1
|
Du F, Dong D, Zhang X, Jia J. MXD1 is a Potential Prognostic Biomarker and Correlated With Specific Molecular Change and Tumor Microenvironment Feature in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211052142. [PMID: 34761715 PMCID: PMC8591776 DOI: 10.1177/15330338211052142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Identification of novel biomarkers is crucial for the diagnosis and treatment of esophageal squamous cell carcinoma (ESCC). This study aimed to reveal the clinical significance and molecular characteristics of MYC-associated factor X dimerization protein 1 (MXD1) in ESCC. Patients and methods: We collected 3 ESCC cohorts to investigate the effect of MXD1 on clinical outcomes. In addition, we compared and analyzed the possible transcription changes between MXD1-low and MXD1-high ESCC patients using bioinformatics. Moreover, immunohistochemical analysis was conducted to confirm the potential impact of MXD1 on the prognosis and tumor immune microenvironment (TIME). Results: MXD1 messenger RNA (mRNA) expression was significantly lower in tumors than in normal tissues. Low expression of MXD1 in ESCC was associated with a more aggressive tumor stage and worse prognosis at both the mRNA and protein levels. Moreover, MXD1-low ESCC showed upregulation of epithelial–mesenchymal transition and extracellular matrix-related gene sets, and significantly higher NFE2L2 and KIAA1324L mutation frequencies. In contrast, MXD1-high ESCC showed upregulation of tumor differentiation and immune-related gene sets. Furthermore, the CIBERSORT approach showed that high expression of MXD1 was associated with a higher proportion of neutrophils but a lower proportion of M2 macrophages. At the protein level, MXD1 expression was positively correlated with programmed cell death 1 ligand 1 (PDL1) and CD8 expression. In silico analysis predicted that MXD1-high ESCC was more likely to benefit from immunotherapy. Conclusion: This study suggests that MXD1 is a crucial prognostic factor in ESCC patients and is closely associated with specific transcriptional changes and TIME features.
Collapse
Affiliation(s)
- Feng Du
- 12519The VIPII Gastrointestinal Cancer Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dezuo Dong
- 12519Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaodong Zhang
- 12519The VIPII Gastrointestinal Cancer Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jun Jia
- 12519The VIPII Gastrointestinal Cancer Division of Medical Department, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
2
|
Zini R, Rossi C, Norfo R, Pennucci V, Barbieri G, Ruberti S, Rontauroli S, Salati S, Bianchi E, Manfredini R. miR-382-5p Controls Hematopoietic Stem Cell Differentiation Through the Downregulation of MXD1. Stem Cells Dev 2016; 25:1433-43. [DOI: 10.1089/scd.2016.0150] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Roberta Zini
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Rossi
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Ruggiero Norfo
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Haematopoietic Stem Cell Biology Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Valentina Pennucci
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Greta Barbieri
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Samantha Ruberti
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Simona Salati
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine “Stefano Ferrari,” Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
3
|
Bansal N, David G, Farias E, Waxman S. Emerging Roles of Epigenetic Regulator Sin3 in Cancer. Adv Cancer Res 2016; 130:113-35. [PMID: 27037752 DOI: 10.1016/bs.acr.2016.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Revolutionizing treatment strategies is an urgent clinical need in the fight against cancer. Recently the scientific community has recognized chromatin-associated proteins as promising therapeutic candidates. However, there is a need to develop more targeted epigenetic inhibitors with less toxicity. Sin3 family is one such target which consists of evolutionary conserved proteins with two paralogues Sin3A and Sin3B. Sin3A/B are global transcription regulators that provide a versatile platform for diverse chromatin-modifying activities. Sin3 proteins regulate key cellular functions that include cell cycle, proliferation, and differentiation, and have recently been implicated in cancer pathogenesis. In this chapter, we summarize the key concepts of Sin3 biology and elaborate the recent advancements in the role of Sin3 proteins in cancer with specific examples in multiple endocrine neoplasia type 2, pancreatic ductal adenocarcinoma, and triple negative breast cancer. Finally, a program to create an integrative approach for screening antitumor agents that target chromatin-associated factors like Sin3 is presented.
Collapse
Affiliation(s)
- N Bansal
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - G David
- New York University School of Medicine, New York, NY, United States
| | - E Farias
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - S Waxman
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
4
|
Diolaiti D, McFerrin L, Carroll PA, Eisenman RN. Functional interactions among members of the MAX and MLX transcriptional network during oncogenesis. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:484-500. [PMID: 24857747 PMCID: PMC4241192 DOI: 10.1016/j.bbagrm.2014.05.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/23/2014] [Accepted: 05/14/2014] [Indexed: 01/27/2023]
Abstract
The transcription factor MYC and its related family members MYCN and MYCL have been implicated in the etiology of a wide spectrum of human cancers. Compared to other oncoproteins, such as RAS or SRC, MYC is unique because its protein coding region is rarely mutated. Instead, MYC's oncogenic properties are unleashed by regulatory mutations leading to unconstrained high levels of expression. Under both normal and pathological conditions MYC regulates multiple aspects of cellular physiology including proliferation, differentiation, apoptosis, growth and metabolism by controlling the expression of thousands of genes. How a single transcription factor exerts such broad effects remains a fascinating puzzle. Notably, MYC is part of a network of bHLHLZ proteins centered on the MYC heterodimeric partner MAX and its counterpart, the MAX-like protein MLX. This network includes MXD1-4, MNT, MGA, MONDOA and MONDOB proteins. With some exceptions, MXD proteins have been functionally linked to cell cycle arrest and differentiation, while MONDO proteins control cellular metabolism. Although the temporal expression patterns of many of these proteins can differ markedly they are frequently expressed simultaneously in the same cellular context, and potentially bind to the same, or similar DNA consensus sequence. Here we review the activities and interactions among these proteins and propose that the broad spectrum of phenotypes elicited by MYC deregulation is intimately connected to the functions and regulation of the other network members. Furthermore, we provide a meta-analysis of TCGA data suggesting that the coordinate regulation of the network is important in MYC driven tumorigenesis. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
Affiliation(s)
- Daniel Diolaiti
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Lisa McFerrin
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Patrick A Carroll
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA
| | - Robert N Eisenman
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, USA.
| |
Collapse
|
5
|
Lüscher B. MAD1 and its life as a MYC antagonist: an update. Eur J Cell Biol 2011; 91:506-14. [PMID: 21917351 DOI: 10.1016/j.ejcb.2011.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 12/16/2022] Open
Abstract
The MYC/MAX/MAD network is of central importance for controlling cell physiology. The network is compiled of transcriptional regulators that form different heterodimers, which can either activate or repress the expression of target genes. Thus these proteins function as a molecular switch to control gene expression. MAD1, a member of this network, acts as a transcriptional repressor. It interacts with MAX to form the OFF position of the switch, antagonizing MYC/MAX complexes that define the ON position. MAD1 regulates cell proliferation and apoptosis through a number of target genes. In addition recent evidence indicates that the expression and activity of MAD1 are regulated at multiple levels. Here the recent developments are summarized, in comparison to MYC, of our understanding how the expression of the MAD1 gene and protein are controlled and what the functional consequences and downstream effectors of MAD1 are, which relay its activity as a transcriptional regulator.
Collapse
Affiliation(s)
- Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany.
| |
Collapse
|
6
|
Hein N, Jiang K, Cornelissen C, Lüscher B. TGFβ1 enhances MAD1 expression and stimulates promoter-bound Pol II phosphorylation: basic functions of C/EBP, SP and SMAD3 transcription factors. BMC Mol Biol 2011; 12:9. [PMID: 21345218 PMCID: PMC3056803 DOI: 10.1186/1471-2199-12-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 02/23/2011] [Indexed: 12/28/2022] Open
Abstract
Background The MAD1 protein, a member of the MYC/MAX/MAD network of transcriptional regulators, controls cell proliferation, differentiation and apoptosis. MAD1 functions as a transcriptional repressor, one direct target gene being the tumor suppressor PTEN. Repression of this gene is critical to mediate the anti-apoptotic function of MAD1. Under certain conditions it also antagonizes the functions of the oncoprotein MYC. Previous studies have demonstrated that MAD1 expression is controlled by different cytokines and growth factors. Moreover we have recently demonstrated that the MAD1 promoter is controlled by the cytokine granulocyte colony-stimulating factor (G-CSF) through the activation of STAT3, MAP kinases and C/EBP transcription factors. Results We observed that in addition to G-CSF, the cytokine transforming growth factor β (TGFβ1) rapidly induced the expression of MAD1 mRNA and protein in promyelocytic tumor cells. Moreover we found that C/EBP and SP transcription factors cooperated in regulating the expression of MAD1. This cooperativity was dependent on the respective binding sites in the proximal promoter, with the CCAAT boxes being bound by C/EBPα/β heterodimers. Both C/EBP and SP transcription factors bound constitutively to DNA without obvious changes in response to TGFβ1. In addition SMAD3 stimulated the MAD1 reporter, cooperated with C/EBPα and was bound to the core promoter region. Thus SMAD3 appears to be a potential link between TGFβ1 signaling and C/EBP regulated promoter activity. Moreover TGFβ1 stimulated the phosphorylation of polymerase II at serine 2 and its progression into the gene body, consistent with enhanced processivity. Conclusions Our findings suggest that C/EBP and SP factors provide a platform of transcription factors near the core promoter of the MAD1 gene that participate in mediating signal transduction events emanating from different cytokine receptors. SMAD3, a target of TGFβ1 signaling, appears to be functionally relevant. We suggest that a key event induced by TGFβ1 at the MAD1 promoter is the recruitment or activation of cofactors, possibly in complex with C/EBP, SP, and SMAD3 transcriptional regulators, that control polymerase activity.
Collapse
Affiliation(s)
- Nadine Hein
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | | | | | | |
Collapse
|
7
|
Abstract
Retinoic acid-induced terminal differentiation of myeloid cells involves the sequential regulation of cell cycle regulatory genes, coordinating the process of differentiation with arrest in the G0/G1 phase of the cell cycle. In this review we have summarized changes in expression and activity of cell cycle regulatory proteins associated with retinoic acid induced-growth arrest in human myeloid cell lines. These changes involve: (i) an early down-regulation of c-Myc; (ii) up-regulation of p21CIP1 and p27KIP1 and, in some cases, p15INK4b or p18INK4c; (iii) down-regulation of cyclin E and cyclin D1/D3, and, at later stages, cyclin A and cyclin B; and (iv) decreased CDK activity and dephosphorylation of pRb.
Collapse
Affiliation(s)
- Anna Dimberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | |
Collapse
|
8
|
Myc inhibits p27-induced erythroid differentiation of leukemia cells by repressing erythroid master genes without reversing p27-mediated cell cycle arrest. Mol Cell Biol 2008; 28:7286-95. [PMID: 18838534 DOI: 10.1128/mcb.00752-08] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Inhibition of differentiation has been proposed as an important mechanism for Myc-induced tumorigenesis, but the mechanisms involved are unclear. We have established a genetically defined differentiation model in human leukemia K562 cells by conditional expression of the cyclin-dependent kinase (Cdk) inhibitor p27 (inducible by Zn(2+)) and Myc (activatable by 4-hydroxy-tamoxifen). Induction of p27 resulted in erythroid differentiation, accompanied by Cdk inhibition and G(1) arrest. Interestingly, activation of Myc inhibited p27-mediated erythroid differentiation without affecting p27-mediated proliferation arrest. Microarray-based gene expression indicated that, in the presence of p27, Myc blocked the upregulation of several erythroid-cell-specific genes, including NFE2, JUNB, and GATA1 (transcription factors with a pivotal role in erythropoiesis). Moreover, Myc also blocked the upregulation of Mad1, a transcriptional antagonist of Myc that is able to induce erythroid differentiation. Cotransfection experiments demonstrated that Myc-mediated inhibition of differentiation is partly dependent on the repression of Mad1 and GATA1. In conclusion, this model demonstrates that Myc-mediated inhibition of differentiation depends on the regulation of a specific gene program, whereas it is independent of p27-mediated cell cycle arrest. Our results support the hypothesis that differentiation inhibition is an important Myc tumorigenic mechanism that is independent of cell proliferation.
Collapse
|
9
|
Jiang G, Albihn A, Tang T, Tian Z, Henriksson M. Role of Myc in differentiation and apoptosis in HL60 cells after exposure to arsenic trioxide or all-trans retinoic acid. Leuk Res 2008; 32:297-307. [PMID: 17706770 DOI: 10.1016/j.leukres.2007.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 06/21/2007] [Accepted: 06/29/2007] [Indexed: 01/03/2023]
Abstract
Acute promyelocytic leukemia (APL) is highly malignant and frequently expresses the PML-RARalpha (promyelocytic leukemia-retinoic acid receptor-alpha) fusion protein. This fusion protein is targeted by all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3), presently used in APL therapy. We have evaluated effects of ATRA and As2O3 treatment in PML-RARalpha-negative HL60 promyelocytic leukemia cells, harboring amplified c-myc. Characterization of expression and activity of c-Myc and its target genes hTERT (human telomerase reverse transcriptase) and CAD (carbamoyltransferase-dihydroorotase) revealed marked down-regulation in response to ATRA, but not As2O3. We suggest that blockage of terminal differentiation upon As2O3 treatment may be mediated through c-Myc.
Collapse
Affiliation(s)
- Guosheng Jiang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
10
|
Fernández-Nestosa MJ, Hernández P, Schvartzman JB, Krimer DB. PU.1 is dispensable to block erythroid differentiation in Friend erythroleukemia cells. Leuk Res 2007; 32:121-30. [PMID: 17586044 DOI: 10.1016/j.leukres.2007.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 01/29/2007] [Accepted: 05/07/2007] [Indexed: 10/23/2022]
Abstract
Friend murine erythroleukemia cell lines derive from erythroblasts transformed with the Friend complex where the spleen-focus forming virus integrated in the vicinity of the Sfpi-1 locus. Erythroleukemia cells do not differentiate and grow indefinitely in the absence of erythropoietin. Activation of the transcription factor PU.1, encoded by the Sfpi-1 gene, is thought to be responsible for the transformed phenotype. These cells can overcome the blockage and reinitiate their differentiation program when exposed to some chemical inducers such as hexamethylene bisacetamide. In this study, we established cell cultures that were capable to proliferate unconstrained in the presence of the inducer. Resistant cell lines restart erythroid differentiation, though, if forced to exit the cell cycle or by overexpressing the transcription factor GATA-1. Unexpectedly, expression of PU.1 was suppressed in the resistant clones albeit the spleen-focus forming virus was still integrated in the proximity of the Sfpi-1 locus. Exposure to 5-Aza-2'-deoxycytidine activates PU.1 expression suggesting that the PU.1 coding gene is highly methylated in the resistant cells. Altogether these results suggest that PU.1 is dispensable to block erythroid differentiation.
Collapse
Affiliation(s)
- María José Fernández-Nestosa
- Department of Cell and Developmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28040-Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Abstract
It is firmly established that interferon-gamma (IFN-gamma) plays a mandatory role in acquired protective immunity to pathogenic mycobacteria and other intracellular pathogens. Therefore, it seems conceivable that application of recombinant IFN-gamma could be exploited for the treatment of tuberculosis. However, the results of experimental studies and clinical trials, conducted mostly in patients with multidrug resistant (MDR) disease, have thus far been only moderately encouraging. Further studies are now needed to determine if a greater clinical benefit from IFN-gamma could be obtained for the prophylactic treatment of latent tuberculosis infection and for shortening of the protracted standard chemotherapy regimen. Thus, aerosolized IFN-gamma treatment could be particularly beneficial to AIDS patients at high risk of developing mycobacterial infections, that is, those with significantly declined CD4(+) T cell counts. This review describes the current state of research on IFN-gamma interventions in tuberculosis and related infections and highlights some of the future opportunities.
Collapse
Affiliation(s)
- Rajko Reljic
- Department of Cellular and Molecular Medicine, St George's Hospital Medical School, University of London, 43 Cranmer Terrace, London, England.
| |
Collapse
|
12
|
Abstract
Peroxisome proliferator-activated receptors gamma (PPAR?) is a transcriptional factor belonging to the ligand-activated nuclear receptor superfamily. PPAR? is highly expressed in adipose tissue and has a dominant regulatory role in adipocyte differentiation. In humans, PPAR? is expressed in multiple tissues such as the breast, colon, lung, ovary, and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR? activation has been shown to be anti-proliferative by virtue of its differentiation-promoting effect, suggesting that activation of PPAR? may be useful in slowing or arresting the proliferation of de-differentiated tumor cells. A number of PPAR? ligands, such as natural prostaglandins and synthetic anti-diabetic thiazolidinediones (TZDs), have been identified. The discovery of PPAR? agonists has enabled the elucidation of the mechanisms involved in the multiple effects of PPAR? on the inhibition of tumor cell growth. The importance of this transcription factor in physiology and pathophysiology has stimulated much research in this field. This review describes structural features of PPAR?, mechanisms of PPAR? gene transcription, and recent developments in the discovery of its biological functions on growth inhibition of lung tumors. Prospects for future research leading to new therapies for lung cancer are also discussed.
Collapse
Affiliation(s)
- Ming-Yue Li
- Department of Surgery, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | | | |
Collapse
|
13
|
Jiang G, Bi K, Tang T, Wang J, Zhang Y, Zhang W, Ren H, Bai H, Wang Y. Down-regulation of TRRAP-dependent hTERT and TRRAP-independent CAD activation by Myc/Max contributes to the differentiation of HL60 cells after exposure to DMSO. Int Immunopharmacol 2006; 6:1204-13. [PMID: 16714225 DOI: 10.1016/j.intimp.2006.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 07/27/2005] [Accepted: 02/28/2006] [Indexed: 01/27/2023]
Abstract
Myc/Max/Mad often play pivotal roles in the proliferation, apoptosis, differentiation and cell cycle progress of leukemia cells. Myc and Mad are known to be unstable proteins and their expression is tightly regulated throughout cell cycle progression and differentiation. Usually, c-Myc expression is implicated in cell growth and proliferation, and the deregulated expression of c-Myc in both myeloid leukemia cells and normal myeloid cells not only blocks terminal differentiation but also its associated growth arrest. HL60 cells could be induced to differentiate into mature granulocytes by DMSO in vitro, but the mechanism of this effect has not been elucidated clearly. We proposed the hypothesis that down-regulation of c-Myc expression by DMSO contributed to the differentiation of HL60 cells by way of activating target genes hTert and CAD. The results showed that c-Myc expression was down-regulated in differentiated HL60 cells but not in exponentially-growing HL60 cells, without or with the target gene activation of hTert and CAD, respectively. Further study indicated that hTert activation is TRRAP-dependent while CAD activation is TRRAP-independent. On the other hand, up-regulation of P(21) and P(27) and down-regulation of cyclinA and cyclinE also play important roles in induction of the terminal differentiation of HL60 cells. Our results support the hypothesis that c-Myc expression and activation of target genes for hTert and CAD play critical roles in the proliferation of HL60 cells, while down-regulation of c-Myc expression and activation of target genes for hTert and CAD contributed to the terminal differentiation of HL60 cells after exposure to DMSO in vitro.
Collapse
Affiliation(s)
- Guosheng Jiang
- Department of Hemato-oncology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jingshi Road 89, Jinan 250062, Shandong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hultquist A, Cetinkaya C, Wu S, Castell A, Erlandsson A, Larsson LG. Mad 1 Inhibits Cell Growth and Proliferation but Does Not Promote Differentiation or Overall Survival in Human U-937 Monoblasts. Mol Cancer Res 2004. [DOI: 10.1158/1541-7786.464.2.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The Mad family proteins are transcriptional repressors belonging to the basic region/helix-loop-helix/leucine zipper family. They share a common obligatory dimerization partner, Max, with the oncoprotein c-Myc and antagonize the function of Myc to activate transcription. The Myc/Max/Mad network has therefore been suggested to function as a molecular switch that regulates cell growth and differentiation by controlling a common set of genes. To study the biological consequences of Mad1 expression for hematopoietic cell growth and differentiation, we used the U-937 monocytic differentiation model to generate cells with inducible Mad1 expression using the reversed tetracycline-controlled transactivator system. The elevated expression of Mad1 in these cells resulted in increased Mad1/Max heterodimer formation correlating with reduced expression of the Myc/Mad target gene ODC. Mad1-expressing U-937 cells in suspension culture proliferated slower and exhibited an increased number of cells in the G1 phase of the cell cycle. Further, growth in semisolid medium was almost completely inhibited. Mad1-expression, however, neither enforced spontaneous differentiation nor enhanced differentiation induced by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate, retinoic acid (RA), or vitamin D3 but rather led to delayed RA-stimulated differentiation. Mad1-expressing cells were further found to be reduced in cell size in all phases of the cells cycle and particularly in response to RA-induced differentiation. Unexpectedly, whereas Fas-induced apoptosis was slightly attenuated in Mad1-expressing U-937 cells, Mad1 sensitized the cells to tumor necrosis factor–α-induced apoptosis. These results suggest that Mad1 primarily regulates cell growth and proliferation in these cells, whereas its role in cellular differentiation and survival seems to be more complex.
Collapse
Affiliation(s)
- Anne Hultquist
- 1Department of Genetics and Pathology, University of Uppsala and
- 2Department of Plant Biology and Forest Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Cihan Cetinkaya
- 2Department of Plant Biology and Forest Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Siqin Wu
- 2Department of Plant Biology and Forest Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Alina Castell
- 2Department of Plant Biology and Forest Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Erlandsson
- 1Department of Genetics and Pathology, University of Uppsala and
| | - Lars-Gunnar Larsson
- 1Department of Genetics and Pathology, University of Uppsala and
- 2Department of Plant Biology and Forest Genetics, Uppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
15
|
Shirsat NV, Shaikh SA. Overexpression of the immediate early gene fra-1 inhibits proliferation, induces apoptosis, and reduces tumourigenicity of c6 glioma cells. Exp Cell Res 2003; 291:91-100. [PMID: 14597411 DOI: 10.1016/s0014-4827(03)00346-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hexamethylene bisacetamide (HMBA)-induced growth inhibition and differentiation of the rat C6 glioma cell line were found to be accompanied by down-regulation of the constitutively expressed fra-1 gene. In order to check if the fra-1 gene down-regulation was essential for HMBA's growth inhibitory effect, C6 cells were stably transfected with vector expressing fra-1 cDNA under CMV promoter in either sense or antisense orientation. Contrary to the expectations, fra-1 overexpression was found to inhibit proliferation and induce morphological differentiation of C6 cells. Furthermore, all three differentiation inducers studied viz. dibutyryl cyclic AMP (dbcAMP), staurosporine, and HMBA have greater growth inhibitory effect on fra-1 overexpressing clones as compared to the parental C6 cells. dbcAMP and staurosporine not only inhibit proliferation but bring about complete apoptosis of fra-1 overexpressing clones. Spontaneous apoptosis is seen in fra-1 overexpressing clones especially in confluent cultures. fra-1 overexpression also results in substantial reduction in anchorage-independent growth and tumourigenicity of C6 cells. Overexpression of fra-1 leading to proliferation inhibition of C6 glioma cells is consistent with the concept that fra-1 functions as a negative regulator of AP-1 activity.
Collapse
Affiliation(s)
- Neelam V Shirsat
- Neurooncology Division, Tata Memorial Centre, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Kharghar, Navi Mumbai-410 208, India.
| | | |
Collapse
|
16
|
Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2003; 75:163-89. [PMID: 14525967 DOI: 10.1189/jlb.0603252] [Citation(s) in RCA: 3009] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interferon-gamma (IFN-gamma) coordinates a diverse array of cellular programs through transcriptional regulation of immunologically relevant genes. This article reviews the current understanding of IFN-gamma ligand, receptor, signal transduction, and cellular effects with a focus on macrophage responses and to a lesser extent, responses from other cell types that influence macrophage function during infection. The current model for IFN-gamma signal transduction is discussed, as well as signal regulation and factors conferring signal specificity. Cellular effects of IFN-gamma are described, including up-regulation of pathogen recognition, antigen processing and presentation, the antiviral state, inhibition of cellular proliferation and effects on apoptosis, activation of microbicidal effector functions, immunomodulation, and leukocyte trafficking. In addition, integration of signaling and response with other cytokines and pathogen-associated molecular patterns, such as tumor necrosis factor-alpha, interleukin-4, type I IFNs, and lipopolysaccharide are discussed.
Collapse
Affiliation(s)
- Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Brisbane 4072, Australia.
| | | | | | | |
Collapse
|
17
|
Siegel PM, Shu W, Massagué J. Mad upregulation and Id2 repression accompany transforming growth factor (TGF)-beta-mediated epithelial cell growth suppression. J Biol Chem 2003; 278:35444-50. [PMID: 12824180 DOI: 10.1074/jbc.m301413200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The growth inhibitory cytokine TGF-beta enforces homeostasis of epithelia by activating processes such as cell cycle arrest and apoptosis. Id2 expression is often highest in proliferating epithelial cells and declines during differentiation. Recently, Id2 expression has been found to depend on Myc-Max transcriptional complexes. We observed that TGF-beta signaling inhibits Id2 expression in human and mouse epithelial cell lines from different tissue origins. Furthermore, the observed Id2 down-regulation by TGF-beta in mouse mammary epithelial cells occurs without a concurrent drop in c-Myc levels. However, sustained Id2 repression in these cells and in human keratinocytes coincides with induction of the Myc antagonistic repressors Mad2 and Mad4, decreased formation of Myc-Max heterodimers and the replacement of Myc-Max complexes with Mad-Max complexes on the Id2 promoter. These results argue that induction of Mad expression and Id2 down-regulation are important events during the TGF-beta cytostatic program in epithelial cells.
Collapse
Affiliation(s)
- Peter M Siegel
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021
| | | | | |
Collapse
|
18
|
Sarkar D, Leszczyniecka M, Kang DC, Lebedeva IV, Valerie K, Dhar S, Pandita TK, Fisher PB. Down-regulation of Myc as a potential target for growth arrest induced by human polynucleotide phosphorylase (hPNPaseold-35) in human melanoma cells. J Biol Chem 2003; 278:24542-51. [PMID: 12721301 DOI: 10.1074/jbc.m302421200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Terminal differentiation and senescence share several common properties, including irreversible cessation of growth and changes in gene expression profiles. To identify molecules that converge in both processes, an overlapping pathway screening was employed that identified old-35, which is human polynucleotide phosphorylase (hPNPaseold-35), a 3',5'-exoribonuclease. We previously demonstrated that hPNPaseold-35 is a type I interferon-inducible gene that is also induced in senescent fibroblasts. In vitro RNA degradation assays confirmed its exoribonuclease properties, and overexpression of hPNPaseold-35 resulted in growth suppression in HO-1 human melanoma cells. The present study examined the molecular mechanism of the growth-arresting property of hPNPaseold-35. When overexpressed by means of a replication-incompetent adenoviral vector (Ad.hPNPaseold-35), hPNPaseold-35 inhibited cell growth in all cell lines tested. Analysis of cell cycle revealed that infection of HO-1 cells with Ad.hPNPaseold-35 resulted in arrest in the G1 phase and eventually apoptosis accompanied by marked reduction in the S phase. Infection with Ad.hPNPaseold-35 resulted in reduction in expression of the c-myc mRNA and Myc protein and modulated the expression of proteins regulating G1 checkpoint and apoptosis. In vitro mRNA degradation assays revealed that hPNPaseOLD-35 degraded c-myc mRNA. Overexpression of Myc partially but significantly protected HO-1 cells from Ad.hPNPaseold-35-induced growth arrest, indicating that Myc down-regulation might directly mediate the growth-inhibitory properties of Ad.hPNPaseold-35. Inhibition of hPNPaseold-35 by an antisense approach provided partial but significant protection against interferon-beta-mediated growth inhibition, thus demonstrating the biological significance of hPNPaseold-35 in interferon action.
Collapse
Affiliation(s)
- Devanand Sarkar
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Marcotte R, Qian JF, Chen J, Wang E. hMad4, c-Myc endogenous inhibitor, induces a replicative senescence-like state when overexpressed in human fibroblasts. J Cell Biochem 2003; 89:576-88. [PMID: 12761891 DOI: 10.1002/jcb.10517] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mad family proteins have an antagonistic action on Myc-dependent cell proliferation and transformation. We isolated a human cDNA clone, human Mad4 (hMad4), encoding a polypeptide of 209 amino acid residues, exhibiting 90% identity with mouse Mad4. Northern blot analysis shows that hMad4 probe hybridizes to a 3.8 kb message; its expression is highest in quiescent human WI38 fibroblasts. Among tissues, hMad4 mRNA is most abundant in brain, lung, and muscle. Consistent with other members of the Mad family, hMad4 can repress the transactivation activity of Myc/Max heterodimers on an E-box chloramphenicol acteyl transferase (CAT) reporter plasmid; inhibition of both proliferation and clonogenic formation of hMad4-infected cells correlates with the in vitro reporter repression. Moreover, infection of young human fibroblasts induces a replicative senescence-like state. This phenotype was accompanied by s-beta-galactosidase and PAI-1 expression. These results suggest that hMad4 might be an important regulator of replicative senescence in human cells.
Collapse
Affiliation(s)
- Richard Marcotte
- The Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, The Sir Mortimer B Davis-Jewish General Hospital and Department of Medicine, McGill University, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
20
|
Kime L, Wright SC. Mad4 is regulated by a transcriptional repressor complex that contains Miz-1 and c-Myc. Biochem J 2003; 370:291-8. [PMID: 12418961 PMCID: PMC1223147 DOI: 10.1042/bj20021679] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Accepted: 11/06/2002] [Indexed: 12/22/2022]
Abstract
Myc and Mad family proteins are central regulators of cellular proliferation and differentiation. We show that various Mad family genes have distinct patterns of expression during the chemically induced differentiation of mouse erythroleukaemia (MEL) cells, suggesting that they each serve a different function. Mad4 RNA is highly induced and persists in terminally differentiated cells, in agreement with observations in other systems. Using reporter gene assays in stably transfected MEL cells, we show that induction of Mad4 is mediated by a 49 nt core promoter region. We demonstrate that the initiator element is required for Mad4 activation, and show that induction is associated with the loss from the initiator of a complex that contains Miz-1 and c-Myc. Miz-1 activates the Mad4 promoter in transient transfection assays, and this effect is antagonized by c-Myc. We therefore identify Mad4 as a novel target of transcriptional repression by c-Myc. These data suggest that the expression of Mad4 in proliferating undifferentiated cells is suppressed by the binding of a c-Myc-Miz-1 repressor complex at the initiator, and that the activation of Mad4 during differentiation results, at least in part, from a decrease in c-Myc-mediated repression.
Collapse
Affiliation(s)
- Louise Kime
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | | |
Collapse
|
21
|
Ohta Y, Hamada Y, Saitoh N, Katsuoka K. Effect of the transcriptional repressor Mad1 on proliferation of human melanoma cells. Exp Dermatol 2002; 11:439-47. [PMID: 12366697 DOI: 10.1034/j.1600-0625.2002.110507.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mad1 is a Myc antagonist that heterodimerizes with Max and functions as a transcriptional repressor. We studied the effects of Mad1 on cell growth and malignant phenotype in human melanoma cells. To perturb the activity of c-Myc, which is involved in the progression of melanoma, we overexpressed Mad1 protein with liposomal-mediated transfection of cytomegalovirus promoter-driven expression vector containing the human Mad1 gene, pcMad-1. The growth characteristics and malignant potential of two Mad1 transfectants of the FEM human melanoma cell line, overexpressing Mad1 stably and the respective vector control were analysed both in vitro and in a nude mice xenograft model in vivo. Two Mad1 transfectants exhibited up to 2.8 times longer doubling time, less proliferation rate (50% inhibition), increased G0/G1 accumulation in cell-cycle distribution, and active melanin synthesis, compared with vector controls in vitro. In the mice model, the volume of tumors that arose from Mad1 transfected clones was 4-5 times less than those arising from vector control FEM cells. Histopathologically, tumors that arose from Mad1 transfectants showed altered round-shaped morphology with less pleomorphism compared with control FEM cells. Our results indicating that Mad1 gene transfer inhibits the proliferation of human melanoma cells suggest that Mad1 could be a potentially useful candidate for the modification of genes against malignancies.
Collapse
Affiliation(s)
- Yukinori Ohta
- Department of Dermatology, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara-shi, Kanagawa 228-8555, Japan.
| | | | | | | |
Collapse
|
22
|
Hoffman B, Amanullah A, Shafarenko M, Liebermann DA. The proto-oncogene c-myc in hematopoietic development and leukemogenesis. Oncogene 2002; 21:3414-21. [PMID: 12032779 DOI: 10.1038/sj.onc.1205400] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The proto-oncogene c-myc has been shown to play a pivotal role in cell cycle regulation, metabolism, apoptosis, differentiation, cell adhesion, and tumorigenesis, and participates in regulating hematopoietic homeostasis. It is a transcription regulator that is part of an extensive network of interacting factors. Most probably, different biological responses are elicited by different overlapping subsets of c-Myc target genes, both induced and suppressed. Results obtained from studies employing mouse models are consistent with the need for at least one, and possibly two, mutations in addition to deregulated c-myc for malignant tumor formation. Repression of c-myc is required for terminal differentiation of many cell types, including hematopoietic cells. It has been shown that deregulated expression of c-myc in both M1 myeloid leukemic cells and normal myeloid cells derived from murine bone marrow, not only blocked terminal differentiation and its associated growth arrest, but also induced apoptosis, which is dependent on the Fas/CD95 pathway. There is evidence to suggest that the CD95/Fas death receptor pathway is an integral part of the apoptotic response associated with the end of the normal terminal myeloid differentiation program, and that deregulated c-myc expression can activate this signaling pathway prematurely. The ability of egr-1 to promote terminal myeloid differentiation when co-expressed with c-myc, and of c-fos to partially abrogate the block imparted by deregulated c-myc on myeloid differentiation, make these two genes candidate tumor suppressors. Several different transcription factors have been implicated in the down-regulation of c-myc expression during differentiation, including C/EBPalpha, CTCF, BLIMP-1, and RFX1. Alterations in the expression and/or function of these transcription factors, or of the c-Myc and Max interacting proteins, such as MM-1 and Mxi1, can influence the neoplastic process. Understanding how c-Myc controls cellular phenotypes, including the leukemic phenotype, should provide novel tools for designing drugs to promote differentiation and/or apoptosis of leukemic cells.
Collapse
Affiliation(s)
- Barbara Hoffman
- Fels Institute for Cancer Research and Molecular Biology, Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania, PA 19140, USA.
| | | | | | | |
Collapse
|
23
|
Fultz KE, Gerner EW. APC-dependent regulation of ornithine decarboxylase in human colon tumor cells. Mol Carcinog 2002; 34:10-8. [PMID: 12112318 DOI: 10.1002/mc.10043] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mutation/deletion of the adenomatous polyposis coli (APC) tumor suppressor gene in germline cells of rodents and humans is associated with increased intestinal activity of ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis, and intestinal neoplasia. To study the role of APC in signaling ODC expression, we used the human colon tumor cell line HT29 (wtAPC-/-), which has been stably transfected with a zinc-inducible wild-type APC gene. The addition of ZnCl(2) to HT29-APC cells increased wild-type APC protein and Mad1 RNA and protein and decreased levels of c-myc and ODC RNA and protein, relative to these parameters in HT29 cells transfected with the same plasmid containing the beta-galactosidase gene in place of APC. Upon induction of APC expression, ODC promoter activity and RNA levels were suppressed. When the e-box domain in the 5' flanking region of the ODC gene was mutated, ODC promoter activity was unaffected by wild-type APC expression. Antisense, but not missense, c-myc oligonucleotides decreased ODC activity in HT29 cells expressing mutant APC. These results demonstrated that wild-type APC suppressed c-myc and activated Mad1 expression in HT29 colon-derived cells. These proteins, in turn, regulated the transcription of target genes, including ODC. The data presented indicate that ODC is a modifier of APC-dependent signaling in intestinal cells and tissues.
Collapse
Affiliation(s)
- Kimberly E Fultz
- Department of Molecular and Cellular Biology, University of Arizona, Arizona Cancer Center, Tucson, Arizona 85724, USA
| | | |
Collapse
|
24
|
McArthur GA, Foley KP, Fero ML, Walkley CR, Deans AJ, Roberts JM, Eisenman RN. MAD1 and p27(KIP1) cooperate to promote terminal differentiation of granulocytes and to inhibit Myc expression and cyclin E-CDK2 activity. Mol Cell Biol 2002; 22:3014-23. [PMID: 11940659 PMCID: PMC133749 DOI: 10.1128/mcb.22.9.3014-3023.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
To understand how cellular differentiation is coupled to withdrawal from the cell cycle, we have focused on two negative regulators of the cell cycle, the MYC antagonist MAD1 and the cyclin-dependent kinase inhibitor p27(KIP1). Generation of Mad1/p27(KIP1) double-null mice revealed a number of synthetic effects between the null alleles of Mad1 and p27(KIP1), including embryonic lethality, increased proliferation, and impaired differentiation of granulocyte precursors. Furthermore, with granulocyte cell lines derived from the Mad1/p27(KIP1) double-null mice, we observed constitutive Myc expression and cyclin E-CDK2 kinase activity as well as impaired differentiation following treatment with an inducer of differentiation. By contrast, similar treatment of granulocytes from Mad1 or p27(KIP1) single-null mice resulted in differentiation accompanied by downregulation of both Myc expression and cyclin E-CDK2 kinase activity. In the double-null granulocytic cells, addition of a CDK2 inhibitor in the presence of differentiation inducer was sufficient to restore differentiation and reduce Myc levels. We conclude that Mad1 and p27(KIP1) operate, at least in part, by distinct mechanisms to downregulate CDK2 activity and Myc expression in order to promote cell cycle exit during differentiation.
Collapse
Affiliation(s)
- Grant A McArthur
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Chen J, Kremer CS, Bender TP. A Myb dependent pathway maintains Friend murine erythroleukemia cells in an immature and proliferating state. Oncogene 2002; 21:1859-69. [PMID: 11896618 DOI: 10.1038/sj.onc.1205003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2001] [Revised: 09/24/2001] [Accepted: 10/01/2001] [Indexed: 11/08/2022]
Abstract
Friend murine erythroleukemia (MEL) cells are transformed erythroid precursors that are held in an immature and proliferating state but can be induced to differentiate in vivo by treatment with a variety of chemical agents such as N, N-hexamethylene bisacetamide (HMBA). To investigate the role of Myb proteins in maintaining MEL cells in an immature and proliferating state we have produced stable transfectants in the C19 MEL cell line that contain a dominant interfering Myb allele (MEnT) under the control of an inducible mouse metallothionein I promoter. When expression of MEnT protein was induced with ZnCl2, the stable transfectants differentiated with kinetics that were similar to wild type C19 MEL cells treated with HMBA, including induction of alpha-globin mRNA expression, assembly of hemoglobin and growth arrest. Expression of endogenous c-myb and c-myc was also decreased in response to MEnT. Expression of mad-1 mRNA was rapidly increased in response to expression of MEnT resulting in a shift from predominantly c-Myc/Max complexes to predominantly Mad/Max containing complexes. These results strongly suggest that C19 MEL cells are held in an immature and proliferating state by a pathway that is dependent on Myb activity.
Collapse
MESH Headings
- Acetamides/pharmacology
- Animals
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Basic-Leucine Zipper Transcription Factors
- Cell Cycle Proteins
- Cell Division
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Friend murine leukemia virus/physiology
- Genes, myc/physiology
- Globins/genetics
- Globins/metabolism
- Hemoglobins/biosynthesis
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Leukemia, Erythroblastic, Acute/virology
- Metallothionein/genetics
- Mice
- Nuclear Proteins
- Phosphoproteins/physiology
- Plasmids
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-myb/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repressor Proteins/physiology
- Trans-Activators/physiology
- Transcription Factors
- Tumor Cells, Cultured/metabolism
- Tumor Cells, Cultured/pathology
- Tumor Cells, Cultured/virology
- Zinc/metabolism
Collapse
Affiliation(s)
- Jing Chen
- Department of Molecular Physiology, University of Virginia Health System, PO Box 800734, Charlottesville, Virginia, VA 22908-0734, USA
| | | | | |
Collapse
|
26
|
Cerni C, Skrzypek B, Popov N, Sasgary S, Schmidt G, Larsson LG, Lüscher B, Henriksson M. Repression of in vivo growth of Myc/Ras transformed tumor cells by Mad1. Oncogene 2002; 21:447-59. [PMID: 11821957 DOI: 10.1038/sj.onc.1205107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 10/09/2001] [Accepted: 10/29/2001] [Indexed: 11/09/2022]
Abstract
The Myc/Max/Mad network of transcriptional regulatory proteins plays an essential role in cell proliferation, growth, apoptosis, and differentiation. Whereas Myc proteins affect cell cycle progression positively, Mad proteins are negative regulators of cell proliferation. It has been shown in several in vitro systems that Mad proteins antagonize c-Myc functions. In this report we describe the inhibition of tumor cell outgrowth in vivo by Mad1 expression. Transformed cell lines were generated by co-transfection of c-myc, c-H-ras, and a chimeric mad1ER construct into primary rat embryo cells (MRMad1ER cells). Activation of Mad1 by 4-Hydroxy-Tamoxifen (OHT) resulted in abrogation of telomerase activity, reduced cloning efficiency, and decreased proportion of cells in S phase. Injection of MRMad1ER cells into syngenic rats induced aggressively growing tumors after a short latency period. This tumor growth was inhibited by OHT-treatment of animals, with the extent of inhibition correlating with the amount of OHT injected. No effect of OHT on tumor growth was observed with similarly transformed Myc/Ras cell lines which did not express Mad1ER. These data demonstrate that Mad1 is able to suppress Myc/Ras-mediated transformation under in vivo conditions.
Collapse
MESH Headings
- Animals
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Blotting, Western
- Cell Cycle Proteins/metabolism
- Cell Division/drug effects
- Cell Division/genetics
- Cell Line, Transformed
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- Flow Cytometry
- Gene Expression Regulation, Neoplastic
- Genes, myc/genetics
- Genes, ras/genetics
- Male
- Nuclear Proteins
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred F344
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Tamoxifen/analogs & derivatives
- Tamoxifen/pharmacology
- Telomerase/antagonists & inhibitors
- Telomerase/metabolism
- Transgenes/genetics
Collapse
Affiliation(s)
- Christa Cerni
- Institute of Cancer Research, University of Vienna, Borschkegasse 8a, A-1090 Wien, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The retinoic acid receptor alpha gene is the target of chromosomal rearrangements in all cases of acute promyelocytic leukemia (APL). This recurrent involvement of RARalpha in the pathogenesis of APL is likely to reflect an important role played by this receptor during the differentiation of immature myeloid cells to neutrophils. RARalpha is a negative regulator of promyelocyte differentiation when not complexed with RA, and stimulates this differentiation when bound to RA. Since RARs are dispensable for the generation of mature neutrophils, their role thus appears to be to modulatory, rather than obligatory, for the control of neutrophil differentiation. In vitro, retinoic acid is also a potent inducer of neutrophil cell fate, suggesting that it might play a role in the commitment of pluripotent hematopoietic progenitors to the neutrophil lineage. Thus, the APL translocations target an important regulator of myeloid cell differentiation.
Collapse
Affiliation(s)
- P Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-ULP, 1 rue Laurent Fries, BP163, 67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | |
Collapse
|
28
|
Fox EJ, Wright SC. S-phase-specific expression of the Mad3 gene in proliferating and differentiating cells. Biochem J 2001; 359:361-7. [PMID: 11583582 PMCID: PMC1222154 DOI: 10.1042/0264-6021:3590361] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Myc/Max/Mad transcription factor network plays a central role in the control of cellular proliferation, differentiation and apoptosis. In order to elucidate the biological function of Mad3, we have analysed the precise temporal patterns of Mad3 mRNA expression during the cell cycle and differentiation in cultured cells. We show that Mad3 is induced at the G1/S transition in proliferating cells; expression persists throughout S-phase, and then declines as cells pass through G2 and mitosis. The expression pattern of Mad3 is coincident with that of Cdc2 throughout the cell cycle. In contrast, the expression of Mad3 during differentiation of cultured mouse erythroleukemia cells shows two transient peaks of induction. The first of these occurs at the onset of differentiation, and does not correlate with the S-phase of the cell cycle, whereas the second is coincident with the S-phase burst that precedes the terminal stages of differentiation. Our results therefore suggest that Mad3 serves a cell-cycle-related function in both proliferating and differentiating cells, and that it may also have a distinct role at various stages of differentiation.
Collapse
Affiliation(s)
- E J Fox
- School of Biochemistry and Molecular Biology, University of Leeds, Mount Preston Street, Leeds LS2 9JT, UK
| | | |
Collapse
|
29
|
Poole JC, Andrews LG, Tollefsbol TO. Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT). Gene 2001; 269:1-12. [PMID: 11376932 DOI: 10.1016/s0378-1119(01)00440-1] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent interest in the regulation of telomerase, the enzyme that maintains chromosomal termini, has lead to the discovery and characterization of the catalytic subunit of telomerase, hTERT. Many studies have suggested that the transcription of hTERT represents the rate-limiting step in telomerase expression and key roles for hTERT have been implied in cellular aging, immortalization, and transformation. Before the characterization of the promoter of hTERT in 1999, regulatory mechanisms suggested for this gene were limited to speculation. The successful cloning and characterization of the hTERT 5' gene regulatory region has enabled its formal investigation and analysis of potential mechanisms controlling hTERT expression. Although these studies have provided important information about hTERT gene regulation, there has been some confusion regarding the nucleotide boundaries of this region, the location, number, and importance of various transcription factor binding motifs, and the results of promoter activity assays. We feel that this uncertainty, combined with the sheer volume of recent publications on hTERT regulation, calls for consolidation and review. In this analysis we examine recent advances in the regulation of the hTERT gene and attempt to resolve discrepancies resulting from the nearly simultaneous nature of publications in this fast-moving area. Additionally, we aim to summarize the extant knowledge of hTERT gene regulation and its role in important biological processes such as cancer and aging.
Collapse
Affiliation(s)
- J C Poole
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294-1170, USA
| | | | | |
Collapse
|
30
|
Hyman T, Rothmann C, Heller A, Malik Z, Salzberg S. Structural characterization of erythroid and megakaryocytic differentiation in Friend erythroleukemia cells. Exp Hematol 2001; 29:563-71. [PMID: 11376868 DOI: 10.1016/s0301-472x(01)00616-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to examine the structural characterization of erythroid and megakaryocytic cell differentiation in Friend erythroleukemic cells using spectral imaging and electron microscopy. MATERIALS AND METHODS Two variants of Friend erythroleukemia cells were treated with hexamethylene bisacetamide (HMBA) to induce differentiation: 1) MEL, which exhibit the normal phenotype and are susceptible to differentiation; and 2) the resistant R1 cells. The cells were analyzed by spectral imaging along with transmission and scanning electron microscopy. The expression of cell cycle regulatory proteins was analyzed by Western blotting. RESULTS Spectral imaging of HMBA-treated MEL and R1 cells stained by May-Grünwald-Giemsa and subjected to spectral similarity mapping revealed five morphologic cell types: proerythroblast-like cells, normoblast-like cells, reticulocyte-like cells, megakaryocytes, and apoptotic cells. In MEL cells, both megakaryocytic differentiation characterized by nuclear lobes and erythroid differentiation characterized by accumulation of hemoglobin were detected; R1 cells were not committed to terminal differentiation. HMBA-induced cell cycle arrest at G(1) affected the expression of regulatory proteins in a similar manner in both types of cells. Expression of cyclin-dependent kinase 4 decreased and expression of p21(WAF1) increased. The level of the underphosphorylated form of phosphorylated retinoblastoma protein increased, inducing a decrease in the level of c-myc. In addition, we detected a decrease in the expression of the anti-apoptotic regulator, Bcl-2, and an increased expression of the pro-apoptotic regulator, Bax. CONCLUSIONS Spectral imaging provides new insight for the morphologic characterization of erythroid and megakaryocytic cell differentiation as well as apoptosis. Image analysis was well correlated to cell cycle arrest and the expression of regulatory proteins.
Collapse
Affiliation(s)
- T Hyman
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
31
|
Grandori C, Cowley SM, James LP, Eisenman RN. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol 2001; 16:653-99. [PMID: 11031250 DOI: 10.1146/annurev.cellbio.16.1.653] [Citation(s) in RCA: 1000] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Myc/Max/Mad network comprises a group of transcription factors whose distinct interactions result in gene-specific transcriptional activation or repression. A great deal of research indicates that the functions of the network play roles in cell proliferation, differentiation, and death. In this review we focus on the Myc and Mad protein families and attempt to relate their biological functions to their transcriptional activities and gene targets. Both Myc and Mad, as well as the more recently described Mnt and Mga proteins, form heterodimers with Max, permitting binding to specific DNA sequences. These DNA-bound heterodimers recruit coactivator or corepressor complexes that generate alterations in chromatin structure, which in turn modulate transcription. Initial identification of target genes suggests that the network regulates genes involved in the cell cycle, growth, life span, and morphology. Because Myc and Mad proteins are expressed in response to diverse signaling pathways, the network can be viewed as a functional module which acts to convert environmental signals into specific gene-regulatory programs.
Collapse
Affiliation(s)
- C Grandori
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA.
| | | | | | | |
Collapse
|
32
|
Quéva C, McArthur GA, Iritani BM, Eisenman RN. Targeted deletion of the S-phase-specific Myc antagonist Mad3 sensitizes neuronal and lymphoid cells to radiation-induced apoptosis. Mol Cell Biol 2001; 21:703-12. [PMID: 11154258 PMCID: PMC86662 DOI: 10.1128/mcb.21.3.703-712.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mad family comprises four basic-helix-loop-helix/leucine zipper proteins, Mad1, Mxi1, Mad3, and Mad4, which heterodimerize with Max and function as transcriptional repressors. The balance between Myc-Max and Mad-Max complexes has been postulated to influence cell proliferation and differentiation. The expression patterns of Mad family genes are complex, but in general, the induction of most family members is linked to cell cycle exit and differentiation. The expression pattern of mad3 is unusual in that mad3 mRNA and protein were found to be restricted to proliferating cells prior to differentiation. We show here that during murine development mad3 is specifically expressed in the S phase of the cell cycle in neuronal progenitor cells that are committed to differentiation. To investigate mad3 function, we disrupted the mad3 gene by homologous recombination in mice. No defect in cell cycle exit and differentiation could be detected in mad3 homozygous mutant mice. However, upon gamma irradiation, increased cell death of thymocytes and neural progenitor cells was observed, implicating mad3 in the regulation of the cellular response to DNA damage.
Collapse
Affiliation(s)
- C Quéva
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | |
Collapse
|
33
|
Oberg F, Wu S, Bahram F, Nilsson K, Larsson LG. Cytokine-induced restoration of differentiation and cell cycle arrest in v-Myc transformed U-937 monoblasts correlates with reduced Myc activity. Leukemia 2001; 15:217-27. [PMID: 11236937 DOI: 10.1038/sj.leu.2402025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Deregulated expression of the myc-family of oncogenes in hematopoietic and other cell types plays an important role in tumorigenesis, and results in increased proliferative potential and block of cellular differentiation. We have previously shown that IFN-gamma restores phorbol ester-induced differentiation and cell cycle arrest in v-myc transformed human U-937 monoblasts. To investigate whether other cytokine signals could also abrogate such a block, IL-1, IL-3, IL-4, IL-6, IL-7, IL-10, IL-11, LIF, oncostatin M, M-CSF, G-CSF and GM-CSF, and TGFbeta1, TNF-alpha, IFN-alpha were examined. We show that GM-CSF and IL-6, in combination with the phorbol ester 12-O-tetradecanoyl-phorbol acetate (TPA), restored differentiation and cell cycle arrest. In contrast, treatment by TGFbeta1 +/- TPA resulted in an efficient G1/G0 arrest, but did not appear to induce terminal differentiation. Restoration of differentiation and cell cycle arrest was accomplished despite maintained expression of the v-Myc protein. Our results show that the cytokine-induced signals reduced Myc-dependent transcription of an artificial target promoter/reporter gene construct, correlating in most, but not all, cases with decreased association of v- and c-Myc with its essential partner, Max. Thus, cytokine-induced signals may counteract the activity of deregulated Myc, and contribute to the normalization of differentiation, arrest in the G1/G0 phase of the cell cycle, or both.
Collapse
Affiliation(s)
- F Oberg
- Department of Genetics and Pathology, University of Uppsala, Sweden
| | | | | | | | | |
Collapse
|
34
|
Bejarano MT, Albihn A, Cornvik T, Brijker SO, Asker C, Osorio LM, Henriksson M. Inhibition of cell growth and apoptosis by inducible expression of the transcriptional repressor Mad1. Exp Cell Res 2000; 260:61-72. [PMID: 11010811 DOI: 10.1006/excr.2000.4996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mad1 is a Myc antagonist that heterodimerizes with Max and functions as a transcriptional repressor. We have studied the effects of Mad1 on cell growth, cell cycle distribution, and apoptosis using Mad1-inducible cell lines. Expression of Mad1 inhibited cell proliferation, S-phase entry, and colony formation, changes that were accompanied by a reduction in CDK2 activity. The inhibition of Mad1 on cell proliferation was potentiated by serum starvation and was paralleled by accumulation of cells in the G0/G1 and the G2 phases of the cell cycle. Mad1 also reduced apoptosis induced by serum withdrawal and by the cytostatic drug cisplatinum. The effects on both cell growth and apoptosis were dependent on the mSin3 interaction domain of Mad1, which is necessary for recruitment of histone deacetylases and corepressors, suggesting that transcriptional repression is mediating these functions. Taken together with the expression pattern of Mad1, these results suggest that Mad1 plays an important role during initiation of differentiation by inhibiting cell proliferation and blocking apoptosis.
Collapse
Affiliation(s)
- M T Bejarano
- Microbiology and Tumor Biology Center, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Ertesvåg A, Blomhoff HK, Beiske K, Naderi S. Co-induction of Mad1 and c-Myc in activated normal B lymphocytes. Scand J Immunol 2000; 51:565-70. [PMID: 10849366 DOI: 10.1046/j.1365-3083.2000.00726.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The purpose of the present study was to examine the expression of the Myc network proteins c-Myc, Mad1 and Max in normal cells under different growth and differentiation conditions. A dominant view has been that Mad1 as a c-Myc antagonist plays a role in growth inhibition linked to differentiation. Of particular interest to us was therefore to study the regulation of Mad1 in cells undergoing differentiation in the absence of growth cessation. To do so we utilized normal B lymphocytes isolated from peripheral blood. The cells were induced to concomitant proliferation and differentiation by stimulation with a combination of anti-IgM antibodies (anti-mu) and the phorbol ester TPA. Thus, by 72 h of stimulation the percentage of plasmablasts increased from 3 to 17%, and the percentage of lymphocytes decreased from 89 to 27%. The most intriguing observation we made using this cell system was a pronounced coinduction of Mad1 and c-Myc. The levels of c-Myc and Mad1 mRNAs and proteins increased within 3 h of anti-mu stimulation, and the levels were further enhanced by TPA. Furthermore, the expressions of both c-Myc and Mad1 were reduced by forskolin, which also inhibited the anti-mu + TPA driven growth and differentiation of the B lymphocytes. The level of Max remained virtually unchanged. Taken together, our results indicate that a high level of Mad1 in normal human B cells is linked to differentiation and not to growth inhibition. Furthermore, the results demonstrate that Mad1 and c-Myc are not necessarily expressed in a reciprocal manner, which underlines an independent role of Mad1 unrelated to its function as a c-Myc antagonist.
Collapse
Affiliation(s)
- A Ertesvåg
- Department of Immunology, Institute of Cancer Research, The Norwegian Radium Hospital, N-0310 Oslo, Norway
| | | | | | | |
Collapse
|
36
|
Barrera-Hernandez G, Cultraro CM, Pianetti S, Segal S. Mad1 function is regulated through elements within the carboxy terminus. Mol Cell Biol 2000; 20:4253-64. [PMID: 10825189 PMCID: PMC85793 DOI: 10.1128/mcb.20.12.4253-4264.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myc and Mad are basic helix-loop-helix leucine zipper (bHLH-LZ) proteins that heterodimerize with Max to bind DNA and thereby influence the transcription of Myc-responsive genes. Myc-Max dimers transactivate whereas Mad-Max-mSin3 complexes repress Myc-mediated transcriptional activation. We have previously shown that the N-terminal mSin3 binding domain and the centrally located bHLH-LZ are required for Mad1 to function during a molecular switch from proliferation to differentiation. Here we demonstrate that the carboxy terminus (CT) of Mad1 contains previously unidentified motifs necessary for the regulation of Mad1 function. We show that removal of the last 18 amino acids of Mad1 (region V) abolishes the growth-inhibitory function of the protein and the ability to reverse a Myc-imposed differentiation block. Moreover, deletion of region V results in a protein that binds DNA weakly and no longer represses Myc-dependent transcriptional activation. In contrast, deletion of the preceding 24 amino acids (region IV) together with region V restores DNA binding and transcriptional repression, suggesting a functional interplay between these two regions. Furthermore, phosphorylation within region IV appears to mediate this interplay. These findings indicate that novel regulatory elements are present in the Mad1 CT.
Collapse
Affiliation(s)
- G Barrera-Hernandez
- NCI-Navy Medicine Branch, Genetics Department, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20889-5105, USA
| | | | | | | |
Collapse
|
37
|
Ward AC, Loeb DM, Soede-Bobok AA, Touw IP, Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000; 14:973-90. [PMID: 10865962 DOI: 10.1038/sj.leu.2401808] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The development of mature granulocytes from hematopoietic precursor cells is controlled by a myriad of transcription factors which regulate the expression of essential genes, including those encoding growth factors and their receptors, enzymes, adhesion molecules, and transcription factors themselves. In particular, C/EBPalpha, PU.1, CBF, and c-Myb have emerged as critical players during early granulopoiesis. These transcription factors interact with one another as well as other factors to regulate the expression of a variety of genes important in granulocytic lineage commitment. An important goal remains to understand in greater detail how these various factors act in concert with signals emanating from cytokine receptors to influence the various steps of maturation, from the pluripotent hematopoietic stem cell, to a committed myeloid progenitor, to myeloid precursors, and ultimately to mature granulocytes.
Collapse
Affiliation(s)
- A C Ward
- Institute of Hematology, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Pulverer B, Sommer A, McArthur GA, Eisenman RN, Lüscher B. Analysis of Myc/Max/Mad network members in adipogenesis: inhibition of the proliferative burst and differentiation by ectopically expressed Mad1. J Cell Physiol 2000; 183:399-410. [PMID: 10797315 DOI: 10.1002/(sici)1097-4652(200006)183:3<399::aid-jcp13>3.0.co;2-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transcription factors of the Myc/Max/Mad network affect multiple aspects of cellular behavior, including proliferation, differentiation, and apoptosis. Recent studies have shown that Mad proteins can inhibit cellular growth and transformation and thus antagonize the function of Myc proteins. To define further the contribution of these proteins to cellular growth control, we have studied the expression of the respective genes and proteins in 3T3-L1 cells, both upon serum stimulation of quiescent cells and during adipocytic differentiation in response to insulin, dexamethasone, and isobutylmethylxanthine. We found distinct expression patterns for the mad genes. Mad4 was induced when cells exit the cell cycle and, together with mad1, during the late phase of differentiation. In contrast, mad3 expression was associated with progression through S phase and the proliferative burst of differentiating preadipocytes, overlapping in part c-myc expression. DNA binding analyses revealed that the most prominent network complex both in cycling and in differentiating cells was Mnt/Max, whereas c-Myc/Max complexes were detectable only during peak c-Myc expression periods. Ectopic expression of Mad1 in preadipocytes resulted in the inhibition of S phase and the proliferation associated with the proliferative burst; as a consequence, adipocytic differentiation was significantly inhibited. Our findings suggest that the precise temporal regulation of Myc/Max/Mad network proteins is critical for determining cellular behavior.
Collapse
Affiliation(s)
- B Pulverer
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
39
|
Gehring S, Rottmann S, Menkel AR, Mertsching J, Krippner-Heidenreich A, Lüscher B. Inhibition of proliferation and apoptosis by the transcriptional repressor Mad1. Repression of Fas-induced caspase-8 activation. J Biol Chem 2000; 275:10413-20. [PMID: 10744730 DOI: 10.1074/jbc.275.14.10413] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mad1 is a member of the Myc/Max/Mad network of transcriptional regulators that play a central role in the control of cellular behavior. Mad proteins are thought to antagonize Myc functions at least in part by repressing gene transcription. To systematically examine the function of Mad1 in growth control and during apoptosis, we have generated U2OS cell clones that express Mad1 under a tetracyline-regulatable promoter (UTA-Mad1). Mad1 was induced rapidly and efficiently, localized to the nucleus, and bound to DNA as a heterodimer with Max. The induction of Mad1 reduced cellular growth and, more profoundly, inhibited colony formation of UTA-Mad1 cells. Conditioned medium neutralized this inhibitory effect implying that Mad1 function is regulated by extracellular signals. In addition Mad1 interfered with Fas-, TRAIL-, and UV-induced apoptosis, which coincided with a reduced activation of caspase-8 during Fas-mediated apoptosis in response to Mad1 expression. Furthermore, microinjection of Mad1-expressing plasmids into fibroblasts inhibited apoptosis induced by the oncoproteins c-Myc and E1A. Thus, Mad1 not only interferes with cellular proliferation but also with apoptosis, which defines a novel aspect of Mad1 function.
Collapse
Affiliation(s)
- S Gehring
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Carl-Neuberg Strasse 1, 30623 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Gagandeep S, Ott M, Nisen PD, DePinho RA, Gupta S. Overexpression of Mad transcription factor inhibits proliferation of cultured human hepatocellular carcinoma cells along with tumor formation in immunodeficient animals. J Gene Med 2000; 2:117-27. [PMID: 10809145 DOI: 10.1002/(sici)1521-2254(200003/04)2:2<117::aid-jgm96>3.0.co;2-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Dominant negative regulation of critical cell cycle molecules could perturb survival of cancer cells and help develop novel therapies. METHODS To perturb the activity of c-Myc, which regulates G0/G1 transitions, we overexpressed Mad1 protein with an adenoviral vector, AdMad. Studies were conducted with established cell lines, including HepG2, HuH-7 and PLC/PRF/5 liver cancer cells, RAT-1A embryonic fibroblasts and U373MG astrocytoma cells. RESULTS After AdMad-treatment, transduced cells exhibited decreased proliferation rates in culture conditions. RAT-1A embryonic fibroblasts and U373MG astrocytoma cells showed accumulations in G0/G1, whereas HepG2 and HuH-7 cells accumulated in G0/G1, and additionally in G2/M, albeit to a lesser extent. An in vitro assay using hepatocyte growth factor to stimulate proliferation in HuH-7 cells showed blunting of growth factor responsiveness, along with inhibition of cell cycle progression in AdMad-treated cells. No cytotoxicity was observed in AdMad-treated cells in culture, although cells lost clonogenic capacity in soft agar. In vivo assays using HepG2 cell tumors in immunodeficient mice showed that overexpression of AdMad prevented tumorigenesis. CONCLUSIONS These studies indicate roles of Mad in G2/M, as well as the potential of manipulating cell cycle controls for treating liver cancer.
Collapse
Affiliation(s)
- S Gagandeep
- Marion Bessin Liver Research Center, Comprehensive Cancer Research Center, and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
41
|
Shen-Li H, O'Hagan RC, Hou H, Horner JW, Lee HW, DePinho RA. Essential role for Max in early embryonic growth and development. Genes Dev 2000; 14:17-22. [PMID: 10640271 PMCID: PMC316346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Loss of Max function in the mouse resulted in generalized developmental arrest of both embryonic and extraembryonic tissues at early postimplantation (approximately E5.5-6.5), coincident with loss or dilution of maternal Max stores in the expanding embryo in vivo and in blastocyst outgrowths in vitro. Developmentally arrested embryos were reduced in size and exhibited widespread cytological degeneration and feeble BrdU incorporation. Max and, by extension, the Myc superfamily, serve essential roles in early mammalian development and a maternal reservoir of Max exists in sufficient amount to sustain Myc superfamily function through preimplantation stages of development.
Collapse
Affiliation(s)
- H Shen-Li
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, New York 10461 USA
| | | | | | | | | | | |
Collapse
|
42
|
Shen-Li H, O'Hagan RC, Hou H, Horner JW, Lee HW, DePinho RA. Essential role for Max in early embryonic growth and development. Genes Dev 2000. [DOI: 10.1101/gad.14.1.17] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Loss of Max function in the mouse resulted in generalized developmental arrest of both embryonic and extraembryonic tissues at early postimplantation (∼E5.5–6.5), coincident with loss or dilution of maternal Max stores in the expanding embryo in vivo and in blastocyst outgrowths in vitro. Developmentally arrested embryos were reduced in size and exhibited widespread cytological degeneration and feeble BrdU incorporation. Max and, by extension, the Myc superfamily, serve essential roles in early mammalian development and a maternal reservoir of Max exists in sufficient amount to sustain Myc superfamily function through preimplantation stages of development.
Collapse
|
43
|
Abstract
HMBA, a potent differentiation inducer belonging to the class of hybrid polar compounds, inhibited the growth of astrocytes from neonatal rat brain. At a concentration of 5.0 mM, which is necessary for growth inhibition and differentiation of a number of leukemic and solid tumour cell lines, astrocyte proliferation was reduced by 74.5+/-5.5%. On HMBA treatment astrocyte morphology changed from flat polygonal with phase translucent cytoplasm to compact retracted appearance with phase dark cytoplasm. HMBA also increased expression of GFAP, a marker for mature astrocytes. HMBA thus induces both morphological and biochemical differentiation of astrocytes. Like dbcAMP and staurosporine, two other known differentiation inducers of astrocytes, HMBA was also found to induce expression of the immediate early gene c-fos. However, unlike dbcAMP and staurosporine, which also induce fra-1, HMBA repressed cycloheximide-induced fra-1 gene expression.
Collapse
Affiliation(s)
- N V Shirsat
- Neuro-oncology Division, Cancer Research Institute, Tata Memorial Centre, Parel, Mumbai, India
| |
Collapse
|
44
|
Abstract
Blimp-1 (B lymphocyte-induced maturation protein 1) is strongly expressed during the late stages of B cell differentiation to immunoglobulin-secreting plasma cells. Overexpression of Blimp-1 in B lymphoma cells has been reported to induce either growth arrest and cell death or Ig secretion and terminal differentiation, depending on the developmental stage of the recipient lymphomas. By using a retroviral expression system we show that Blimp-1-transduced immature WEHI 231 murine B lymphoma cells produce J chain, increased levels of the secretory form of micro heavy chain mRNA and secrete IgM for a short period of time. Concomitantly, they exhibit altered ratios of c-myc/mad4 mRNA levels, a reduction in the expression of the anti-apoptotic bcl-2 family member A1 and a distinct growth disadvantage, followed by cell death. Reintroduction of A1 by retroviral transduction greatly extends the life span of Blimp-1-expressing WEHI 231 cells which continue to secrete IgM. These data suggest that levels of A1 may determine the checkpoint between death and survival of Blimp-1-expressing B cells at different stages of differentiation.
Collapse
Affiliation(s)
- M Knödel
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
45
|
McArthur GA, Laherty CD, Quéva C, Hurlin PJ, Loo L, James L, Grandori C, Gallant P, Shiio Y, Hokanson WC, Bush AC, Cheng PF, Lawrence QA, Pulverer B, Koskinen PJ, Foley KP, Ayer DE, Eisenman RN. The Mad protein family links transcriptional repression to cell differentiation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:423-33. [PMID: 10384307 DOI: 10.1101/sqb.1998.63.423] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- G A McArthur
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1042, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Posttranslational Regulation of Myc Function in Response to Phorbol Ester/Interferon-γ–Induced Differentiation of v-Myc–Transformed U-937 Monoblasts. Blood 1999. [DOI: 10.1182/blood.v93.11.3900.411a42_3900_3912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factors of the Myc/Max/Mad network are important regulators of cell growth, differentiation, and apoptosis and are frequently involved in tumor development. Constitutive expression of v-Myc blocks phorbol ester (TPA)-induced differentiation of human U-937 monoblasts. However, costimulation with interferon-γ (IFN-γ) and TPA restores terminal differentiation and G1cell-cycle arrest despite continuous expression of v-Myc. The mechanism by which TPA + IFN-γ counteract v-Myc activity has not been unravelled. Our results show that TPA + IFN-γ treatment led to an inhibition of v-Myc– and c-Myc–dependent transcription, and a specific reduction of v-Myc:Max complexes and associated DNA-binding activity, whereas the steady state level of the v-Myc protein was only marginally affected. In contrast, TPA + IFN-γ costimulation neither increased the expression of Mad1 or other mad/mnt family genes nor altered heterodimerization or DNA-binding activity of Mad1. The reduced amount of v-Myc:Max heterodimers in response to treatment was accompanied by partial dephosphorylation of v-Myc and c-Myc. Phosphatase treatment of Myc:Max complexes lead to their dissociation, thus mimicking the effect of TPA + IFN-γ. In addition to modulation of the expression of Myc/Max/Mad network proteins, posttranslational negative regulation of Myc by external signals may, therefore, be an alternative biologically important level of control with potential therapeutic relevance for hematopoietic and other tumors with deregulated Myc expression.
Collapse
|
47
|
Abstract
The cell proliferative activity of the Myc family of basic helix-loop-helix/leucine zipper (bHLHZip) transcription factors is dependent upon binding to the ubiquitous Max protein. In the absence of heterodimerization with Max, Myc protein is unable to efficiently bind to DNA and activate transcription. Members of the Mad family of transcription factors are thought to modulate the cell proliferative effects of the c-myc proto-oncogene by binding to Max, directly competing with the Myc protein for both heterodimerization and DNA binding. Consistent with a role in down-regulating cell division, the murine mad genes are expressed in embryonic tissues undergoing differentiation, often during or shortly after the down-regulation of myc gene expression. Here, we report the isolation and characterization of the first Xenopus mad family member, Xmad4. Maternal Xmad4 transcripts are present at high levels in the oocyte and in the cleavage stage embryo, but almost disappear by the neurula stage. Zygotic expression of the Xmad4 gene is initiated in the epidermis of the late neurula stage, and shortly thereafter, Xmad4 is transiently detectable in the cement and hatching glands. At later stages, expression is also observed in the developing pronephros and liver. Unlike the murine mad4 gene, we find that multiple Xmad4 splice variants exist in Xenopus and that these variants are differentially expressed in both the embryo and the adult. Despite the demonstrated antagonistic role of Mad proteins in the regulation of Myc activity, we show that the over-expression of Xmad4 in the cleavage-stage embryo has no detectable phenotypic effect, suggesting that Myc function is dispensable during early embryonic development.
Collapse
Affiliation(s)
- C S Newman
- Institute for Cellular and Molecular Biology and Department of Zoology, University of Texas at Austin, 78712, USA
| | | |
Collapse
|
48
|
Posttranslational Regulation of Myc Function in Response to Phorbol Ester/Interferon-γ–Induced Differentiation of v-Myc–Transformed U-937 Monoblasts. Blood 1999. [DOI: 10.1182/blood.v93.11.3900] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe transcription factors of the Myc/Max/Mad network are important regulators of cell growth, differentiation, and apoptosis and are frequently involved in tumor development. Constitutive expression of v-Myc blocks phorbol ester (TPA)-induced differentiation of human U-937 monoblasts. However, costimulation with interferon-γ (IFN-γ) and TPA restores terminal differentiation and G1cell-cycle arrest despite continuous expression of v-Myc. The mechanism by which TPA + IFN-γ counteract v-Myc activity has not been unravelled. Our results show that TPA + IFN-γ treatment led to an inhibition of v-Myc– and c-Myc–dependent transcription, and a specific reduction of v-Myc:Max complexes and associated DNA-binding activity, whereas the steady state level of the v-Myc protein was only marginally affected. In contrast, TPA + IFN-γ costimulation neither increased the expression of Mad1 or other mad/mnt family genes nor altered heterodimerization or DNA-binding activity of Mad1. The reduced amount of v-Myc:Max heterodimers in response to treatment was accompanied by partial dephosphorylation of v-Myc and c-Myc. Phosphatase treatment of Myc:Max complexes lead to their dissociation, thus mimicking the effect of TPA + IFN-γ. In addition to modulation of the expression of Myc/Max/Mad network proteins, posttranslational negative regulation of Myc by external signals may, therefore, be an alternative biologically important level of control with potential therapeutic relevance for hematopoietic and other tumors with deregulated Myc expression.
Collapse
|
49
|
Foley KP, Eisenman RN. Two MAD tails: what the recent knockouts of Mad1 and Mxi1 tell us about the MYC/MAX/MAD network. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:M37-47. [PMID: 10382539 DOI: 10.1016/s0304-419x(99)00012-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Members of the MAD/MXI protein family heterodimerize with MAX and repress transcription by recruiting a chromatin-modifying co-repressor complex to specific DNA target genes. Repression mediated by MAD is thought to antagonize the transcriptional activation and proliferation-promoting functions of MYC-MAX heterodimers. Because they are induced during differentiation, it has been suggested that MAD proteins act to limit cell proliferation during terminal differentiation. There is also controversial evidence that these proteins may function as tumor suppressors. Recently, targeted gene deletions of two members of this gene family, Mad1 and Mxi1, have been carried out in mice. Although these animals display what appear to be quite different phenotypes, further analysis supports the view that both these proteins function in cell-cycle exit during terminal differentiation, and that at least MXI1 can act as a tumor suppressor.
Collapse
Affiliation(s)
- K P Foley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
50
|
Studzinski GP, Harrison LE. Differentiation-related changes in the cell cycle traverse. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:1-58. [PMID: 10333577 DOI: 10.1016/s0074-7696(08)61384-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review examines recent developments relating to the interface between cell proliferation and differentiation. It is suggested that the mechanism responsible for this transition is more akin to a "dimmer" than to a "switch," that it is more useful to refer to early and late stages of differentiation rather than to "terminal" differentiation, and examples of the reversibility of differentiation are provided. An outline of the established paradigm of cell cycle regulation is followed by summaries of recent studies that suggest that this paradigm is overly simplified and should be interpreted in the context of different cell types. The role of inhibitors of cyclin-dependent kinases in differentiation is discussed, but the data are still inconclusive. An increasing interest in the changes in G2/M transition during differentiation is illustrated by examples of polyploidization during differentiation, such as megakaryocyte maturation. Although the retinoblastoma protein is currently maintaining its prominent role in control of proliferation and differentiation, it is anticipated that equally important regulators will be discovered and provide an explanation at the molecular level for the gradual transition from proliferation to differentiation.
Collapse
Affiliation(s)
- G P Studzinski
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|