooth cleaning procedures are absent. The proteolytic metabolism is highly complex and involves a number of metabolic pathways with production of a cascade of metabolites in an unspecific manner. The metabolites involve short chain fatty acids (SCFAs; formic, acetic, propionic, butyric, and valeric acid), amines (indole, scatole, cadaverine, putrescine, spermine, spermidine) and gases (NH3, CO, NO, H2S, H2). A homeostatic condition is often present between the colonizers and the host response, where continuous metabolic fluctuations are balanced by the inflammatory response. While it is well established that the effect of the dental biofilm on the host response and tissue repair is mediated by microbial metabolites, the mechanisms behind the tissue destruction (loss of clinical attachment and bone) are still poorly understood. Studies addressing the functions of the microbiota, the metabolites, and how they interplay with host tissues and cells, are therefore warranted.
Collapse
|
31
|
Zhou Y, Liu M, Liu K, Wu G, Tan Y. Lung microbiota and potential treatment of respiratory diseases. Microb Pathog 2023:106197. [PMID: 37321423 DOI: 10.1016/j.micpath.2023.106197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The unique microbiome found in the lungs has been studied and shown to be associated with both pulmonary homeostasis and lung diseases. The lung microbiome has the potential to produce metabolites that modulate host-microbe interactions. Specifically, short-chain fatty acids (SCFAs) produced by certain strains of the lung microbiota have been shown to regulate immune function and maintain gut mucosal health. In response, this review described the distribution and composition of the microbiota in lung diseases and discussed the impact of the lung microbiota on health and lung disease. In addition, the review further elaborated on the mechanism of microbial metabolites in microbial-host interaction and their application in the treatment of lung diseases. A better understanding of the interaction between the microbiota, metabolites, and host will provide potential strategies for the development of novel methods for the treatment of pulmonary microbial induced lung diseases.
Collapse
Affiliation(s)
- Yaxuan Zhou
- Department of Psychiatry, Department of Medicine, Xiangya School of Medical, Central South University, Changsha, 410083, Hunan, China
| | - Mengjun Liu
- Department of Clinical Medicine, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Kaixuan Liu
- Department of Excellent Doctor Training, Xiangya School of Medicine, Central South University, Changsha, 410083, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| | - Yurong Tan
- Department of Medical Microbiology, School of Basic Medicine, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
32
|
Ticinesi A, Parise A, Nouvenne A, Cerundolo N, Prati B, Meschi T. The possible role of gut microbiota dysbiosis in the pathophysiology of delirium in older persons. MICROBIOME RESEARCH REPORTS 2023; 2:19. [PMID: 38046817 PMCID: PMC10688815 DOI: 10.20517/mrr.2023.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/15/2023] [Accepted: 05/23/2023] [Indexed: 12/05/2023]
Abstract
Delirium is a clinical syndrome characterized by an acute change in attention, awareness and cognition with fluctuating course, frequently observed in older patients during hospitalization for acute medical illness or after surgery. Its pathogenesis is multifactorial and still not completely understood, but there is general consensus on the fact that it results from the interaction between an underlying predisposition, such as neurodegenerative diseases, and an acute stressor acting as a trigger, such as infection or anesthesia. Alterations in brain insulin sensitivity and metabolic function, increased blood-brain barrier permeability, neurotransmitter imbalances, abnormal microglial activation and neuroinflammation have all been involved in the pathophysiology of delirium. Interestingly, all these mechanisms can be regulated by the gut microbiota, as demonstrated in experimental studies investigating the microbiota-gut-brain axis in dementia. Aging is also associated with profound changes in gut microbiota composition and functions, which can influence several aspects of disease pathophysiology in the host. This review provides an overview of the emerging evidence linking age-related gut microbiota dysbiosis with delirium, opening new perspectives for the microbiota as a possible target of interventions aimed at delirium prevention and treatment.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Beatrice Prati
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| | - Tiziana Meschi
- Microbiome Research Hub, University of Parma, Parma 43124, Italy
- Department of Medicine and Surgery, University of Parma, Parma 43126, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Parma 43126, Italy
| |
Collapse
|
33
|
Funkhouser-Jones LJ, Xu R, Wilke G, Fu Y, Shriefer LA, Makimaa H, Rodgers R, Kennedy EA, VanDussen KL, Stappenbeck TS, Baldridge MT, Sibley LD. Microbiota produced indole metabolites disrupt host cell mitochondrial energy production and inhibit Cryptosporidium parvum growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542157. [PMID: 37292732 PMCID: PMC10245909 DOI: 10.1101/2023.05.25.542157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cryptosporidiosis is a leading cause of life-threatening diarrhea in young children in resource-poor settings. Susceptibility rapidly declines with age, associated with changes in the microbiota. To explore microbial influences on susceptibility, we screened 85 microbiota- associated metabolites enriched in the adult gut for their effects on C. parvum growth in vitro. We identified eight inhibitory metabolites in three main classes: secondary bile salts/acids, a vitamin B 6 precursor, and indoles. Growth restriction of C. parvum by indoles did not depend on the host aryl hydrocarbon receptor (AhR) pathway. Instead, treatment impaired host mitochondrial function and reduced total cellular ATP, as well as directly reduced the membrane potential in the parasite mitosome, a degenerate mitochondria. Oral administration of indoles, or reconstitution of the gut microbiota with indole producing bacteria, delayed life cycle progression of the parasite in vitro and reduced severity of C. parvum infection in mice. Collectively, these findings indicate that microbiota metabolites contribute to colonization resistance to Cryptosporidium infection.
Collapse
Affiliation(s)
- Lisa J. Funkhouser-Jones
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Rui Xu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Georgia Wilke
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Yong Fu
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Lawrence A. Shriefer
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Heyde Makimaa
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Rachel Rodgers
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Elizabeth A. Kennedy
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Kelli L. VanDussen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Thaddeus S. Stappenbeck
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Megan T. Baldridge
- Department of Medicine, Division of Infectious Diseases, Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - L. David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
34
|
Chunxiao D, Ma F, Wu W, Li S, Yang J, Chen Z, Lian S, Qu Y. Metagenomic analysis reveals indole signaling effect on microbial community in sequencing batch reactors: Quorum sensing inhibition and antibiotic resistance enrichment. ENVIRONMENTAL RESEARCH 2023; 229:115897. [PMID: 37054839 DOI: 10.1016/j.envres.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Indole is an essential signal molecule in microbial studies. However, its ecological role in biological wastewater treatments remains enigmatic. This study explores the links between indole and complex microbial communities using sequencing batch reactors exposed to 0, 15, and 150 mg/L indole concentrations. A concentration of 150 mg/L indole enriched indole degrader Burkholderiales, while pathogens, such as Giardia, Plasmodium, and Besnoitia were inhibited at 15 mg/L indole concentration. At the same time, indole reduced the abundance of predicted genes in the "signaling transduction mechanisms" pathway via the Non-supervised Orthologous Groups distributions analysis. Indole significantly decreased the concentration of homoserine lactones, especially C14-HSL. Furthermore, the quorum-sensing signaling acceptors containing LuxR, the dCACHE domain, and RpfC showed negative distributions with indole and indole oxygenase genes. Signaling acceptors' potential origins were mainly Burkholderiales, Actinobacteria, and Xanthomonadales. Meanwhile, concentrated indole (150 mg/L) increased the total abundance of antibiotic resistance genes by 3.52 folds, especially on aminoglycoside, multidrug, tetracycline, and sulfonamide. Based on Spearman's correlation analysis, the homoserine lactone degradation genes which were significantly impacted by indole negatively correlated with the antibiotic resistance gene abundance. This study brings new insights into the effect of indole signaling on in biological wastewater treatment plants.
Collapse
Affiliation(s)
- Dai Chunxiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Weize Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shuzhen Li
- Aquatic Eco-Health Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Zhuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Shengyang Lian
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education) and Dalian POCT Laboratory, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
35
|
Scott SA, Fu J, Chang PV. Dopamine receptor D2 confers colonization resistance via gut microbial metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532647. [PMID: 36993486 PMCID: PMC10055168 DOI: 10.1101/2023.03.14.532647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The gut microbiome plays major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea, and acute renal failure (hemolytic uremic syndrome)4,5. Although gut microbes can provide colonization resistance by outcompeting some pathogens or modulating host defense provided by the gut barrier and intestinal immune cells, this phenomenon remains poorly understood. Emerging evidence suggests that small-molecule metabolites produced by the gut microbiota may mediate this process6. Here, we show that tryptophan (Trp)-derived metabolites produced by the gut bacteria protect the host against Citrobacter rodentium, a murine AE pathogen widely used as a model for EHEC infection7,8, by activation of the host neurotransmitter dopamine receptor D2 (DRD2) within the intestinal epithelium. We further find that these Trp metabolites act through DRD2 to decrease expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Previously identified mechanisms of colonization resistance either directly affect the pathogen by competitive exclusion or indirectly by modulation of host defense mechanisms9,10, so our results delineate a noncanonical colonization resistance pathway against AE pathogens featuring an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization within the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches for improving gut health and treating gastrointestinal infections, which afflict millions globally.
Collapse
Affiliation(s)
- Samantha A. Scott
- Department of Microbiology, Cornell University, Ithaca, NY 14853
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
| | - Jingjing Fu
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Pamela V. Chang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
- Cornell Center for Immunology, Cornell University, Ithaca, NY 14853
- Cornell Institute of Host-Microbe Interactions & Disease, Cornell University, Ithaca, NY 14853
| |
Collapse
|
36
|
Ovcharova MA, Schelkunov MI, Geras’kina OV, Makarova NE, Sukhacheva MV, Martyanov SV, Nevolina ED, Zhurina MV, Feofanov AV, Botchkova EA, Plakunov VK, Gannesen AV. C-Type Natriuretic Peptide Acts as a Microorganism-Activated Regulator of the Skin Commensals Staphylococcus epidermidis and Cutibacterium acnes in Dual-Species Biofilms. BIOLOGY 2023; 12:436. [PMID: 36979128 PMCID: PMC10045295 DOI: 10.3390/biology12030436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
The effect of C-type natriuretic peptide in a concentration closer to the normal level in human blood plasma was studied on the mono-species and dual-species biofilms of the skin commensal bacteria Cutibacterium acnes HL043PA2 and Staphylococcus epidermidis ATCC14990. Despite the marginal effect of the hormone on cutibacteria in mono-species biofilms, the presence of staphylococci in the community resulted in a global shift of the CNP effect, which appeared to increase the competitive properties of C. acnes, its proliferation and the metabolic activity of the community. S. epidermidis was mostly inhibited in the presence of CNP. Both bacteria had a significant impact on the gene expression levels revealed by RNA-seq. CNP did not affect the gene expression levels in mono-species cutibacterial biofilms; however, in the presence of staphylococci, five genes were differentially expressed in the presence of the hormone, including two ribosomal proteins and metal ABC transporter permease. In staphylococci, the Na-translocating system protein MpsB NADH-quinone oxidoreductase subunit L was downregulated in the dual-species biofilms in the presence of CNP, while in mono-species biofilms, two proteins of unknown function were downregulated. Hypothetically, at least one of the CNP mechanisms of action is via the competition for zinc, at least on cutibacteria.
Collapse
Affiliation(s)
- Maria A. Ovcharova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Mikhail I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow 127051, Russia
| | - Olga V. Geras’kina
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | | | - Marina V. Sukhacheva
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Sergey V. Martyanov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Ekaterina D. Nevolina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Marina V. Zhurina
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Alexey V. Feofanov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119192, Russia
| | - Ekaterina A. Botchkova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Vladimir K. Plakunov
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| | - Andrei V. Gannesen
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
37
|
Genomic Island-Encoded Histidine Kinase and Response Regulator Coordinate Mannose Utilization with Virulence in Enterohemorrhagic Escherichia coli. mBio 2023; 14:e0315222. [PMID: 36786613 PMCID: PMC10128022 DOI: 10.1128/mbio.03152-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly adaptive pathogen and has acquired diverse genetic elements, such as genomic islands and prophages, via horizontal gene transfer to promote fitness in vivo. Two-component signaling systems (TCSs) allow bacteria to sense, respond to, and adapt to various environments. This study identified a putative two-component signaling system composed of the histidine kinase EDL5436 (renamed LmvK) and the response regulator EDL5428 (renamed LmvR) in EHEC. lmvK and lmvR along with EDL5429 to EDL5434 (EDL5429-5434) between them constitute the OI167 genomic island and are highly associated with the EHEC pathotype. EDL5429-5434 encode transporters and metabolic enzymes that contribute to growth on mannose and are directly upregulated by LmvK/LmvR in the presence of mannose, as revealed by quantitative PCR (qPCR) and DNase I footprint assays. Moreover, LmvR directly activates the expression of the type III secretion system in response to mannose and promotes the formation of attaching and effacing lesions on HeLa cells. Using human colonoid and mouse infection models, we show that lmvK and lmvR contributed greatly to adherence and microcolony (MC) formation ex vivo and colonization in vivo. Finally, RNA sequencing and chromatin immunoprecipitation coupled with sequencing analyses identified additional direct targets of LmvR, most of which are involved in metabolism. Given that mannose is a mucus-derived sugar that induces virulence and is preferentially used by EHEC during infection, our data revealed a previously unknown mechanism by which EHEC recognizes the host metabolic landscape and regulates virulence expression accordingly. Our findings provide insights into how pathogenic bacteria evolve by acquiring genetic elements horizontally to adapt to host environments. IMPORTANCE The gastrointestinal tract represents a complex and challenging environment for enterohemorrhagic Escherichia coli (EHEC). However, EHEC is a highly adaptable pathogen, requiring only 10 to 100 CFUs to cause infection. This ability was achieved partially by acquiring mobile genetic elements, such as genomic islands, that promote overall fitness. Mannose is an intestinal mucus-derived sugar that stimulates virulence and is preferentially used by EHEC during infection. Here, we characterize the OI167 genomic island of EHEC, which encodes a novel two-component signaling system (TCS) and transporters and metabolic enzymes (EDL5429-5434) involved in mannose utilization. The TCS directly upregulates EDL5429-5434 and genes encoding the type III secretion system in the presence of mannose. Moreover, the TCS contributes greatly to EHEC virulence ex vivo and in vivo. Our data demonstrate an elegant example in which EHEC strains evolve by acquiring genetic elements horizontally to recognize the host metabolic landscape and regulate virulence expression accordingly, leading to successful infections.
Collapse
|
38
|
Markus V, Paul AA, Teralı K, Özer N, Marks RS, Golberg K, Kushmaro A. Conversations in the Gut: The Role of Quorum Sensing in Normobiosis. Int J Mol Sci 2023; 24:ijms24043722. [PMID: 36835135 PMCID: PMC9963693 DOI: 10.3390/ijms24043722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
An imbalance in gut microbiota, termed dysbiosis, has been shown to affect host health. Several factors, including dietary changes, have been reported to cause dysbiosis with its associated pathologies that include inflammatory bowel disease, cancer, obesity, depression, and autism. We recently demonstrated the inhibitory effects of artificial sweeteners on bacterial quorum sensing (QS) and proposed that QS inhibition may be one mechanism behind such dysbiosis. QS is a complex network of cell-cell communication that is mediated by small diffusible molecules known as autoinducers (AIs). Using AIs, bacteria interact with one another and coordinate their gene expression based on their population density for the benefit of the whole community or one group over another. Bacteria that cannot synthesize their own AIs secretly "listen" to the signals produced by other bacteria, a phenomenon known as "eavesdropping". AIs impact gut microbiota equilibrium by mediating intra- and interspecies interactions as well as interkingdom communication. In this review, we discuss the role of QS in normobiosis (the normal balance of bacteria in the gut) and how interference in QS causes gut microbial imbalance. First, we present a review of QS discovery and then highlight the various QS signaling molecules used by bacteria in the gut. We also explore strategies that promote gut bacterial activity via QS activation and provide prospects for the future.
Collapse
Affiliation(s)
- Victor Markus
- Department of Medical Biochemistry, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
| | - Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Kerem Teralı
- Department of Medical Biochemistry, Faculty of Medicine, Cyprus International University, Nicosia 99258, Cyprus
| | - Nazmi Özer
- Department of Biochemistry, Faculty of Pharmacy, Girne American University, Kyrenia 99428, Cyprus
| | - Robert S. Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Karina Golberg
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- Correspondence: (K.G.); (A.K.); Tel.: +972-74-7795293 (K.G.); +972-747795291 (A.K.)
| |
Collapse
|
39
|
Forgie AJ, Pepin DM, Ju T, Tollenaar S, Sergi CM, Gruenheid S, Willing BP. Over supplementation with vitamin B12 alters microbe-host interactions in the gut leading to accelerated Citrobacter rodentium colonization and pathogenesis in mice. MICROBIOME 2023; 11:21. [PMID: 36737826 PMCID: PMC9896722 DOI: 10.1186/s40168-023-01461-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 01/04/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Vitamin B12 supplements typically contain doses that far exceed the recommended daily amount, and high exposures are generally considered safe. Competitive and syntrophic interactions for B12 exist between microbes in the gut. Yet, to what extent excessive levels contribute to the activities of the gut microbiota remains unclear. The objective of this study was to evaluate the effect of B12 on microbial ecology using a B12 supplemented mouse model with Citrobacter rodentium, a mouse-specific pathogen. Mice were fed a standard chow diet and received either water or water supplemented with B12 (cyanocobalamin: ~120 μg/day), which equates to approximately 25 mg in humans. Infection severity was determined by body weight, pathogen load, and histopathologic scoring. Host biomarkers of inflammation were assessed in the colon before and after the pathogen challenge. RESULTS Cyanocobalamin supplementation enhanced pathogen colonization at day 1 (P < 0.05) and day 3 (P < 0.01) postinfection. The impact of B12 on gut microbial communities, although minor, was distinct and attributed to the changes in the Lachnospiraceae populations and reduced alpha diversity. Cyanocobalamin treatment disrupted the activity of the low-abundance community members of the gut microbiota. It enhanced the amount of interleukin-12 p40 subunit protein (IL12/23p40; P < 0.001) and interleukin-17a (IL-17A; P < 0.05) in the colon of naïve mice. This immune phenotype was microbe dependent, and the response varied based on the baseline microbiota. The cecal metatranscriptome revealed that excessive cyanocobalamin decreased the expression of glucose utilizing genes by C. rodentium, a metabolic attribute previously associated with pathogen virulence. CONCLUSIONS Oral vitamin B12 supplementation promoted C. rodentium colonization in mice by altering the activities of the Lachnospiraceae populations in the gut. A lower abundance of select Lachnospiraceae species correlated to higher p40 subunit levels, while the detection of Parasutterella exacerbated inflammatory markers in the colon of naïve mice. The B12-induced change in gut ecology enhanced the ability of C. rodentium colonization by impacting key microbe-host interactions that help with pathogen exclusion. This research provides insight into how B12 impacts the gut microbiota and highlights potential consequences of disrupting microbial B12 competition/sharing through over-supplementation. Video Abstract.
Collapse
Affiliation(s)
- Andrew J Forgie
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Deanna M Pepin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Stephanie Tollenaar
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Consolato M Sergi
- Division of Anatomic Pathology, Children's Hospital of Eastern Ontario (CHEO), Ottawa, Ontario, Canada
| | - Samantha Gruenheid
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada.
| |
Collapse
|
40
|
Quantitative dose-response analysis untangles host bottlenecks to enteric infection. Nat Commun 2023; 14:456. [PMID: 36709326 PMCID: PMC9884216 DOI: 10.1038/s41467-023-36162-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
Host bottlenecks prevent many infections before the onset of disease by eliminating invading pathogens. By monitoring the diversity of a barcoded population of the diarrhea causing bacterium Citrobacter rodentium during colonization of its natural host, mice, we determine the number of cells that found the infection by establishing a replicative niche. In female mice the size of the pathogen's founding population scales with dose and is controlled by a severe yet slow-acting bottleneck. Reducing stomach acid or changing host genotype modestly relaxes the bottleneck without breaking the fractional relationship between dose and founders. In contrast, disrupting the microbiota causes the founding population to no longer scale with the size of the inoculum and allows the pathogen to infect at almost any dose, indicating that the microbiota creates the dominant bottleneck. Further, in the absence of competition with the microbiota, the diversity of the pathogen population slowly contracts as the population is overtaken by bacteria having lost the critical virulence island, the locus of enterocyte effacement (LEE). Collectively, our findings reveal that the mechanisms of protection by colonization bottlenecks are reflected in and can be generally defined by the impact of dose on the pathogen's founding population.
Collapse
|
41
|
Vogt SL, Serapio-Palacios A, Woodward SE, Santos AS, de Vries SP, Daigneault MC, Brandmeier LV, Grant AJ, Maskell DJ, Allen-Vercoe E, Finlay BB. Enterohemorrhagic Escherichia coli responds to gut microbiota metabolites by altering metabolism and activating stress responses. Gut Microbes 2023; 15:2190303. [PMID: 36951510 PMCID: PMC10038027 DOI: 10.1080/19490976.2023.2190303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major cause of severe bloody diarrhea, with potentially lethal complications, such as hemolytic uremic syndrome. In humans, EHEC colonizes the colon, which is also home to a diverse community of trillions of microbes known as the gut microbiota. Although these microbes and the metabolites that they produce represent an important component of EHEC's ecological niche, little is known about how EHEC senses and responds to the presence of gut microbiota metabolites. In this study, we used a combined RNA-Seq and Tn-Seq approach to characterize EHEC's response to metabolites from an in vitro culture of 33 human gut microbiota isolates (MET-1), previously demonstrated to effectively resolve recurrent Clostridioides difficile infection in human patients. Collectively, the results revealed that EHEC adjusts to growth in the presence of microbiota metabolites in two major ways: by altering its metabolism and by activating stress responses. Metabolic adaptations to the presence of microbiota metabolites included increased expression of systems for maintaining redox balance and decreased expression of biotin biosynthesis genes, reflecting the high levels of biotin released by the microbiota into the culture medium. In addition, numerous genes related to envelope and oxidative stress responses (including cpxP, spy, soxS, yhcN, and bhsA) were upregulated during EHEC growth in a medium containing microbiota metabolites. Together, these results provide insight into the molecular mechanisms by which pathogens adapt to the presence of competing microbes in the host environment, which ultimately may enable the development of therapies to enhance colonization resistance and prevent infection.
Collapse
Affiliation(s)
- Stefanie L. Vogt
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sarah E. Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew S. Santos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan P.W. de Vries
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Michelle C. Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa V. Brandmeier
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J. Maskell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Zhao X, Yang X, Hang HC. Chemoproteomic Analysis of Microbiota Metabolite-Protein Targets and Mechanisms. Biochemistry 2022; 61:2822-2834. [PMID: 34989554 PMCID: PMC9256862 DOI: 10.1021/acs.biochem.1c00758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The microbiota have emerged as an important factor in host physiology, disease, and response to therapy. These diverse microbes (bacteria, virus, fungi, and protists) encode unique functions and metabolites that regulate intraspecies and interspecies interactions. While the mechanisms of some microbiota species and metabolites have been elucidated, the diversity and abundance of different microbiota species and their associated pathways suggest many more metabolites and mechanisms of action remain to be discovered. In this Perspective, we highlight how the advances in chemical proteomics have provided new opportunities to elucidate the molecular targets of specific microbiota metabolites and reveal new mechanisms of action. The continued development of specific microbiota metabolite reporters and more precise proteomic methods should reveal new microbiota mechanisms of action, therapeutic targets, and biomarkers for a variety of human diseases.
Collapse
|
43
|
Gorelik O, Rogad A, Holoidovsky L, Meijler MM, Sal-Man N. Indole intercepts the communication between enteropathogenic E. coli and Vibrio cholerae. Gut Microbes 2022; 14:2138677. [PMID: 36519445 PMCID: PMC9635540 DOI: 10.1080/19490976.2022.2138677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reported numbers of diarrheal samples exhibiting co-infections or multiple infections, with two or more infectious agents, are rising, likely due to advances in bacterial diagnostic techniques. Bacterial species detected in these samples include Vibrio cholerae (V. cholerae) and enteropathogenic Escherichia coli (EPEC), which infect the small intestine and are associated with high mortality rates. It has previously been reported that EPEC exhibit enhanced virulence in the presence of V. cholerae owing to their ability to sense and respond to elevated concentrations of cholera autoinducer 1 (CAI-1), which is the primary quorum-sensing (QS) molecule produced by V. cholerae. In this study, we examined this interspecies bacterial communication in the presence of indole, a major microbiome-derived metabolite found at high concentrations in the human gut. Interestingly, we discovered that although indole did not affect bacterial growth or CAI-1 production, it impaired the ability of EPEC to enhance its virulence activity in response to the presence of V. cholerae. Furthermore, the co-culture of EPEC and V. cholerae in the presence of B. thetaiotaomicron, an indole-producing commensal bacteria, ablated the enhancement of EPEC virulence. Together, these results suggest that microbiome compositions or diets that influence indole gut concentrations may differentially impact the virulence of pathogens and their ability to sense and respond to competing bacteria.
Collapse
Affiliation(s)
- Orna Gorelik
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alona Rogad
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lara Holoidovsky
- Department of Chemistry, the National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Michael M. Meijler
- Department of Chemistry, the National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be’er Sheva, Israel
| | - Neta Sal-Man
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,CONTACT Neta Sal-Man The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
44
|
Shaw C, Hess M, Weimer BC. Two-component systems regulate bacterial virulence in response to the host gastrointestinal environment and metabolic cues. Virulence 2022; 13:1666-1680. [PMID: 36128741 PMCID: PMC9518994 DOI: 10.1080/21505594.2022.2127196] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Two-component systems are ubiquitous signaling mechanisms in bacteria that enable intracellular changes from extracellular cues. These bacterial regulatory systems couple external stimuli to control genetic expression via an autophosphorylation cascade that transduces membrane signals to intracellular locations, thereby allowing bacteria to rapidly adapt to the changing environmental conditions. Well known to control basic cellular processes, it is evident that two-component systems also exercise control over virulence traits, such as motility, secretion systems, and stress responses that impact the complex cascade of networks that alter virulence traits. In the gastrointestinal system, cues for activation of virulence-related two-component systems include metal ions, host-derived metabolites, and gut conditions. The diversity and origin of these cues suggest that the host can exert control over enteric pathogenicity via regulation in the gastrointestinal system. With the rise in multi-drug resistant pathogens, the potential control of pathogenicity with host cues via two-component systems presents a potential alternative to antimicrobials. Though the signaling mechanism itself is well studied, to date there is no systematic review compiling the host-associated cues of two-component systems and virulence traits. This review highlights the direct link between the host gastrointestinal environment and pathogenicity by focusing on two-component systems that are associated with the genetic expression of virulence traits, and that are activated by host-derived cues. The direct link between the host gastrointestinal environment, metabolites, and pathogenicity established in this review both underscores the importance of host-derived cues on bacterial activity and presents an enticing therapeutic target in the fight against antimicrobial resistant pathogens.
Collapse
Affiliation(s)
- Claire Shaw
- Department of Animal Science, Systems Microbiology & Natural Products Laboratory, University of California, Davis, USA
| | - Matthias Hess
- Department of Animal Science, Systems Microbiology & Natural Products Laboratory, University of California, Davis, USA
| | - Bart C Weimer
- Department of Population Health and Reproduction, 100K Pathogen Genome Project, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins (Basel) 2022; 14:toxins14090645. [PMID: 36136583 PMCID: PMC9505404 DOI: 10.3390/toxins14090645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic metabolites, molecules either produced by the host or from the microbiota population existing in the gastrointestinal tract that gets excreted by the kidneys into urine, have significant effects on both health and disease. Tryptophan-derived catabolites are an important group of bacteria-produced metabolites with an extensive contribution to intestinal health and, eventually, chronic kidney disease (CKD) progression. The end-metabolite, indoxyl sulfate, is a key contributor to the exacerbation of CKD via the induction of an inflammatory state and oxidative stress affecting various organ systems. Contrastingly, other tryptophan catabolites positively contribute to maintaining intestinal homeostasis and preventing intestinal inflammation—activities signaled through nuclear receptors in particular—the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). This review discusses the origins of these catabolites, their effect on organ systems, and how these can be manipulated therapeutically in the future as a strategy to treat CKD progression and gut inflammation management. Furthermore, the use of biotics (prebiotics, probiotics, synbiotics) as a means to increase the presence of beneficial short-chain fatty acids (SCFAs) to achieve intestinal homeostasis is discussed.
Collapse
Affiliation(s)
- Avra Melina Madella
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| | - Jeroen Van Bergenhenegouwen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Adriana Overbeek
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| |
Collapse
|
46
|
Abstract
Enteric pathogens such as enterohemorrhagic E. coli (EHEC) and its surrogate murine model Citrobacter rodentium sense indole levels within the gut to navigate its biogeography and modulate virulence gene expression. Indole is a microbiota-derived signal that is more abundant in the intestinal lumen, with its concentration decreasing at the epithelial lining where it is absorbed. E. coli, but not C. rodentium, produces endogenous indole because it harbors the tnaA gene. Microbiota-derived exogenous indole is sensed by the CpxAR two-component system, where CpxA is a membrane-bound histidine-sensor-kinase (HK) and CpxR is a response regulator (RR). Indole inhibits CpxAR function leading to decreased expression of the locus of enterocyte effacement (LEE) pathogenicity island, which is essential for these pathogens to form lesions on enterocytes. In our transcriptome studies comparing wild-type (WT) EHEC and ΔtnaA ± indole, one of the most upregulated genes by indole is ygeV, which is a predicted orphan RR. Because of the role YgeV plays in the indole signaling cascade, we renamed this gene indole sensing regulator (isrR). In the absence of endogenous indole, IsrR activates LEE gene expression. IsrR only responds to endogenous indole, with exogenous indole still blocking virulence gene expression independently from IsrR. Notably, a C. rodentiumisrR mutant is attenuated for murine infection, depicting delayed death, lower intestinal colonization, and LEE gene expression. IsrR aids in discriminating between microbiota-derived (exogenous) and endogenous self-produced indole in fine-tuning virulence gene expression by enteric pathogens in the intestine.
Collapse
|
47
|
Gao XY, Xie W, Liu Y, Ma L, Liu ZP. Alcaligenes ammonioxydans HO-1 antagonizes Bacillus velezensis via hydroxylamine-triggered population response. Front Microbiol 2022; 13:920052. [PMID: 35935184 PMCID: PMC9355588 DOI: 10.3389/fmicb.2022.920052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Antagonism is a common behavior seen between microbes in nature. Alcaligenes ammonioxydans HO-1 converts ammonia to nitrogen under aerobic conditions, which leads to the accumulation of extracellular hydroxylamine (HA), providing pronounced growth advantages against many bacterial genera, including Bacillus velezensis V4. In contrast, a mutant variant of A. ammonioxydans, strain 2-29, that cannot produce HA fails to antagonize other bacteria. In this article, we demonstrate that cell-free supernatants derived from the antagonistic HO-1 strain were sufficient to reproduce the antagonistic behavior and the efficiency of this inhibition correlated strongly with the HA content of the supernatant. Furthermore, reintroducing the capacity to produce HA to the 2-29 strain or supplementing bacterial co-cultures with HA restored antagonistic behavior. The HA-mediated antagonism was dose-dependent and affected by the temperature, but not by pH. HA caused a decline in biomass, cell aggregation, and hydrolysis of the cell wall in exponentially growing B. velezensis bulk cultures. Analysis of differential gene expression identified a series of genes modulating multicellular behavior in B. velezensis. Genes involved in motility, chemotaxis, sporulation, polypeptide synthesis, and non-ribosomal peptide synthesis were all significantly downregulated in the presence of HA, whereas autolysis-related genes showed upregulation. Taken together, these findings indicate that HA affects the population response of coexisting strains and also suggest that A. ammonioxydans HO-1 antagonize other bacteria by producing extracellular HA that, in turn, acts as a signaling molecule.
Collapse
Affiliation(s)
- Xi-Yan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xie
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lan Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
48
|
Guerbette T, Boudry G, Lan A. Mitochondrial function in intestinal epithelium homeostasis and modulation in diet-induced obesity. Mol Metab 2022; 63:101546. [PMID: 35817394 PMCID: PMC9305624 DOI: 10.1016/j.molmet.2022.101546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Systemic low-grade inflammation observed in diet-induced obesity has been associated with dysbiosis and disturbance of intestinal homeostasis. This latter relies on an efficient epithelial barrier and coordinated intestinal epithelial cell (IEC) renewal that are supported by their mitochondrial function. However, IEC mitochondrial function might be impaired by high fat diet (HFD) consumption, notably through gut-derived metabolite production and fatty acids, that may act as metabolic perturbators of IEC. Scope of review This review presents the current general knowledge on mitochondria, before focusing on IEC mitochondrial function and its role in the control of intestinal homeostasis, and featuring the known effects of nutrients and metabolites, originating from the diet or gut bacterial metabolism, on IEC mitochondrial function. It then summarizes the impact of HFD on mitochondrial function in IEC of both small intestine and colon and discusses the possible link between mitochondrial dysfunction and altered intestinal homeostasis in diet-induced obesity. Major conclusions HFD consumption provokes a metabolic shift toward fatty acid β-oxidation in the small intestine epithelial cells and impairs colonocyte mitochondrial function, possibly through downstream consequences of excessive fatty acid β-oxidation and/or the presence of deleterious metabolites produced by the gut microbiota. Decreased levels of ATP and concomitant O2 leaks into the intestinal lumen could explain the alterations of intestinal epithelium dynamics, barrier disruption and dysbiosis that contribute to the loss of epithelial homeostasis in diet-induced obesity. However, the effect of HFD on IEC mitochondrial function in the small intestine remains unknown and the precise mechanisms by which HFD induces mitochondrial dysfunction in the colon have not been elucidated so far.
Collapse
Affiliation(s)
| | - Gaëlle Boudry
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France.
| | - Annaïg Lan
- Institut Numecan, INSERM, INRAE, Univ Rennes, Rennes, France; Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
49
|
Martins FH, Rajan A, Carter HE, Baniasadi HR, Maresso AW, Sperandio V. Interactions between Enterohemorrhagic Escherichia coli (EHEC) and Gut Commensals at the Interface of Human Colonoids. mBio 2022; 13:e0132122. [PMID: 35638758 PMCID: PMC9239246 DOI: 10.1128/mbio.01321-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
The interactions between the gut microbiota and pathogens are complex and can determine the outcome of an infection. Enterohemorrhagic Escherichia coli (EHEC) is a major human enteric pathogen that colonizes the colon through attaching and effacing (AE) lesions and uses microbiota-derived molecules as cues to control its virulence. Different gut commensals can modulate EHEC virulence. However, the lack of an animal model that recapitulates the human pathophysiology of EHEC infection makes it challenging to investigate how variations in microbiota composition could affect host susceptibility to this pathogen. Here, we addressed these interactions building from simple to more complex in vitro systems, culminating with the use of the physiological relevant human colonoids as a model to study the interactions between EHEC and different gut commensals. We demonstrated that Bacteroides thetaiotaomicron and Enterococcus faecalis enhance virulence expression and AE lesion formation in cultured epithelial cells, as well as on the colonic epithelium, while commensal E. coli did not affect these phenotypes. Importantly, in the presence of these three commensals together, virulence and AE lesion are enhanced. Moreover, we identified specific changes in the metabolic landscape promoted by different members of the gut microbiota and showed that soluble factors released by E. faecalis can increase EHEC virulence gene expression. Our study highlights the importance of interspecies bacterial interactions and chemical exchange in the modulation of EHEC virulence. IMPORTANCE Enterohemorrhagic E. coli (EHEC) is a natural human pathogen that poorly colonizes mice. Hence, the use of murine models to understand features of EHEC infection is a challenge. In this study, we use human colonoids as a physiologically relevant model to study interactions between EHEC and gut commensals. We demonstrate that the ability of EHEC to form AE lesions on the intestinal epithelium is enhanced by the presence of certain gut commensals, such as B. thetaiotaomicron and E. faecalis, while it is not affected by commensal E. coli. Furthermore, we show that commensal bacteria differently impact the metabolic landscape. These data suggest that microbiota compositions can differentially modulate EHEC-mediated disease.
Collapse
Affiliation(s)
- Fernando H. Martins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E. Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hamid R. Baniasadi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
50
|
Im H, Lee JH, Choi SH. Independent Component Analysis Identifies the Modulons Expanding the Transcriptional Regulatory Networks of Enterohemorrhagic Escherichia coli. Front Microbiol 2022; 13:953404. [PMID: 35814713 PMCID: PMC9263587 DOI: 10.3389/fmicb.2022.953404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/06/2022] [Indexed: 01/19/2023] Open
Abstract
The elucidation of the transcriptional regulatory networks (TRNs) of enterohemorrhagic Escherichia coli (EHEC) is critical to understand its pathogenesis and survival in the host. However, the analyses of current TRNs are still limited to comprehensively understand their target genes generally co-regulated under various conditions regardless of the genetic backgrounds. In this study, independent component analysis (ICA), a machine learning-based decomposition method, was used to decompose the large-scale transcriptome data of EHEC into the modulons, which contain the target genes of several TRNs. The locus of enterocyte effacement (LEE) and the Shiga toxin (Stx) modulons mainly consisted of the Ler regulon and the Stx prophage genes, respectively, confirming that ICA properly grouped the co-regulated major virulence genes of EHEC. Further investigation revealed that the LEE modulon contained the hypothetical Z0395 gene as a novel member of the Ler regulon, and the Stx modulon contained the thi and cus locus genes in addition to the Stx prophage genes. Correspondingly, the Stx prophage genes were also regulated by thiamine and copper ions known to control the thi and cus locus genes, respectively. The modulons effectively clustered the genes co-regulated regardless of the growth conditions and the genetic backgrounds of EHEC. The changed activities of the individual modulons successfully explained the differential expressions of the virulence and survival genes during the course of infection in bovines. Altogether, these results suggested that ICA of the large-scale transcriptome data can expand and enhance the current understanding of the TRNs of EHEC.
Collapse
Affiliation(s)
- Hanhyeok Im
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Ju-Hoon Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- *Correspondence: Ju-Hoon Lee,
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul, South Korea
- Sang Ho Choi,
| |
Collapse
|