1
|
He L, She X, Guo L, Gao M, Wang S, Lu Z, Guo H, Li R, Nie Y, Xing J, Ji L. Hepatic AKAP1 deficiency exacerbates diet-induced MASLD by enhancing GPAT1-mediated lysophosphatidic acid synthesis. Nat Commun 2025; 16:4286. [PMID: 40341440 PMCID: PMC12062205 DOI: 10.1038/s41467-025-58790-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 04/02/2025] [Indexed: 05/10/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), closely associated with obesity, can progress to metabolic dysfunction-associated steatohepatitis when the liver undergoes overt inflammatory damage. A-kinase anchoring protein 1 (AKAP1) has been shown to control lipid accumulation in brown adipocytes. However, the role of AKAP1 signaling in hepatic lipid metabolism and MASLD remains poorly understood. Here, we showed that hepatocyte-specific AKAP1 deficiency exacerbated hepatic steatosis and steatohepatitis in male mice subjected to a high-fat diet and fast-food diet, respectively. Mechanistically, AKAP1 directly phosphorylated and inactivated glycerol-3-phosphate acyltransferase 1 (GPAT1) in a PKA-dependent manner, thus suppressing lysophosphatidic acid (LPA) production. Increased endogenous LPA in hepatocytes promoted hepatocellular triglyceride (TG) synthesis and initiated pronounced inflammatory response in Kupffer cells. Restoring hepatic AKAP1 or repressing LPA levels via GPAT1 knockdown alleviated MASLD exacerbation. Overall, AKAP1 plays a protective role against MASLD by inhibiting GPAT1 activity, highlighting the potential of targeting AKAP1/PKA/GPAT1 signalosome for MASLD therapy.
Collapse
Affiliation(s)
- Linjie He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaojuan She
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Lifei Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Mingshu Gao
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- National Demonstration Center for Experimental Basic Medical Science Education, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuangbin Wang
- National Demonstration Center for Experimental Basic Medical Science Education, Fourth Military Medical University, Xi'an, Shaanxi, China
- Medical College of Yan'an University, Yan'an, Shaanxi, China
| | - Zhenxing Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haitao Guo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Renlong Li
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinliang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Lele Ji
- National Demonstration Center for Experimental Basic Medical Science Education, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Zabielski P, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Błachnio-Zabielska AU. Silencing the glycerol-3-phosphate acyltransferase-1 gene in the liver of mice fed a high-fat diet, enhances insulin sensitivity and glucose metabolism by promoting fatty acid beta-oxidation. Biomed Pharmacother 2024; 180:117531. [PMID: 39383732 DOI: 10.1016/j.biopha.2024.117531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Liver plays a central role in systemic glucose and lipid metabolism. High-fat diet (HFD) and obesity are related to hepatic lipid accumulation and insulin resistance (InsR). Diacylglycerols (DAG) play a key role in the induction of InsR, however their involvement in hepatic InsR remains debated. This study aimed to clarify and confirm the role of glycero-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme in DAG synthesis, in the progression of hepatic InsR in the context of HFD-induced lipid accumulation and insulin resistance in the liver. METHODS Liver-targeted GPAT1 silencing was performed using shRNA-mediated hydrodynamic gene delivery. Lipid species including LCA-CoA, sphingolipids, DAG and acyl-carnitines were quantified using UHPLC/MS/MS while insulin signalling was assessed at protein level by Western Blot. Hepatic glucose metabolism, including glucose-6-pasphate content and gluconeogenesis rate was evaluated using GC/MS. RESULTS HFD-fed animals developed InsR, evidenced by increased HOMA-IR, enhanced gluconeogenesis and reduced glycogen content compared to controls. Hepatic GPAT1 silencing in HFD-fed animals resulted in a significant reduction of DAG and TAG levels, increased acyl-carnitines content and upregulated mitochondrial β-oxidation protein expression. These changes were accompanied by improved insulin signalling, enhanced glycogen storage, and reduced gluconeogenesis. CONCLUSIONS Silencing GPAT1, and thereby reducing glycerolipid synthesis, promotes β-oxidation and ameliorates HFD-induced hepatic insulin resistance, confirming the enzyme's pivotal role in liver metabolic dysfunction associated with increased lipid supply.
Collapse
Affiliation(s)
- Piotr Zabielski
- Department of Medical Biology, Medical University of Bialystok, Bialystok, Poland
| | - Kamila Roszczyc-Owsiejczuk
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Monika Imierska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pogodzińska
- Department of Hygiene, Epidemiology and Metabolic Disorders, Medical University of Bialystok, Bialystok, Poland
| | | |
Collapse
|
3
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
4
|
Guo L, Lei J, Li P, Wang Y, Wang J, Song T, Zhu B, Jia J, Miao J, Cui H. Hedan tablet ameliorated non-alcoholic steatohepatitis by moderating NF-κB and lipid metabolism-related pathways via regulating hepatic metabolites. J Cell Mol Med 2024; 28:e18194. [PMID: 38506086 PMCID: PMC11967700 DOI: 10.1111/jcmm.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Liying Guo
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jinyan Lei
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Peng Li
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Yuming Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jing Wang
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Taotao Song
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Bo Zhu
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jianwei Jia
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jing Miao
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
5
|
Price TR, Emfinger CH, Schueler KL, King S, Nicholson R, Beck T, Yandell BS, Summers SA, Holland WL, Krauss RM, Keller MP, Attie AD. Identification of genetic drivers of plasma lipoprotein size in the Diversity Outbred mouse population. J Lipid Res 2023; 64:100471. [PMID: 37944753 PMCID: PMC10750189 DOI: 10.1016/j.jlr.2023.100471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Despite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance. To refine the QTL and link them to disease risk in humans, we asked if the human homologs of genes located at each QTL were associated with lipid traits in human genome-wide association studies. Integration of mouse QTL with human genome-wide association studies yielded candidate gene drivers for 18 of the 21 QTL. This approach enabled us to nominate the gene encoding the neutral ceramidase, Asah2, as a novel candidate driver at a QTL on chromosome 19 for large HDL particles (HDL-2b). To experimentally validate Asah2, we surveyed lipoproteins in Asah2-/- mice. Compared to wild-type mice, female Asah2-/- mice showed an increase in several lipoproteins, including HDL. Our results provide insights into the genetic regulation of circulating lipoproteins, as well as mechanisms by which lipoprotein subfractions may affect cardiovascular disease risk in humans.
Collapse
Affiliation(s)
- Tara R Price
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Kathryn L Schueler
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah King
- School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Rebekah Nicholson
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Tim Beck
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Brian S Yandell
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott A Summers
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - Ronald M Krauss
- School of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Mark P Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Alan D Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Sakuma I, Vatner DF. Fatty Acid Esterification as a NASH Therapeutic Target. Cell Mol Gastroenterol Hepatol 2023; 17:311-312. [PMID: 37984466 PMCID: PMC10829519 DOI: 10.1016/j.jcmgh.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 10/20/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Affiliation(s)
- Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Daniel F Vatner
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut; Program in Translational Biomedicine, Yale School of Medicine, New Haven, Connecticut; Department of Medicine, Veterans Affairs Medical Center, West Haven, Connecticut.
| |
Collapse
|
7
|
Smith KR, Wang W, Miller MR, Boucher M, Reynold JE, Daurio NA, Li D, Hirenallur-Shanthappa D, Ahn Y, Beebe DA, Kelly KL, Ross TT, Bence KK, Wan M. GPAT1 Deficiency in Mice Modulates NASH Progression in a Model-Dependent Manner. Cell Mol Gastroenterol Hepatol 2023; 17:279-291. [PMID: 37844795 PMCID: PMC10829521 DOI: 10.1016/j.jcmgh.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND & AIMS Nonalcoholic fatty liver disease (NAFLD), and its more severe form, nonalcoholic steatohepatitis (NASH), is the leading cause for liver failure and liver cancer. Although the etiology is likely multifactorial, genes involved in regulating lipid metabolism are enriched in human NAFLD genome-wide association studies (GWAS), pointing to dysregulated lipid metabolism as a major pathogenic factor. Glycerol-3-phosphate acyltransferase 1 (GPAT1), encoded by GPAM, converts acyl-CoAs and glycerol-3-phosphate into lysophosphatidic acid and has been shown to regulate lipid accumulation in the liver. However, its role in mediating the progression from NAFLD to NASH has not been explored. METHODS GPAT1-deficient mice were generated and challenged with diets inducing hepatic steatosis and NASH. Effects of GPAT1 deficiency on lipid and systemic metabolic end points were evaluated. RESULTS Ablating GPAT1 globally or specifically in mouse hepatocytes reduced hepatic steatosis in the context of diet-induced or genetic obesity. Interestingly, blunting of progression from NAFLD to NASH in global GPAT1 knockout (KO) mice was model dependent. GPAT1 KO mice were protected from choline deficient, amino acid defined high-fat diet-induced NASH development, but not from the high fat, high carbohydrate, and high cholesterol diet-induced NASH. CONCLUSIONS Our preclinical data support the notion that lipid metabolism pathways regulated by GPAT1 in hepatocytes play an essential role in NASH progression, albeit in a model-dependent manner.
Collapse
Affiliation(s)
- Kathleen R Smith
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Wenshan Wang
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Melissa R Miller
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Magalie Boucher
- WRDM Drug Safety, Research and Development, Pfizer Inc, Groton, Connecticut
| | - Jessica E Reynold
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Natalie A Daurio
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Dongmei Li
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | | | - Youngwook Ahn
- WRDM Target Sciences, Pfizer Inc, Cambridge, Massachusetts
| | - David A Beebe
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kenneth L Kelly
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Trenton T Ross
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Kendra K Bence
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts
| | - Min Wan
- WRDM Internal Medicine Research Unit, Pfizer Inc, Cambridge, Massachusetts.
| |
Collapse
|
8
|
Ahmadi A, Begue G, Valencia AP, Norman JE, Lidgard B, Bennett BJ, Van Doren MP, Marcinek DJ, Fan S, Prince DK, Gamboa J, Himmelfarb J, de Boer IH, Kestenbaum BR, Roshanravan B. Randomized crossover clinical trial of coenzyme Q10 and nicotinamide riboside in chronic kidney disease. JCI Insight 2023; 8:e167274. [PMID: 37159264 PMCID: PMC10393227 DOI: 10.1172/jci.insight.167274] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
BackgroundCurrent studies suggest mitochondrial dysfunction is a major contributor to impaired physical performance and exercise intolerance in chronic kidney disease (CKD). We conducted a clinical trial of coenzyme Q10 (CoQ10) and nicotinamide riboside (NR) to determine their impact on exercise tolerance and metabolic profile in patients with CKD.MethodsWe conducted a randomized, placebo-controlled, double-blind, crossover trial comparing CoQ10, NR, and placebo in 25 patients with an estimated glomerular filtration rate (eGFR) of less than 60mL/min/1.73 m2. Participants received NR (1,000 mg/day), CoQ10 (1,200 mg/day), or placebo for 6 weeks each. The primary outcomes were aerobic capacity measured by peak rate of oxygen consumption (VO2 peak) and work efficiency measured using graded cycle ergometry testing. We performed semitargeted plasma metabolomics and lipidomics.ResultsParticipant mean age was 61.0 ± 11.6 years and mean eGFR was 36.9 ± 9.2 mL/min/1.73 m2. Compared with placebo, we found no differences in VO2 peak (P = 0.30, 0.17), total work (P = 0.47, 0.77), and total work efficiency (P = 0.46, 0.55) after NR or CoQ10 supplementation. NR decreased submaximal VO2 at 30 W (P = 0.03) and VO2 at 60 W (P = 0.07) compared with placebo. No changes in eGFR were observed after NR or CoQ10 treatment (P = 0.14, 0.88). CoQ10 increased free fatty acids and decreased complex medium- and long-chain triglycerides. NR supplementation significantly altered TCA cycle intermediates and glutamate that were involved in reactions that exclusively use NAD+ and NADP+ as cofactors. NR decreased a broad range of lipid groups including triglycerides and ceramides.ConclusionsSix weeks of treatment with NR or CoQ10 improved markers of systemic mitochondrial metabolism and lipid profiles but did not improve VO2 peak or total work efficiency.Trial registrationClinicalTrials.gov NCT03579693.FundingNational Institutes of Diabetes and Digestive and Kidney Diseases (grants R01 DK101509, R03 DK114502, R01 DK125794, and R01 DK101509).
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Medicine, Division of Nephrology, UCD, Davis, California, USA
| | - Gwenaelle Begue
- Kinesiology Department, California State University, Sacramento, California, USA
| | - Ana P. Valencia
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, UCD, Davis, California, USA
| | - Benjamin Lidgard
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Brian J. Bennett
- Obesity and Metabolism Research Unit, Western Human Nutrition Research Center, USDA, ARS, Davis, California, USA
| | | | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Sili Fan
- Department of Biostatistics, UCD, Davis, California, USA
| | - David K. Prince
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Jorge Gamboa
- School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Bryan R. Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology, UCD, Davis, California, USA
| |
Collapse
|
9
|
Julve J, Genua I, Quifer-Rada P, Yanes Ó, Barranco-Altirriba M, Hernández M, Junza A, Capellades J, Granado-Casas M, Alonso N, Castelblanco E, Mauricio D. Circulating metabolomic and lipidomic changes in subjects with new-onset type 1 diabetes after optimization of glycemic control. Diabetes Res Clin Pract 2023; 197:110578. [PMID: 36804334 DOI: 10.1016/j.diabres.2023.110578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
AIMS To uncover novel candidate metabolomic and lipidomic biomarkers in newly-diagnosed type 1 diabetes (T1DM) after achieving optimal glucose control. METHODS Comprehensive lipidomic and metabolomic analysis was performed in serum of 12 adults with T1DM at onset and after achieving optimal glycemic control (HbA1c < 7 %) (after 2-6 months). RESULTS After intensive therapy, subjects (mean age 25.2 years, 58.3 % men) showed decreases in blood glucose (p < 0.001), HbA1c [11.5 % (9.2-13.4) to 6.2 % (5.2 - 6.7); p < 0.001] and changes in 51 identified lipids. Among these changes, we found that triglycerides (TG) containing medium chain fatty acids (TG45:0, TG47:1), sphingomyelins (SM) (SM(d18:2/20:0), SM42:4)), and phosphatidylcholines (PC) (PC(O-26:2), PC(O-30:0), PC(O-32:0), PC(O-42:6), PC(O-44:5), PC(O-38:3), PC(O-33:0), PC(O-46:8), PC(O-44:6), PC(O-40:3), PC(O-42:4), PC(O-46:7), PC(O-46:6), PC(O-44:5), PC(O-42:3), PC(O-44:4)) decreased; whereas PC(35:1), PC(37:1) and TG containing longer chain fatty acids (TG(52:1), TG(55:7), TG(51:2), TG(53:3), TG52:2), TG(53:2), TG(57:3), TG(61:3), TG(61:2) increased. Further, dihydro O-acylceramide (18:1/18:0/16:0), diacylglycerophosphoethanolamine (PE(34:1)), diacylglycerophosphoinositol (PI(38:6), and dihydrosphingomyelins (dihydroSM(36:0), dihydroSM(40:0), dihydroSM(41:0), dihydroSM(42:0)) increased. Uric acid, mannitol, and mannitol-1-acetate levels also increased. CONCLUSIONS Our data uncovered potential favorable changes in the metabolism of glycerophospholipids, glycerolipids, and sphingolipids in new-onset T1DM after achieving optimal glycemic control. Further research on their potential role in developing diabetes-related complications is needed.
Collapse
Affiliation(s)
- Josep Julve
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
| | - Idoia Genua
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Paola Quifer-Rada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; LactApp Women's Health, Barcelona, Spain
| | - Óscar Yanes
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
| | - Maria Barranco-Altirriba
- Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; B2SLab, Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain; Networking Biomedical Research Centre in the Subject Area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Marta Hernández
- Department of Endocrinology & Nutrition, University Hospital Arnau de Vilanova, Lleida, Spain; Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Alexandra Junza
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
| | - Jordi Capellades
- Universitat Rovira i Virgili, Department of Electronic Engineering & IISPV, Tarragona, Spain
| | - Minerva Granado-Casas
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain; Department of Endocrinology & Nutrition, University Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Esmeralda Castelblanco
- Endocrinology, Metabolism and Lipid Research Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain.
| | - Didac Mauricio
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), 08041 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain; Department of Endocrinology & Nutrition, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Unitat de Suport a la Recerca Barcelona, Institut Universitari d'Investigació en Atenció Primària Jordi Gol i Gurina (IDIAP Jordi Gol), 08007 Barcelona, Spain; Department of Medicine, University of Vic - Central University of Catalonia, Vic, Spain.
| |
Collapse
|
10
|
Yu H, Iqbal A, Fang X, Jiang P, Zhao Z. Transcriptome analysis of CRISPR/Cas9-mediated GPAM -/- in bovine mammary epithelial cell-line unravelled the effects of GPAM gene on lipid metabolism. Gene X 2022; 834:146574. [PMID: 35618221 DOI: 10.1016/j.gene.2022.146574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/04/2022] Open
Abstract
Glycerol-3-phosphate acyltransferase mitochondrial (GPAM) is an enzyme in animal lipid metabolism pathways that catalyzes the initial and most committed step of glycerolipid biosynthesis. The present study mainly focused on exploring the relationship between the GPAM gene and the lipid metabolism of mammary epithelial cells and the effect of GPAM on the related pathways of lipid metabolism. The GPAM gene was knocked out entirely in bovine mammary epithelial cells(BMECs) using CRISPR/Cas9 technology, and the mechanism by which the GPAM gene regulates lipid metabolism in BMECs was confirmed. Furthermore, after the complete loss of GPAM, BMECs' triglycerides (TGs) and cholesterol (CHOL) levels were significantly decreased (p < 0.05). Concurrently, the content of octanoic acid, a medium-chain saturated fatty acid, increased substantially in BMECs. RNA-seq of GPAM-/- BMECs revealed that GPAM could affect the expression of genes related to lipid metabolism, downregulated the expression of Acyl-CoA synthetase long-chain family member 5 (ACSL5), Fatty Acid Binding Protein 3 (FABP3), Hormone-sensitive lipase (HSL), Protease, serine-2 (PRSS2), 1-Acylglycerol-3-Phosphate O Acyltransferase 4 (AGPAT4), and regulated the milk synthesis metabolism pathway.The findings revealed that a number of genes were expressed, a number of genes were differentially expressed genes (DEGs), and a number of GO terms were enriched, with a number of GO terms considerably increased. Further, the differentially expressed genes (DEGs) were significantly enriched in Fat digestion and absorption pathway, Fatty acid metabolic pathway, Biosynthesis of unsaturated fatty acids, Biosynthesis of unsaturated fatty acids and steroids, NF-kappa B signalling pathway, MAPK signalling pathway. In conclusion, the current research results show that GPAM is a crucial regulator of BMEC lipid metabolism. GPAM-/- BMEC may also become useful genetic materials and tools for future research on gene functions related to lipid and fatty acid metabolism. This study will contribute to the discovery of gene regulation and molecular mechanisms in milk fat synthesis.
Collapse
Affiliation(s)
- Haibin Yu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China
| | - Ambreen Iqbal
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, PR China
| | - Ping Jiang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China.
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China.
| |
Collapse
|
11
|
Yu Y, Hao C, Xiang M, Tian J, Kuang H, Li Z. Potential obesogenic effects of TBBPA and its alternatives TBBPS and TCBPA revealed by metabolic perturbations in human hepatoma cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154847. [PMID: 35358527 DOI: 10.1016/j.scitotenv.2022.154847] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
To date, increasing numbers of studies have shown the obesogenic effects of tetrabromobisphenol A (TBBPA). Tetrabromobisphenol S (TBBPS) and tetrachlorobisphenol A (TCBPA) are two common alternatives to TBBPA, and their environmental distributions are frequently reported. However, their toxicity and the associated potential health risks are poorly documented. Herein, we performed untargeted metabolomics to study the metabolic perturbations in HepG2 cells exposed to TBBPA and its alternatives. Consequently, no loss of cellular viability was observed in HepG2 cells exposed to 0.1 μmol/L and 1 μmol/L TBBPA, TBBPS and TCBPA. However, multivariate analysis and metabolic profiles revealed significant perturbations in glycerophospholipid and fatty acyl levels in HepG2 cells exposure to TBBPS and TCBPA. The evident increases in the glucose 1-phosphate and fructose 6-phosphate levels in HepG2 cells were proposed to be induced by the promotion of PGM1/PGM2 and GPI gene expression and the suppression of UPG2 and GFPT1/GFPT2 gene expression. Our results suggest that TBBPS and TCBPA are more likely to disrupt liver metabolic homeostasis and potentially drive liver dysfunction than TBBPA. Our study is significant for the re-evaluation of the health risks associated with TBBPA and its alternatives TBBPS and TCBPA.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Chaojie Hao
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; School of Public Health, China Medical University, Liaoning 110122, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Jinglin Tian
- Chemistry Department, Hong Kong Baptist University, Hongkong 999077, China
| | - Hongxuan Kuang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhenchi Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
12
|
Vujkovic M, Ramdas S, Lorenz KM, Guo X, Darlay R, Cordell HJ, He J, Gindin Y, Chung C, Myers RP, Schneider CV, Park J, Lee KM, Serper M, Carr RM, Kaplan DE, Haas ME, MacLean MT, Witschey WR, Zhu X, Tcheandjieu C, Kember RL, Kranzler HR, Verma A, Giri A, Klarin DM, Sun YV, Huang J, Huffman JE, Creasy KT, Hand NJ, Liu CT, Long MT, Yao J, Budoff M, Tan J, Li X, Lin HJ, Chen YDI, Taylor KD, Chang RK, Krauss RM, Vilarinho S, Brancale J, Nielsen JB, Locke AE, Jones MB, Verweij N, Baras A, Reddy KR, Neuschwander-Tetri BA, Schwimmer JB, Sanyal AJ, Chalasani N, Ryan KA, Mitchell BD, Gill D, Wells AD, Manduchi E, Saiman Y, Mahmud N, Miller DR, Reaven PD, Phillips LS, Muralidhar S, DuVall SL, Lee JS, Assimes TL, Pyarajan S, Cho K, Edwards TL, Damrauer SM, Wilson PW, Gaziano JM, O'Donnell CJ, Khera AV, Grant SFA, Brown CD, Tsao PS, Saleheen D, Lotta LA, Bastarache L, Anstee QM, Daly AK, Meigs JB, Rotter JI, Lynch JA, Rader DJ, Voight BF, Chang KM. A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation. Nat Genet 2022; 54:761-771. [PMID: 35654975 PMCID: PMC10024253 DOI: 10.1038/s41588-022-01078-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/18/2022] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine aminotransferase associations, with one additional locus identified in European American-only and two in African American-only analyses (P < 5 × 10-8). External replication in histology-defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10-4), of which 9 were new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our approach integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD.
Collapse
Affiliation(s)
- Marijana Vujkovic
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shweta Ramdas
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kim M Lorenz
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Rebecca Darlay
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Heather J Cordell
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Jing He
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Robert P Myers
- Gilead Sciences, Inc., Foster City, CA, USA
- The Liver Company, Palo Alto, CA, USA
| | - Carolin V Schneider
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Joseph Park
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyung Min Lee
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Marina Serper
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rotonya M Carr
- Division of Gastroenterology, University of Washington, Seattle, WA, USA
| | - David E Kaplan
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mary E Haas
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T MacLean
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Walter R Witschey
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xiang Zhu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Statistics, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Statistics, Stanford University, Stanford, CA, USA
| | - Catherine Tcheandjieu
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Rachel L Kember
- Mental Illness Research Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Henry R Kranzler
- Mental Illness Research Education and Clinical Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Anurag Verma
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ayush Giri
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Derek M Klarin
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Vascular Surgery, Stanford University School of Medicine, Palo Alto, CA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yan V Sun
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | | | - Kate Townsend Creasy
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nicholas J Hand
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Michelle T Long
- Department of Medicine, Section of Gastroenterology, Boston University School of Medicine, Boston, MA, USA
| | - Jie Yao
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Matthew Budoff
- Department of Cardiology, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jingyi Tan
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Henry J Lin
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ruey-Kang Chang
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Silvia Vilarinho
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Joseph Brancale
- Section of Digestive Diseases, Department of Internal Medicine, and Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | | | | | | | | | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - K Rajender Reddy
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Jeffrey B Schwimmer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Naga Chalasani
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen A Ryan
- Program for Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Braxton D Mitchell
- Program for Personalized and Genomic Medicine, Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisabetta Manduchi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yedidya Saiman
- Department of Medicine, Section of Hepatology, Lewis Katz School of Medicine at Temple University, Temple University Hospital, Philadelphia, PA, USA
| | - Nadim Mahmud
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Donald R Miller
- Center for Healthcare Organization and Implementation Research, Bedford VA Healthcare System, Bedford, MA, USA
- Center for Population Health, Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, MA, USA
| | - Peter D Reaven
- Phoenix VA Health Care System, Phoenix, AZ, USA
- College of Medicine, University of Arizona, Phoenix, AZ, USA
| | - Lawrence S Phillips
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sumitra Muralidhar
- Office of Research and Development, Veterans Health Administration, Washington, DC, USA
| | - Scott L DuVall
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jennifer S Lee
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Themistocles L Assimes
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Saiju Pyarajan
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kelly Cho
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Todd L Edwards
- Nashville VA Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Scott M Damrauer
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter W Wilson
- Atlanta VA Medical Center, Decatur, GA, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - J Michael Gaziano
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
| | - Christopher J O'Donnell
- VA Boston Healthcare System, Boston, MA, USA
- Department of Medicine, Brigham Women's Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Amit V Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Struan F A Grant
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Christopher D Brown
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Philip S Tsao
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Danish Saleheen
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Department of Cardiology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Non-Communicable Diseases, Karachi, Sindh, Pakistan
| | | | - Lisa Bastarache
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quentin M Anstee
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Ann K Daly
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - James B Meigs
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Julie A Lynch
- VA Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- College of Nursing and Health Sciences, University of Massachusetts, Lowell, MA, USA
| | - Daniel J Rader
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin F Voight
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Institute of Translational Medicine and Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Kyong-Mi Chang
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA.
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Muta K, Saito K, Kemmochi Y, Masuyama T, Kobayashi A, Saito Y, Sugai S. Phosphatidylcholine (18:0/20:4), a potential biomarker to predict ethionamide-induced hepatic steatosis in rats. J Appl Toxicol 2022; 42:1533-1547. [PMID: 35315511 PMCID: PMC9546090 DOI: 10.1002/jat.4324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/12/2022]
Abstract
Ethionamide (ETH), a second-line drug for multi-drug resistant tuberculosis, is known to cause hepatic steatosis in rats and humans. To investigate predictive biomarkers for ETH-induced steatosis, we performed lipidomics analysis using plasma and liver samples collected from rats treated orally with ETH at 30 and 100 mg/kg for 14 days. The ETH-treated rats developed hepatic steatosis with Oil Red O staining-positive vacuolation in the centrilobular hepatocytes accompanied by increased hepatic contents of triglycerides (TG) and decreased plasma TG and total cholesterol levels. A multivariate analysis for lipid profiles revealed differences in each of the 35 lipid species in the plasma and liver between the control and the ETH-treated rats. Of those lipids, phosphatidylcholine (PC) (18:0/20:4) decreased dose-dependently in both the plasma and liver. Moreover, serum TG-rich very low-density lipoprotein (VLDL) levels, especially the large particle fraction of VLDL composed of PC containing arachidonic acid (20:4) involved in hepatic secretion of TG, were decreased dose-dependently. In conclusion, the decreased PC (18:0/20:4) in the liver, possibly leading to suppression of hepatic TG secretion, was considered to be involved in the pathogenesis of the ETH-induced hepatic steatosis. Therefore, plasma PC (18:0/20:4) levels are proposed as mechanism-related biomarkers for ETH-induced hepatic steatosis.
Collapse
Affiliation(s)
- Kyotaka Muta
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Kosuke Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Yusuke Kemmochi
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Taku Masuyama
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Akio Kobayashi
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| | - Yoshiro Saito
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Shoichiro Sugai
- Toxicology Research Laboratories, Central Pharmaceutical Research Institute, JAPAN TOBACCO INC., Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Therapeutic RNA-silencing oligonucleotides in metabolic diseases. Nat Rev Drug Discov 2022; 21:417-439. [PMID: 35210608 DOI: 10.1038/s41573-022-00407-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2022] [Indexed: 12/14/2022]
Abstract
Recent years have seen unprecedented activity in the development of RNA-silencing oligonucleotide therapeutics for metabolic diseases. Improved oligonucleotide design and optimization of synthetic nucleic acid chemistry, in combination with the development of highly selective and efficient conjugate delivery technology platforms, have established and validated oligonucleotides as a new class of drugs. To date, there are five marketed oligonucleotide therapies, with many more in clinical studies, for both rare and common liver-driven metabolic diseases. Here, we provide an overview of recent developments in the field of oligonucleotide therapeutics in metabolism, review past and current clinical trials, and discuss ongoing challenges and possible future developments.
Collapse
|
15
|
Liu Y, Zheng W, Zhang L, Hu L, Liu X, Cheng J, Li G, Gong M. Metabolomics-based evidence of the hypoglycemic effect and alleviation of diabetic complications by Ficus racemosa fruit in diabetic mice. Food Funct 2022; 13:7871-7884. [PMID: 35771162 DOI: 10.1039/d2fo01163h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypoglycemic and metabolic effects of Ficus racemosa fruit were studied in diabetic mice, and its potential mechanisms of hypoglycemic activity and its alleviation of diabetic complications were explored using...
Collapse
Affiliation(s)
- Yueqiu Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Liqiang Hu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xin Liu
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jingqiu Cheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China.
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Haas ME, Pirruccello JP, Friedman SN, Wang M, Emdin CA, Ajmera VH, Simon TG, Homburger JR, Guo X, Budoff M, Corey KE, Zhou AY, Philippakis A, Ellinor PT, Loomba R, Batra P, Khera AV. Machine learning enables new insights into genetic contributions to liver fat accumulation. CELL GENOMICS 2021; 1:100066. [PMID: 34957434 PMCID: PMC8699145 DOI: 10.1016/j.xgen.2021.100066] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/13/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022]
Abstract
Excess liver fat, called hepatic steatosis, is a leading risk factor for end-stage liver disease and cardiometabolic diseases but often remains undiagnosed in clinical practice because of the need for direct imaging assessments. We developed an abdominal MRI-based machine-learning algorithm to accurately estimate liver fat (correlation coefficients, 0.97-0.99) from a truth dataset of 4,511 middle-aged UK Biobank participants, enabling quantification in 32,192 additional individuals. 17% of participants had predicted liver fat levels indicative of steatosis, and liver fat could not have been reliably estimated based on clinical factors such as BMI. A genome-wide association study of common genetic variants and liver fat replicated three known associations and identified five newly associated variants in or near the MTARC1, ADH1B, TRIB1, GPAM, and MAST3 genes (p < 3 × 10-8). A polygenic score integrating these eight genetic variants was strongly associated with future risk of chronic liver disease (hazard ratio > 1.32 per SD score, p < 9 × 10-17). Rare inactivating variants in the APOB or MTTP genes were identified in 0.8% of individuals with steatosis and conferred more than 6-fold risk (p < 2 × 10-5), highlighting a molecular subtype of hepatic steatosis characterized by defective secretion of apolipoprotein B-containing lipoproteins. We demonstrate that our imaging-based machine-learning model accurately estimates liver fat and may be useful in epidemiological and genetic studies of hepatic steatosis.
Collapse
Affiliation(s)
- Mary E. Haas
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Molecular Biology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - James P. Pirruccello
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Samuel N. Friedman
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Minxian Wang
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Connor A. Emdin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Veeral H. Ajmera
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Tracey G. Simon
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Xiuqing Guo
- The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Matthew Budoff
- The Lundquist Institute for Biomedical Innovation and Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Kathleen E. Corey
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Liver Center, Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Anthony Philippakis
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Eric and Wendy Schmidt Center, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rohit Loomba
- NAFLD Research Center, Department of Medicine, University of California San Diego, La Jolla, CA 92103, USA
| | - Puneet Batra
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amit V. Khera
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Center for Genomic Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Machine Learning for Health, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
17
|
Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J, Shindou H. Update and nomenclature proposal for mammalian lysophospholipid acyltransferases which create membrane phospholipid diversity. J Biol Chem 2021; 298:101470. [PMID: 34890643 PMCID: PMC8753187 DOI: 10.1016/j.jbc.2021.101470] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The diversity of glycerophospholipid species in cellular membranes is immense and affects various biological functions. Glycerol-3-phosphate acyltransferases (GPATs) and lysophospholipid acyltransferases (LPLATs), in concert with phospholipase A1/2s enzymes, contribute to this diversity via selective esterification of fatty acyl chains at the sn-1 or sn-2 positions of membrane phospholipids. These enzymes are conserved across all kingdoms, and in mammals four GPATs of the 1-acylglycerol-3-phosphate O-acyltransferase (AGPAT) family and at least 14 LPLATs, either of the AGPAT or the membrane-bound O-acyltransferase (MBOAT) families, have been identified. Here we provide an overview of the biochemical and biological activities of these mammalian enzymes, including their predicted structures, involvements in human diseases, and essential physiological roles as revealed by gene-deficient mice. Recently, the nomenclature used to refer to these enzymes has generated some confusion due to the use of multiple names to refer to the same enzyme and instances of the same name being used to refer to completely different enzymes. Thus, this review proposes a more uniform LPLAT enzyme nomenclature, as well as providing an update of recent advances made in the study of LPLATs, continuing from our JBC mini review in 2009.
Collapse
Affiliation(s)
- William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine (NCGM), Shinjuku-ku, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
18
|
Hakim A, Moll M, Brancale J, Liu J, Lasky-Su JA, Silverman EK, Vilarinho S, Jiang ZG, Pita-Juárez YH, Vlachos IS, Zhang X, Åberg F, Afdhal NH, Hobbs BD, Cho MH. Genetic Variation in the Mitochondrial Glycerol-3-Phosphate Acyltransferase Is Associated With Liver Injury. Hepatology 2021; 74:3394-3408. [PMID: 34216018 PMCID: PMC8639615 DOI: 10.1002/hep.32038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIMS Most of the genetic basis of chronic liver disease remains undiscovered. APPROACH AND RESULTS To identify genetic loci that modulate the risk of liver injury, we performed genome-wide association studies on circulating levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and total bilirubin across 312,671 White British participants in the UK Biobank. We focused on variants associated with elevations in all four liver biochemistries at genome-wide significance (P < 5 × 10-8 ) and that replicated using Mass General Brigham Biobank in 19,323 European ancestry individuals. We identified a genetic locus in mitochondrial glycerol-3-phosphate acyltransferase (GPAM rs10787429) associated with increased levels of ALT (P = 1.4 × 10-30 ), AST (P = 3.6 × 10-10 ), ALP (P = 9.5 × 10-30 ), and total bilirubin (P = 2.9 × 10-12 ). This common genetic variant was also associated with an allele dose-dependent risk of alcohol-associated liver disease (odd ratio [OR] = 1.34, P = 2.6 × 10-5 ) and fatty liver disease (OR = 1.18, P = 5.8 × 10-4 ) by International Classification of Diseases, 10th Revision codes. We identified significant interactions between GPAM rs10787429 and elevated body mass index in association with ALT and AST (P = 7.1 × 10-9 and 3.95 × 10-8 , respectively), as well as between GPAM rs10787429 and weekly alcohol consumption in association with ALT, AST, and alcohol-associated liver disease (P = 4.0 × 10-2 , 1.6 × 10-2 , and 1.3 × 10-2 , respectively). Unlike previously described genetic variants that are associated with an increased risk of liver injury but confer a protective effect on circulating lipids, GPAM rs10787429 was associated with an increase in total cholesterol (P = 2.0 × 10-17 ), LDL cholesterol (P = 2.0 × 10-10 ), and HDL cholesterol (P = 6.6 × 10-37 ). Single-cell RNA-sequencing data demonstrated hepatocyte-predominant expression of GPAM in cells that co-express genes related to VLDL production (P = 9.4 × 10-103 ). CONCLUSIONS Genetic variation in GPAM is associated with susceptibility to liver injury. GPAM may represent a therapeutic target in chronic liver disease.
Collapse
Affiliation(s)
- Aaron Hakim
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Matthew Moll
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Joseph Brancale
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT
| | - Jiangyuan Liu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Silvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT
| | - Z. Gordon Jiang
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Ioannis S. Vlachos
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Xuehong Zhang
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
| | - Fredrik Åberg
- Transplantation and Liver Surgery Clinic, Helsinki University Hospital, Helsinki, Finland
| | - Nezam H. Afdhal
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Brian D. Hobbs
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Michael H. Cho
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
19
|
Ahn J, Lee H, Jung CH, Ha SY, Seo HD, Kim YI, Ha T. 6-Gingerol Ameliorates Hepatic Steatosis via HNF4α/miR-467b-3p/GPAT1 Cascade. Cell Mol Gastroenterol Hepatol 2021; 12:1201-1213. [PMID: 34139323 PMCID: PMC8445893 DOI: 10.1016/j.jcmgh.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS The development of nonalcoholic fatty liver disease (NAFLD) can be modulated by microRNAs (miRNA). Dietary polyphenols modulate the expression of miRNA such as miR-467b-3p in the liver. In addition, 6-gingerol (6-G), the functional polyphenol of ginger, has been reported to ameliorate hepatic steatosis; however, the exact mechanism involved and the role of miRNA remain elusive. In this study, we assessed the role of miR-467b-3p in the pathogenesis of hepatic steatosis and the regulation of miR-467b-3p by 6-G through the hepatocyte nuclear factor 4α (HNF4α). METHODS miR-467b-3p expression was measured in free fatty acid (FFA)-treated hepatocytes or liver from high-fat diet (HFD)-fed mice. Gain- or loss-of-function of miR-467b-3p was induced using miR-467b-3p-specific miRNA mimic or miRNA inhibitor, respectively. 6-G was exposed to FFA-treated cells and HFD-fed mice. The HNF4α/miR-467b-3p/GPAT1 axis was measured in mouse and human fatty liver tissues. RESULTS We found that miR-467b-3p was down-regulated in liver tissues from HFD-fed mice and in FFA-treated Hepa1-6 cells. Overexpression of miR-467b-3p decreased intracellular lipid accumulation in FFA-treated hepatocytes and mitigated hepatic steatosis in HFD-fed mice via negative regulation of glycerol-3-phosphate acyltransferase-1 (GPAT1). In addition, miR-467b-3p up-regulation by 6-G was observed. 6-G inhibited FFA-induced lipid accumulation and mitigated hepatic steatosis. Moreover, it increased the transcriptional activity of HNF4α, resulting in the increase of miR-467b-3p and subsequent decrease of GPAT1. HNF4α/miR-467b-3p/GPAT1 signaling also was observed in human samples with hepatic steatosis. CONCLUSIONS Our findings establish a novel mechanism by which 6-G improves NAFLD. This suggests that targeting of the HNF4α/miR-467b-3p/GPAT1 cascade may be used as a potential therapeutic strategy to control NAFLD.
Collapse
Affiliation(s)
- Jiyun Ahn
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Hyunjung Lee
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Chang Hwa Jung
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University of Medicine and Science, Incheon, Korea
| | - Hyo-Deok Seo
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Young In Kim
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Taeyoul Ha
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
20
|
Li N, Zhou P, Tang H, He L, Fang X, Zhao J, Wang X, Qi Y, Sun C, Lin Y, Qin F, Yang M, Zhang Z, Liao C, Zheng S, Peng X, Xue T, Zhu Q, Li H, Li Y, Liu L, Huang J, Liu L, Peng C, Kaindl AM, Gecz J, Han D, Liu D, Xu K, Hu H. In-depth analysis reveals complex molecular aetiology in a cohort of idiopathic cerebral palsy. Brain 2021; 145:119-141. [PMID: 34077496 PMCID: PMC8967106 DOI: 10.1093/brain/awab209] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
Cerebral palsy is the most prevalent physical disability in children; however, its inherent molecular mechanisms remain unclear. In the present study, we performed in-depth clinical and molecular analysis on 120 idiopathic cerebral palsy families, and identified underlying detrimental genetic variants in 45% of these patients. In addition to germline variants, we found disease-related postzygotic mutations in ∼6.7% of cerebral palsy patients. We found that patients with more severe motor impairments or a comorbidity of intellectual disability had a significantly higher chance of harbouring disease-related variants. By a compilation of 114 known cerebral-palsy-related genes, we identified characteristic features in terms of inheritance and function, from which we proposed a dichotomous classification system according to the expression patterns of these genes and associated cognitive impairments. In two patients with both cerebral palsy and intellectual disability, we revealed that the defective TYW1, a tRNA hypermodification enzyme, caused primary microcephaly and problems in motion and cognition by hindering neuronal proliferation and migration. Furthermore, we developed an algorithm and demonstrated in mouse brains that this malfunctioning hypermodification specifically perturbed the translation of a subset of proteins involved in cell cycling. This finding provided a novel and interesting mechanism for congenital microcephaly. In another cerebral palsy patient with normal intelligence, we identified a mitochondrial enzyme GPAM, the hypomorphic form of which led to hypomyelination of the corticospinal tract in both human and mouse models. In addition, we confirmed that the aberrant Gpam in mice perturbed the lipid metabolism in astrocytes, resulting in suppressed astrocytic proliferation and a shortage of lipid contents supplied for oligodendrocytic myelination. Taken together, our findings elucidate novel aspects of the aetiology of cerebral palsy and provide insights for future therapeutic strategies.
Collapse
Affiliation(s)
- Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Pei Zhou
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hongmei Tang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Lu He
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Xiang Fang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Jinxiang Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Yifei Qi
- Division of Uterine Vascular Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Fengying Qin
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Miaomiao Yang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Zhan Zhang
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Caihua Liao
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Shuxin Zheng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Xiaofang Peng
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Ting Xue
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Qianying Zhu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Yan Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Liru Liu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Jingyu Huang
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Li Liu
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Changgeng Peng
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, 200029, Shanghai, China
| | - Angela M Kaindl
- Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin, 13353, Berlin, Germany.,Center for Chronically Sick Children, Charité-Universitätsmedizin, 13353, Berlin, Germany
| | - Jozef Gecz
- Adelaide Medical School, University of Adelaide, SA5005, Adelaide, Australia
| | - Dingding Han
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China
| | - Dong Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001, Nantong, China
| | - Kaishou Xu
- Department of Rehabilitation, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510120, Guangzhou, China
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623, Guangzhou, China.,Third Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| |
Collapse
|
21
|
Yu H, Zhao Y, Iqbal A, Xia L, Bai Z, Sun H, Fang X, Yang R, Zhao Z. Effects of polymorphism of the GPAM gene on milk quality traits and its relation to triglyceride metabolism in bovine mammary epithelial cells of dairy cattle. Arch Anim Breed 2021; 64:35-44. [PMID: 34084902 PMCID: PMC8161264 DOI: 10.5194/aab-64-35-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial glycerol-3-phosphate acyltransferase
(GPAM) catalyses the initial and rate-regulated first-stage pathway of glycerol
lipid synthesis and helps to allocate acyl-CoA (acyl-coenzyme A) to triglyceride (TG)
synthesis and away from degradation pathways in animal lipometabolism-related pathways. In this study, RNA interference (RNAi) and GPAM gene overexpression were used to
examine the correlation between the expression of GPAM and adipogenesis in bovine
mammary epithelial cells (bMECs). Additionally, three novel polymorphisms
were identified within the bovine key functional domain of GPAM with Sanger
sequencing. The relationship between variants of the GPAM gene and milk quality
traits of Chinese Holstein cows was then analysed using statistical methods.
The results showed that knockdown of the GPAM gene significantly reduced the synthesis of
triglycerides in the bMECs (p < 0.05), whereas the overexpression
of the GPAM gene significantly increased the synthesis of TG (p < 0.05). In Chinese Holstein
dairy cattle, the
polymorphic locus of the GPAM gene E20-3386G > A was significantly
correlated with fat, protein and somatic cell count
(p < 0.05); I18-652A > G was significantly correlated with fat, total fat
content, protein, dry matter and somatic cell count (p < 0.05); and I18-726A > G was significantly correlated with protein,
milk yield, dry matter and somatic cell count (p < 0.05). Specifically, individuals with the AA genotype of the
I18-652A > G and E20-3386G > A polymorphic loci had a
higher milk fat percentage (p < 0.05). In summary, GPAM plays a pivotal role in the
intracellular regulation of triglyceride, and its mutations could work as
a competent molecular marker for selective breeding in dairy cattle.
Collapse
Affiliation(s)
- Haibin Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Yaolu Zhao
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Ambreen Iqbal
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China
| | - Lixin Xia
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Zitong Bai
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China.,College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China
| |
Collapse
|
22
|
Huang D, Liu J, Eldridge RC, Gaul DA, Paine MRL, Uppal K, MacDonald TJ, Fernández FM. Lipidome signatures of metastasis in a transgenic mouse model of sonic hedgehog medulloblastoma. Anal Bioanal Chem 2020; 412:7017-7027. [PMID: 32794007 PMCID: PMC7982123 DOI: 10.1007/s00216-020-02837-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022]
Abstract
Medulloblastoma (MB), the most common malignant pediatric brain tumor, has high propensity to metastasize. Currently, the standard treatment for MB patients includes radiation therapy administered to the entire brain and spine for the purpose of treating or preventing against metastasis. Due to this aggressive treatment, the majority of long-term survivors will be left with permanent and debilitating neurocognitive impairment, for the 30-40% patients that fail to respond to treatment, all will relapse with terminal metastatic disease. An understanding of the underlying biology that drives MB metastasis is lacking, and is critically needed in order to develop targeted therapeutics for its prevention. To examine the metastatic biology of sonic hedgehog (SHH) MB, the human MB subgroup with the worst clinical outcome in children, we first generated a robust SmoA1-Math-GFP mouse model that reliably reproduces human SHH MB whereby metastases can be visualized under fluorescence microscopy. Lipidome alterations associated with metastasis were then investigated by applying ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) under positive ionization mode to primary tumor samples collected from mice without (n = 18) and with (n = 7) metastasis. Thirty-four discriminant lipids associated with SHH MB metastasis were successfully annotated, including ceramides (Cers), sphingomyelins (SMs), triacylglycerols (TGs), diacylglycerols (DGs), phosphatidylcholines (PCs), and phosphatidic acids (PAs). This study provides deeper insights into dysregulations of lipid metabolism associated with SHH MB metastatic progression, and thus serves as a guide toward novel targeted therapies.
Collapse
Affiliation(s)
- Danning Huang
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jingbo Liu
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | - David A Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Karan Uppal
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Tobey J MacDonald
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
23
|
Kim HI, Ye B, Gosalia N, Köroğlu Ç, Hanson RL, Hsueh WC, Knowler WC, Baier LJ, Bogardus C, Shuldiner AR, Van Hout CV, Van Hout CV. Characterization of Exome Variants and Their Metabolic Impact in 6,716 American Indians from the Southwest US. Am J Hum Genet 2020; 107:251-264. [PMID: 32640185 DOI: 10.1016/j.ajhg.2020.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Applying exome sequencing to populations with unique genetic architecture has the potential to reveal novel genes and variants associated with traits and diseases. We sequenced and analyzed the exomes of 6,716 individuals from a Southwestern American Indian (SWAI) population with well-characterized metabolic traits. We found that the SWAI population has distinct allelic architecture compared to populations of European and East Asian ancestry, and there were many predicted loss-of-function (pLOF) and nonsynonymous variants that were highly enriched or private in the SWAI population. We used pLOF and nonsynonymous variants in the SWAI population to evaluate gene-burden associations of candidate genes from European genome-wide association studies (GWASs) for type 2 diabetes, body mass index, and four major plasma lipids. We found 19 significant gene-burden associations for 11 genes, providing additional evidence for prioritizing candidate effector genes of GWAS signals. Interestingly, these associations were mainly driven by pLOF and nonsynonymous variants that are unique or highly enriched in the SWAI population. Particularly, we found four pLOF or nonsynonymous variants in APOB, APOE, PCSK9, and TM6SF2 that are private or enriched in the SWAI population and associated with low-density lipoprotein (LDL) cholesterol levels. Their large estimated effects on LDL cholesterol levels suggest strong impacts on protein function and potential clinical implications of these variants in cardiovascular health. In summary, our study illustrates the utility and potential of exome sequencing in genetically unique populations, such as the SWAI population, to prioritize candidate effector genes within GWAS loci and to find additional variants in known disease genes with potential clinical impact.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Cristopher V Van Hout
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591, USA.
| |
Collapse
|
24
|
Kappelt F, Du Ma X, Abou Hasna B, Kornke JM, Maniak M. Phospholipids containing ether-bound hydrocarbon-chains are essential for efficient phagocytosis and neutral lipids of the ester-type perturb development in Dictyostelium. Biol Open 2020; 9:9/7/bio052126. [PMID: 32675052 PMCID: PMC7375469 DOI: 10.1242/bio.052126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Lipids are the building blocks for cellular membranes; they provide signalling molecules for membrane dynamics and serve as energy stores. One path of their synthesis is initiated by glycerol-3-phosphate acyltransferase (GPAT), which in Dictyostelium resides on the endoplasmic reticulum. When an excess of fatty acids is present, it redistributes to storage organelles, the lipid droplets. Mutants, where the GPAT was eliminated by homologous recombination, produce fewer lipid droplets and are almost devoid of triacylglycerols (TAG), rendering them more resistant to cell death and cell loss in the developmental stages preceding fruiting body formation. The enzyme most closely related to GPAT is called FARAT, because it combines a fatty acyl-reductase (FAR) and an acyltransferase (AT) domain in its sequence. The protein is confined to the lumen of the peroxisome, where it transfers a fatty acid to dihydroxyacetone-phosphate initiating the synthesis of ether lipids, later completed at the endoplasmic reticulum. A mutant lacking FARAT produces lipid droplets that are devoid of the storage lipid monoalkyl-diacyl-glycerol (MDG), but the efficiency of spore formation in the developmental cycle is largely unaltered. Instead, these mutants are strongly impaired in phagocytosis of yeast particles, which is attributed to reduced synthesis of membrane phospholipids containing ether-linked chains.
Collapse
Affiliation(s)
| | - Xiaoli Du Ma
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| | | | | | - Markus Maniak
- Zellbiologie, Universität Kassel, D-34109 Kassel, Germany
| |
Collapse
|
25
|
Hoa Chung L, Qi Y. Lipodystrophy - A Rare Condition with Serious Metabolic Abnormalities. Rare Dis 2020. [DOI: 10.5772/intechopen.88667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Simic P, Kim W, Zhou W, Pierce KA, Chang W, Sykes DB, Aziz NB, Elmariah S, Ngo D, Pajevic PD, Govea N, Kestenbaum BR, de Boer IH, Cheng Z, Christov M, Chun J, Leaf DE, Waikar SS, Tager AM, Gerszten RE, Thadhani RI, Clish CB, Jüppner H, Wein MN, Rhee EP. Glycerol-3-phosphate is an FGF23 regulator derived from the injured kidney. J Clin Invest 2020; 130:1513-1526. [PMID: 32065590 PMCID: PMC7269595 DOI: 10.1172/jci131190] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that controls blood phosphate levels by increasing renal phosphate excretion and reducing 1,25-dihydroxyvitamin D3 [1,25(OH)2D] production. Disorders of FGF23 homeostasis are associated with significant morbidity and mortality, but a fundamental understanding of what regulates FGF23 production is lacking. Because the kidney is the major end organ of FGF23 action, we hypothesized that it releases a factor that regulates FGF23 synthesis. Using aptamer-based proteomics and liquid chromatography-mass spectrometry-based (LC-MS-based) metabolomics, we profiled more than 1600 molecules in renal venous plasma obtained from human subjects. Renal vein glycerol-3-phosphate (G-3-P) had the strongest correlation with circulating FGF23. In mice, exogenous G-3-P stimulated bone and bone marrow FGF23 production through local G-3-P acyltransferase-mediated (GPAT-mediated) lysophosphatidic acid (LPA) synthesis. Further, the stimulatory effect of G-3-P and LPA on FGF23 required LPA receptor 1 (LPAR1). Acute kidney injury (AKI), which increases FGF23 levels, rapidly increased circulating G-3-P in humans and mice, and the effect of AKI on FGF23 was abrogated by GPAT inhibition or Lpar1 deletion. Together, our findings establish a role for kidney-derived G-3-P in mineral metabolism and outline potential targets to modulate FGF23 production during kidney injury.
Collapse
Affiliation(s)
- Petra Simic
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wondong Kim
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wen Zhou
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kerry A Pierce
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Wenhan Chang
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, UCSF, San Francisco, California, USA
| | | | | | - Sammy Elmariah
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Debby Ngo
- Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Paola Divieti Pajevic
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Nicolas Govea
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Bryan R Kestenbaum
- Kidney Research Institute, University of Washington Medicine and Northwest Kidney Centers, Seattle, Washington, USA
| | - Ian H de Boer
- Kidney Research Institute, University of Washington Medicine and Northwest Kidney Centers, Seattle, Washington, USA
| | - Zhiqiang Cheng
- Endocrine Research Unit, San Francisco Veterans Affairs Medical Center, UCSF, San Francisco, California, USA
| | - Marta Christov
- Department of Medicine, New York Medical College, Touro College, Valhalla, New York, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - David E Leaf
- Division of Renal (Kidney) Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sushrut S Waikar
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Robert E Gerszten
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA.,Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Clary B Clish
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| | - Harald Jüppner
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Pediatric Nephrology and Hypertension Program, Mass General for Children, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marc N Wein
- Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Eugene P Rhee
- Nephrology Division and.,Endocrine Unit, Endocrinology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Anyanwu GO, Kolb AF, Bermano G. Antiobesity functional leads and targets for drug development. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020:143-160. [DOI: 10.1016/b978-0-12-817890-4.00009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Functional Analysis of Genes Involved in Glycerolipids Biosynthesis ( GPAT1 and GPAT2) in Pigs. Animals (Basel) 2019; 9:ani9060308. [PMID: 31159297 PMCID: PMC6617006 DOI: 10.3390/ani9060308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Pork consumption is the highest among all meats in Poland and in the world. Current breeding programs were designed to obtain high meat content and low levels of fat in pork carcasses. This resulted in a decrease in the quality of meat. Numerous researchers indicated that intramuscular fat content (IMF) is the determining factor for meat quality and consumer’s acceptance of meat. The genes GPAT1 and GPAT2, being the objective of this study are involved in triacylglycerol (TAG) synthesis. TAGs are the main constituents of animal fat as well as of IMF. The aim of this study was to assess the expression level of the GPAT1 and GPAT2 genes in musculus longissimus lumborum, subcutaneous fat and liver of pigs. Moreover, association analysis between the genes’ expression, production traits, quality and sensory parameters of pork was carried out. The results obtained showed significant differences in the mRNA expression of analyzed genes between tissues and breeds of pigs. Furthermore, association analysis showed significant associations between expression level of the genes and some of the production traits, sensory and quality parameters of pork. The results of this study indicated the possibility of modification of desired traits through transcriptional control of gene expression. Abstract Glycerol-3-phosphate acyltransferase (GPAT) enzymes catalyze the first step in triacylglycerol (TAG) synthesis. Genes that belong to the GPAT family are potential genetic markers for intramuscular fat content (IMF) content and thus meat quality. The objective of this study was to analyze the expression of GPAT1 and GPAT2 genes in musculus longissimus lumborum, liver and subcutaneous fat of various breeds of pigs. Furthermore, correlations between the genes’ expression abundance and utility traits, meat quality and meat texture parameters of pork were determined. The results obtained showed significant differences in the mRNA level of GPAT1 between analyzed tissues and breeds. The highest expression of GPAT1 gene was observed in liver tissue (p ≤ 0.01). Furthermore, significantly higher GPAT1 transcript level in the m. longissimus lumborum was observed for duroc in comparison to other analyzed breeds (p ≤ 0.05). Expression of the GPAT2 gene was shown only in the liver tissues, however statistically significant differences between the analyzed breeds were not observed. Correlation analysis confirmed the highest association between GPAT2 gene expression level in liver and cohesiveness and resilience traits of m. longissimus lumborum (p ≤ 0.01).
Collapse
|
29
|
Coleman RA. It takes a village: channeling fatty acid metabolism and triacylglycerol formation via protein interactomes. J Lipid Res 2019; 60:490-497. [PMID: 30683668 PMCID: PMC6399496 DOI: 10.1194/jlr.s091843] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Diet, hormones, gene transcription, and posttranslational modifications control the hepatic metabolism of FAs; metabolic dysregulation causes chronic diseases, including cardiovascular disease, and warrants exploration into the mechanisms directing FA and triacylglycerol (TAG) synthesis and degradation. Long-chain FA metabolism begins by formation of an acyl-CoA by a member of the acyl-CoA synthetase (ACSL) family. Subsequently, TAG synthesis begins with acyl-CoA esterification to glycerol-3-phosphate by a member of the glycerol-3-phosphate acyltransferase (GPAT) family. Our studies of the isoforms ACSL1 and GPAT1 strongly suggest that these proteins are members of larger protein assemblies (interactomes). ACSL1 targeted to the ER interacts with peroxisomal, lipid droplet, and tethering proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. On the outer mitochondrial membrane (OMM), PPARα upregulates ACSL1, which interacts with proteins believed to tether lipid droplets to the OMM. In contrast, GPAT1 is upregulated nutritionally by carbohydrate and insulin in a coordinated sequence of enzyme reactions, from saturated FA formation via de novo lipogenesis to FA esterification by GPAT1 and entry into the TAG biosynthesis pathway. We propose that involved enzymes form a dynamic protein interactome that facilitates esterification and that other lipid-metabolizing pathways will exist in similar physiologically regulated interactomes.
Collapse
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
30
|
Transcriptional Regulation of Acyl-CoA:Glycerol- sn-3-Phosphate Acyltransferases. Int J Mol Sci 2019; 20:ijms20040964. [PMID: 30813330 PMCID: PMC6412627 DOI: 10.3390/ijms20040964] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Acyl-CoA:glycerol-sn-3-phosphate acyltransferase (GPAT) is an enzyme responsible for the rate-limiting step in the synthesis of glycerophospholipids and triacylglycerol (TAG). The enzymes of mammalian species are classified into four isoforms; GPAT1 and GPAT2 are localized in the mitochondrial outer membrane, whereas GPAT3 and GPAT4 are localized in the endoplasmic reticulum membrane. The activity of each enzyme expressed is associated with physiological and pathological functions. The transcriptional regulation is well known, particularly in GPAT1. GPAT1 mRNA expression is mainly regulated by the binding of the transcriptional factor SREBP-1c to the specific element (the sterol regulatory element) flanking the GPAT1 promoter. The TAG level is controlled by the insulin-induced transcriptional expression of GPAT1, which occupies most of the GPAT activity in the liver. The transcriptional regulation of the other three GPAT isoforms remains undetermined in detail. It is predicted that retinoic acid serves as a transcription factor in the GPAT2 promoter. PPARγ (peroxisome proliferator-activated receptor γ) increases the mRNA expression of GPAT3, which is associated with TAG synthesis in adipose tissues. Although GPAT has been considered to be a key enzyme in the production of TAG, unexpected functions have recently been reported, particularly in GPAT2. It is likely that GPAT2 is associated with tumorigenesis and normal spermatogenesis. In this review, the physiological and pathophysiological roles of the four GPAT isoforms are described, alongside the transcriptional regulation of these enzymes.
Collapse
|
31
|
Argov-Argaman N. Symposium review: Milk fat globule size: Practical implications and metabolic regulation. J Dairy Sci 2019; 102:2783-2795. [PMID: 30639008 DOI: 10.3168/jds.2018-15240] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Milk fat globule (MFG) size ranges over 3 orders of magnitude, from less than 200 nm to over 15 µm. The significance of MFG size derives from its tight association with its lipidome and proteome. More specifically, small MFG have relatively higher content of membrane compared with large globules, and this membrane exerts diverse positive health effects, as reported in human and animal studies. In addition, MFG size has industrial significance, as it affects the physicochemical and sensory characteristics of dairy products. Studies on the size regulation of MFG are scarce, mainly because various confounders indirectly affect MFG size. Because MFG size is determined before and during its secretion from mammary epithelial cells, studies on the size regulation of its precursors, the intracellular lipid droplets (LD), have been used as a proxy for understanding the mechanisms controlling MFG size. In this review, we provide evidence for 2 distinct mechanisms regulating LD size in mammary epithelial cells: co-regulation of fat content and triglyceride-synthesis capacity of the cells, and fusion between LD. The latter is controlled by the membrane's polar lipid composition and involves mitochondrial enzymes. Accordingly, this review also discusses MFG size regulation in the in vivo metabolic context, as MFG morphometric features are often modulated under conditions that involve animals' altered energy status.
Collapse
Affiliation(s)
- Nurit Argov-Argaman
- Department of Animal Science, the Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel, POB 76100.
| |
Collapse
|
32
|
Sokolowska E, Blachnio-Zabielska A. The Role of Ceramides in Insulin Resistance. Front Endocrinol (Lausanne) 2019; 10:577. [PMID: 31496996 PMCID: PMC6712072 DOI: 10.3389/fendo.2019.00577] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
Abstract
Resistance to insulin is a pathophysiological state related to the decreased response of peripheral tissues to the insulin action, hyperinsulinemia and raised blood glucose levels caused by increased hepatic glucose outflow. All the above precede the onset of full-blown type 2 diabetes. According to the World Health Organization (WHO), in 2016 more than 1.9 billion people over 18 years of age were overweight and about 600 million were obese. Currently, the primary hypothesis explaining the probability of occurrence of insulin resistance assigns a fundamental role of lipids accumulation in adipocytes or nonadipose tissue (muscle, liver) and the locally developing chronic inflammation caused by adipocytes hypertrophy. However, the major molecular pathways are unknown. The sphingolipid ceramide is the main culprit that combines a plethora of nutrients (e.g., saturated fatty acids) and inflammatory cytokines (e.g., TNFα) to the progression of insulin resistance. The accumulation of sphingolipid ceramide in tissues of obese humans, rodents and Western-diet non-human primates is in line with diabetes, hypertension, cardiac failure or atherosclerosis. In hypertrophied adipose tissue, after adipocytes excel their storage capacity, neutral lipids begin to accumulate in nonadipose tissues, inducing organ dysfunction. Furthermore, obesity is closely related to the development of chronic inflammation and the release of cytokines directly from adipocytes or from macrophages that infiltrate adipose tissue. Enzymes taking part in ceramide metabolism are potential therapeutic targets to manipulate sphingolipids content in tissues, either by inhibition of their synthesis or through stimulation of ceramides degradation. In this review, we will evaluate the mechanisms responsible for the development of insulin resistance and possible therapeutic perspectives.
Collapse
|
33
|
Brain docosahexaenoic acid uptake and metabolism. Mol Aspects Med 2018; 64:109-134. [PMID: 29305120 DOI: 10.1016/j.mam.2017.12.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/22/2022]
Abstract
Docosahexaenoic acid (DHA) is the most abundant n-3 polyunsaturated fatty acid in the brain where it serves to regulate several important processes and, in addition, serves as a precursor to bioactive mediators. Given that the capacity of the brain to synthesize DHA locally is appreciably low, the uptake of DHA from circulating lipid pools is essential to maintaining homeostatic levels. Although, several plasma pools have been proposed to supply the brain with DHA, recent evidence suggests non-esterified-DHA and lysophosphatidylcholine-DHA are the primary sources. The uptake of DHA into the brain appears to be regulated by a number of complementary pathways associated with the activation and metabolism of DHA, and may provide mechanisms for enrichment of DHA within the brain. Following entry into the brain, DHA is esterified into and recycled amongst membrane phospholipids contributing the distribution of DHA in brain phospholipids. During neurotransmission and following brain injury, DHA is released from membrane phospholipids and converted to bioactive mediators which regulate signaling pathways important to synaptogenesis, cell survival, and neuroinflammation, and may be relevant to treating neurological diseases. In the present review, we provide a comprehensive overview of brain DHA metabolism, encompassing many of the pathways and key enzymatic regulators governing brain DHA uptake and metabolism. In addition, we focus on the release of non-esterified DHA and subsequent production of bioactive mediators and the evidence of their proposed activity within the brain. We also provide a brief review of the evidence from post-mortem brain analyses investigating DHA levels in the context of neurological disease and mood disorder, highlighting the current disparities within the field.
Collapse
|
34
|
Epigenetic Switching and Neonatal Nutritional Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1012:19-25. [PMID: 29956191 DOI: 10.1007/978-981-10-5526-3_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The hepatic metabolic function changes sequentially during early life in mammals to adapt to the drastic changes in the nutritional environment. Accordingly, hepatic fatty acid β-oxidation is activated after birth to produce energy from breast milk lipids. De novo lipogenesis is induced upon the onset of oral intake, when the major nutritional source switches to carbohydrate. However, how a particular metabolic pathway is activated during the liver maturation is poorly understood. We found that the expression of glycerol-3-phosphate acyltransferase 1 (GPAT1), a rate-limiting enzyme of de novo hepatic lipogenesis, is epigenetically regulated in the mouse liver by DNA methylation. In the neonatal liver, DNA methylation of the GPAT1 gene (Gpam) promoter, which is likely to be induced by DNA methyltransferase (Dnmt) 3b, inhibited the recruitment of sterol regulatory element-binding protein-1c (SREBP-1c), whereas in the adult, decreased DNA methylation resulted in active chromatin conformation, allowing the recruitment of SREBP-1c. Maternal nutritional environment affects the DNA methylation status in the Gpam promoter, GPAT1 expression, and triglyceride content in the liver of the offspring. We also found DNA demethylation and increased mRNA expression of the fatty acid β-oxidation genes in the postnatal mouse liver. The DNA demethylation is specifically induced in the lactation period. Analysis of mice deficient in the nuclear receptor peroxisome proliferator-activated receptor α (PPARα) and maternal administration of a PPARα ligand during the gestation and lactation periods reveals that the DNA demethylation is PPARα-dependent. These findings indicate the gene- and lifestage-specific DNA demethylation of a particular metabolic pathway in the neonatal liver to adapt the marked changes in nutritional environment in early life.
Collapse
|
35
|
Pollard AK, Ortori CA, Stöger R, Barrett DA, Chakrabarti L. Mouse mitochondrial lipid composition is defined by age in brain and muscle. Aging (Albany NY) 2017; 9:986-998. [PMID: 28325886 PMCID: PMC5391243 DOI: 10.18632/aging.101204] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/12/2017] [Indexed: 01/22/2023]
Abstract
Functionality of the lipid rich mitochondrial organelle declines with increased age. Recent advances in lipidomic technologies allowed us to perform a global characterisation of lipid composition in two different tissue types and age ranges. Ultra-high performance liquid chromatography coupled with high resolution mass spectrometry was used to establish and compare mitochondrial lipidomes of brain and skeletal muscle from young (4-11 weeks old) and middle age (78 weeks old) healthy mice. In middle age the brain mitochondria had reduced levels of fatty acids, particularly polyunsaturated fatty acids, while skeletal muscle mitochondria had a decreased abundance of phosphatidylethanolamine, but a pronounced increase of triglyceride levels. Reduced levels of phosphatidylethanolamines are known to decrease mitochondrial membrane fluidity and are connected with accelerated ageing. In mitochondria from skeletal muscle we propose that increased age causes a metabolic shift in the conversion of diacylglycerol so that triglycerides predominate compared with phosphatidylethanolamines. This is the first time mitochondrial lipid content in normal healthy mammalian ageing brain and muscle has been catalogued in such detail across all lipid classes. We identify distinct mitochondrial lipid signatures that change with age, revealing tissue-specific lipid pathways as possible targets to ameliorate ageing-related mitochondrial decline.
Collapse
Affiliation(s)
- Amelia K Pollard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Catharine A Ortori
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Reinhard Stöger
- Division of Animal Science, School of Biosciences, University of Nottingham, LE12 5RD, UK
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| |
Collapse
|
36
|
Wang H, Airola MV, Reue K. How lipid droplets "TAG" along: Glycerolipid synthetic enzymes and lipid storage. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1131-1145. [PMID: 28642195 PMCID: PMC5688854 DOI: 10.1016/j.bbalip.2017.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/06/2023]
Abstract
Triacylglycerols (TAG) serve as the predominant form of energy storage in mammalian cells, and TAG synthesis influences conditions such as obesity, fatty liver, and insulin resistance. In most tissues, the glycerol 3-phosphate pathway enzymes are responsible for TAG synthesis, and the regulation and function of these enzymes is therefore important for metabolic homeostasis. Here we review the sites and regulation of glycerol-3-phosphate acyltransferase (GPAT), acylglycerol-3-phosphate acyltransferase (AGPAT), lipin phosphatidic acid phosphatase (PAP), and diacylglycerol acyltransferase (DGAT) enzyme action. We highlight the critical roles that these enzymes play in human health by reviewing Mendelian disorders that result from mutation in the corresponding genes. We also summarize the valuable insights that genetically engineered mouse models have provided into the cellular and physiological roles of GPATs, AGPATs, lipins and DGATs. Finally, we comment on the status and feasibility of therapeutic approaches to metabolic disease that target enzymes of the glycerol 3-phosphate pathway. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Huan Wang
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Michael V Airola
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, CA, United States.
| |
Collapse
|
37
|
Glycerol-3-phosphate acyltransferase 2 is essential for normal spermatogenesis. Biochem J 2017; 474:3093-3107. [DOI: 10.1042/bcj20161018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022]
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first and rate-limiting step in the de novo glycerolipid synthesis. The GPAT2 isoform differs from the other isoforms because its expression is restricted to male germ cells and cancer cells. It has been recently reported that GPAT2 expression in mouse testis fluctuates during sexual maturation and that it is regulated by epigenetic mechanisms in combination with vitamin A derivatives. Despite progress made in this field, information about GPAT2 role in the developing male germ cells remains unclear. The aim of the present study was to confirm the hypothesis that GPAT2 is required for the normal physiology of testes and male germ cell maturation. The gene was silenced in vivo by inoculating lentiviral particles carrying the sequence of a short-hairpin RNA targeting Gpat2 mRNA into mouse testis. Histological and gene expression analysis showed impaired spermatogenesis and arrest at the pachytene stage. Defects in reproductive fitness were also observed, and the analysis of apoptosis-related gene expression demonstrated the activation of apoptosis in Gpat2-silenced germ cells. These findings indicate that GPAT2 protein is necessary for the normal development of male gonocytes, and that its absence triggers apoptotic mechanisms, thereby decreasing the number of dividing germ cells.
Collapse
|
38
|
Alves-Bezerra M, Ramos IB, De Paula IF, Maya-Monteiro CM, Klett EL, Coleman RA, Gondim KC. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:324-336. [DOI: 10.1016/j.bbalip.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
39
|
Keenan KA, Grove TJ, Oldham CA, O'Brien KM. Characterization of mitochondrial glycerol-3-phosphate acyltransferase in notothenioid fishes. Comp Biochem Physiol B Biochem Mol Biol 2016; 204:9-26. [PMID: 27836743 DOI: 10.1016/j.cbpb.2016.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Hearts of Antarctic icefishes (suborder Notothenioidei, family Channichthyidae) have higher densities of mitochondria, and mitochondria have higher densities of phospholipids, compared to red-blooded notothenioids. Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the rate-limiting step in glycerolipid biosynthesis. There are four isoforms of GPAT in vertebrates; GPAT1 and GPAT2 are localized to the outer mitochondrial membrane, whereas GPAT3 and GPAT4 are localized to the endoplasmic reticulum membrane. We hypothesized that transcript levels of GPAT1 and/or GPAT2 would mirror densities of mitochondrial phospholipids and be higher in the icefish Chaenocephalus aceratus compared to the red-blooded species Notothenia coriiceps. Transcript levels of GPAT1 were quantified in heart ventricles and liver using qRT-PCR. Additionally, GPAT1 cDNA was sequenced in the Antarctic notothenioids, C. aceratus and N. coriiceps, and in the sub-Antarctic notothenioid, Eleginops maclovinus, to identify amino acid substitutions that may maintain GPAT1 function at cold temperature. Transcript levels of GPAT1 were higher in liver compared to heart ventricles but were not significantly different between the two species. In contrast, transcripts of GPAT2 were only detected in ventricle where they were 6.6-fold higher in C. aceratus compared to N. coriiceps. These data suggest GPAT1 may be more important for synthesizing triacylglycerol, whereas GPAT2 may regulate synthesis of phospholipids. GPAT1 amino acid sequences are highly conserved among the three notothenioids with 97.9-98.7% identity. Four amino acid substitutions within the cytosolic region of Antarctic notothenioid GPAT1 may maintain conformational changes necessary for binding and catalysis at cold temperature.
Collapse
Affiliation(s)
- Kelly A Keenan
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States
| | - Theresa J Grove
- Department of Biology, Valdosta State University, Valdosta, GA 31698, United States
| | - Corey A Oldham
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States
| | - Kristin M O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States.
| |
Collapse
|
40
|
Keenan K, Hoffman M, Dullen K, O'Brien KM. Molecular drivers of mitochondrial membrane proliferation in response to cold acclimation in threespine stickleback. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:109-114. [PMID: 27613226 DOI: 10.1016/j.cbpa.2016.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 10/21/2022]
Abstract
Little is known about how the synthesis of mitochondrial phospholipids is integrated into mitochondrial biogenesis in fish or mammals. Glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the addition of fatty acyl CoA to the sn-1 position of glycerol-3-phosphate, in what is considered the rate-limiting step in phospholipid biosynthesis. Previous studies have shown that mitochondrial volume density increases in oxidative skeletal muscle but not liver of Gasterosteus aculeatus (threespine stickleback) in response to cold acclimation. We hypothesized that maximal activity of GPAT would increase in oxidative skeletal muscle but not liver during cold acclimation, coinciding with mitochondrial biogenesis. GPAT activity was measured in liver and oxidative skeletal (pectoral adductor) muscle of threespine stickleback acclimated to 8°C or 20°C. In addition, mRNA levels of enzymes involved in phospholipid synthesis, including cytidine diphosphodiacylglycerol synthase-1 (CDS1), CDS2, GPAT1, GPAT2 and 1-acylglycerol 3-phosphate acyltransferase-2 (AGPAT2), were quantified in liver and pectoral muscle of stickleback harvested during cold acclimation. GPAT activity and transcript levels of AGPAT2 increased in response to cold acclimation in pectoral muscle but not liver. Transcript levels of GPAT1 increased in liver but not pectoral muscle. Overall our results suggest that the activity of GPAT, and possibly AGPAT as well, increase during cold acclimation and may contribute to mitochondrial phospholipid biosynthesis required for mitochondrial biogenesis.
Collapse
Affiliation(s)
- Kelly Keenan
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States
| | - Megan Hoffman
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States
| | - Kristin Dullen
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States
| | - Kristin M O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775, United States.
| |
Collapse
|
41
|
Wu X, Cao H, Zhao L, Song J, She Y, Feng Y. Metabolomic analysis of glycerophospholipid signatures of inflammation treated with non-steroidal anti-inflammatory drugs-induced-RAW264.7 cells using 1H NMR and U-HPLC/Q-TOF-MS. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1028:199-215. [DOI: 10.1016/j.jchromb.2016.06.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 01/29/2023]
|
42
|
Dong S, Chen QL, Song YN, Sun Y, Wei B, Li XY, Hu YY, Liu P, Su SB. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. J Toxicol Sci 2016; 41:561-72. [PMID: 27452039 DOI: 10.2131/jts.41.561] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The classic toxicity of carbon tetrachloride (CCl4) is to induce liver lesion and liver fibrosis. Liver fibrosis is a consequence of chronic liver lesion, which can progress into liver cirrhosis even hepatocarcinoma. However, the toxicological mechanisms of CCl4-induced liver fibrosis remain not fully understood. We combined transcriptomic and proteomic analysis and biological network technology, predicted toxicological targets and regulatory networks of CCl4 in liver fibrosis. Wistar rats were treated with CCl4 for 9 weeks. Histopathological changes, hydroxyproline (Hyp) contents, serum ALT and AST in the CCl4-treated group were significantly higher than that of CCl4-untreated group. CCl4-treated and -untreated liver tissues were examined by microarray and iTRAQ. The results showed that 3535 genes (fold change ≥ 1.5, P < 0.05) and 1412 proteins (fold change ≥ 1.2, P < 0.05) were differentially expressed. Moreover, the integrative analysis of transcriptomics and proteomics data showed 523 overlapped proteins, enriched in 182 GO terms including oxidation reduction, response to oxidative stress, inflammatory response, extracellular matrix organization, etc. Furthermore, KEGG pathway analysis showed that 36 pathways including retinol metabolism, PPAR signaling pathway, glycolysis/gluconeogenesis, arachidonic acid metabolism, metabolism of xenobiotics by cytochrome P450 and drug metabolism. Network of protein-protein interaction (PPI) and key function with their related targets were performed and the degree of network was calculated with Cytoscape. The expression of key targets such as CYP4A3, ALDH2 and ALDH7A1 decreased after CCl4 treatment. Therefore, the toxicological mechanisms of CCl4-induced liver fibrosis may be related with multi biological process, pathway and targets which may provide potential protection reaction mechanism for CCl4 detoxication in the liver.
Collapse
Affiliation(s)
- Shu Dong
- Research Center for Traditional Chinese Medicine Complexity System, Shanghai University of Traditional Chinese Medicine, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gonzalez-Baro MR, Coleman RA. Mitochondrial acyltransferases and glycerophospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:49-55. [PMID: 27377347 DOI: 10.1016/j.bbalip.2016.06.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Our understanding of the synthesis and remodeling of mitochondrial phospholipids remains incomplete. Two isoforms of glycerol-3-phosphate acyltransferase (GPAT1 and 2) and two isoforms of acylglycerol-3-phosphate acyltransferase (AGPAT4 and 5) are located on the outer mitochondrial membrane, suggesting that both lysophosphatidic acid and phosphatidic acid are synthesized in situ for de novo glycerolipid biosynthesis. However, it is believed that the phosphatidic acid substrate for cardiolipin and phosphatidylethanolamine biosynthesis is produced at the endoplasmic reticulum whereas the phosphatidic acid synthesized in the mitochondria must be transferred to the endoplasmic reticulum before it undergoes additional steps to form the mature phospholipids that are trafficked back to the mitochondria. It is unclear whether mitochondrial phospholipids are remodeled by mitochondrial acyltransferases or whether lysophospholipids must return to the endoplasmic reticulum or to the mitochondrial associated membrane for reesterification. In this review we will focus on the few glycerolipid acyltransferases that are known to be mitochondrial. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquımicas de La Plata, CONICET, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
44
|
Dufresne M, Masson JF, Chaurand P. Sodium-Doped Gold-Assisted Laser Desorption Ionization for Enhanced Imaging Mass Spectrometry of Triacylglycerols from Thin Tissue Sections. Anal Chem 2016; 88:6018-25. [PMID: 27145160 DOI: 10.1021/acs.analchem.6b01141] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The deposition of sodium salts followed by a sputtered layer of gold has been demonstrated to be a power combination for the analysis of triacylglycerols (TAGs) from tissue sections by laser desorption ionization (LDI) imaging mass spectrometry (IMS). Various sodium salts were tested for their capability to ionize TAGs and their ability to produce fast drying, small crystals (≤3 μm). The spray deposition of a sodium acetate and carbonate buffer mixture at pH 10.3 on which a 28 ± 3 nm sputtered layer of gold (Au-CBS) is subsequently deposited was found to provide the most effective combination for TAG analysis by high imaging resolution IMS. Under these conditions, a 30-fold increase in TAG signal intensity was observed when compared to matrix-assisted LDI (MALDI) methods using 2,5-dihydrobenzoic acid as matrix. Furthermore, Au-CBS led to an increase in the number of detected TAG species from ∼7 with DHB to more than 25 with the novel method, while few phospholipid signals were observed. These results were derived from the IMS investigation of fresh frozen mouse liver and rabbit adrenal gland tissue sections with a range of higher spatial resolutions between 35 and 10 μm. Au-CBS-LDI MS presents a highly sensitive and specific alternative to MALDI MS for imaging of TAGs from tissue sections. This novel approach has the potential to provide new biological insights on the role of TAGs in both health and disease.
Collapse
Affiliation(s)
- Martin Dufresne
- Department of Chemistry, University of Montreal , Montreal, Quebec H3C 3J7, Canada
| | - Jean-François Masson
- Department of Chemistry, University of Montreal , Montreal, Quebec H3C 3J7, Canada.,Centre for Self-Assembled Chemical Structures (CSACS), McGill University , Montreal, Quebec H3A 2K6, Canada
| | - Pierre Chaurand
- Department of Chemistry, University of Montreal , Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
45
|
Hyötyläinen T, Jerby L, Petäjä EM, Mattila I, Jäntti S, Auvinen P, Gastaldelli A, Yki-Järvinen H, Ruppin E, Orešič M. Genome-scale study reveals reduced metabolic adaptability in patients with non-alcoholic fatty liver disease. Nat Commun 2016; 7:8994. [PMID: 26839171 PMCID: PMC4742839 DOI: 10.1038/ncomms9994] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/22/2015] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major risk factor leading to chronic liver disease and type 2 diabetes. Here we chart liver metabolic activity and functionality in NAFLD by integrating global transcriptomic data, from human liver biopsies, and metabolic flux data, measured across the human splanchnic vascular bed, within a genome-scale model of human metabolism. We show that an increased amount of liver fat induces mitochondrial metabolism, lipolysis, glyceroneogenesis and a switch from lactate to glycerol as substrate for gluconeogenesis, indicating an intricate balance of exacerbated opposite metabolic processes in glycemic regulation. These changes were associated with reduced metabolic adaptability on a network level in the sense that liver fat accumulation puts increasing demands on the liver to adaptively regulate metabolic responses to maintain basic liver functions. We propose that failure to meet excessive metabolic challenges coupled with reduced metabolic adaptability may lead to a vicious pathogenic cycle leading to the co-morbidities of NAFLD.
Collapse
Affiliation(s)
- Tuulia Hyötyläinen
- Department of Systems Medicine, Steno Diabetes Center, Niels Steensens Vej 6, Gentofte, DK-2820, Denmark
- VTT Technical Research Centre of Finland, Espoo, FI-02044 VTT, Finland
| | - Livnat Jerby
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elina M. Petäjä
- Department of Medicine, Division of Diabetes, University of Helsinki, Helsinki, FI-00014, Finland
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Ismo Mattila
- Department of Systems Medicine, Steno Diabetes Center, Niels Steensens Vej 6, Gentofte, DK-2820, Denmark
- VTT Technical Research Centre of Finland, Espoo, FI-02044 VTT, Finland
| | - Sirkku Jäntti
- VTT Technical Research Centre of Finland, Espoo, FI-02044 VTT, Finland
- Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki FI-00014, Finland
| | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa 56124, Italy
| | - Hannele Yki-Järvinen
- Department of Medicine, Division of Diabetes, University of Helsinki, Helsinki, FI-00014, Finland
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Eytan Ruppin
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
- Center for BioInformatics and Computational Biology, Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - Matej Orešič
- Department of Systems Medicine, Steno Diabetes Center, Niels Steensens Vej 6, Gentofte, DK-2820, Denmark
- VTT Technical Research Centre of Finland, Espoo, FI-02044 VTT, Finland
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku FI-20520, Finland
| |
Collapse
|
46
|
Tabe Y, Hatanaka Y, Nakashiro M, Sekihara K, Yamamoto S, Matsushita H, Kazuno S, Fujimura T, Ikegami T, Nakanaga K, Matsumoto H, Ueno T, Aoki J, Yokomizo T, Konopleva M, Andreeff M, Miida T, Iwabuchi K, Sasai K. Integrative genomic and proteomic analyses identifies glycerol-3-phosphate acyltransferase as a target of low-dose ionizing radiation in EBV infected-B cells. Int J Radiat Biol 2015; 92:24-34. [DOI: 10.3109/09553002.2015.1106021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
47
|
Cooper DE, Grevengoed TJ, Klett EL, Coleman RA. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes. J Biol Chem 2015; 290:15112-20. [PMID: 25918168 DOI: 10.1074/jbc.m115.649970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4(-/-) mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4(-/-) mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4(-/-) mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4(-/-) BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4(-/-) brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state.
Collapse
Affiliation(s)
| | | | - Eric L Klett
- From the Departments of Nutrition and Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
48
|
Pashaj A, Xia M, Moreau R. α-Lipoic acid as a triglyceride-lowering nutraceutical. Can J Physiol Pharmacol 2015; 93:1029-41. [PMID: 26235242 DOI: 10.1139/cjpp-2014-0480] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Considering the current obesity epidemic in the United States (>100 million adults are overweight or obese), the prevalence of hypertriglyceridemia is likely to grow beyond present statistics of ∼30% of the population. Conventional therapies for managing hypertriglyceridemia include lifestyle modifications such as diet and exercise, pharmacological approaches, and nutritional supplements. It is critically important to identify new strategies that would be safe and effective in lowering hypertriglyceridemia. α-Lipoic acid (LA) is a naturally occurring enzyme cofactor found in the human body in small quantities. A growing body of evidence indicates a role of LA in ameliorating metabolic dysfunction and lipid anomalies primarily in animals. Limited human studies suggest LA is most efficacious in situations where blood triglycerides are markedly elevated. LA is commercially available as dietary supplements and is clinically shown to be safe and effective against diabetic polyneuropathies. LA is described as a potent biological antioxidant, a detoxification agent, and a diabetes medicine. Given its strong safety record, LA may be a useful nutraceutical, either alone or in combination with other lipid-lowering strategies, when treating severe hypertriglyceridemia and diabetic dyslipidemia. This review examines the current evidence regarding the use of LA as a means of normalizing blood triglycerides. Also presented are the leading mechanisms of action of LA on triglyceride metabolism.
Collapse
Affiliation(s)
- Anjeza Pashaj
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mengna Xia
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.,Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
49
|
Gross DA, Silver DL. Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol 2015; 49:304-26. [PMID: 25039762 DOI: 10.3109/10409238.2014.931337] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid droplet (LD) is a phylogenetically conserved organelle. In eukaryotes, it is born from the endoplasmic reticulum, but unlike its parent organelle, LDs are the only known cytosolic organelles that are micellar in structure. LDs are implicated in numerous physiological and pathophysiological functions. Many aspects of the LD has captured the attention of diverse scientists alike and has recently led to an explosion in information on the LD biogenesis, expansion and fusion, identification of LD proteomes and diseases associated with LD biology. This review will provide a brief history of this fascinating organelle and provide some contemporary views of unanswered questions in LD biogenesis.
Collapse
Affiliation(s)
- David A Gross
- Program in Cardiovascular & Metabolic Disorders, Duke-NUS Graduate Medical School Singapore , Singapore , and
| | | |
Collapse
|
50
|
Du M, Liu X, Liu X, Yin X, Han S, Song Q, An S. Glycerol-3-phosphate O-acyltransferase is required for PBAN-induced sex pheromone biosynthesis in Bombyx mori. Sci Rep 2015; 5:8110. [PMID: 25630665 PMCID: PMC5389035 DOI: 10.1038/srep08110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 01/07/2015] [Indexed: 12/23/2022] Open
Abstract
Female moths employ their own pheromone blends as a communicational medium in mating behavior. The biosynthesis and release of sex pheromone in female moths are regulated by pheromone biosynthesis activating neuropeptide (PBAN) and the corresponding action of PBAN has been well elucidated in Bombyx mori. However, very little is known about the molecular mechanism regarding the biosynthesis of sex pheromone precursor. In this study, quantitative proteomics was utilized to comprehensively elucidate the expression dynamics of pheromone glands (PGs) during development. Proteomic analysis revealed a serial of differentially expressed sex pheromone biosynthesis-associated proteins at the different time points of B. mori development. Most interestingly B. mori glycerol-3-phosphate O-acyltransferase (BmGPAT) was found to be expressed during the key periods of sex pheromone biosynthesis. RNAi knockdown of BmGPAT confirmed the important function of this protein in the biosynthesis of sex pheromone precursor, triacylglcerol (TAG), and subsequently PBAN-induced production of sex pheromone, bombykol. Behavioral analysis showed that RNAi knockdown of GPAT significantly impaired the ability of females to attract males. Our findings indicate that GPAT acts to regulate the biosynthesis of sex pheromone precursor, TAG, thus influencing PBAN-induced sex pheromone production and subsequent mating behavior.
Collapse
Affiliation(s)
- Mengfang Du
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Xiaoguang Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Xiaoming Liu
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Xinming Yin
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| | - Shuangyin Han
- Translational Research Center, Zhengzhou University People's Hospital, Zhengzhou 450003 P.R. China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Shiheng An
- State key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002 P.R. China
| |
Collapse
|