1
|
Yu X, Wu H, Wu Z, Lan Y, Chen W, Wu B, Deng Y, Liu J. Nuclear pore complex protein RANBP2 and related SUMOylation in solid malignancies. Genes Dis 2025; 12:101407. [PMID: 40271196 PMCID: PMC12017851 DOI: 10.1016/j.gendis.2024.101407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/28/2024] [Accepted: 06/21/2024] [Indexed: 04/25/2025] Open
Abstract
The growing interest in post-translational protein modification, particularly in SUMOylation, is driven by its crucial role in cell cycle regulation. SUMOylation affects various cell cycle regulators, including oncogenes, suggesting its relevance in cancer. SUMO E3 ligases are pivotal in this process, exhibiting diverse functionalities through structural domains and subcellular localizations. A less-explored SUMO E3 ligase, RANBP2, a component of the vertebrate nuclear pore complex, emerges as a central player in cellular cycle processes, as well as in tumorigenesis. The current studies illuminate the importance of RANBP2 and underscore the need for more extensive studies to validate its clinical applicability in neoplastic interventions. Our review elucidates the significance of RANBP2 across various types of malignancies. Additionally, it delves into exploring RANBP2 as a prospective therapeutic target for cancer treatment, offering insights into the avenues that scholars should pursue in their subsequent research endeavors. Thus, further investigation into RANBP2's role in solid tumorigenesis is eagerly awaited.
Collapse
Affiliation(s)
- Xinning Yu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Huatao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Zheng Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yangzheng Lan
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Wenjia Chen
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Bingxuan Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Yu Deng
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Jing Liu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong 515041, China
- Department of Physiology, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
2
|
De Mees C, Bakker J, Szpirer J, Szpirer C. Alpha-Fetoprotein: From a Diagnostic Biomarker to a Key Role in Female Fertility. Biomark Insights 2017. [DOI: 10.1177/117727190600100002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Alpha-fetoprotein (AFP) is a well-known diagnostic biomarker used in medicine to detect fetal developmental anomalies such as neural tube defects or Down's syndrome, or to follow up the development of tumors such as hepatocellular carcinomas. However, and despite the fact that the protein was discovered almost half a century ago, little was known about its physiological function. The study of Afp knock-out mice uncovered a surprising function of AFP: it is essential for female fertility and for expression of normal female behaviors, and this action is mediated through its estrogen binding capacity. AFP sequestrates estrogens and by so doing protects the female developing brain from deleterious (defeminizing/masculinizing) effects of these hormones.
Collapse
Affiliation(s)
- Christelle De Mees
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12; B-6041 Gosselies (Charleroi), Belgium
| | - Julie Bakker
- University of Liège, Center for Cellular & Molecular Neurobiology, Avenue de l'Hopital 1, B36; B-4000 Liège, Belgium
| | - Josiane Szpirer
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12; B-6041 Gosselies (Charleroi), Belgium
| | - Claude Szpirer
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12; B-6041 Gosselies (Charleroi), Belgium
| |
Collapse
|
3
|
Kramer HB, Lai CF, Patel H, Periyasamy M, Lin ML, Feller SM, Fuller-Pace FV, Meek DW, Ali S, Buluwela L. LRH-1 drives colon cancer cell growth by repressing the expression of the CDKN1A gene in a p53-dependent manner. Nucleic Acids Res 2016; 44:582-94. [PMID: 26400164 PMCID: PMC4737183 DOI: 10.1093/nar/gkv948] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/15/2022] Open
Abstract
Liver receptor homologue 1 (LRH-1) is an orphan nuclear receptor that has been implicated in the progression of breast, pancreatic and colorectal cancer (CRC). To determine mechanisms underlying growth promotion by LRH-1 in CRC, we undertook global expression profiling following siRNA-mediated LRH-1 knockdown in HCT116 cells, which require LRH-1 for growth and in HT29 cells, in which LRH-1 does not regulate growth. Interestingly, expression of the cell cycle inhibitor p21 (CDKN1A) was regulated by LRH-1 in HCT116 cells. p21 regulation was not observed in HT29 cells, where p53 is mutated. p53 dependence for the regulation of p21 by LRH-1 was confirmed by p53 knockdown with siRNA, while LRH-1-regulation of p21 was not evident in HCT116 cells where p53 had been deleted. We demonstrate that LRH-1-mediated p21 regulation in HCT116 cells does not involve altered p53 protein or phosphorylation, and we show that LRH-1 inhibits p53 recruitment to the p21 promoter, likely through a mechanism involving chromatin remodelling. Our study suggests an important role for LRH-1 in the growth of CRC cells that retain wild-type p53.
Collapse
Affiliation(s)
- Holly B Kramer
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Chun-Fui Lai
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Hetal Patel
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Manikandan Periyasamy
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Meng-Lay Lin
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Stephan M Feller
- Institute of Molecular Medicine, Martin-Luther-University Halle-Wittenberg, Heinrich-Damerow-Str. 1, D-06120 Halle (Saale), Germany
| | - Frances V Fuller-Pace
- Division of Cancer Research, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - David W Meek
- Division of Cancer Research, University of Dundee, Ninewells Hospital & Medical School, Dundee DD1 9SY, UK
| | - Simak Ali
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Laki Buluwela
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
4
|
Fernekorn U, Hampl J, Weise F, Klett M, Läffert A, Friedel K, Schober A. Microfluidic 3D HepG2 cell culture: Reproducing hepatic tumor gene and protein expression in in vitro scaffolds. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Uta Fernekorn
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Jörg Hampl
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Frank Weise
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Maren Klett
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Annette Läffert
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Karin Friedel
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| | - Andreas Schober
- Center of Innovation Competence MacroNano®; Technische Universität Ilmenau; Ilmenau Germany
| |
Collapse
|
5
|
Wang Q, Cooney AJ. The Role of Nuclear Receptors in Embryonic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:287-306. [DOI: 10.1007/978-94-007-6621-1_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Takahashi H, Chaopotong P, Kajita S, Hashimura M, Yamazaki H, Saegusa M. Mixed angiosarcoma, clear cell adenocarcinoma and mature teratoma elements in an ovarian tumor: A case report and literature review. Pathol Int 2012; 62:538-42. [DOI: 10.1111/j.1440-1827.2012.02831.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
The CYP2B2 5′ flank contains a complex glucocorticoid response unit. Biochem Pharmacol 2008; 76:1298-306. [DOI: 10.1016/j.bcp.2008.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 08/08/2008] [Accepted: 08/13/2008] [Indexed: 11/24/2022]
|
8
|
Li HM, Ikeda H, Nakabayashi H, Nishi S, Sakai M. Identification of CCAAT enhancer binding protein α binding sites on the human α-fetoprotein gene. Gene 2007; 389:128-35. [PMID: 17188819 DOI: 10.1016/j.gene.2006.10.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/11/2006] [Accepted: 10/25/2006] [Indexed: 11/16/2022]
Abstract
Development- and tissue-specific alpha-fetoprotein (AFP) gene expression is controlled by various transcription factors including hepatocyte nuclear factors (HNFs), and a number of cis-acting elements. We recently identified multiple CCAAT/enhancer binding protein (C/EBP) binding sites in the enhancer of the human AFP gene. In this study, we have identified and functionally characterized seven C/EBPalpha-binding sites in the promoter and enhancer regions. An electrophoretic mobility shift assay (EMSA) and DNase I footprinting analysis identified two and five C/EBPalpha-binding sites located in the promoter and enhancer regions, respectively. Chromatin immunoprecipitation analyses showed that C/EBPalpha binds both enhancer and promoter regions of the AFP gene in human AFP-producing hepatoma and stomach cancer cells, but not in non-AFP-producing cells. Reporter transfection assays showed that transcription was stimulated by C/EBPalpha binding to each of the elements. These results indicate that C/EBPalpha regulates AFP gene expression through direct binding to multiple sites in the human AFP gene in cultured human cells.
Collapse
Affiliation(s)
- Hong Mei Li
- Department of Biochemistry, Hokkaido Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
9
|
De Mees C, Bakker J, Szpirer J, Szpirer C. Alpha-fetoprotein: from a diagnostic biomarker to a key role in female fertility. Biomark Insights 2007; 1:82-5. [PMID: 19690639 PMCID: PMC2716789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Alpha-fetoprotein (AFP) is a well-known diagnostic biomarker used in medicine to detect fetal developmental anomalies such as neural tube defects or Down's syndrome, or to follow up the development of tumors such as hepatocellular carcinomas. However, and despite the fact that the protein was discovered almost half a century ago, little was known about its physiological function. The study of Afp knock-out mice uncovered a surprising function of AFP: it is essential for female fertility and for expression of normal female behaviors, and this action is mediated through its estrogen binding capacity. AFP sequestrates estrogens and by so doing protects the female developing brain from deleterious (defeminizing/masculinizing) effects of these hormones.
Collapse
Affiliation(s)
- Christelle De Mees
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12; B-6041 Gosselies (Charleroi), Belgium,Correspondence: De Mees Christelle, Université Libre de Bruxelles, institut de Biologie et de Médecine Moléculaires Rue Profs Jeener & Brachet, 12; B-6041 Gosselies (Charleroi), Belgium. Tel: +3226509703; e-mail:
| | - Julie Bakker
- University of Liège, Center for Cellular & Molecular Neurobiology, Avenue de l’Hopital 1, B36; B-4000 Liège, Belgium
| | - Josiane Szpirer
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12; B-6041 Gosselies (Charleroi), Belgium
| | - Claude Szpirer
- Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires, Rue Profs Jeener & Brachet, 12; B-6041 Gosselies (Charleroi), Belgium
| |
Collapse
|
10
|
Kajiyama Y, Tian J, Locker J. Characterization of Distant Enhancers and Promoters in the Albumin-α-Fetoprotein Locus during Active and Silenced Expression. J Biol Chem 2006; 281:30122-31. [PMID: 16893898 DOI: 10.1074/jbc.m603491200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The albumin and alpha-fetoprotein genes are adjacent and express closely related serum proteins. Both genes are strongly expressed in fetal liver, primarily through activation by distant enhancers, but the AFP gene selectively undergoes developmental silencing. We used chromatin immunoprecipitation to study enhancers and promoters during active and silenced gene expression. In adult phenotype cells, the silenced AFP gene was actively repressed at the promoter and two proximal enhancers, characterized by the absence of coactivators and acetylated histone 4, and the presence of corepressors and K9-methylated histone 3. Specific transcription factors, TBP, and RNA polymerase II were all detected on both active and silenced genes, indicating that both states were actively regulated. Surprisingly, promoter-specific factors were also detected on enhancers, especially with reduced chromatin shearing. Under these conditions, an enhancer-specific factor was also detected on the albumin promoter. Association of promoter- and enhancer-specific factors was confirmed by sequential immunoprecipitation. Because no binding was detected on intervening segments, these promoter-enhancer associations suggest looping.
Collapse
Affiliation(s)
- Yasuo Kajiyama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
11
|
Jiao R, He QY, Chen H, Hua Z, Jiao Q, Chiu JF. AUF1-like protein binds specifically to DAS cis-acting element that regulates mouse alpha-fetoprotein gene expression. J Cell Biochem 2006; 98:1257-70. [PMID: 16514630 DOI: 10.1002/jcb.20843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alpha-fetoprotein (AFP) is one of the major serum proteins in the early life of mammals. We have previously identified a novel cis-acting element designated as DAS at the 5'-flanking region of the AFP gene and demonstrated that the DAS sequence can be specifically recognized by nuclear protein DAP-II in AFP-producing hepatoma cells and retinoic acid (RA)-induced AFP-producing F9 cells. In this study, we used DNA affinity chromatography to purify the DAP-II proteins from the nuclear extracts (NE) of RA-treated F9 cells. The purified DAP-II complex mainly contained five proteins, with molecular weights of 45, 42, 32, 30, and 20 kDa, respectively. The identification of these proteins was determined by MALDI-TOF mass spectrometric analysis and a database search. These proteins were found to belong to the AUF1 RNA-binding protein family. Protein (30 kDa), one of five proteins in an isolated DAP-II complex, was matched with amino acid sequence highly similar to muAUF1-3. The expression of this protein is inducible by RA, and the pattern of the protein expression is the same as DAP-II proteins in F9 cells after treatment with RA during differentiation. Our results suggest that the 30-kDa protein is a novel isoform of AUF1 family and is the main component of the DAP-II complex that binds to the DAS sequence.
Collapse
Affiliation(s)
- Ruiqing Jiao
- The State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Meier V, Tron K, Batusic D, Elmaouhoub A, Ramadori G. Expression of AFP and Rev-Erb A/Rev-Erb B and N-CoR in fetal rat liver, liver injury and liver regeneration. COMPARATIVE HEPATOLOGY 2006; 5:2. [PMID: 16822301 PMCID: PMC1552085 DOI: 10.1186/1476-5926-5-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 07/05/2006] [Indexed: 01/12/2023]
Abstract
Background Alpha-fetoprotein (AFP) expression can resume in the adult liver under pathophysiological conditions. Orphan nuclear receptors were supposed to regulate AFP gene expression, in vitro. We were interested to study the expression of AFP and orphan nuclear receptors, in vivo. Results The expression of AFP gene and orphan nuclear receptors in the liver was examined in different rat models: (a) fetal liver (b) liver regeneration [partial hepatectomy (PH) with and without 2-acetyl-aminofluren treatment (2-AAF)], (c) acute liver damage [treatment with CCl4] and (d) acute phase reaction [treatment with turpentine oil]. After PH of 2-AAF treated rats, clusters of AFP positive cells occurred in the periportal region. In the Northern blot analysis, a positive hybridization signal for the full-length AFP-RNA was observed only in liver samples from 2-AAF treated rats after PH. In real-time PCR analysis, the full-length AFP-RNA was highly up regulated in the fetal liver (maximum at day 14: 21,500 fold); after PH of 2-AAF treated rats, the full-length AFP-RNA was also up regulated up to 400 fold (day 7 after PH). The orphan nuclear receptors were down regulated at nearly each time points in all models, also at time point of up regulation of the AFP gene. Conclusion Expression of "fetal" AFP could be demonstrated during liver development and during proliferation of the so-called oval cells. Changes of expression of orphan nuclear receptors, however, did not correlate with AFP expression. Other regulatory pathways were possibly involved in controlling AFP expression, in vivo.
Collapse
Affiliation(s)
- Volker Meier
- University of Goettingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Goettingen, Germany
| | - Kyrylo Tron
- University of Goettingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Goettingen, Germany
| | - Danko Batusic
- University of Goettingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Goettingen, Germany
| | - Abderrahim Elmaouhoub
- University of Goettingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Goettingen, Germany
| | - Giuliano Ramadori
- University of Goettingen, Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Goettingen, Germany
| |
Collapse
|
13
|
Miyake K, Takahashi M, Dohda T, Kaneoka H, Sato Y, Inayoshi Y, Kamihira M, Iijima S. Transcriptional Regulation of the α-fetoprotein Gene by SWI/SNF Chromatin Remodeling Complex. Cytotechnology 2005. [DOI: 10.1007/s10616-006-6702-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
14
|
Xu H, Uno JK, Inouye M, Collins JF, Ghishan FK. NF1 transcriptional factor(s) is required for basal promoter activation of the human intestinal NaPi-IIb cotransporter gene. Am J Physiol Gastrointest Liver Physiol 2005; 288:G175-81. [PMID: 15458926 DOI: 10.1152/ajpgi.00396.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human intestinal type IIb Na+-P(i) cotransporter (hNaPi-IIb) gene promoter lacks a TATA box and has a high GC content in the 5'-flanking region. To understand the mechanism of hNaPi-IIb gene transcription, the current study was performed to characterize the minimal promoter region and transcriptional factor(s) necessary to activate gene expression in human intestinal cells (Caco-2). With the use of progressively shorter promoter constructs, a minimal promoter extending from bp -58 to +15 was identified and shown to direct high levels of hNaPi-IIb cotransporter expression in Caco-2 cells. Gel mobility shift assays (GMSAs) indicated that two regions could be bound by nuclear proteins from Caco-2 cells: region A at bp -26/-23 and region B at bp -44/-35. The introduction of mutations in region A abolished promoter activity, whereas mutations in region B had no effect. Deletion mutants of the same regions showed identical results. Furthermore, DNase I footprinting experiments confirmed the observation made by GMSAs. Additional studies, which used a specific nuclear factor 1 (NF1) antiserum, demonstrated that NF1 protein(s) binds to the minimal promoter at region A. These results indicated that the NF1 protein(s) is required to activate the basal transcription of hNaPi-IIb gene under normal growth conditions. This study has thus identified a new target gene in the small intestinal epithelium that is directly regulated by NF1 transcriptional factor(s).
Collapse
Affiliation(s)
- Hua Xu
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona Health Sciences Center, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
15
|
Nakabayashi H, Koyama Y, Suzuki H, Li HM, Sakai M, Miura Y, Wong NCW, Nishi S. Functional mapping of tissue-specific elements of the human alpha-fetoprotein gene enhancer. Biochem Biophys Res Commun 2004; 318:773-85. [PMID: 15144905 DOI: 10.1016/j.bbrc.2004.04.096] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2004] [Indexed: 11/22/2022]
Abstract
Serum alpha-fetoprotein (AFP) levels in hepatocellular carcinoma (HCC) patients and expression of the protein in cultured HCC cell lines are highly variable. These observations may arise from features correlated with tissue-specific expression of the gene. Extremely strong and potent liver-specific enhancer activity is confined from -4.1 to -3.3 kb upstream to the human AFP gene in contrast with that of the rodent which exists in three widely separated regions. To understand the tissue-specific expression of AFP, we examined cis-acting elements in the enhancer. Results revealed binding sites for selected liver-enriched transcription factors (LETFs) in both domains A (-4120 to -3756 bp) and B (-3492 to -3300 bp) of the gene. These sites included: one hepatocyte nuclear factor (HNF)-1 and HNF-4, two HNF-3, and two C/EBP binding sites in domain A. An adjacent domain B contained one HNF-3 site and three C/EBP sites plus a previously identified HNF-1 site. Each of these elements alone has the ability to stimulate heterogeneous promoter activity in a dose-dependent manner when transfected into AFP producing cells. A comparative study showed that the presence of two HNF-1 and one HNF-4 site is a characteristic feature of human but not rodent AFP enhancer. The mRNA levels of the liver-enriched transcription factors (LETFs) were variable in individual HCC cell lines and together with silencer activities may underlie differential expression of the AFP gene.
Collapse
Affiliation(s)
- Hidekazu Nakabayashi
- Department of Biochemistry, Hokkaido University School of Medicine, Sapporo 060-8638, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Freeman LA, Kennedy A, Wu J, Bark S, Remaley AT, Santamarina-Fojo S, Brewer HB. The orphan nuclear receptor LRH-1 activates the ABCG5/ABCG8 intergenic promoter. J Lipid Res 2004; 45:1197-206. [PMID: 15121760 DOI: 10.1194/jlr.c400002-jlr200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The ATP binding cassette (ABC) half-transporters ABCG5 and ABCG8 facilitate biliary and intestinal removal of neutral sterols. Here, we identify a binding site for the orphan nuclear receptor liver receptor homolog-1 (LRH-1) at nt 134-142 of the ABCG5/ABCG8 intergenic region necessary for the activity of both the ABCG5 and ABCG8 promoters. Mutating this LRH-1 binding site reduced promoter activity of the human ABCG5/ABCG8 intergenic region more than 7-fold in HepG2 and Caco2 cells. Electrophoretic mobility shift assays with HepG2 nuclear extracts demonstrated specific binding of LRH-1 to the LRH-1 binding motif in the human ABCG5/ABCG8 intergenic region. LRH-1 overexpression increased promoter activity up to 1.6-fold and 3-fold in Caco2 and 293 cells, respectively. Finally, deoxycholic acid repressed the ABCG5 and ABCG8 promoters, consistent with bile acid regulation via the farnesoid X receptor-small heterodimeric partner-LRH-1 pathway. These results demonstrate that LRH-1 is a positive transcription factor for ABCG5 and ABCG8 and, in conjunction with studies on LRH-1 activation of other promoters, identify LRH-1 as a "master regulator" for genes involved in sterol and bile acid secretion from liver and intestine.
Collapse
Affiliation(s)
- Lita A Freeman
- Molecular Disease Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Paré JF, Malenfant D, Courtemanche C, Jacob-Wagner M, Roy S, Allard D, Bélanger L. The fetoprotein transcription factor (FTF) gene is essential to embryogenesis and cholesterol homeostasis and is regulated by a DR4 element. J Biol Chem 2004; 279:21206-16. [PMID: 15014077 DOI: 10.1074/jbc.m401523200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The fetoprotein transcription factor (FTF) gene was inactivated in the mouse, with a lacZ gene inserted inframe into exon 4. LacZ staining of FTF+/- embryos shows that the mFTF gene is activated at initial stages of zygotic transcription. FTF gene activity is ubiquitous at the morula and blastocyst stages and then follows expression patterns indicative of multiple FTF functions in fetal development. FTF-/- embryos die at E6.5-7.5, with features typical of visceral endoderm dysfunction. Adult FTF+/- mice are hypocholesterolemic, and express liver FTF at about 40% of the normal level. Overexpression of liver FTF in transgenic mice indicates in vivo that FTF is an activator of CYP7A1. However, CYP7A1 expression is increased in FTF+/- liver. Gene expression profiles indicate that higher CYP7A1 expression is caused by attenuated liver cell stress signaling. Diet experiments support a model where FTF is quenched both by activated c-Jun, and by SHP as a stronger feedback mechanism to repress CYP7A1. A DR4 element is conserved in the FTF gene promoter and activated by LXR-RXR and TR-RXR, qualifying the FTF gene as a direct metabolic sensor. Liver FTF increases in rats treated with thyroid hormone or a high cholesterol diet. The FTF DR4 element tightens functional links between FTF and LXRalpha in cholesterol homeostasis and can explain transient surges of FTF gene activities during development and FTF levels lower than predicted in FTF+/- liver. The FTF-lacZ mouse establishes a central role for FTF in developmental, nutritive, and metabolic functions from early embryogenesis through adulthood.
Collapse
Affiliation(s)
- Jean-François Paré
- Département de biologie médicale, Faculté de médecine, Le Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Québec G1R 2J6, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu DL, Liu WZ, Li QL, Wang HM, Qian D, Treuter E, Zhu C. Expression and functional analysis of liver receptor homologue 1 as a potential steroidogenic factor in rat ovary. Biol Reprod 2003; 69:508-17. [PMID: 12672674 DOI: 10.1095/biolreprod.102.011767] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Liver receptor homologue 1 (LRH-1) is a member of the nuclear receptor superfamily originally found in liver cells. LRH-1 participates in regulation of cholesterol metabolism and bile acid synthesis. Recent studies have shown that LRH-1 is even more highly expressed in the ovary, and LRH-1 has been implicated as a key transcriptional regulator of cytochrome P450 aromatase (P450arom) in vitro. In the present study, we investigated the spatiotemporal expression patterns of LRH-1 using in situ hybridization and immunohistochemistry in ovaries from rats with a 4-day estrous cycle, from pregnant rats, from immature rats treated with eCG to stimulate follicular development, and from eCG-treated rats that were subsequently given hCG to stimulate ovulation and luteinization. To establish a potential connection between the expression of LRH-1 and that of the steroidogenic genes in vivo, we directly compared the localization patterns of LRH-1 and P450arom transcripts in consecutive ovarian sections from these animals. LRH-1 mRNA and protein were primarily localized to granulosa cells and luteinized follicles or newly formed corpora lutea (CLs) of immature and adult rats, and the levels of expression increased during eCG-hCG-induced follicular development and ovulation. In the functional CLs of pregnant rats, a biphasic change in LRH-1 mRNA content occurred throughout the gestation process, whereas LRH-1 protein was persistently detected during the entire pregnancy. In the consecutive ovarian sections, expression of LRH-1 was approximately colocalized with that of P450arom in both tertiary and Graafian follicles and the functional CLs of pregnant rats. LRH-1 mRNA and protein expression preceded those of P450arom during early follicular development. Stage-specific expression of LRH-1 in rat granulosa and luteal cells suggests a role for LRH-1 in the regulation of ovarian function. The overlapping but distinct expression patterns of LRH-1 and P450arom circumstantially support the recent finding that LRH-1 serves as a critical upstream regulator of P450arom gene expression in ovarian cells, but LRH-1 also may be a multifunctional steroidogenic factor in ovarian physiology.
Collapse
Affiliation(s)
- Dong Lin Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Huang MC, Li KK, Spear BT. The mouse alpha-fetoprotein promoter is repressed in HepG2 hepatoma cells by hepatocyte nuclear factor-3 (FOXA). DNA Cell Biol 2002; 21:561-9. [PMID: 12215259 PMCID: PMC1563500 DOI: 10.1089/104454902320308933] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The mouse alpha-fetoprotein gene is expressed at high levels in the fetal liver and is transcriptionally silenced at birth. The repression is governed, at least in part, by the 250 base pair (bp) AFP promoter. We show here that the AFP promoter is dramatically repressed by HNF3 in HepG2 hepatoma cells. This repression is governed by the region between -205 and -150. Furthermore, this fragment can confer HNF3-mediated repression on a heterologous promoter. The repression is abolished by a mutation that is centered at -165. EMSA analyses using in vivo and in vitro synthesized proteins indicate that HNF3 proteins do not bind DNA from the -205 to -150 region. We propose that HNF3 represses AFP promoter activity through indirect mechanisms that modulate the binding or activity of a liver-enriched factor that interacts with the -165 region of the AFP promoter.
Collapse
Affiliation(s)
- Mei-Chuan Huang
- Department of Microbiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA
| | | | | |
Collapse
|
20
|
Pare JF, Roy S, Galarneau L, Belanger L. The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters. J Biol Chem 2001; 276:13136-44. [PMID: 11145965 DOI: 10.1074/jbc.m010737200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Fetoprotein transcription factor (FTF) is an orphan nuclear receptor that activates the alpha(1)-fetoprotein gene during early liver developmental growth. Here we sought to define better the position of FTF in transcriptional cascades leading to hepatic differentiation. The mouse FTF gene was isolated and assigned to chromosome 1 band E4 (one mFTF pseudogene was also found). Exon/intron mapping shows an mFTF gene structure similar to that of its close homologue SF1, with two more N-terminal exons in the mFTF gene; exon mapping also delimits several FTF mRNA 5'- and 3'-splice variants. The mFTF transcription initiation site was located in adult liver at 238 nucleotides from the first translation initiator codon, with six canonical GATA, E box, and Nkx motifs clustered between -50/-140 base pairs (bp) from the cap site; DNA/protein binding assays also pinpointed an HNF4-binding element at +36 bp and an FTF-binding element at -257 bp. Transfection assays and point mutations showed that the mFTF promoter is activated by GATA, HNF4alpha, FTF, Nkx, and basic helix-loop-helix factors, with marked cooperativity between GATA and HNF4alpha. A tandem GATA/E box activatory motif in the proximal mFTF promoter is strikingly similar to a composite motif coactivated by differentiation inducers in the hematopoietic lineage; a tandem GATA-Nkx motif in the distal mFTF promoter is also similar to a composite motif transducing differentiation signals from transforming growth factor-beta-like receptors in the cardiogenic lineage. Three genes encoding transcription factors critical to early hepatic differentiation, Hnf3beta, Hnf4alpha, and Hnf1alpha, each contain dual FTF-binding elements in their proximal promoters, and all three promoters are activated by FTF in transfection assays. Direct DNA binding action and cooperativity was demonstrated between FTF and HNF3beta on the Hnf3beta promoter and between FTF and HNF4alpha on the Hnf1alpha promoter. These combined results suggest that FTF is an early intermediary between endodermal specification signals and downstream genes that establish and amplify the hepatic phenotype.
Collapse
Affiliation(s)
- J F Pare
- Le Centre de Recherche en Cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Département de Biologie Médicale, Faculté de Médecine, Québec G1R 2J6, Canada
| | | | | | | |
Collapse
|
21
|
Fernandez-Rachubinski F, Fliegel L. COUP-TFI and COUP-TFII regulate expression of the NHE through a nuclear hormone responsive element with enhancer activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:620-34. [PMID: 11168401 DOI: 10.1046/j.1432-1327.2001.01915.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The chicken ovalbumin upstream promoter-transcription factors (COUP-TFs) are orphan receptors involved in regulation of embryonic development and neuronal cell fate determination. We identified a target of COUP-TF involved in cell proliferation and cell differentiation. Using reporter assays, footprint analysis, and electrophoretic mobility shift assays, we showed that a nuclear hormone-responsive element located at -841/-800 nt of the mouse Na(+)/H(+) exchanger (NHE) promoter binds COUP-TF with enhancer activity. Mutation at -829/-824 nt (and secondarily at -837/-833) prevents COUP binding and activation of the NHE promoter. In vivo expression of COUP isoforms in NIH 3T3 or CV1 cells transactivates from the nuclear hormone-responsive element and from the entire NHE1 promoter. Transactivation is greater for COUP-TFII, is increased for either COUP isoform by the presence of high serum concentrations, and is greatly reduced by mutations preventing COUP binding. In vivo COUP expression in NIH 3T3 cells results in increased synthesis of NHE. Expression of COUP-TFII induced by either retinoic acid or dimethyl sulfoxide in differentiating P19 cells increases NHE expression. The results show that COUP-TF regulates expression of the NHE and provide a mechanism that may be important in physiological and pathological situations linked to its upregulation.
Collapse
Affiliation(s)
- F Fernandez-Rachubinski
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
22
|
Bois-Joyeux B, Chauvet C, Nacer-Chérif H, Bergeret W, Mazure N, Giguère V, Laudet V, Danan JL. Modulation of the far-upstream enhancer of the rat alpha-fetoprotein gene by members of the ROR alpha, Rev-erb alpha, and Rev-erb beta groups of monomeric orphan nuclear receptors. DNA Cell Biol 2000; 19:589-99. [PMID: 11058961 DOI: 10.1089/104454900750019344] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the oncodevelopmental alpha-fetoprotein (AFP) gene is tightly regulated and occurs in the yolk sac, fetal liver and intestine, and cancerous liver cells. Transcription of the AFP gene is under the control of three enhancers that are very tissue specific. We have shown that the most upstream of these enhancers, located at -6 kb, works through the combined action of liver-enriched factors and nuclear receptors that bind to three regions of this DNA regulatory element. This study showed that orphan nuclear receptors of the ROR alpha, Re-verb alpha, and Rev-erb beta groups can bind as monomers with high affinity and specificity to an evolutionarily conserved AGGTCA motif in the functionally important region 1 of this AFP enhancer. Transient transfection experiments performed with human HepG2 hepatoma cells showed that overproduction of ROR alpha 4 stimulated the activity of the AFP enhancer in a dose-dependent manner, while that of Rev-erb alpha and Rev-erb beta had the opposite effect. These effects were highly specific and required the integrity of the AGGTCA motif. The action of these nuclear receptors also occurred in the context of the entire 7-kb regulatory region of the rat AFP gene. These results suggest that altering the amounts or activities of these orphan receptors in cells of hepatic or endodermal origin could modulate AFP gene expression in response to a variety of developmental or carcinogenic stimuli.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive
- Caco-2 Cells
- Chickens
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enhancer Elements, Genetic/genetics
- Gene Expression
- Gene Expression Regulation
- Humans
- Mice
- Nuclear Receptor Subfamily 1, Group D, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Plasmids
- Protein Binding
- Proteins/genetics
- Proteins/metabolism
- RNA/genetics
- RNA/metabolism
- Rats
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Thyroid Hormone
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transfection
- Tumor Cells, Cultured
- alpha-Fetoproteins/genetics
- alpha-Fetoproteins/metabolism
Collapse
Affiliation(s)
- B Bois-Joyeux
- Centre de Recherche sur l'Endocrinologie Moléculaire et le Développement, CNRS, Meudon, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Terai S, Aoki H, Ashida K, Thorgeirsson SS. Human homologue of maid: A dominant inhibitory helix-loop-helix protein associated with liver-specific gene expression. Hepatology 2000; 32:357-66. [PMID: 10915743 DOI: 10.1053/jhep.2000.9092] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The helix-loop-helix (HLH) family of transcriptional regulatory proteins are key regulators in numerous developmental processes. The class I HLH proteins, such as E12 are ubiquitously expressed. Class II HLH proteins, such as MyoD, are expressed in a tissue-specific manner. Class I and II heterodimers can bind to E-boxes (CANNTG) and regulate lineage commitments of embryonic cells. In an attempt to identify partners for the E12 protein that may exert control during liver development, we performed the yeast 2-hybrid screen using an expression complementary DNA library from human fetal liver. A novel dominant inhibitory HLH factor, designated HHM (human homologue of maid), was isolated and characterized. HHM is structurally related to the Id family and was highly expressed in brain, pituitary gland, lung, heart, placenta, fetal liver, and bone marrow. HHM physically interacted with E12 in vitro and in mammalian cells. Comparison of the dominant inhibitory effects of HHM and Id2 on the binding of E12/MyoD dimer to an E-box element revealed a weaker inhibition by HHM. However, HHM but not Id2 specifically inhibited the luciferase gene activation induced by hepatic nuclear factor 4 (HNF4) promoter. The HHM was transiently expressed during stem-cell-driven regeneration of the liver at the stage in which the early basophilic foci of hepatocytes started to appear. These results suggest that HHM is a novel type of dominant inhibitory HLH protein that might modulate liver-specific gene expression.
Collapse
Affiliation(s)
- S Terai
- Laboratory of Experimental Carcinogenesis, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | |
Collapse
|
24
|
Lannoy VJ, Rodolosse A, Pierreux CE, Rousseau GG, Lemaigre FP. Transcriptional stimulation by hepatocyte nuclear factor-6. Target-specific recruitment of either CREB-binding protein (CBP) or p300/CBP-associated factor (p/CAF). J Biol Chem 2000; 275:22098-103. [PMID: 10811635 DOI: 10.1074/jbc.m000855200] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors of the ONECUT class, whose prototype is HNF-6, contain a single cut domain and a divergent homeodomain characterized by a phenylalanine at position 48 and a methionine at position 50. The cut domain is required for DNA binding. The homeodomain is required either for DNA binding or for transcriptional stimulation, depending on the target gene. Transcriptional stimulation by the homeodomain involves the F48M50 dyad. We investigate here how HNF-6 stimulates transcription. We identify transcriptionally active domains of HNF-6 that are conserved among members of the ONECUT class and show that the cut domain of HNF-6 participates to DNA binding and, via a LXXLL motif, to transcriptional stimulation. We also demonstrate that, on a target gene to which HNF-6 binds without requirement for the homeodomain, transcriptional stimulation involves an interaction of HNF-6 with the coactivator CREB-binding protein (CBP). This interaction depends both on the LXXLL motif of the cut domain and on the F48M50 dyad of the homeodomain. On a target gene for which the homeodomain is required for DNA binding, but not for transcriptional stimulation, HNF-6 interacts with the coactivator p300/CBP-associated factor but not with CBP. These data show that a transcription factor can act via different, sequence-specific, mechanisms that combine distinct modes of DNA binding with the use of different coactivators.
Collapse
Affiliation(s)
- V J Lannoy
- Hormone and Metabolic Research Unit, Université catholique de Louvain and Christian de Duve Institute of Cellular Pathology (ICP), Avenue Hippocrate 75, B-1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
25
|
Bouchard M, St-Amand J, Côté S. Combinatorial activity of pair-rule proteins on the Drosophila gooseberry early enhancer. Dev Biol 2000; 222:135-46. [PMID: 10885752 DOI: 10.1006/dbio.2000.9702] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The early expression of the Drosophila segment polarity gene gooseberry (gsb) is under the control of the pair-rule genes. We have identified a 514-bp enhancer which reproduces the early gsb expression pattern in transgenic flies. The transcription factor Paired (Prd) is the main activator of this enhancer in all parasegments of the embryo. It binds to paired- and homeodomain-binding sites, which are segregated on the enhancer. Using site-directed mutagenesis, we have identified sites critical for Prd activity. Negative regulation of this enhancer is mediated by the Even-skipped protein (Eve) in the odd-numbered parasegments and by the combination of Fushi-tarazu (Ftz) and Odd-skipped proteins in the even-numbered parasegments. The organisation of the Prd-binding sites, as well as the necessity for intact DNA binding sites for both paired- and homeodomains, suggests a molecular model whereby the two DNA-binding domains of the Prd protein cooperate in transcriptional activation of gsb. This positive activity appears to be in competition with Eve and Ftz on Prd homeodomain-binding sites.
Collapse
Affiliation(s)
- M Bouchard
- Centre de Recherche de L'Hôtel-Dieu de Québec, Canada.
| | | | | |
Collapse
|
26
|
Abstract
The Nuclear Factor I (NFI) family of site-specific DNA-binding proteins (also known as CTF or CAAT box transcription factor) functions both in viral DNA replication and in the regulation of gene expression. The classes of genes whose expression is modulated by NFI include those that are ubiquitously expressed, as well as those that are hormonally, nutritionally, and developmentally regulated. The NFI family is composed of four members in vertebrates (NFI-A, NFI-B, NFI-C and NFI-X), and the four NFI genes are expressed in unique, but overlapping, patterns during mouse embryogenesis and in the adult. Transcripts of each NFI gene are differentially spliced, yielding as many as nine distinct proteins from a single gene. Products of the four NFI genes differ in their abilities to either activate or repress transcription, likely through fundamentally different mechanisms. Here, we will review the properties of the NFI genes and proteins and their known functions in gene expression and development.
Collapse
Affiliation(s)
- R M Gronostajski
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Case Western Reserve University, OH 44195, USA.
| |
Collapse
|
27
|
Marten NW, Hsiang CH, Yu L, Stollenwerk NS, Straus DS. Functional activity of hepatocyte nuclear factor-1 is specifically decreased in amino acid-limited hepatoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1447:160-74. [PMID: 10542313 DOI: 10.1016/s0167-4781(99)00165-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Limitation of cultured rat hepatoma cells for an essential amino acid results in a specific decrease in expression of several genes that are preferentially expressed in the liver, including the serum albumin and transthyretin genes. In the work presented here, we examined whether the coordinate repression of these genes is caused by decreased activity of one or more of the liver-enriched transcription factors, hepatocyte nuclear factor-1 (HNF-1), HNF-3, HNF-4 or C/EBP. To address this question, HepG2 human hepatoma cells were transiently transfected with luciferase reporter constructs containing multiple copies of individual transcription factor binding sites. Limitation for an essential amino acid resulted in specific repression of a construct in which luciferase expression was directed by HNF-1. A single HNF-1 binding site located adjacent to the TATA box plays a major role in transcription directed by the serum albumin promoter in transient transfection assays. Amino acid limitation of cells transfected with an albumin promoter/luciferase reporter construct resulted in specific repression of promoter activity. In addition, bacterial methylation or site-directed mutagenesis of the HNF-1 binding site in the albumin proximal promoter region eliminated the regulation of an albumin promoter-luciferase reporter construct under conditions of amino acid limitation. These results demonstrated that the HNF-1 binding site played a major role in regulation of the albumin promoter by amino acid availability. Deletion analysis of the albumin promoter confirmed regulation through the HNF-1 binding site and also identified a second amino acid regulatory element in the upstream region of the albumin promoter, which has been shown previously to contain a functional binding site for HNF-3. The repression of albumin promoter and HNF-1 reporter constructs in amino acid-limited cells occurred without a change in the DNA binding activity of HNF-1. Moreover, HNF-3 DNA binding activity was also not decreased in amino acid-limited cells. These results suggest that the regulation of transcription by amino acids occurs at the level of transcriptional activation by HNF-1 and HNF-3, rather than by alteration of the DNA binding activity of either factor.
Collapse
Affiliation(s)
- N W Marten
- Biomedical Sciences Division and Biology Department, University of California, Riverside, CA 92521-0121, USA
| | | | | | | | | |
Collapse
|
28
|
Osada S, Matsubara T, Daimon S, Terazu Y, Xu M, Nishihara T, Imagawa M. Expression, DNA-binding specificity and transcriptional regulation of nuclear factor 1 family proteins from rat. Biochem J 1999; 342 ( Pt 1):189-98. [PMID: 10432316 PMCID: PMC1220452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Nuclear factor 1 (NF1) family proteins, which are encoded by four different genes (NF1-A, NF1-B, NF1-C and NF1-X), bind to the palindromic sequence and regulate the expression of many viral and cellular genes. We have previously purified NF1-A and NF1-B from rat liver as factors that bind to the silencer in the glutathione transferase P gene, and have also reported the repression domain of NF1-A. In the present study we cloned five cDNA species (NF1-B1, NF1-B2, NF1-B3, NF1-C2 and NF1-X1) and compared their expression profiles and the affinity and specificity of the DNA binding of these NF1 family members. By Northern blot analysis, we found that the expression profiles of the NF1s are indistinguishable in the various tissues of the rat. The DNA-binding affinities of NF1-A and NF1-X are higher than those of NF1-B and NF1-C, whereas all four NF1 proteins showed the same DNA-binding specificity. Transfection analyses revealed that the function of NF1-B on the transcriptional regulation differed between NF1-B isoforms and was affected by the factor(s) that bind to the promoter regions. In addition, we identified the transcriptional regulatory domain of NF1-B, which is enriched with proline and serine residues.
Collapse
Affiliation(s)
- S Osada
- Laboratory of Environmental Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-Oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Thériault JR, Charette SJ, Lambert H, Landry J. Cloning and characterization of hGMEB1, a novel glucocorticoid modulatory element binding protein. FEBS Lett 1999; 452:170-6. [PMID: 10386584 DOI: 10.1016/s0014-5793(99)00634-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 21-bp element called glucocorticoid modulatory element (GME) modulates the glucocorticoid receptor-mediated responses via the binding of an as yet poorly characterized transacting complex of proteins containing the 88-kDa GMEB1 and the 67-kDa GMEB2. Using heat shock protein 27 (HSP27) as bait in the yeast two-hybrid assay, we cloned a 1.83-kb cDNA encoding a novel 573-amino acid protein called human GMEB1 (hGMEB1). hGMEB1 possesses a KDWK domain, contains sequences almost identical (36/38) to three tryptic peptides of rat GMEB1 and shares 38% identity with rat GMEB2. hGMEB1 is ubiquitously expressed as a 85-kDa protein in all cell lines and tissues examined. In vitro translated hGMEB1 bound specifically to GME oligonucleotides yielding a complex of similar size to the complex obtained using rat liver nuclear extracts. Both complexes were supershifted with an antibody specific to hGMEB1. Co-immunoprecipitation experiments confirmed the in vivo interaction of HSP27 with hGMEB1.
Collapse
Affiliation(s)
- J R Thériault
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Que., Canada
| | | | | | | |
Collapse
|
30
|
Stoltz C, Anderson A. Positive regulation of the rat CYP2B2 phenobarbital response unit by the nuclear receptor hexamer half-site.nuclear factor 1 complex. Biochem Pharmacol 1999; 57:1073-6. [PMID: 10796078 DOI: 10.1016/s0006-2952(98)00367-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
A distal 163-bp fragment mediates phenobarbital responsiveness of the rat CYP2B2 gene. Multiple cis-acting elements in this fragment cooperate to form a phenobarbital response unit (PBRU). A nuclear factor 1 binding site and an associated nuclear receptor hexamer half-site are present in both the rat CYP2B2 PBRU and the homologous mouse Cyp2b10 sequence. Based on mutational analyses, the hexamer half-site has been reported to act positively in CYP2B2 and negatively in Cyp2b10. However, the specific mutations introduced into the rat and mouse hexamer half-sites were different, raising the possibility that the different roles attributed to the element may be a consequence of the different mutations used. We introduced into the rat CYP2B2 hexamer half-site the specific mutational change previously introduced into the Cyp2b10 sequence, where its effect was to increase the basal level of expression and to abolish phenobarbital responsiveness. In the rat context, this mutation reduced but did not abolish phenobarbital responsiveness and decreased, rather than increased, the basal level of expression. The residual phenobarbital responsiveness of the hexamer half-site mutant, as well as that of nuclear factor 1 mutants, indicates that these elements behave as positive accessory sites, suggesting that factors binding to them function as activators of phenobarbital-dependent transcription.
Collapse
Affiliation(s)
- C Stoltz
- Centre de Recherche en Cancérologie de l'Université Laval, Pavillon L'Hôtel-Dieu de Québec, Canada
| | | |
Collapse
|
31
|
Hsiang CH, Marten NW, Straus DS. Upstream region of rat serum albumin gene promoter contributes to promoter activity: presence of functional binding site for hepatocyte nuclear factor-3. Biochem J 1999; 338 ( Pt 2):241-9. [PMID: 10024498 PMCID: PMC1220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Transcription of the serum albumin gene occurs almost exclusively in the liver and is controlled in part by a strong liver-specific promoter. The upstream region of the serum albumin gene promoter is highly conserved among species and is footprinted in vitro by a number of nuclear proteins. However, the role of the upstream promoter region in regulating transcription and the identity of the transcription factors that bind to this region have not been established. In the present study, deletion analysis of the rat serum albumin promoter in transiently transfected HepG2 cells demonstrated that elimination of the region between -207 and -153 bp caused a two-fold decrease in promoter activity (P<0.05). Additional analysis of the -207 to -124 bp promoter interval led to the identification of two potential binding sites for hepatocyte nuclear factor-3 (HNF-3) located at -168 to -157 bp (site X) and -145 to -134 bp (site Y). Electrophoretic mobility-shift assays performed with the HNF-3 X and Y sites demonstrated that both sites are capable of binding HNF-3alpha and HNF-3beta. Placement of a single copy of the HNF-3 X site upstream from a minimal promoter increased promoter activity by about four-fold in HepG2 cells, and the reporter construct containing this site could be transactivated if co-transfected with an HNF-3 expression construct. Furthermore, inactivation of the HNF-3 X site by site-directed mutagenesis within the context of the -261 bp albumin promoter construct resulted in a 40% decrease in transcription (P<0.05). These results indicate that the positive effect of the -207 to -153 bp promoter interval is attributable to the presence of the HNF-3 X site within this interval. Additional results obtained with transfected HepG2 cells suggest that the HNF-3 Y site plays a lesser role in activation of transcription than the X site.
Collapse
Affiliation(s)
- C H Hsiang
- Biomedical Sciences Division and Biology Department, University of California, Riverside, CA 92521-0121, USA
| | | | | |
Collapse
|
32
|
Chen H, Dong JM, Liu Y, Chiu JF. Identification of a cis-acting element in the rat alpha-fetoprotein gene and its specific binding proteins in F9 cells during retinoic acid-induced differentiation. J Cell Biochem 1999; 72:25-34. [PMID: 10025664 DOI: 10.1002/(sici)1097-4644(19990101)72:1<25::aid-jcb4>3.0.co;2-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mouse F9 embryonic teratocarcinoma stem cells can be induced to differentiate into visceral endoderm. Following retinoic acid (RA) treatment, alpha-fetoprotein (AFP), a differentiation marker, is expressed and secreted. The mechanism by which RA regulates AFP expression during differentiation is not clear. The relatively late induction of AFP indicates that the AFP gene may not be a primary target of RA activity during F9 cell differentiation. In this study, a CAT reporter plasmid containing the rat AFP 5'-regulatory region (-7040 to +7) adjacent to the CAT gene (pAFPCAT) was stably transfected into F9 cells and used to delineate a cis-acting element which associates with AFP gene activation. Similar spatial and temporal expression patterns between the transcriptional activity of the recombinant AFP gene and the endogenous AFP gene demonstrate that this stably transfected F9 system can be used to dissect both cis-elements and trans-acting factors responsible for RA-induced AFP expression. Using a series of deletion mutants of the pAFPCAT, the region between -2611 to -1855 was found to be important in AFP-induction. Subsequent analysis identified a functional sequence (-1905 to -1891, 5'-ACTAAAATGGAGACT-3') that differentially binds nuclear proteins from undifferentiated and differentiated F9 cells. This sequence, designed as differentiation-associated sequence (DAS) for its unique binding of a nuclear protein (DAP-II) that appears during RA-induced F9 differentiation, acts as a regulatory protein factor in AFP gene activation.
Collapse
Affiliation(s)
- H Chen
- Department of Biochemistry, University of Vermont College of Medicine, Burlington 05405, USA
| | | | | | | |
Collapse
|
33
|
Stoltz C, Vachon MH, Trottier E, Dubois S, Paquet Y, Anderson A. The CYP2B2 phenobarbital response unit contains an accessory factor element and a putative glucocorticoid response element essential for conferring maximal phenobarbital responsiveness. J Biol Chem 1998; 273:8528-36. [PMID: 9525968 DOI: 10.1074/jbc.273.14.8528] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatic cytochrome P450s play a critical role in the metabolism of hydrophobic xenobiotics. One of the major unsolved problems in xenobiotic metabolism is the molecular mechanism whereby phenobarbital induces hepatic enzymes, particularly CYP2B1 and CYP2B2 in rat liver. By using primary rat hepatocytes for transfection analyses, we previously identified in the CYP2B2 5'-flank a 163-base pair Sau3AI fragment that confers phenobarbital inducibility on a cat reporter gene and that has the properties of a transcriptional enhancer. Transfection experiments with sub-regions of the Sau3AI fragment now indicate that a central core together with an upstream or downstream accessory element within the fragment can confer phenobarbital responsiveness. One such accessory element, AF1, was identified and localized. DNase I footprinting analysis revealed the presence of a footprint overlapping this AF1 element. It also identified three other major protected regions, two of which are putative recognition sites for known transcription factors. Site-directed mutagenesis indicated that a putative glucocorticoid response element as well as a nuclear factor 1 site and an associated nuclear receptor hexamer half-site are essential for conferring maximal phenobarbital inducibility. Taken together, the results indicate that phenobarbital induction of CYP2B2 requires interactions among multiple regulatory proteins and cis-acting elements constituting a phenobarbital response unit.
Collapse
Affiliation(s)
- C Stoltz
- Centre de recherche en cancérologie de l'Université Laval, Pavillon L'Hôtel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Québec G1R 2J6 Canada
| | | | | | | | | | | |
Collapse
|
34
|
Regulation of Cytochrome P450 Gene Transcription by Phenobarbital. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998. [DOI: 10.1016/s0079-6603(08)60824-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Chaudhry AZ, Lyons GE, Gronostajski RM. Expression patterns of the four nuclear factor I genes during mouse embryogenesis indicate a potential role in development. Dev Dyn 1997; 208:313-25. [PMID: 9056636 DOI: 10.1002/(sici)1097-0177(199703)208:3<313::aid-aja3>3.0.co;2-l] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The nuclear factor I (NFI) family of site-specific DNA-binding proteins is required for both the cell-type specific transcription of many viral and cellular genes and for the replication of adenovirus DNA. Although binding sites for NFI proteins within the promoters of several tissue-specific genes have been shown to be essential for their expression, it is unclear which NFI gene products function in specific tissues during development. We have isolated cDNAs from all four murine NFI genes (gene designations Nfia, Nfib, Nfic, and Nfix), assessed the embryonic and postnatal expression patterns of the NFI genes, and determined the ability of specific NFI proteins to activate transcription from the NFI-dependent mouse mammary tumor virus (MMTV) promoter. In adult mice, all four NFI genes are most highly expressed in lung, liver, heart, and other tissues but only weakly expressed in spleen and testis. The embryonic expression patterns of the NFI genes is complex, with NFI-A transcripts appearing earliest-within 9 days postcoitum in the heart and developing brain. The four genes exhibit unique but overlapping patterns of expression during embryonic development, with high level expression of NFI-A, NFI-B, and NFI-X transcripts in neocortex and extensive expression of the four genes in muscle, connective tissue, liver, and other organ systems. The four NFI gene products studied differ in their ability to activate expression of the NFI-dependent MMTV promoter, with the NFI-B protein being most active and the NFI-A protein being least active. These data are discussed in the context of the developmental expression patterns of known NFI-responsive genes. The differential activation of an NFI-dependent promoter, together with the expression patterns observed for the four genes, indicate that the NFI proteins may play an important role in regulating tissue-specific gene expression during mammalian embryogenesis.
Collapse
Affiliation(s)
- A Z Chaudhry
- Department of Cancer Biology, Research Institute, Cleveland Clinic Foundation, Ohio 44195, USA
| | | | | |
Collapse
|
36
|
Thomassin H, Bois-Joyeux B, Delille R, Ikonomova R, Danan JL. Chicken ovalbumin upstream promoter-transcription factor, hepatocyte nuclear factor 3, and CCAAT/enhancer binding protein control the far-upstream enhancer of the rat alpha-fetoprotein gene. DNA Cell Biol 1996; 15:1063-74. [PMID: 8985120 DOI: 10.1089/dna.1996.15.1063] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have further characterized the most distal of the three alpha-fetoprotein (AFP) enhancers required for expression of the AFP gene in fetal hepatocytes and yolk sac endodermal cells. Almost total rat AFP enhancer 3 (E3) activity is driven by a 160-bp fragment at -6 kb containing three target regions for nuclear proteins that cooperate to stimulate transcription from the AFP and the thymidine kinase promoters in HepG2 hepatoma cells. Region 1, recently shown to be crucial for correct function of the enhancer in liver of transgenic mice, is recognized by two sets of transcription factors that bind to partly overlapping sites, 1a and 1b, in a noncooperative and nonexclusive manner. Site 1a contains a motif, AGGTCA, which is recognized by chicken ovalbumin upstream promoter transcription factors (COUP-TFs), but not by hepatocyte nuclear factor 4. Hepatocyte nuclear factor 3 (HNF3) and CCAAT/enhancer binding protein (C/EBP), which bind to regions 2 and 3, respectively, are likely responsible for the liver-specific E3 action. They play a key role by acting in synergy. The participation of nuclear receptors such as COUP-TFs, with C/EBP and HNF3, in the tight control of the distal AFP enhancer is a new, and perhaps key, step toward understanding the regulation and function of this enhancer, which may remain active throughout development.
Collapse
Affiliation(s)
- H Thomassin
- Centre de recherche sur l'Endocrinologie, Moléculaire et le Développement, CNRS, UPR 1511, Meudon, France
| | | | | | | | | |
Collapse
|
37
|
Arbuthnot PB, Bralet MP, Le Jossic C, Dedieu JF, Perricaudet M, Bréchot C, Ferry N. In vitro and in vivo hepatoma cell-specific expression of a gene transferred with an adenoviral vector. Hum Gene Ther 1996; 7:1503-14. [PMID: 8864751 DOI: 10.1089/hum.1996.7.13-1503] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recombinant adenoviruses are widely used for the transfer of foreign genes into various mammalian cells. However, the utilization of these vectors for cancer gene therapy requires the specific and efficient expression of the transferred gene in tumor cells. To obtain targeted expression in hepatoma cells, we constructed recombinant adenoviral vectors containing transcriptional elements from either the rat alpha-fetoprotein (AFP) or the human insulin-like growth factor II (IGFII) genes driving expression of the nuclear beta-galactosidase gene (nls lacZ). In vitro infection revealed that the AFP but not the IGFII transcriptional regulatory sequence controlled nls lacZ expression specifically in hepatoma cells. The same specificity was obtained in vivo in subcutaneous human hepatic tumors generated by engraftment of Huh7 hepatoma cells in nude mice as well as in primary liver tumors developed in rats and mice. No marker gene expression was detectable after AFP-nls lacZ gene transfer to normal rat liver parenchyma despite evidence for the presence of DNA encoding the nls lacZ gene. However, in vivo experiments with primary liver tumors in rats and mice also revealed that primary hepatoma cells were poorly infected by adenoviral vectors. Peritumoral and normal tissues were infected efficiently by adenoviral vectors. We conclude that hepatoma cell-specific expression of a transgene can be achieved with AFP regulatory sequences but that adenoviral vectors may not be the preferable vector for transferring genes in vivo in primary liver tumors.
Collapse
Affiliation(s)
- P B Arbuthnot
- Institut National de la Santé et de la Recherche Médicale, Unité 370, Faculté Necker, Paris, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Jin DK, Feuerman MH. Sequence requirements for Afr-2 regulation of alpha-fetoprotein gene expression during liver regeneration. SOMATIC CELL AND MOLECULAR GENETICS 1996; 22:211-26. [PMID: 8914606 DOI: 10.1007/bf02369911] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Alpha-fetoprotein (AFP) gene expression occurs in the yolk sac, fetal liver and gut, and in the adult liver during regeneration and tumorigenesis. Polymorphism at a single genetic locus, Afr-2 (formerly known as Rif) between inbred mouse strains C3H/He and C57B1/6, results in different levels of AFP expression during liver regeneration. We examined AFP, histone H3, and albumin gene expression during liver regeneration and found that the strain-specific variance in AFP gene expression could not be attributed to a difference in the numbers of dividing cells. Experiments with transgenic mice revealed sequences required for Afr-2 regulation included 172 bp between -1010 and -838 bp and 118 bp immediately upstream of the AFP transcriptional start site-the same regions required for induction during liver regeneration. This suggests that the Afr-2 phenotype may stem from an allelic difference in a gene regulating gene expression during liver regeneration.
Collapse
Affiliation(s)
- D K Jin
- Department of Biochemistry, State University of New York, Brooklyn 11203, USA
| | | |
Collapse
|
39
|
Barrera-Hernandez G, Wanke IE, Wong NC. Effects of diabetes mellitus on hepatocyte nuclear factor 1 decrease albumin gene transcription. J Biol Chem 1996; 271:9969-75. [PMID: 8626635 DOI: 10.1074/jbc.271.17.9969] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have previously reported that albumin gene transcription is reduced in diabetes mellitus (DM). The present study explored the mechanism by which albumin gene transcription is down-regulated in DM. Deletional studies and displacement of factors binding to site B of the albumin promoter indicated that the repressive effects of DM are mediated by nuclear factors binding to this site. Since hepatocyte nuclear factor 1 (HNF1) activates albumin promoter activity and is the predominant factor binding to site B, we examined HNF1. The abundance and binding activity of HNF1 were reduced in hepatonuclear extracts from diabetic compared to control rats. However, HNF1 mRNA levels were unchanged, suggesting that the effect of DM on HNF1 is at the post-transcriptional level. Extracts from diabetic animals also contained another protein, distinct from HNF1 and vHNF1, which bound to site B in gel retardation studies. In summary, our studies demonstrate that the reduced abundance and binding activity of HNF1 correlates with decreased albumin gene transcription in DM.
Collapse
Affiliation(s)
- G Barrera-Hernandez
- Department of Medicine, University of Calgary, Calgary, Alberta T2N-4N1, Canada
| | | | | |
Collapse
|
40
|
Nishio H, Gibbs PE, Minghetti PP, Zielinski R, Dugaiczyk A. The chimpanzee alpha-fetoprotein-encoding gene shows structural similarity to that of gorilla but distinct differences from that of human. Gene 1995; 162:213-20. [PMID: 7557431 DOI: 10.1016/0378-1119(95)00303-n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The chimpanzee (Pan troglodytes) alpha-fetoprotein (AFP)-encoding gene (AFP) spans 18,867 bp from the transcription start point to the polyadenylation site, and the nucleotide (nt) sequence reveals that the gene is composed of 15 exons, which are symmetrically placed within three domains of AFP. In addition, we report 3121 bp of 5'-flanking sequence and 4886 bp of 3'-flanking sequence. The entire 26,874 bp of contiguous DNA reported here was determined from three overlapping lambda phage clones. The deduced polypeptide chain is composed of a 19-amino-acid (aa) putative leader peptide, followed by 590 aa of the mature protein. The sequence of chimpanzee AFP was compared with those of the previously published human AFP [Gibbs et al., Biochemistry 26 (1987) 1332-1343] and gorilla AFP [Ryan et al., Genomics 9 (1991) 60-72]. At the aa level, the human AFP differs from the chimpanzee at 6 aa positions and from the gorilla at 4 aa positions; the chimpanzee and gorilla differ at 8 aa positions. There are four types of repetitive sequence elements (X, Alu, Xba and Kpn) in the introns and flanking regions of chimpanzee AFP, and they are located in orthologous positions in the human and gorilla AFP. However, one specific Alu and one Xba repeat in introns 4 and 7, respectively, found in human AFP, are absent from orthologous positions in chimpanzee and gorilla AFP. These two repeats represent human-specific novelties that arose from recent DNA transpositions in primate phylogeny.
Collapse
Affiliation(s)
- H Nishio
- Department of Biochemistry, University of California, Riverside 92521, USA
| | | | | | | | | |
Collapse
|
41
|
Trottier E, Belzil A, Stoltz C, Anderson A. Localization of a phenobarbital-responsive element (PBRE) in the 5'-flanking region of the rat CYP2B2 gene. Gene 1995; 158:263-8. [PMID: 7607552 DOI: 10.1016/0378-1119(94)00916-g] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cytochrome P450 2B1, encoded by CYP2B1, and cytochrome P450 2B2, encoded by CYP2B2, are inducible in rat liver by phenobarbital (PB). We have used cultured adult rat hepatocytes to study molecular mechanisms regulating CYP2B1/CYP2B2 transcription. Northern blot analysis demonstrated that the endogenous CYP2B1/CYP2B2 genes were inducible by PB in such cultures. A PB-responsive element (PBRE) conferring PB inducibility on a reporter gene was identified in the CYP2B2 5'-flanking region. The PBRE was localized to a 163-bp Sau3AI fragment situated between 2155 and 2318 bp upstream from the CYP2B2 transcription start point (tsp). The PBRE also conferred PB responsiveness on an enhancerless heterologous promoter and was active in both orientations both upstream and downstream from the heterologous promoter; hence, it has the properties of a transcriptional enhancer. Gel-retardation assays showed that nuclear extracts of liver cells of untreated and PB-treated rats contained sequence-specific DNA-binding factors that interact with a PBRE-containing DNA fragment. These results may open the way to identifying one or more transcription factors mediating induction of CYP2B2 and CYP2B1 in rat liver.
Collapse
Affiliation(s)
- E Trottier
- Centre de recherche en cancérologie de l'Université Laval, L'Hôtel-Dieu de Québec, Canada
| | | | | | | |
Collapse
|
42
|
Bois-Joyeux B, Denissenko M, Thomassin H, Guesdon S, Ikonomova R, Bernuau D, Feldmann G, Danan JL. The c-jun proto-oncogene down-regulates the rat alpha-fetoprotein promoter in HepG2 hepatoma cells without binding to DNA. J Biol Chem 1995; 270:10204-11. [PMID: 7537266 DOI: 10.1074/jbc.270.17.10204] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The effects of a phorbol ester (TPA) and of members of the Jun and Fos oncoprotein family on the activity of the rat alpha-fetoprotein (AFP) promoter were checked by using transient expression experiments in HepG2 hepatoma cells. TPA blocked the activity of the rat AFP promoter in a dose-dependent manner. Overexpression of c-Jun specifically repressed the rat AFP promoter but not the albumin promoter. JunB and JunD were poorer inhibitors. c-Fos expression did not potentiate the negative effect of Jun. The Jun-induced repression does not require binding of c-Jun to the AFP promoter. DNase 1 footprinting experiments did not display any high affinity binding site for Jun on the AFP promoter. Integrity of the c-Jun DNA binding domain is not required for the c-Jun protein to block the AFP promoter. The N-terminal part of Jun, which contains the activating domain, is responsible for the repression as shown by using Jun-Gal4 chimera. Jun likely exerts its negative control on the AFP promoter via protein-protein interactions with a not yet identified trans-activating factor within the -134 to +6 region or with a component of the general machinery of transcription. Jun proteins can thus be key intermediates in regulatory cascades which result in the differential modulation of the AFP and albumin gene expression in the course of liver development and carcinogenesis.
Collapse
Affiliation(s)
- B Bois-Joyeux
- Centre de Recherche sur l'Endocrinologie Moléculaire et le Développement, CNRS, UPR 1511, Meudon, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Groupp E, Crawford N, Locker J. Characterization of the distal alpha-fetoprotein enhancer, a strong, long distance, liver-specific activator. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31773-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Cassard-Doulcier A, Larose M, Matamala J, Champigny O, Bouillaud F, Ricquier D. In vitro interactions between nuclear proteins and uncoupling protein gene promoter reveal several putative transactivating factors including Ets1, retinoid X receptor, thyroid hormone receptor, and a CACCC box-binding protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)51087-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
45
|
Rabek JP, Zhang DE, Torres-Ramos CA, Papaconstantinou J. Analysis of the mechanism of glucocorticoid-mediated down regulation of the mouse alpha-fetoprotein gene. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1218:136-44. [PMID: 7517187 DOI: 10.1016/0167-4781(94)90002-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Regulation of alpha-fetoprotein gene expression by dexamethasone was examined in vivo and in vitro using primary mouse fetal liver cell cultures. Dexamethasone accelerates the developmental down regulation of AFP mRNA pools. However, treatment of primary fetal liver cells in culture does not reduce the AFP mRNA pool and may stabilize both AFP and albumin gene expression. These results indicate that in vivo the effect of dexamethasone may require interaction with another tissue or cell type. The mechanism of the dexamethasone mediated inhibition of AFP was examined by DNase I footprinting and transient expression assays. Two protein-binding regions of the proximal promoter (III and IV) show significant homology to the GRE consensus sequence. DNase I footprinting shows that only region IV can bind purified GR and competition with GRE oligonucleotides indicate that, using adult liver nuclear proteins, no GR is bound in either region. Nuclear protein from adrenalectomized mice show the same protection as controls. These results indicate that GR may not bind to the AFP proximal promoter in the adult. AFP promoter-CAT expression vectors were used to further examine the effect of dexamethasone on AFP expression. AFP promoter-CAT constructs were inhibited by 10(-6) M dexamethasone; while linking of an AFP enhancer to the promoter abolished the effect. We conclude that the in vitro effects on transiently expressed AFP directed expression vectors may be a function of vector structure and/or characteristics of the cells used whereas the in vivo effect may reflect normal regulatory mechanisms.
Collapse
Affiliation(s)
- J P Rabek
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77555-0643
| | | | | | | |
Collapse
|
46
|
|