1
|
Wagner AD, Wittkop U, Thalmann J, Willmen T, Gödecke V, Hodam J, Ronicke S, Zenke M. Glucocorticoid Effects on Tissue Residing Immune Cells in Giant Cell Arteritis: Importance of GM-CSF. Front Med (Lausanne) 2021; 8:709404. [PMID: 34557501 PMCID: PMC8452956 DOI: 10.3389/fmed.2021.709404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Giant cell arteritis (GCA) is a systemic granulomatous vasculitis clinically characterized by a prompt response to glucocorticoid therapy. Dendritic cells (DCs) play a central role in the pathogenesis of the disease and are increased in temporal arteries from GCA patients. The aim of this study was to determine the effects of glucocorticoid therapy on granulomatous infiltrates and on peripheral DCs of GCA patients. Immunohistochemical staining of temporal artery specimens from 41 GCA patients revealed a rapid reduction of the number of DCs after initiation of glucocorticoid treatment. TUNEL staining was performed to quantify apoptotic S100+ DC, CD3+ T cells, and CD68+ macrophages in the granulomatous infiltrates. An increase of apoptotic cells up to 9 ± 2% after 4–5 days of glucocorticoid therapy and up to 27 ± 5% (p < 0.001, compared to earlier timepoints) after 6–10 days was detected. A decrease of CCL19 and CCL21 expression was observed after starting glucocorticoid therapy. Granulocyte-macrophage colony-stimulating factor (GM-CSF) expression also significantly decreased under glucocorticoid therapy. No GM-CSF expression was detected in the control specimens. Glucocorticoid therapy leads to a rapid, time-dependent reduction of DCs in temporal arteries from GCA patients and reduction of mediators for cell migration. Our data suggest GM-CSF as a novel therapeutic target of GCA.
Collapse
Affiliation(s)
- Annette D Wagner
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Ulrike Wittkop
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Jessica Thalmann
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Tina Willmen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Vega Gödecke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Justyna Hodam
- Deutsches Rotes Kreuz (DRK) Clinic for Child and Adolescent Psychiatry, Bad Neuenahr, Germany
| | - Simon Ronicke
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University Medical School, Aachen, Germany.,Helmholtz Institute for Biomedical Engineering, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Greenstein AE, Hunt HJ. Glucocorticoid receptor antagonism promotes apoptosis in solid tumor cells. Oncotarget 2021; 12:1243-1255. [PMID: 34194622 PMCID: PMC8238250 DOI: 10.18632/oncotarget.27989] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Resistance to antiproliferative chemotherapies remains a significant challenge in the care of patients with solid tumors. Glucocorticoids, including endogenous cortisol, have been shown to induce pro-survival pathways in epithelial tumor cells. While pro-apoptotic effects of glucocorticoid receptor (GR) antagonism have been demonstrated under select conditions, the breadth and nature of these effects have not been fully established. Materials and Methods: To guide studies in cancer patients, relacorilant, an investigational selective GR modulator (SGRM) that antagonizes cortisol activity, was assessed in various tumor types, with multiple cytotoxic combination partners, and in the presence of physiological cortisol concentrations. Results: In the MIA PaCa-2 cell line, paclitaxel-driven apoptosis was blunted by cortisol and restored by relacorilant. In the OVCAR5 cell line, relacorilant improved the efficacy of paclitaxel and the potency of platinum agents. A screen to identify optimal combination partners for relacorilant showed that microtubule-targeted agents consistently benefited from combination with relacorilant. These findings were confirmed in xenograft models, including MIA PaCa-2, HeLa, and a cholangiocarcinoma patient-derived xenograft. In vivo, tumor-cell apoptosis was increased when relacorilant was added to paclitaxel in multiple models. Conclusions: These observations support recently reported findings of clinical benefit when relacorilant is added to paclitaxel-containing therapy in patients with ovarian and pancreatic cancers and provide a new rationale for combining relacorilant with additional cytotoxic agents.
Collapse
|
3
|
Brkic Z, Zivanovic A, Adzic M. Sex-specific Effects of Lipopolysaccharide on Hippocampal Mitochondrial Processes in Neuroinflammatory Model of Depression. Neuroscience 2020; 451:174-183. [PMID: 33039525 DOI: 10.1016/j.neuroscience.2020.09.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/25/2022]
Abstract
Mitochondria play a significant role in pathogenesis of clinical depression and their function can be impaired by inflammation and alterations in hypothalamic-pituitary-adrenal axis. Sexual context is also a relevant factor in the incidence of mood disorders, and could have a strong influence during an immune challenge. Therefore, in this study we investigated whether the effects of seven-day lipopolysaccharide (LPS) treatment on glucocorticoid receptor (GR) could be associated with apoptosis and alterations in energy metabolism in hippocampus of female and male Wistar rats with depressive-like behavior. To that end, we measured the mitochondrial levels of GR and its phosphoisoforms pGR232 and pGR246 in hippocampus of female and male rats, as well as the mRNA levels of two GR-regulated mitochondrial genes, cyclooxygenase -1 and -3 (COX-1 and -3). We also measured alterations in the extrinsic and intrinsic apoptotic pathways in mitochondria and cytosol of hippocampus of these animals, and the levels of cleaved cytosolic poly [ADP-ribose] polymerase-1 (PARP-1) protein. We discovered that even though LPS treatment induced behavioral alterations and affected corticosterone levels and apoptosis in a similar manner in both sexes, it affected mitochondrial GR differently in males and females. Namely, the treatment decreased levels of mitochondrial GR and pGR232/pGR246 ratio only in females, and these alterations were followed by decreased mRNA levels of COX-1 and COX-3 only in this sex. The alterations in COX-1 and COX-3 mRNA levels could indicate impaired oxidative metabolism and diminished mitochondrial function in hippocampus of this sex.
Collapse
Affiliation(s)
- Zeljka Brkic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia.
| | - Ana Zivanovic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| |
Collapse
|
4
|
Autry RJ, Paugh SW, Carter R, Shi L, Liu J, Ferguson DC, Lau CE, Bonten EJ, Yang W, McCorkle JR, Beard JA, Panetta JC, Diedrich JD, Crews KR, Pei D, Coke CJ, Natarajan S, Khatamian A, Karol SE, Lopez-Lopez E, Diouf B, Smith C, Gocho Y, Hagiwara K, Roberts KG, Pounds S, Kornblau SM, Stock W, Paietta EM, Litzow MR, Inaba H, Mullighan CG, Jeha S, Pui CH, Cheng C, Savic D, Yu J, Gawad C, Relling MV, Yang JJ, Evans WE. Integrative genomic analyses reveal mechanisms of glucocorticoid resistance in acute lymphoblastic leukemia. NATURE CANCER 2020; 1:329-344. [PMID: 32885175 PMCID: PMC7467080 DOI: 10.1038/s43018-020-0037-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022]
Abstract
Identification of genomic and epigenomic determinants of drug resistance provides important insights for improving cancer treatment. Using agnostic genome-wide interrogation of mRNA and miRNA expression, DNA methylation, SNPs, CNAs and SNVs/Indels in primary human acute lymphoblastic leukemia cells, we identified 463 genomic features associated with glucocorticoid resistance. Gene-level aggregation identified 118 overlapping genes, 15 of which were confirmed by genome-wide CRISPR screen. Collectively, this identified 30 of 38 (79%) known glucocorticoid-resistance genes/miRNAs and all 38 known resistance pathways, while revealing 14 genes not previously associated with glucocorticoid-resistance. Single cell RNAseq and network-based transcriptomic modelling corroborated the top previously undiscovered gene, CELSR2. Manipulation of CELSR2 recapitulated glucocorticoid resistance in human leukemia cell lines and revealed a synergistic drug combination (prednisolone and venetoclax) that mitigated resistance in mouse xenograft models. These findings illustrate the power of an integrative genomic strategy for elucidating genes and pathways conferring drug resistance in cancer cells.
Collapse
Affiliation(s)
- Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Steven W Paugh
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert Carter
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Calvin E Lau
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Pediatric Oncology Education Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik J Bonten
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Robert McCorkle
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jordan A Beard
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John C Panetta
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Coke
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alireza Khatamian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Seth E Karol
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Elixabet Lopez-Lopez
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Barthelemy Diouf
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoshihiro Gocho
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Steven M Kornblau
- Department of Leukemia, Division of Cancer Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Stock
- Hematopoiesis and Hematological Malignancies Program, University of Chicago, Chicago, IL, USA
| | - Elisabeth M Paietta
- Department of Medicine, Albert Einstein College of Medicine, Montefiore Medical Center, North Division, Bronx, NY, USA
| | - Mark R Litzow
- Division of Hematology and Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hiroto Inaba
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles Gawad
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
5
|
Nivolumab-Induced, Late-Onset, Steroid-Sensitive, High-Grade Pneumonitis and Durable Tumor Suppression in Metastatic Renal Cell Carcinoma: A Case Report. Case Rep Oncol Med 2019; 2019:6759472. [PMID: 31949965 PMCID: PMC6944973 DOI: 10.1155/2019/6759472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 12/11/2019] [Indexed: 12/25/2022] Open
Abstract
Nivolumab, an antiprogrammed death-1 checkpoint inhibitor, has been approved for use in unresectable/metastatic renal cell carcinoma (RCC). Nivolumab-induced pneumonitis, a rare, but often severe and potentially life-threatening immune-related adverse event, has been reported, typically, early during the treatment. Due to its low incidence, more studies are needed to better elucidate this condition and its possible effects on cancer progression. We now present a 57-year-old Hispanic male patient with metastatic RCC-clear cell type who, after his 34th cycle of nivolumab (16 months after being on nivolumab), developed a late-onset, immune-related adverse event (IRAE) including a grade 3 pneumonitis, which resolved completely, clinically, and on serial lung imaging with steroids and drug discontinuation. His cancer remained stable with no progression for 18 months despite discontinuation of nivolumab which showed tumor progression resistance. This case report is aimed at providing further information regarding the rare phenomena of a late-onset IRAE, in particular, a grade 3 nivolumab-induced pneumonitis which also responded rapidly to treatment, as well as at discussing this immunotherapy's durable tumor suppressive effect and a possible associated factor to this phenomenon.
Collapse
|
6
|
Avgeris M, Stamati L, Kontos CK, Piatopoulou D, Marmarinos A, Xagorari M, Baka M, Doganis D, Anastasiou T, Kosmidis H, Gourgiotis D, Scorilas A. BCL2L12 improves risk stratification and prediction of BFM-chemotherapy response in childhood acute lymphoblastic leukemia. Clin Chem Lab Med 2019; 56:2104-2118. [PMID: 30016275 DOI: 10.1515/cclm-2018-0507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/07/2018] [Indexed: 01/31/2023]
Abstract
Background Risk-adjusted treatment has led to outstanding improvements of the remission and survival rates of childhood acute lymphoblastic leukemia (ALL). Nevertheless, overtreatment-related toxicity and resistance to therapy have not been fully prevented. In the present study, we evaluated for the first time the clinical impact of the apoptosis-related BCL2L12 gene in prognosis and risk stratification of BFM-treated childhood ALL. Methods Bone marrow specimens were obtained from childhood ALL patients upon disease diagnosis and the end-of-induction (EoI; day 33) of the BFM protocol, as well as from control children. Following total RNA extraction and reverse transcription, BCL2L12 expression levels were determined by qPCR. Patients' cytogenetics, immunophenotyping and minimal residual disease (MRD) evaluation were performed according to the international guidelines. Results BCL2L12 expression was significantly increased in childhood ALL and correlated with higher BCL2/BAX expression ratio and favorable disease markers. More importantly, BCL2L12 expression was associated with disease remission, while the reduced BCL2L12 expression was able to predict patients' poor response to BFM therapy, in terms of M2-M3 response and MRD≥0.1% on day 15. The survival analysis confirmed the significantly higher risk of the BFM-treated patients underexpressing BCL2L12 at disease diagnosis for early relapse and worse survival. Lastly, evaluation of BCL2L12 expression clearly strengthened the prognostic value of the established disease prognostic markers, leading to superior prediction of patients' outcome and improved specificity of BFM risk stratification. Conclusions The expression levels of the apoptosis-related BCL2L12 predict response to treatment and survival outcome of childhood ALL patients receiving BFM chemotherapy.
Collapse
Affiliation(s)
- Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Lamprini Stamati
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina Piatopoulou
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Antonios Marmarinos
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Marieta Xagorari
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Margarita Baka
- Department of Pediatric Oncology, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Dimitrios Doganis
- Department of Pediatric Oncology, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Theodora Anastasiou
- Laboratory of Hematology, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Helen Kosmidis
- Department of Pediatric Oncology, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, National and Kapodistrian University of Athens, Medical School, "P. & A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Mitochondrial signaling in inflammation-induced depressive behavior in female and male rats: The role of glucocorticoid receptor. Brain Res Bull 2019; 150:317-327. [PMID: 31251961 DOI: 10.1016/j.brainresbull.2019.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
Mitochondrial dysfunction can result from the interplay between elevated inflammatory markers and alterations in hypothalamic-pituitary-adrenal (HPA) axis, and can contribute to pathogenesis of major depression. Therefore, in this study we investigated whether the effects of lipopolysaccharide (LPS) on glucocorticoid receptor (GR) could be associated with alterations in mitochondrial apoptotic signaling in the prefrontal cortex of male and female Wistar rats with depressive-like behavior. To that end, we measured LPS-induced alterations in the extrinsic and intrinsic apoptotic pathways in mitochondria and cytosol of PFC of female and male rats, as well as the levels of cleaved cytosolic PARP-1. We also measured the mitochondrial levels of GR and its phosphoisoforms pGR232 and pGR246, as well as the mRNA levels of two GR-regulated mitochondrial genes, COX-1 and COX-3. We discovered that although seven-day LPS treatment evoked depressive-like behavior and induced apoptosis in the PFC of both sexes, it affected apoptotic cascades in both sexes differently. In females the treatment initiated both intrinsic and extrinsic apoptotic cascade, while in males only intrinsic cascade was engaged. Alterations in intrinsic apoptotic pathway were more associated with GR alterations in males, where LPS treatment decreased levels of mitochondrial GR and increased pGR232/pGR246 ratio. Alterations in mitochondrial GR could be associated with changes in expression of genes involved in oxidative metabolism in the PFC of this sex, and could, in combination with elevated levels of BCL-2 and decreased levels of BAX detected in this cell fraction, mitigate the detrimental effect of LPS on mitochondria in male PFC.
Collapse
|
8
|
Savvidou O, Milonaki M, Goumenos S, Flevas D, Papagelopoulos P, Moutsatsou P. Glucocorticoid signaling and osteoarthritis. Mol Cell Endocrinol 2019; 480:153-166. [PMID: 30445185 DOI: 10.1016/j.mce.2018.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 10/03/2018] [Accepted: 11/11/2018] [Indexed: 01/15/2023]
Abstract
Glucocorticoids are steroid hormones synthesized and released by the adrenal cortex. Their main function is to maintain cell homeostasis through a variety of signaling pathways, responding to changes in an organism's environment or developmental status. Mimicking the actions of natural glucocorticoids, synthetic glucocorticoids have been recruited to treat many diseases that implicate glucocorticoid receptor signaling such as osteoarthritis. In osteoarthritis, synthetic glucocorticoids aim to alleviate inflammation and pain. The variation of patients' response and the possibility of complications associated with their long-term use have led to a need for a better understanding of glucocorticoid receptor signaling in osteoarthritis. In this review, we performed a literature search in the molecular pathways that link the osteoarthritic joint to the glucocorticoid receptor signaling. We hope that this information will advance research in the field and propose new molecular targets for the development of more optimized therapies for osteoarthritis.
Collapse
Affiliation(s)
- Olga Savvidou
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Mandy Milonaki
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Stavros Goumenos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Dimitrios Flevas
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Panayiotis Papagelopoulos
- First Department of Orthopaedics, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| | - Paraskevi Moutsatsou
- Department of Clinical Biochemistry, National and Kapodistrian University of Athens, School of Medicine, "ATTIKON" University Hospital, Athens, Greece.
| |
Collapse
|
9
|
Chronic p27 Kip1 Induction by Dexamethasone Causes Senescence Phenotype and Permanent Cell Cycle Blockade in Lung Adenocarcinoma Cells Over-expressing Glucocorticoid Receptor. Sci Rep 2018; 8:16006. [PMID: 30375484 PMCID: PMC6207728 DOI: 10.1038/s41598-018-34475-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022] Open
Abstract
Dexamethasone (Dex), co-administered to lung adenocarcinoma patients with pemetrexed chemotherapy, protects against pemetrexed cytotoxicity by inducing reversible G1 arrest, reflected by the effect of Dex on FLT-PET images of patient tumors. However, perioperative Dex treatment increases survival but the mechanism is unknown. In cells with glucocorticoid receptor-α (GR) expression corresponding to higher clinical tumor levels, Dex-induced growth arrest was followed by marked cell expansion, beta-galactosidase expression and Ki67 negativity, despite variable p53 and K-RAS status. Dex induced a transient early surge in p21Cip1. However, a progressive, irreversible loss of clonogenic growth, whose time of onset was dependent on GR level and Dex dose, was independent of p21Cip1and caused by gradual accumulation of p27Kip1 due to transcriptional activation of p27Kip1 by Dex. This effect was independent of canonical pathways of senescence or p27Kip1 regulation. The in vitro observations were reflected by growth suppression and P27Kip1 induction in GR-overexpressing tumor xenografts compared with isogenic low-GR tumors. Extended Dex treatment induces irreversible cell cycle blockade and a senescence phenotype through chronic activation of the p27Kip1 gene in GR overexpressing lung tumor cell populations and hence could improve outcome of surgery/pemetrexed chemotherapy and sensitize tumors to immunotherapy.
Collapse
|
10
|
Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, Smith GA, Taunton J, Winter SS, Roderick JR, Kelliher MA, Horton TM, Wood BL, Teachey DT, Hermiston ML. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 2017; 31:2568-2576. [PMID: 28484265 PMCID: PMC5729333 DOI: 10.1038/leu.2017.136] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/09/2017] [Accepted: 04/24/2017] [Indexed: 12/27/2022]
Abstract
While outcomes for children with T-cell acute lymphoblastic leukemia (T-ALL) have improved dramatically, survival rates for patients with relapsed/refractory disease remain dismal. Prior studies indicate that glucocorticoid (GC) resistance is more common than resistance to other chemotherapies at relapse. In addition, failure to clear peripheral blasts during a prednisone prophase correlates with an elevated risk of relapse in newly diagnosed patients. Here we show that intrinsic GC resistance is present at diagnosis in early thymic precursor (ETP) T-ALLs as well as in a subset of non-ETP T-ALLs. GC-resistant non-ETP T-ALLs are characterized by strong induction of JAK/STAT signaling in response to interleukin-7 (IL7) stimulation. Removing IL7 or inhibiting JAK/STAT signaling sensitizes these T-ALLs, and a subset of ETP T-ALLs, to GCs. The combination of the GC dexamethasone and the JAK1/2 inhibitor ruxolitinib altered the balance between pro- and anti-apoptotic factors in samples with IL7-dependent GC resistance, but not in samples with IL7-independent GC resistance. Together, these data suggest that the addition of ruxolitinib or other inhibitors of IL7 receptor/JAK/STAT signaling may enhance the efficacy of GCs in a biologically defined subset of T-ALL.
Collapse
Affiliation(s)
- C Delgado-Martin
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - L K Meyer
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - B J Huang
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - K A Shimano
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - M S Zinter
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - J V Nguyen
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| | - G A Smith
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - J Taunton
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - S S Winter
- Department of Pediatric Hematology/Oncology, University of New Mexico, Albuquerque, NM, USA
| | - J R Roderick
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - M A Kelliher
- Department of Cancer Biology, University of Massachusetts, Worcester, MA, USA
| | - T M Horton
- Department of Pediatrics, Texas Children's Hospital, Houston, TX, USA
| | - B L Wood
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - D T Teachey
- Department of Pediatrics, Children's Hospital of Pennsylvania, Philadelphia, PA, USA
| | - M L Hermiston
- Department of Pediatrics, University of California, San Francisco, Benioff Children's Hospital, San Francisco, CA, USA
| |
Collapse
|
11
|
Mihailidou C, Panagiotou C, Kiaris H, Kassi E, Moutsatsou P. Crosstalk between C/EBP homologous protein (CHOP) and glucocorticoid receptor in lung cancer. Mol Cell Endocrinol 2016; 436:211-23. [PMID: 27496643 DOI: 10.1016/j.mce.2016.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/20/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
Loss of homeostasis triggers the endoplasmic reticulum (ER) stress response and activates the unfolded protein response (UPR) resulting in the induction of the CCAAT/enhancer binding protein (C/EBP) homologous protein (CHOP). Glucocorticoids (GCs), via the glucocorticoid receptor (GR), regulate numerous physiological processes in an effort to maintain homeostasis. Previous studies demonstrated that glucocorticoids suppress ER stress by enhancing correct folding of secreted proteins and degradation of misfolded proteins. Here, we describe a novel crosstalk between ER-stress and the glucocorticoid receptor signaling. We showed that treatment of wild type mice with Tunicamycin (inducer of ER-stress) increased GR protein levels in the lungs. Treatment of A549 cells (human lung cancer cells) with ER stress inducers modulated the Dexamethasone-induced subcellular localization of GR and the phosphorylated forms of GR (pGRSer211 and pGRSer203) with concomitant changes in the expression of primary GR-target genes. We demonstrated a significant protein-protein interaction between GR and CHOP, (GR-CHOP heterocomplex formation) under ER stress conditions. The functional consequences of ER stress- GR signaling crosstalk were assessed and demonstrated that long time exposure (24-48 h) of A549 cells to dexamethasone (10(-6) M) reversed the Tunicamycin-induced cell death, a phenomenon associated with parallel increases in GR protein content, increases in cell survival parameters and decreases in cell apoptosis-related parameters. Our study provides evidence that there is a cross talk between ER-stress and GR signaling, this being associated with mutual functional antagonism between CHOP and GR-mediated pathways in lung cells with important implications in lung cell function.
Collapse
Affiliation(s)
- Chrysovalantou Mihailidou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Panagiotou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Clinical Biochemistry, University Hospital "ATTIKO", Medical School, National and Kapodistrian University of Athens, Greece
| | - Hippokratis Kiaris
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Drug Discovery and Biomedical Sciences, University of South Carolina, SC, USA
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Clinical Biochemistry, University Hospital "ATTIKO", Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
12
|
Lesovaya E, Yemelyanov A, Swart AC, Swart P, Haegeman G, Budunova I. Discovery of Compound A--a selective activator of the glucocorticoid receptor with anti-inflammatory and anti-cancer activity. Oncotarget 2016; 6:30730-44. [PMID: 26436695 PMCID: PMC4741564 DOI: 10.18632/oncotarget.5078] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/19/2015] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids are among the most effective anti-inflammatory drugs, and are widely used for cancer therapy. Unfortunately, chronic treatment with glucocorticoids results in multiple side effects. Thus, there was an intensive search for selective glucocorticoid receptor (GR) activators (SEGRA), which retain therapeutic potential of glucocorticoids, but with fewer adverse effects. GR regulates gene expression by transactivation (TA), by binding as homodimer to gene promoters, or transrepression (TR), via diverse mechanisms including negative interaction between monomeric GR and other transcription factors. It is well accepted that metabolic and atrophogenic effects of glucocorticoids are mediated by GR TA. Here we summarized the results of extensive international collaboration that led to discovery and characterization of Compound A (CpdA), a unique SEGRA with a proven “dissociating” GR ligand profile, preventing GR dimerization and shifting GR activity towards TR both in vitro and in vivo. We outlined here the unusual story of compound's discovery, and presented a comprehensive overview of CpdA ligand properties, its anti-inflammatory effects in numerous animal models of inflammation and autoimmune diseases, as well as its anti-cancer effects. Finally, we presented mechanistic analysis of CpdA and glucocorticoid effects in skin, muscle, bone, and regulation of glucose and fat metabolism to explain decreased CpdA side effects compared to glucocorticoids. Overall, the results obtained by our and other laboratories underline translational potential of CpdA and its derivatives for treatment of inflammation, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Ekaterina Lesovaya
- Department of Chemical Carcinogenesis, N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alexander Yemelyanov
- Pulmonary Division, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Irina Budunova
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
13
|
Stamati L, Avgeris M, Kosmidis H, Baka M, Anastasiou T, Piatopoulou D, Scorilas A, Gourgiotis D. Overexpression of BCL2 and BAX following BFM induction therapy predicts ch-ALL patients' poor response to treatment and short-term relapse. J Cancer Res Clin Oncol 2015; 141:2023-36. [PMID: 25982455 DOI: 10.1007/s00432-015-1982-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022]
Abstract
PURPOSE The identification of childhood acute lymphoblastic leukemia (ch-ALL) patients who are at a higher risk of chemotherapy resistance and relapse is essential for successful treatment decisions, despite the application of novel therapies. The aim of the study is the evaluation of BCL2 and BAX expression for the prognosis of ch-ALL patients treated with Berlin-Frankfurt-Münster (BFM) backbone protocol. METHODS Bone marrow specimens were obtained at the time of diagnosis and on day 33 following BFM treatment induction from 82 ch-ALL patients, as well as from 63 healthy children. Following extraction, total RNA was reverse transcribed and BCL2 and BAX expression levels were determined by qPCR. RESULTS BCL2 expression and BCL2/BAX ratio were strongly upregulated in ch-ALL compared to healthy children and were correlated with favorable prognostic disease features. Increased levels of BCL2 and BAX expression were associated with disease remission, as ch-ALL patients with lower expression ran a significantly higher risk of M2-M3 response, positive MRD and poor survival outcome. Moreover, the upregulation of BCL2 and BAX following BFM treatment induction was shown to represent an independent predictor of patients' short-term relapse, which was further confirmed in ch-ALL patients with favorable prognostic markers. CONCLUSIONS In conclusion, BCL2 and BAX could be effectively used for an enhanced prediction of BFM-treated patients' outcome.
Collapse
Affiliation(s)
- Lamprini Stamati
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, University of Athens Medical School, "P&A Kyriakou" Children's Hospital, Levadias 13 Str., 115 27, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Helen Kosmidis
- Department of Pediatric Oncology, "P&A Kyriakou" Children's Hospital, Thivon & Levadias Str., 115 27, Athens, Greece
| | - Margarita Baka
- Department of Pediatric Oncology, "P&A Kyriakou" Children's Hospital, Thivon & Levadias Str., 115 27, Athens, Greece
| | - Theodora Anastasiou
- Laboratory of Hematology, "P&A Kyriakou" Children's Hospital, Thivon & Levadias Str., 115 27, Athens, Greece
| | - Despina Piatopoulou
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, University of Athens Medical School, "P&A Kyriakou" Children's Hospital, Levadias 13 Str., 115 27, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Athens, Panepistimiopolis, 157 01, Athens, Greece
| | - Dimitrios Gourgiotis
- Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, University of Athens Medical School, "P&A Kyriakou" Children's Hospital, Levadias 13 Str., 115 27, Athens, Greece.
| |
Collapse
|
14
|
Pentoxifylline during steroid window phase at induction to remission increases apoptosis in childhood with acute lymphoblastic leukemia. Clin Transl Oncol 2015; 18:369-74. [PMID: 26329293 DOI: 10.1007/s12094-015-1376-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/04/2015] [Indexed: 01/22/2023]
Abstract
PURPOSE Pentoxifylline (PTX) has been shown to increase chemotherapy-induced apoptosis. A clinical trial was developed to evaluate the effect of the addition of PTX to the induction steroid window phase in children with acute lymphoblastic leukemia (ALL). METHODS Thirty-two children were enrolled on this study. Children with a new diagnosis of ALL were randomly assigned to receive prednisone (PRD) 40 mg/m(2)/day only during the 7-day treatment pre-phase (PRD group, 11 patients) or to receive PRD with PTX (10 mg/kg/day) (PTX group, 11 patients); the control group included children with normal bone marrow (10 patients). Bone marrow aspiration (BMA) was performed at diagnosis (day -7) in all groups, and at day 0 (end of PRD window) for patients with ALL (PRD and PTX groups). Apoptosis was evaluated by flow cytometry (FC) using Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) stains. Statistical analysis was performed using the Mann-Whitney U test. RESULTS Apoptotic index at day -7 was similar in all groups. However, at day 0 post-treatment, apoptosis was significantly higher in the PTX group than in the PRD group (p < 0.001). There were no serious adverse effects associated with PTX. CONCLUSIONS PTX potentiates blast apoptosis induced by PRD in children with ALL during steroid window phase.
Collapse
|
15
|
Lim M, Otto-Duessel M, He M, Su L, Nguyen D, Chin E, Alliston T, Jones JO. Ligand-independent and tissue-selective androgen receptor inhibition by pyrvinium. ACS Chem Biol 2014; 9:692-702. [PMID: 24354286 PMCID: PMC3962707 DOI: 10.1021/cb400759d] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pyrvinium pamoate (PP) is a potent noncompetitive inhibitor of the androgen receptor (AR). Using a novel method of target identification, we demonstrate that AR is a direct target of PP in prostate cancer cells. We demonstrate that PP inhibits AR activity via the highly conserved DNA binding domain (DBD), the only AR inhibitor that functions via this domain. Furthermore, computational modeling predicts that pyrvinium binds at the interface of the DBD dimer and the minor groove of the AR response element. Because PP acts through the DBD, PP is able to inhibit the constitutive activity of AR splice variants, which are thought to contribute to the growth of castration resistant prostate cancer (CRPC). PP also inhibits androgen-independent AR activation by HER2 kinase. The antiandrogen activity of pyrvinium manifests in the ability to inhibit the in vivo growth of CRPC xenografts that express AR splice variants. Interestingly, PP was most potent in cells with endogenous AR expression derived from prostate or bone. PP was able to inhibit several other hormone nuclear receptors (NRs) but not structurally unrelated transcription factors. PP inhibition of other NRs was similarly cell-type selective. Using dual-energy X-ray absorptiometry, we demonstrate that the cell-type specificity of PP manifests in tissue-selective inhibition of AR activity in mice, as PP decreases prostate weight and bone mineral density but does not affect lean body mass. Our results suggest that the noncompetitive AR inhibitor pyrvinium has significant potential to treat CRPC, including cancers driven by ligand-independent AR signaling.
Collapse
Affiliation(s)
- Minyoung Lim
- Department of Molecular Pharmacology, ‡Department of Molecular Medicine, Beckman Research Institute, City of Hope National Medical Center , Duarte, California 91010, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen K, Man K, Metselaar HJ, Janssen HLA, Peppelenbosch MP, Pan Q. Rationale of personalized immunosuppressive medication for hepatocellular carcinoma patients after liver transplantation. Liver Transpl 2014; 20:261-9. [PMID: 24376158 DOI: 10.1002/lt.23806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/24/2013] [Indexed: 12/12/2022]
Abstract
Liver transplantation is the only potentially curative treatment for hepatocellular carcinoma (HCC) that is not eligible for surgical resection. However, disease recurrence is the main challenge to the success of this treatment. Immunosuppressants that are universally used after transplantation to prevent graft rejection could potentially have a significant impact on HCC recurrence. Nevertheless, current research is exclusively focused on mammalian target of rapamycin inhibitors, which are thought to be the only class of immunosuppressive agents that can reduce HCC recurrence. In fact, substantial evidence from the bench to the bedside indicates that other classes of immunosuppressants may also exert diverse effects; for example, inosine monophosphate dehydrogenase inhibitors potentially have antitumor effects. In this article, we aim to provide a comprehensive overview of the potential effects of different types of immunosuppressants on HCC recurrence and their mechanisms of action from both experimental and clinical perspectives. To ultimately improve the outcomes of HCC patients after transplantation, we propose a concept and approaches for developing personalized immunosuppressive medication to be used either as immunosuppression maintenance or during the prevention/treatment of HCC recurrence.
Collapse
Affiliation(s)
- Kan Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China; Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Hu P, Liu J, Zhao J, Qi XR, Qi CC, Lucassen PJ, Zhou JN. All-trans retinoic acid-induced hypothalamus-pituitary-adrenal hyperactivity involves glucocorticoid receptor dysregulation. Transl Psychiatry 2013; 3:e336. [PMID: 24346134 PMCID: PMC4030330 DOI: 10.1038/tp.2013.98] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/13/2013] [Accepted: 10/09/2013] [Indexed: 01/02/2023] Open
Abstract
Clinical reports have highlighted a role for retinoids in the etiology of mood disorders. Although we had shown that recruitment of the nuclear receptor retinoic acid receptor-α (RAR-α) to corticotropin-releasing hormone (CRH) promoter is implicated in activation of the hypothalamus-pituitary-adrenal (HPA) axis, further insight into how retinoids modulate HPA axis activity is lacking. Here we show that all-trans retinoic acid (RA)-induced HPA activation involves impairments in glucocorticoid receptor (GR) negative feedback. RA was applied to rats chronically through intracerebroventricular injection. A 19-day RA exposure induced potent HPA axis activation and typical depression-like behavior. Dexamethasone failed to suppress basal corticosterone (CORT) secretion, which is indicative of a disturbed GR negative feedback. In the hypothalamic paraventricular nucleus, increased CRH⁺ and c-fos⁺ cells were found while a negative R-2⁺/ER⁺ correlation was present between the number of RAR-α⁺ and GR⁺ cells. This was paralleled by increased RAR-α and decreased GR protein expression in the hypothalamus. Additional in vitro studies confirmed that RA abolished GR-mediated glucocorticoid-induced suppression of CRH expression, indicating a negative cross-talk between RAR-α and GR signaling pathways. Finally, the above changes could be rapidly normalized by treatment with GR antagonist mifepristone. We conclude that in addition to the 'classic' RAR-α-mediated transcriptional control of CRH expression, disturbances in GR negative feedback constitute a novel pathway that underlies RA-induced HPA axis hyperactivity. The rapid normalization by mifepristone may be of potential clinical interest in this respect.
Collapse
Affiliation(s)
- P Hu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - J Liu
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - J Zhao
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - X-R Qi
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - C-C Qi
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| | - P J Lucassen
- Swammerdam Institute for Life Science, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
| | - J-N Zhou
- CAS Key Laboratory of Brain Function and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
18
|
Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes. Cell Death Dis 2013; 4:e453. [PMID: 23303127 PMCID: PMC3563981 DOI: 10.1038/cddis.2012.193] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids.
Collapse
|
19
|
The structural basis of direct glucocorticoid-mediated transrepression. Nat Struct Mol Biol 2012; 20:53-8. [PMID: 23222642 PMCID: PMC3539207 DOI: 10.1038/nsmb.2456] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/30/2012] [Indexed: 12/21/2022]
Abstract
A newly discovered negative glucocorticoid response element (nGRE) mediates DNA-dependent transrepression by the glucocorticoid receptor (GR) across the genome and plays a major role in immunosuppressive therapy. The nGRE differs dramatically from activating response elements and the mechanism driving GR binding and transrepression is unknown. To unravel the mechanism of nGRE-mediated transrepression by the glucocorticoid receptor, we characterize the interaction between GR and a nGRE in the thymic stromal lymphopoetin (TSLP) promoter. We show using structural and mechanistic approaches that nGRE binding represents a new mode of sequence recognition by human GR and that nGREs prevent receptor dimerization through a unique GR-binding orientation and strong negative cooperativity, ensuring the presence of monomeric GR at repressive elements.
Collapse
|
20
|
Cruz SA, Chao PL, Hwang PP. Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 2012; 164:249-57. [PMID: 23010242 DOI: 10.1016/j.cbpa.2012.09.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/14/2012] [Accepted: 09/17/2012] [Indexed: 01/30/2023]
Abstract
Glucocorticoid regulates epidermal cell proliferation, and is used to treat certain skin disorders. Cortisol, a glucocorticoid, is also linked to skin development in teleost fish. Cortisol increases the number of epithelial ionocytes during environmental acclimation in euryhaline fishes, but it is unclear whether this is due to increased differentiation or proliferation. To investigate, we treated zebrafish embryos with exogenous cortisol (20mg/L). The densities of the ionocytes Na(+)-K(+)-ATPase rich cells (NaRCs) and H(+)-ATPase rich cells (HRCs) were significantly increased by cortisol, and this was accompanied by an increase in the respective marker genes. Expression of the glucocorticoid receptor (GR) gene was decreased. Cortisol treatment also increased ionocytes in cultured adult zebrafish gills, and up-regulated expression of genes encoding forkhead box I3 (foxi3a and foxi3b) transcription factors, which regulate ionocyte progenitor development. GR expression was up-regulated by cortisol in vitro; as such, the observed decrease in vivo reflects a regulatory systemic-negative feedback. Notably, in situ hybridization revealed that foxi3a/b mRNA expression was increased by cortisol at 24-48h post-fertilization. Cortisol also decreased keratinocytes, but did not affect epidermal stem cells or mucus cells. We conclude that foxi3a/b transactivation by cortisol-GR favors differentiation of ionocyte progenitors, thereby facilitating proliferation of mature ionocytes.
Collapse
Affiliation(s)
- Shelly Abad Cruz
- Institute of Cellular and Organismic Biology, Academia Sinica, Nankang, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
21
|
Samarasinghe RA, Witchell SF, DeFranco DB. Cooperativity and complementarity: synergies in non-classical and classical glucocorticoid signaling. Cell Cycle 2012; 11:2819-27. [PMID: 22801547 DOI: 10.4161/cc.21018] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs) are an ubiquitous class of steroid hormones that exert a wide array of physiological effects. Traditionally, GC action has been considered to primarily involve transcriptional effects following the binding of hormone to the glucocorticoid receptor (GR) and subsequent activation or repression of target genes. However, a number of findings suggest that cellular responses following GC exposure may be mediated by transcription-independent, or "non-classical," mechanisms. We have added to this growing body of work by recently uncovering a novel GC signaling pathway that operates through plasma membrane GRs to limit gap junction intercellular signaling and limit the proliferation of neural progenitor cells (NPCs). In this review, we highlight our current state of knowledge of non-classical GR signaling, in particular as it applies to neuronal function. Using NPCs as a cellular model, we speculate on the components of this non-classical pathway and the mechanisms whereby a number of cytoplasmic and nuclear signaling events may be integrated.
Collapse
Affiliation(s)
- Ranmal A Samarasinghe
- Department of Neuroscience, University of Pittsburgh, School of Medicine, and Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | | |
Collapse
|
22
|
Knapman A, Kaltwasser SF, Martins-de-Souza D, Holsboer F, Landgraf R, Turck CW, Czisch M, Touma C. Increased stress reactivity is associated with reduced hippocampal activity and neuronal integrity along with changes in energy metabolism. Eur J Neurosci 2012; 35:412-22. [PMID: 22288479 DOI: 10.1111/j.1460-9568.2011.07968.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients suffering from major depression have repeatedly been reported to have dysregulations in hypothalamus-pituitary-adrenal (HPA) axis activity along with deficits in cognitive processes related to hippocampal and prefrontal cortex (PFC) malfunction. Here, we utilized three mouse lines selectively bred for high (HR), intermediate, or low (LR) stress reactivity, determined by the corticosterone response to a psychological stressor, probing the behavioral and functional consequences of increased vs. decreased HPA axis reactivity on the hippocampus and PFC. We assessed performance in hippocampus- and PFC-dependent tasks and determined the volume, basal activity, and neuronal integrity of the hippocampus and PFC using in vivo manganese-enhanced magnetic resonance imaging and proton magnetic resonance spectroscopy. The hippocampal proteomes of HR and LR mice were also compared using two-dimensional gel electrophoresis and mass spectrometry. HR mice were found to have deficits in the performance of hippocampus- and PFC-dependent tests and showed decreased N-acetylaspartate levels in the right dorsal hippocampus and PFC. In addition, the basal activity of the hippocampus, as assessed by manganese-enhanced magnetic resonance imaging, was reduced in HR mice. The three mouse lines, however, did not differ in hippocampal volume. Proteomic analysis identified several proteins that were differentially expressed in HR and LR mice. In accordance with the notion that N-acetylaspartate levels, in part, reflect dysfunctional mitochondrial metabolism, these proteins were found to be involved in energy metabolism pathways. Thus, our results provide further support for the involvement of a dysregulated HPA axis and mitochondrial dysfunction in the etiology and pathophysiology of affective disorders.
Collapse
Affiliation(s)
- Alana Knapman
- Research Group of Psychoneuroendocrinology, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Moutsatsou P, Kassi E, Papavassiliou AG. Glucocorticoid receptor signaling in bone cells. Trends Mol Med 2012; 18:348-59. [PMID: 22578718 DOI: 10.1016/j.molmed.2012.04.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 12/26/2022]
Abstract
Glucocorticoids are used for treating a wide range of diseases including inflammation and autoimmune disorders. However, there are drawbacks, primarily due to adverse effects on bone cells resulting in osteoporosis. Evidence indicates that the ratio of benefits to adverse effects depends greatly on glucocorticoid receptor (GR)-mediated mechanisms. Delineating GR-mediated signaling in bone cells will allow development of selective GR ligands/agonists (SEGRAs), which would dissociate the positive therapeutic (anti-inflammatory) effects from the negative effects on the skeleton. The present review provides an in-depth account of the current knowledge of GR-mediated transcriptional regulation of specific genes and proteins engaged in the proliferation, differentiation, and apoptosis of bone cells (osteoblasts, osteocytes, osteoclasts). We hope this knowledge will advance research in the development of SEGRAs with improved benefit/risk ratios.
Collapse
Affiliation(s)
- Paraskevi Moutsatsou
- Department of Biological Chemistry, University of Athens Medical School, 75, Mikras Asias Street, 11527 Athens, Greece
| | | | | |
Collapse
|
24
|
Al-Wadei HAN, Ullah MF, Al-Wadei MH. Intercepting neoplastic progression in lung malignancies via the beta adrenergic (β-AR) pathway: implications for anti-cancer drug targets. Pharmacol Res 2012; 66:33-40. [PMID: 22487140 DOI: 10.1016/j.phrs.2012.03.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/12/2012] [Accepted: 03/18/2012] [Indexed: 11/27/2022]
Abstract
The understanding of signaling cascades involved in the induction, promotion, and progression of cancer, although advanced in recent years, is still incomplete. Tracing the imbalance of the impaired, physiologically-essential cellular signaling that drives the neoplastic process is a complex issue. This review discusses the role of the regulator of the fight or flight response, the beta-adrenergic signaling cascade, as a mediator of cancer growth and progression in in vitro and in vivo cancer models. We review a series of experiments from our own laboratory and those of others examining the contribution of this signaling network to lung and other human malignancies and thereby identifying potential targets for chemotherapeutic interventions. The stimulation of the β-adrenergic receptor by lifestyle and environmental factors, as well as a preexisting risk for neoplasm, activates downstream effector molecules (adenylyl cyclase/cAMP/PKA/CREB) concomitant to the transactivation of related pathways (EGFR) that lead to pro-oncogenic signaling; this β-adrenergic pathway thereby encourages cancer growth by evasion of apoptosis, invasion, angiogenesis, and metastasis. GABAergic signaling acts as an antagonist to the β-adrenergic cascade by intercepting adenylyl cyclase activation, and thereby neutralizing the pro-oncogenic effects of β-adrenergic stimulation. The regulation of cancer cell growth by neurobiological signals expands the possibilities for pharmacological interventions in cancer therapy.
Collapse
Affiliation(s)
- Hussein A N Al-Wadei
- Experimental Oncology Laboratory, Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN 37996, USA.
| | | | | |
Collapse
|
25
|
Hoijman E, Rocha-Viegas L, Kalko SG, Rubinstein N, Morales-Ruiz M, Joffé EBDK, Kordon EC, Pecci A. Glucocorticoid alternative effects on proliferating and differentiated mammary epithelium are associated to opposite regulation of cell-cycle inhibitor expression. J Cell Physiol 2012; 227:1721-30. [PMID: 21688264 DOI: 10.1002/jcp.22896] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glucocorticoids influence post-natal mammary gland development by sequentially controlling cell proliferation, differentiation, and apoptosis. In the mammary gland, it has been demonstrated that glucocorticoid treatment inhibits epithelial apoptosis in post-lactating glands. In this study, our first goal was to identify new glucocorticoid target genes that could be involved in generating this effect. Expression profiling, by microarray analysis, revealed that expression of several cell-cycle control genes was altered by dexamethasone (DEX) treatment after lactation. Importantly, it was determined that not only the exogenous synthetic hormone, but also the endogenous glucocorticoids regulated the expression of these genes. Particularly, we found that the expression of cell cycle inhibitors p21CIP1, p18INK4c, and Atm was differentially regulated by glucocorticoids through the successive stages of mammary gland development. In undifferentiated cells, DEX treatment induced their expression and reduced cell proliferation, while in differentiated cells this hormone repressed expression of those cell cycle inhibitors and promoted survival. Therefore, differentiation status determined the effect of glucocorticoids on mammary cell fate. Particularly, we have determined that p21CIP1 inhibition would mediate the activity of these hormones in differentiated mammary cells because over-expression of this protein blocked DEX-induced apoptosis protection. Together, our data suggest that the multiple roles played by glucocorticoids in mammary gland development and function might be at least partially due to the alternative roles that these hormones play on the expression of cell cycle regulators.
Collapse
|
26
|
Aden P, Paulsen RE, Mæhlen J, Løberg EM, Goverud IL, Liestøl K, Lømo J. Glucocorticoids dexamethasone and hydrocortisone inhibit proliferation and accelerate maturation of chicken cerebellar granule neurons. Brain Res 2011; 1418:32-41. [DOI: 10.1016/j.brainres.2011.08.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/27/2011] [Accepted: 08/22/2011] [Indexed: 11/16/2022]
|
27
|
Schlossmacher G, Stevens A, White A. Glucocorticoid receptor-mediated apoptosis: mechanisms of resistance in cancer cells. J Endocrinol 2011; 211:17-25. [PMID: 21602312 DOI: 10.1530/joe-11-0135] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Glucocorticoids (Gcs) are commonly used to treat patients suffering from a wide range of cancers. Their main therapeutic role is based on Gc receptor (GR)-mediated mechanisms that trigger cell death but this varies depending on the cancer type. This review aims to provide an overview of the mechanisms of Gc-induced cell death and more importantly the changes in GR that lead to resistance to Gc treatment in cancer. The three main cancer types, which are susceptible to Gc resistance and therefore loss of Gc-induced apoptotic effects, are acute lymphoblastic leukaemia, osteosarcoma and small-cell lung carcinoma. A common theme is the loss of GR function and/or a downregulation of GR expression which leads to failure of the cell death-inducing effects of Gcs. Loss of GR function is attributed to mutations in the GR gene, and in some cases a dominant-negative effect on any functional GR still present. The downregulation of GR expression can be due to decreased GR promoter activation, increased GR promoter methylation or increased expression of alternative splice isoforms of GR that have decreased transcriptional activity. Understanding the mechanisms behind Gc-triggered apoptosis and the resistance to it in these cancer types will help in further refining treatment regimens for patients and will decrease the chance of relapse caused by Gc-resistant cancer phenotypes.
Collapse
Affiliation(s)
- George Schlossmacher
- Endocrinology and Diabetes, Faculty of Life Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PT, UK
| | | | | |
Collapse
|
28
|
Jensen JM, Ahrens K, Meingassner J, Scherer A, Bräutigam M, Stütz A, Schwarz T, Fölster-Holst R, Harder J, Gläser R, Proksch E. Differential suppression of epidermal antimicrobial protein expression in atopic dermatitis and in EFAD mice by pimecrolimus compared to corticosteroids. Exp Dermatol 2011; 20:783-8. [PMID: 21707760 DOI: 10.1111/j.1600-0625.2011.01322.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It has been suggested that the increased rate of bacterial infection in atopic dermatitis (AD) may be caused by reduced antimicrobial protein (AMP) expression. We were interested whether common treatments in AD affect antimicrobial defense. We investigated the effects of topically applied corticosteroids betamethasone valerate (BV) and triamacinolone acetonide (TA) and those of the calcineurin inhibitor pimecrolimus for 3 weeks on AMP expression in AD. BV and TA treatment in AD led to a significant reduction in AMP expression; protein expression of human beta-defensins (hBD)-2 and hBD-3, psoriasin, RNase 7 and cathelicidin LL-37 was below the level in skin of healthy controls. After pimecrolimus treatment, AMP expression was also reduced but less compared to BV and TA; the expression levels of hBD-2, psoriasin and RNase 7 still remained above the control levels. In essential fatty acid-deficient (EFAD) mice, a model of chronic skin barrier disease with inflammation, expression of the mouse beta-defensins mBD-1, mBD-3 and mBD-14 (orthologues for hBD-1, hBD-2 and hBD-3, respectively), was reduced by both treatments, again more pronounced by BV compared to pimecrolimus. In summary, we found that treatment for AD with corticosteroids in human skin and EFAD mice caused a strong reduction in AMPs; reduction was less with pimecrolimus. This result may explain the clinical observation that prolonged treatment with topical corticosteroids sometimes leads to bacterial infection.
Collapse
|
29
|
Surjit M, Ganti KP, Mukherji A, Ye T, Hua G, Metzger D, Li M, Chambon P. Widespread negative response elements mediate direct repression by agonist-liganded glucocorticoid receptor. Cell 2011; 145:224-41. [PMID: 21496643 DOI: 10.1016/j.cell.2011.03.027] [Citation(s) in RCA: 384] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/18/2010] [Accepted: 03/15/2011] [Indexed: 01/25/2023]
Abstract
The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex "negative" GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect "tethered" interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cis-acting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion.
Collapse
Affiliation(s)
- Milan Surjit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U964, Université de Strasbourg, Collège de France, Illkirch, 67404, France
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Tieszen CR, Goyeneche AA, Brandhagen BN, Ortbahn CT, Telleria CM. Antiprogestin mifepristone inhibits the growth of cancer cells of reproductive and non-reproductive origin regardless of progesterone receptor expression. BMC Cancer 2011; 11:207. [PMID: 21619605 PMCID: PMC3125282 DOI: 10.1186/1471-2407-11-207] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 05/27/2011] [Indexed: 01/20/2023] Open
Abstract
Background Mifepristone (MF) has been largely used in reproductive medicine due to its capacity to modulate the progesterone receptor (PR). The study of MF has been expanded to the field of oncology; yet it remains unclear whether the expression of PR is required for MF to act as an anti-cancer agent. Our laboratory has shown that MF is a potent inhibitor of ovarian cancer cell growth. In this study we questioned whether the growth inhibitory properties of MF observed in ovarian cancer cells would translate to other cancers of reproductive and non-reproductive origin and, importantly, whether its efficacy is related to the expression of cognate PR. Methods Dose-response experiments were conducted with cancer cell lines of the nervous system, breast, prostate, ovary, and bone. Cultures were exposed to vehicle or increasing concentrations of MF for 72 h and analysed for cell number and cell cycle traverse, and hypodiploid DNA content characteristic of apoptotic cell death. For all cell lines, expression of steroid hormone receptors upon treatment with vehicle or cytostatic doses of MF for 24 h was studied by Western blot, whereas the activity of the G1/S regulatory protein Cdk2 in both treatment groups was monitored in vitro by the capacity of Cdk2 to phosphorylate histone H1. Results MF growth inhibited all cancer cell lines regardless of tissue of origin and hormone responsiveness, and reduced the activity of Cdk2. Cancer cells in which MF induced G1 growth arrest were less susceptible to lethality in the presence of high concentrations of MF, when compared to cancer cells that did not accumulate in G1. While all cancer cell lines were growth inhibited by MF, only the breast cancer MCF-7 cells expressed cognate PR. Conclusions Antiprogestin MF inhibits the growth of different cancer cell lines with a cytostatic effect at lower concentrations in association with a decline in the activity of the cell cycle regulatory protein Cdk2, and apoptotic lethality at higher doses in association with increased hypodiploid DNA content. Contrary to common opinion, growth inhibition of cancer cells by antiprogestin MF is not dependent upon expression of classical, nuclear PR.
Collapse
Affiliation(s)
- Chelsea R Tieszen
- Division of Basic Biomedical Sciences, Sanford School of Medicine of The University of South Dakota, Vermillion, SD, USA
| | | | | | | | | |
Collapse
|
31
|
Zhao YN, Guo X, Ma ZG, Gu L, Ge J, Li Q. Pro-apoptotic protein BIM in apoptosis of glucocorticoid-sensitive and -resistant acute lymphoblastic leukemia CEM cells. Med Oncol 2010; 28:1609-17. [DOI: 10.1007/s12032-010-9641-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Accepted: 07/27/2010] [Indexed: 10/19/2022]
|
32
|
Huang P, Chandra V, Rastinejad F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu Rev Physiol 2010; 72:247-72. [PMID: 20148675 DOI: 10.1146/annurev-physiol-021909-135917] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As ligand-regulated transcription factors, the nuclear hormone receptors are nearly ideal drug targets, with internal pockets that bind to hydrophobic, drug-like molecules and well-characterized ligand-induced conformational changes that recruit transcriptional coregulators to promoter elements. Yet, due to the multitude of genes under the control of a single receptor, the major challenge has been the identification of ligands with gene-selective actions, impacting disease outcomes through a narrow subset of target genes and not across their entire gene-regulatory repertoire. Here, we summarize the concepts and work to date underlying the development of steroidal and nonsteroidal receptor ligands, including the use of crystal structures, high-throughput screens, and rational design approaches for finding useful therapeutic molecules. Difficulties in finding selective receptor modulators require a more complete understanding of receptor interdomain communications, posttranslational modifications, and receptor-protein interactions that could be exploited for target gene selectivity.
Collapse
Affiliation(s)
- Pengxiang Huang
- Department of Pharmacology, and Center for Molecular Design, University of Virginia Health System, Charlottesville, VA 22908, USA.
| | | | | |
Collapse
|
33
|
Sommer P, Cowen RL, Berry A, Cookson A, Telfer BA, Williams KJ, Stratford IJ, Kay P, White A, Ray DW. Glucocorticoid receptor over-expression promotes human small cell lung cancer apoptosis in vivo and thereby slows tumor growth. Endocr Relat Cancer 2010; 17:203-13. [PMID: 20015838 PMCID: PMC2828806 DOI: 10.1677/erc-09-0241] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small cell lung cancer (SCLC) is an aggressive tumor, associated with ectopic ACTH syndrome. We have shown that SCLC cells are glucocorticoid receptor (GR) deficient, and that restoration of GR expression confers glucocorticoid sensitivity and induces apoptosis in vitro. To determine the effects of GR expression in vivo, we characterized a mouse SCLC xenograft model that secretes ACTH precursor peptides, and so drives high circulating corticosterone concentrations (analogous to the ectopic ACTH syndrome). Infection of SCLC xenografts with GR-expressing adenovirus significantly slowed tumor growth compared with control virus infection. Time to fourfold initial tumor volume increased from a median of 9 days to 16 days (P=0.05; n=7 per group). Post-mortem analysis of GR-expressing tumors revealed a threefold increase in apoptotic (TUNEL positive) cells (P<0.01). Infection with the GR-expressing adenovirus caused a significant reduction in Bcl-2 and Bcl-xL transcripts. Furthermore, in both the GR-expressing adenovirus-infected cells and tumors, a significant number of uninfected cells underwent apoptosis, supporting a bystander cell killing effect. Therefore, GR expression is pro-apoptotic for human SCLCs in vivo, as well as in vitro, suggesting that loss of GR confers a survival advantage to SCLCs.
Collapse
Affiliation(s)
| | - Rachel L Cowen
- School of Pharmacy and Pharmaceutical SciencesUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
| | - Andrew Berry
- Endocrine Sciences Research GroupUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
| | - Ann Cookson
- Endocrine Sciences Research GroupUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
| | - Brian A Telfer
- School of Pharmacy and Pharmaceutical SciencesUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
| | - Kaye J Williams
- School of Pharmacy and Pharmaceutical SciencesUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
| | - Ian J Stratford
- School of Pharmacy and Pharmaceutical SciencesUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
| | - Paul Kay
- Endocrine Sciences Research GroupUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
| | - Anne White
- Endocrine Sciences Research GroupUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
- Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
- (Correspondence should be addressed to D W Ray; ; A White; )
| | - David W Ray
- Endocrine Sciences Research GroupUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
- Faculty of Medical and Human SciencesUniversity of ManchesterAV Hill Building, Manchester, M13 9PTUK
- (Correspondence should be addressed to D W Ray; ; A White; )
| |
Collapse
|
34
|
Azuma K, Urano T, Ouchi Y, Inoue S. Glucocorticoid-induced gene tripartite motif-containing 63 (TRIM63) promotes differentiation of osteoblastic cells. Endocr J 2010; 57:455-62. [PMID: 20173306 DOI: 10.1507/endocrj.k09e-290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glucocorticoids exert their function by regulating glucocorticoid-responsive genes through interaction with glucocorticoid receptor alpha (GRalpha), a nuclear receptor. Glucocorticoids also affect bone metabolism; this is evidenced by the fact that GRalpha is expressed in several kinds of cells in bone tissue, including osteoblasts, osteocytes, osteoclasts, mononuclear cells in bone marrow, and hypertrophic chondrocytes. Glucocorticoids are known to induce osteoblastic differentiation and bone formation. However, this effect of glucocorticoids on bone tissue is still controversial since long-term use of glucocorticoids results in osteoporosis in vivo. To identify glucocorticoid-regulated genes in human osteoblastic cells, SaOS2 cells were treated with dexamethasone (10(-8) M) for 6 hours, and were then subjected to microarray analysis. Genes such as C/EBPdelta, DUSP1, Per1 and TRIM63 were found to be induced by dexamethasone. The induction of mRNAs of these genes by dexamethasone (10(-8) M, 10(-7) M, and 10(-6) M) was confirmed by quantitative real-time polymerase chain reaction (PCR). TRIM63, also called muscle-specific ring finger protein 1 (MuRF1), was reported to be an E3 ubiquitin ligase expressed mainly in muscular tissue. SaOS2 cells overexpressing exogenous TRIM63 showed increased expression of an osteoblastic differentiation marker gene, alkaline phosphatase, with reduced proliferation. These results suggest that TRIM63 is a candidate for genes mediating the glucocorticoid-induced promotion of osteoblastic differentiation.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
35
|
Abstract
Melanocytes are pigmented cells derived from the neural crest; their proliferation is restrained by immune system. The eruption of nevi after an immunosuppressive condition is a peculiar phenomenon indicating that the immune system may play a major role in limiting proliferation of melanocytes. In this review, we analyze the role of immunosuppressive regimens on melanocyte proliferation. In particular, we discuss the eruptive nevi phenomenon, which is determined by the inability of the immune system to inhibit melanocyte proliferation. These clinical observations indicate that the immune system has a pivotal role in restraining melanocyte proliferation. However, although the role of the immune system in the development of nonmelanoma skin cancer has been shown clearly in several studies involving organ transplant patients, the role of immunosuppression in melanoma genesis has not yet been established. Further investigations are required to establish the real immunogenicity of melanoma, particularly in the light of the dichotomy between the eruptive nevi phenomenon in immunosuppressed patients and the low incidence of melanoma in transplanted patients.
Collapse
|
36
|
Kowalczyk P, Kinjo T, Kowalczyk M, Walaszek Z, Hanausek M, Slaga TJ. Effect of phosphodiesterase antagonists on glucocorticoid mediated growth inhibition in murine skin cell lines. Eur J Pharmacol 2009; 610:29-36. [PMID: 19306867 DOI: 10.1016/j.ejphar.2009.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
Abstract
The effects of two cyclic nucleotide phosphodiesterase type 4 (PDE4) inhibitors on proliferation of cell lines representing different stages of mouse skin tumorigenesis were studied. Skin papillomas and carcinomas become resistant to the growth inhibition by glucocorticoids. Their control of cellular functions is mediated by a well-known transcription factor, glucocorticoid receptor. The primary aim of the present study was to determine whether the PDE4 inhibitors, that raise intracellular cAMP levels, can increase the sensitivity of mouse skin papillomas and carcinomas to the glucocorticoids. We sought to establish the effect of cAMP signaling on the glucocorticoid receptor function using well-known model representing non-tumorigenic keratinocyte cell line (3PC), papilloma (MT1/2) and squamous cell carcinoma cell line (Ca3/7). These cells were treated with the glucocorticoid fluocinolone acetonide (FA) alone or in concert with PDE4 inhibitors--rolipram or YM976. Results of our study revealed that both PDE4 inhibitors may increase the sensitivity of transformed cell lines to the growth inhibitory effect of FA. In the transformed cell lines, changes in the viability of cells were accompanied by an increase in mRNA level of two negative regulators of the cell cycle--p21 and p27 proteins. Co-treatment with PDE4 inhibitors and FA caused inhibition of an endogenous glucocorticoid-responsive gene (MT-1) expression. Thus, the PDE4 inhibitors exerted a differential effect on non-transformed and transformed keratinocytes and on glucocorticoid receptor signal transduction. These findings warrant further studies to clarify the mechanism by which PDE4 inhibitors modulate glucocorticoid receptor signal transduction in transformed cells.
Collapse
Affiliation(s)
- Piotr Kowalczyk
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | | | |
Collapse
|
37
|
Mechanisms regulating the susceptibility of hematopoietic malignancies to glucocorticoid-induced apoptosis. Adv Cancer Res 2009; 101:127-248. [PMID: 19055945 DOI: 10.1016/s0065-230x(08)00406-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of hematopoietic malignancies owing to their ability to induce apoptosis of these cancerous cells. Whereas some types of lymphoma and leukemia respond well to this drug, others are resistant. Also, GC-resistance gradually develops upon repeated treatments ultimately leading to refractory relapsed disease. Understanding the mechanisms regulating GC-induced apoptosis is therefore uttermost important for designing novel treatment strategies that overcome GC-resistance. This review discusses updated data describing the complex regulation of the cell's susceptibility to apoptosis triggered by GCs. We address both the genomic and nongenomic effects involved in promoting the apoptotic signals as well as the resistance mechanisms opposing these signals. Eventually we address potential strategies of clinical relevance that sensitize GC-resistant lymphoma and leukemia cells to this drug. The major target is the nongenomic signal transduction machinery where the interplay between protein kinases determines the cell fate. Shifting the balance of the kinome towards a state where Glycogen synthase kinase 3alpha (GSK3alpha) is kept active, favors an apoptotic response. Accumulating data show that it is possible to therapeutically modulate GC-resistance in patients, thereby improving the response to GC therapy.
Collapse
|
38
|
Matthews L, Berry A, Tersigni M, D’Acquisto F, Ianaro A, Ray D. Thiazolidinediones are partial agonists for the glucocorticoid receptor. Endocrinology 2009; 150:75-86. [PMID: 18801908 PMCID: PMC4110506 DOI: 10.1210/en.2008-0196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although thiazolidinediones were designed as specific peroxisome proliferator-activated receptor (PPAR)-gamma-ligands, there is evidence for some off-target effects mediated by a non-PPARgamma mechanism. Previously we have shown that rosiglitazone has antiinflammatory actions not explicable by activation of PPARgamma,but possibly by the glucocorticoid receptor (GR). Rosiglitazone induces nuclear translocation both of GR-green fluorescent protein, and endogenous GR in HeLa and U20S cells but with slower kinetics than dexamethasone. Rosiglitazone also induces GR phosphorylation (Ser211), a GR ligand-binding-specific effect. Rosiglitazone drives luciferase expression from a simple glucocorticoid-response element containing reporter gene in a GR-dependent manner (EC50 4 microm), with a similar amplitude response to the partial GR agonist RU486. Rosiglitazone also inhibits dexamethasone-driven reporter gene activity (IC50 2.9 microm) in a similar fashion to RU486, suggesting partial agonist activity. Importantly we demonstrate a similar effect in PPARgamma-null cells, suggesting both GR dependence and PPARgamma independence. Rosiglitazone also activates a GAL4-GR chimera, driving a upstream activating sequence promoter, demonstrating DNA template sequence independence and furthermore enhanced steroid receptor coactivator-1-GR interaction, measured by a mammalian two-hybrid assay. Both ciglitazone and pioglitazone, structurally related to rosiglitazone, show similar effects on the GR. The antiproliferative effect of rosiglitazone is increased in U20S cells that overexpress GR, suggesting a biologically important GR-dependent component of rosiglitazone action. Rosiglitazone is a partial GR agonist, affecting GR activation and trafficking to influence engagement of target genes and affect cell function. This novel mode of action may explain some off-target effects observed in vivo. Additionally, antagonism of glucocorticoid action may contribute to the antidiabetic actions of rosiglitazone.
Collapse
Affiliation(s)
- L Matthews
- Endocrine Sciences Research Group, Division of Cardiovascular and Endocrine Science, University of Manchester, Manchester, U.K.
| | - A Berry
- Endocrine Sciences Research Group, Division of Cardiovascular and Endocrine Science, University of Manchester, Manchester, U.K.
| | - M Tersigni
- Department of Experimental Pharmacology, University of Naples Federico II, Via Montesano 49, Naples, Italy
| | - F D’Acquisto
- Research Centre in Biochemical Pharmacology, William Harvey Research Institute, John Vane Science Centre, London, U.K.
| | - A Ianaro
- Department of Experimental Pharmacology, University of Naples Federico II, Via Montesano 49, Naples, Italy
- Joint corresponding authors. Address correspondence to: David Ray, Endocrine Sciences Research Group, Stopford Building, University of Manchester, Oxford Road., Manchester M13 9PT, United Kingdom. ; Angela Ianaro, Department of Experimental Pharmacology, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - D Ray
- Endocrine Sciences Research Group, Division of Cardiovascular and Endocrine Science, University of Manchester, Manchester, U.K.
- Joint corresponding authors. Address correspondence to: David Ray, Endocrine Sciences Research Group, Stopford Building, University of Manchester, Oxford Road., Manchester M13 9PT, United Kingdom. ; Angela Ianaro, Department of Experimental Pharmacology, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
39
|
Sun Y, Tao YG, Kagan BL, He Y, Simons SS. Modulation of transcription parameters in glucocorticoid receptor-mediated repression. Mol Cell Endocrinol 2008; 295:59-69. [PMID: 18583028 PMCID: PMC2662735 DOI: 10.1016/j.mce.2008.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 12/25/2022]
Abstract
Glucocorticoid receptors (GRs) affect both gene induction and gene repression. The disparities of receptor binding to DNA and increased vs. decreased gene expression have suggested significant mechanistic differences between GR-mediated induction and repression. Numerous transcription factors are known to modulate three parameters of gene induction: the total activity (Vmax) and position of the dose-response curve with glucocorticoids (EC50) and the percent partial agonist activity with antiglucocorticoids. We have examined the effects on GR-mediated repression of five modulators (coactivators TIF2 [GRIP1, SRC-2] and SRC-1, corepressor SMRT, and comodulators STAMP and Ubc9), a glucocorticoid steroid (deacylcortivazol [DAC]) of very different structure, and an inhibitor of histone deacetylation (trichostatin A [TSA]). These factors interact with different domains of GR and thus are sensitive topological probes of GR action. These agents altered the Vmax, EC50, and percent partial agonist activity of endogenous and exogenous repressed genes similarly to that previously observed for GR-regulated gene induction. Collectively, these results suggest that GR-mediated induction and repression share many of the same molecular interactions and that the causes for different levels of gene transcription arise from more distal downstream steps.
Collapse
Affiliation(s)
| | | | | | | | - S. Stoney Simons
- Address correspondence to Dr. S. Stoney Simons, Jr., Bldg. 10, Room 8N-307B, NIDDK/CEB, NIH, Bethesda, MD 20892-1772 (Phone: 301-496-6796; FAX: 301-402-3572; e-mail: )
| |
Collapse
|
40
|
Tao YG, Xu Y, Xu HE, Simons SS. Mutations of glucocorticoid receptor differentially affect AF2 domain activity in a steroid-selective manner to alter the potency and efficacy of gene induction and repression. Biochemistry 2008; 47:7648-62. [PMID: 18578507 DOI: 10.1021/bi800472w] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The transcriptional activity of steroid hormones is intimately associated with their structure. Deacylcortivazol (DAC) contains several features that were predicted to make it an inactive glucocorticoid. Nevertheless, gene induction and repression by complexes of glucocorticoid receptor (GR) with DAC occur with potency (lower EC 50) greater than and efficacy (maximal activity, or A max) equal to those of the very active and smaller synthetic glucocorticoid dexamethasone (Dex). Guided by a recent X-ray structure of DAC bound to the GR ligand binding domain (LBD), we now report that several point mutants in the LBD have little effect on the binding of either agonist steroid. However, these same mutations dramatically alter the A max and/or EC 50 of exogenous and endogenous genes in a manner that depends on steroid structure. In some cases, Dex is no longer a full agonist. These properties appear to result from a preferential inactivation of the AF2 activation domain in the GR LBD of Dex-bound, but not DAC-bound, receptors. The Dex-bound receptors display normal binding to, but a greatly reduced response to, the coactivator TIF2, thus indicating a defect in the transmission efficiency of GR-steroid complex information to the coactivator TIF2. In addition, all GR mutants that are active in gene induction with either Dex or DAC have greatly reduced activity in gene repression. This contrasts with the reports of GR mutations preferentially suppressing GR-mediated induction. The properties of these GR mutants in gene induction support the hypothesis that the A max and EC 50 of GR-controlled gene expression can be independently modified, indicate that the receptor can be modified to favor activity with a specific agonist steroid, and suggest that new ligands with suitable substituents may be able to affect the same LBD conformational changes and thereby broaden the therapeutic applications of glucocorticoid steroids.
Collapse
Affiliation(s)
- Yong-guang Tao
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/Clinical Endocrinology Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
41
|
Yang JQ, Rüdiger JJ, Hughes JM, Goulet S, Gencay-Cornelson MM, Borger P, Tamm M, Roth M. Cell Density and Serum Exposure Modify the Function of the Glucocorticoid Receptor C/EBP Complex. Am J Respir Cell Mol Biol 2008; 38:414-22. [DOI: 10.1165/rcmb.2007-0079oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
42
|
Chebotaev D, Yemelyanov A, Budunova I. The mechanisms of tumor suppressor effect of glucocorticoid receptor in skin. Mol Carcinog 2007; 46:732-40. [PMID: 17538956 DOI: 10.1002/mc.20349] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoid hormones exert a tumor suppressor effect in different experimental models, including mouse skin carcinogenesis. The glucocorticoid control of cellular functions is mediated via the glucocorticoid receptor (GR), a well-known transcription factor that regulates genes by DNA-binding dependent transactivation, and DNA-binding independent transrepression through negative interaction with other transcription factors. In this perspective, we analyze known mechanisms that underlie the anticancer effect of GR signaling, including effects on cell growth, differentiation, apoptosis, and angiogenesis. We also discuss a novel mechanism for the tumor suppressor effect of the GR in skin: through the regulation of the number and status of follicular epithelial stem cells (SC), which are a target cell population for skin carcinogenesis. Our studies on keratin5.GR transgenic animals that are resistant to skin carcinogenesis, demonstrated that the GR diminishes the number of follicular epithelial SCs, reduces their proliferative and survival potential and affects the expression of follicular SC "signature" genes. The analysis of global effect of the GR on gene expression in follicular epithelial SCs, basal keratinocytes, and mouse skin tumors provided an unexpected evidence that gene transrepression by GR plays an important role in the maintenance of SC and in inhibition of skin carcinogenesis by this steroid hormone receptor. It is known that antiinflammatory effect of glucocorticoids is chiefly mediated by GR transrepression. Thus, our findings suggest the similarity between the mechanisms of antiinflammatory and anticancer effects of the GR signaling. We discuss the potential clinical applications of our findings in light of drug discovery programs focused on the development of selective GR modulators that preferentially induce GR transrepression.
Collapse
Affiliation(s)
- Dmitry Chebotaev
- Department of Dermatology, Feinberg Medical School, Northwestern University, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
43
|
Lu NZ, Collins JB, Grissom SF, Cidlowski JA. Selective regulation of bone cell apoptosis by translational isoforms of the glucocorticoid receptor. Mol Cell Biol 2007; 27:7143-60. [PMID: 17682054 PMCID: PMC2168898 DOI: 10.1128/mcb.00253-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoids are widely used in the treatment of inflammatory and other diseases. However, high-dose or chronic administration often triggers troublesome side effects such as metabolic syndrome and osteoporosis. We recently described that one glucocorticoid receptor gene produces eight translational glucocorticoid receptor isoforms that have distinct gene-regulatory abilities. We show here that specific, but not all, glucocorticoid receptor isoforms induced apoptosis in human osteosarcoma U-2 OS bone cells. Whole human genome microarray analysis revealed that the majority of the glucocorticoid target genes were selectively regulated by specific glucocorticoid receptor isoforms. Real-time PCR experiments confirmed that proapoptotic enzymes necessary for cell death, granzyme A and caspase-6, were induced by specific glucocorticoid receptor isoforms. Chromatin immunoprecipitation assays further suggested that glucocorticoid receptor isoform-dependent induction of proapoptotic genes was likely due to selective coregulator recruitment and chromatin modification. Interestingly, the capabilities to transrepress proinflammatory genes were similar among glucocorticoid receptor isoforms. Together, these findings provide new evidence that translational glucocorticoid receptor isoforms can elicit distinct glucocorticoid responses and may be useful for the development of safe glucocorticoids with reduced side effects.
Collapse
Affiliation(s)
- Nick Z Lu
- Molecular Endocrinology Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
44
|
Expression profiling of Dexamethasone-treated primary chondrocytes identifies targets of glucocorticoid signalling in endochondral bone development. BMC Genomics 2007; 8:205. [PMID: 17603917 PMCID: PMC1929075 DOI: 10.1186/1471-2164-8-205] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/01/2007] [Indexed: 01/27/2023] Open
Abstract
Background Glucocorticoids (GCs) are widely used anti-inflammatory drugs. While useful in clinical practice, patients taking GCs often suffer from skeletal side effects including growth retardation in children and adolescents, and decreased bone quality in adults. On a physiological level, GCs have been implicated in the regulation of chondrogenesis and osteoblast differentiation, as well as maintaining homeostasis in cartilage and bone. We identified the glucocorticoid receptor (GR) as a potential regulator of chondrocyte hypertrophy in a microarray screen of primary limb bud mesenchyme micromass cultures. Some targets of GC regulation in chondrogenesis are known, but the global effects of pharmacological GC doses on chondrocyte gene expression have not been comprehensively evaluated. Results This study systematically identifies a spectrum of GC target genes in embryonic growth plate chondrocytes treated with a synthetic GR agonist, dexamethasone (DEX), at 6 and 24 hrs. Conventional analysis of this data set and gene set enrichment analysis (GSEA) was performed. Transcripts associated with metabolism were enriched in the DEX condition along with extracellular matrix genes. In contrast, a subset of growth factors and cytokines were negatively correlated with DEX treatment. Comparing DEX-induced gene expression data to developmental changes in gene expression in micromass cultures revealed an additional layer of complexity in which DEX maintains the expression of certain chondrocyte marker genes while inhibiting factors that promote vascularization and ultimately ossification of the cartilaginous template. Conclusion Together, these results provide insight into the mechanisms and major molecular classes functioning downstream of DEX in primary chondrocytes. In addition, comparison of our data with microarray studies of DEX treatment in other cell types demonstrated that the majority of DEX effects are tissue-specific. This study provides novel insights into the effects of pharmacological GC on chondrocyte gene transcription and establishes the foundation for subsequent functional studies.
Collapse
|
45
|
Sakayama K, Mashima N, Kidani T, Miyazaki T, Yamamoto H, Masuno H. Effect of cortisol on cell proliferation and the expression of lipoprotein lipase and vascular endothelial growth factor in a human osteosarcoma cell line. Cancer Chemother Pharmacol 2007; 61:471-9. [PMID: 17549480 DOI: 10.1007/s00280-007-0492-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of this study is to investigate whether cortisol inhibited cell proliferation and the expressions of lipoprotein lipase (LPL), a key enzyme involved in the energy metabolism in tumor cells, and vascular endothelial growth factor (VEGF), a potent angiogenic factor in the tumor, in cultures of OST cells, a human osteosarcoma cell line. METHODS OST cells were treated for 48 h with or without cortisol. To examine the effect of cortisol on cell proliferation, the expression of proliferating cell nuclear antigen (PCNA) was examined by Western blotting, and the amount of (3)H-thymidine incorporated into DNA during the last 30 min of the 48-h treatment period was measured. To examine the effect of cortisol on the expression of LPL, the activity and mass of LPL were measured in the extract of acetone/ether powder of cells, and the amount of (35)S-methionine incorporated into LPL during the last 2 h of the 48-h treatment period was measured by immunoprecipitation. The expression of VEGF was examined by immunohistochemistry and Western blotting. RESULTS The amount of (3)H-thymidine incorporated into DNA and the level of PCNA were lower in the cortisol-treated cultures than in the untreated cultures, thus indicating that cortisol inhibited the proliferation of OST cells. The synthetic rate and activity of LPL were lower in the cortisol-treated cultures than in the untreated cultures but no difference in the specific activity of LPL between the two cultures was observed, thus indicating that cortisol inhibited LPL synthesis, thereby resulting in a decreased LPL activity. The expression of VEGF was lower in the cortisol-treated cultures than in the untreated cultures. CONCLUSION Cortisol not only has the ability to inhibit cell proliferation but also the ability to inhibit the expressions of LPL and VEGF in cultures of OST cells.
Collapse
Affiliation(s)
- Kenshi Sakayama
- Department of Bone and Joint Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Sommer P, Le Rouzic P, Gillingham H, Berry A, Kayahara M, Huynh T, White A, Ray DW. Glucocorticoid receptor overexpression exerts an antisurvival effect on human small cell lung cancer cells. Oncogene 2007; 26:7111-21. [PMID: 17496926 DOI: 10.1038/sj.onc.1210524] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive tumour with an abysmal prognosis. These cancers are characteristically resistant to glucocorticoid (Gc) action, owing to impaired expression of the glucocorticoid receptor (GR). We identified reduced GR expression in human SCLC cell lines, compared to a non-SCLC cell line. The SCLC cells also showed no Gc inhibition of proliferation, in contrast to non-SCLC cells. Retroviral overexpression of GR resulted in significantly increased cell death, which was partially blocked by the GR antagonist, RU486. Indeed, in cells sorted for GR expression, there was rapid, near complete loss of live cells by 72 h, in contrast to control cells that proliferated as expected. Flow cytometry using Annexin V revealed that cell death was by apoptosis. In addition, confocal analysis of fixed cells showed that cells overexpressing GR displayed a significant increase in fragmenting apoptotic nuclei. Microarray studies showed that transgenic GR expression upregulated the proapoptotic genes, BAD and BAX. We have, therefore, identified a profound apoptotic effect of GR in SCLC cells, which may explain the low levels of endogenous GR in SCLC cells. Understanding how GR overexpression leads to apoptotic cell death in SCLC cells may uncover new therapeutic strategies.
Collapse
Affiliation(s)
- P Sommer
- Faculty of Medical and Human Sciences, Department of Medicine, Centre for Molecular Medicine and Endocrine Sciences Research Group, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Ruike Y, Katsuma S, Hirasawa A, Tsujimoto G. Glucocorticoid-induced alternative promoter usage for a novel 5' variant of granzyme A. J Hum Genet 2006; 52:172-178. [PMID: 17180578 DOI: 10.1007/s10038-006-0099-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 11/22/2006] [Indexed: 11/24/2022]
Abstract
Glucocorticoids exert diverse physiological functions through transcriptional regulation of genes including granzyme A (GZMA). GZMA is one of the apoptotic effectors localized in cytotoxic T lymphocytes and is considered to mediate glucocorticoid-induced apoptosis of human leukemia 697 cells. In the present study, we identified a novel 5' variant transcript of GZMA in dexamethasone (DEX)-treated 697 cells. We designated this novel transcript as GZMAbeta. The transcription of GZMAbeta starts at 290 bp downstream of the first intronic glucocorticoid response element (GRE). Chromatin immunoprecipitation assay showed that glucocorticoid receptor (GR) binds to the intronic GRE in a DEX-dependent manner. Luciferase assay and RT-PCR also showed that DEX induces GZMAbeta transcription mediated by GR binding to the intronic GRE. Our results show that there exist at least two transcripts in human GZMA, whose expression is differentially regulated by glucocorticoid.
Collapse
Affiliation(s)
- Yoshinao Ruike
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Susumu Katsuma
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Gozoh Tsujimoto
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
48
|
Boldizsár F, Pálinkás L, Czömpöly T, Bartis D, Németh P, Berki T. Low glucocorticoid receptor (GR), high Dig2 and low Bcl-2 expression in double positive thymocytes of BALB/c mice indicates their endogenous glucocorticoid hormone exposure. Immunobiology 2006; 211:785-96. [PMID: 17113916 DOI: 10.1016/j.imbio.2006.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Revised: 06/15/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Several studies have shown that of the four major thymocyte subsets, the CD4/CD8 double positive (DP) thymocytes are the most sensitive to in vivo glucocorticoid hormone (GC)-induced apoptosis. Our aim was to analyse fine molecular differences among thymocyte subgroups that could underlie this phenomenon. Therefore, we characterised the glucocorticoid hormone receptor (GR) expression of thymocyte subgroups both at the mRNA and protein levels by real-time PCR and flow cytometry, and correlated these features to their apoptotic sensitivity. We also investigated the time-dependent effects of the GC agonist dexamethasone (DX) with or without GC antagonist (RU486) treatments on GR mRNA/protein expression. We also analysed the expression of two apoptosis-related gene products: dexamethasone-induced gene 2 (Dig2) mRNA and Bcl-2 protein. We found that DN thymocytes had the highest GR expression, followed by CD8 single positive (SP), CD4 SP and DP thymocytes in 4-week-old BALB/c mice, both at the mRNA and protein levels, respectively. In DP cells, the Dig2 expression was significantly higher, while the Bcl-2 expression was significantly lower than in DN, CD4 SP and CD8 SP thymocytes. Single high dose DX treatment caused time-dependent depletion of DP thymocytes due to their higher apoptosis rate, which could not be abolished with RU486 pretreatment. After a single high dose DX treatment, there was a transient, significant increase of the GR mRNA and protein level of unsorted thymocytes after 8 and 16 h, followed by a significant decrease at 24 h, respectively. The time-dependent GR expression changes after DX administration could not be inhibited by the GC antagonist RU486. Twenty-four hours after exposure to high dose DX the DN, CD4 SP and CD8 SP cells showed a significant decrease of GR mRNA and protein expression, whereas the DP thymocytes, showed no significant alteration of GR mRNA or protein expression. The kinetical analysis of GR expression and apoptotic marker changes upon single high dose GC analogue administration revealed a two-phase process in thymocytes: early events, within 4-8 h, include GR upregulation and early apoptosis induction, while the late events appear most prominently at 16-20 h, when the GR is already downregulated and apoptotic cell ratio reaches its peak, with marked DP cell depletion. The low GR, high Dig2 and low Bcl-2 expression, coupled with the absence of homologous downregulation of GR after exogenous GC analogue treatment, could contribute to the high GC sensitivity of DP thymocytes. The downregulated GR and Bcl-2 together with the upregulated Dig2 level in DP cells indicates the significance of intrathymic GC effects at this differentiation stage. Since GR expression changes and apoptotic events could not be completely inhibited by GC antagonist, we propose the involvement of non-genomic GR mechanisms in these processes.
Collapse
Affiliation(s)
- Ferenc Boldizsár
- Department of Immunology and Biotechnology, University of Pecs, Szigeti ut 12., H-7643 Pecs, Hungary.
| | | | | | | | | | | |
Collapse
|
49
|
Emons JAM, Marino R, Nilsson O, Barnes KM, Even-Zohar N, Andrade AC, Chatterjee NA, Wit JM, Karperien M, Baron J. The role of p27Kip1 in the regulation of growth plate chondrocyte proliferation in mice. Pediatr Res 2006; 60:288-93. [PMID: 16857774 DOI: 10.1203/01.pdr.0000232790.53527.c6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
p27/Kip1, a cyclin-dependent kinase inhibitor, negatively regulates proliferation of multiple cell types. The goal of this study was to assess the role of p27 in the spatial, temporal, and conditional regulation of growth plate chondrocyte proliferation. p27 mRNA expression was detected by real-time RT-PCR in all zones of the mouse growth plate at levels approximately 2-fold lower than in the surrounding bone. To determine whether this expression is physiologically important, we studied skeletal growth in 7-wk-old mice lacking a functional p27 gene. In these mice, body length was modestly increased and proliferation of proximal tibial growth plate chondrocytes was increased, but tibia length was not significantly greater than in controls. p27 ablation had no measurable effect on growth plate morphology. Treatment with dexamethasone inhibited longitudinal bone growth similarly in p27-deficient mice and controls, indicating that p27 is not required for the inhibitory effects of glucocorticoids on longitudinal growth. p27-deficient mice had increased width of the femoral diaphysis, suggesting that p27 acts normally to inhibit periosteal bone growth. In conclusion, our findings suggest that p27 has modest inhibitory effects on growth plate chondrocyte proliferation but is not required for the spatial or temporal regulation of proliferation or the conditional regulation by glucocorticoid.
Collapse
Affiliation(s)
- Joyce A M Emons
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ray DW, Donn R, Berry A. Glucocorticoid sensitivity: pathology, mutations and clinical implications. Expert Rev Endocrinol Metab 2006; 1:403-412. [PMID: 30764078 DOI: 10.1586/17446651.1.3.403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucocorticoids exert diverse effects on virtually all cell types and tissues. Subtle changes in sensitivity may be generalized and congenital or acquired in a tissue-specific manner. Such changes may lead to altered susceptibility to metabolic diseases, such as ischemic heart disease, or to insensitivity to the therapeutic actions of synthetic glucocorticoids such as in inflammatory disease. This review will cover current theories of how glucocorticoids exert genetic and other congenital effects on glucocorticoid sensitivity, and acquired changes in glucocorticoid sensitivity seen principally in inflammatory and malignant disease. Recent important developments in the field include the impact of genetic variation within the glucocorticoid receptor gene, the effects of early life experience on long-term glucocorticoid sensitivity, studies identifying the role of nuclear factor κB in modulating glucocorticoid sensitivity in vitro and in vivo, and the action of macrophage migration inhibitory factor in modulating the anti-inflammatory effects of glucocorticoids. The role of chromatin organization in regulating glucocorticoid action on proinflammatory genes is discussed, as is the regulation of glucocorticoid sensitivity in human malignancy in the context of pathogenesis and treatment response.
Collapse
Affiliation(s)
- David W Ray
- a Professor of Medicine and Endocrinology, University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| | - Rachelle Donn
- b University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| | - Andrew Berry
- c Graduate Student, University of Manchester, Centre for Molecular Medicine, Stopford Building, Manchester, M13 9PT, UK.
| |
Collapse
|