1
|
Doshi J, Couto E, Staiti J, Vandenberghe LH, Zabaleta N. E2A, VA RNA I, and L4-22k adenoviral helper genes are sufficient for AAV production in HEK293 cells. Mol Ther Methods Clin Dev 2024; 32:101376. [PMID: 39670178 PMCID: PMC11635002 DOI: 10.1016/j.omtm.2024.101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
The replication-defective adeno-associated virus (AAV) is extensively utilized as a research tool or vector for gene therapy. The production process of AAV remains intricate, expensive, and mechanistically underexplored. With the aim of enhancing AAV manufacturing efficiencies in mammalian cells, we revisited the questions and optimization surrounding the requirement of the various adenoviral helper genes in enabling AAV production. First, we refined the minimal set of adenoviral genes in HEK293 AAV production to E2A, L4-22 K /33 K, and VA RNA I. These findings challenge the previously accepted necessity of adenoviral E4orf6 in AAV production. In addition, we identified L4-22 K genes as crucial helpers for AAV production. Next, a revised minimal adenoviral helper plasmid comprising E2A, L4-22 K, and VA RNA I genes was designed and demonstrated to yield high titer and potent AAV preps in HEK293 transient transfection. Lastly, stable packaging cells harboring inducible E2A and L4-22 K genes were shown to maintain AAV production yields comparable to transient transfection over a culture period of ∼10 weeks. Combined, these findings further our understanding of adenoviral helper function in mammalian AAV production and provide novel plasmid and cell-line reagents with an improved safety profile for potential broad applicability in the research and gene therapy community.
Collapse
Affiliation(s)
- Jiten Doshi
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Emma Couto
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
| | - Jillian Staiti
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
| | - Luk H. Vandenberghe
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Nerea Zabaleta
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| |
Collapse
|
2
|
Alemán MV, Bertzbach LD, Speiseder T, Ip WH, González RA, Dobner T. Global Transcriptome Analyses of Cellular and Viral mRNAs during HAdV-C5 Infection Highlight New Aspects of Viral mRNA Biogenesis and Cytoplasmic Viral mRNA Accumulations. Viruses 2022; 14:2428. [PMID: 36366526 PMCID: PMC9692883 DOI: 10.3390/v14112428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
It is well established that human adenoviruses such as species C, types 2 and 5 (HAdV-C2 and HAdV-C5), induce a nearly complete shutoff of host-cell protein synthesis in the infected cell, simultaneously directing very efficient production of viral proteins. Such preferential expression of viral over cellular genes is thought to be controlled by selective nucleocytoplasmic export and translation of viral mRNA. While detailed knowledge of the regulatory mechanisms responsible for the translation of viral mRNA is available, the viral or cellular mechanisms of mRNA biogenesis are not completely understood. To identify parameters that control the differential export of viral and cellular mRNAs, we performed global transcriptome analyses (RNAseq) and monitored temporal nucleocytoplasmic partitioning of viral and cellular mRNAs during HAdV-C5 infection of A549 cells. Our analyses confirmed previously reported features of the viral mRNA expression program, as a clear shift in viral early to late mRNA accumulation was observed upon transition from the early to the late phase of viral replication. The progression into the late phase of infection, however, did not result in abrogation of cellular mRNA export; rather, viral late mRNAs outnumbered viral early and most cellular mRNAs by several orders of magnitude during the late phase, revealing that viral late mRNAs are not selectively exported but outcompete cellular mRNA biogenesis.
Collapse
Affiliation(s)
- Margarita Valdés Alemán
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Thomas Speiseder
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Wing Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| | - Ramón A. González
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology (LIV), 20251 Hamburg, Germany
| |
Collapse
|
3
|
Role of CCCH-Type Zinc Finger Proteins in Human Adenovirus Infections. Viruses 2020; 12:v12111322. [PMID: 33217981 PMCID: PMC7698620 DOI: 10.3390/v12111322] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
The zinc finger proteins make up a significant part of the proteome and perform a huge variety of functions in the cell. The CCCH-type zinc finger proteins have gained attention due to their unusual ability to interact with RNA and thereby control different steps of RNA metabolism. Since virus infections interfere with RNA metabolism, dynamic changes in the CCCH-type zinc finger proteins and virus replication are expected to happen. In the present review, we will discuss how three CCCH-type zinc finger proteins, ZC3H11A, MKRN1, and U2AF1, interfere with human adenovirus replication. We will summarize the functions of these three cellular proteins and focus on their potential pro- or anti-viral activities during a lytic human adenovirus infection.
Collapse
|
4
|
Gales JP, Kubina J, Geldreich A, Dimitrova M. Strength in Diversity: Nuclear Export of Viral RNAs. Viruses 2020; 12:E1014. [PMID: 32932882 PMCID: PMC7551171 DOI: 10.3390/v12091014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The nuclear export of cellular mRNAs is a complex process that requires the orchestrated participation of many proteins that are recruited during the early steps of mRNA synthesis and processing. This strategy allows the cell to guarantee the conformity of the messengers accessing the cytoplasm and the translation machinery. Most transcripts are exported by the exportin dimer Nuclear RNA export factor 1 (NXF1)-NTF2-related export protein 1 (NXT1) and the transcription-export complex 1 (TREX1). Some mRNAs that do not possess all the common messenger characteristics use either variants of the NXF1-NXT1 pathway or CRM1, a different exportin. Viruses whose mRNAs are synthesized in the nucleus (retroviruses, the vast majority of DNA viruses, and influenza viruses) exploit both these cellular export pathways. Viral mRNAs hijack the cellular export machinery via complex secondary structures recognized by cellular export factors and/or viral adapter proteins. This way, the viral transcripts succeed in escaping the host surveillance system and are efficiently exported for translation, allowing the infectious cycle to proceed. This review gives an overview of the cellular mRNA nuclear export mechanisms and presents detailed insights into the most important strategies that viruses use to export the different forms of their RNAs from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Jón Pol Gales
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Julie Kubina
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
- SVQV UMR-A 1131, INRAE, Université de Strasbourg, F-68000 Colmar, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes, The French National Center for Scientific Research (CNRS) UPR2357, Université de Strasbourg, F-67084 Strasbourg, France; (J.P.G.); (J.K.); (A.G.)
| |
Collapse
|
5
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
6
|
Pied N, Wodrich H. Imaging the adenovirus infection cycle. FEBS Lett 2019; 593:3419-3448. [PMID: 31758703 DOI: 10.1002/1873-3468.13690] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Incoming adenoviruses seize control of cytosolic transport mechanisms to relocate their genome from the cell periphery to specialized sites in the nucleoplasm. The nucleus is the site for viral gene expression, genome replication, and the production of progeny for the next round of infection. By taking control of the cell, adenoviruses also suppress cell-autonomous immunity responses. To succeed in their production cycle, adenoviruses rely on well-coordinated steps, facilitated by interactions between viral proteins and cellular factors. Interactions between virus and host can impose remarkable morphological changes in the infected cell. Imaging adenoviruses has tremendously influenced how we delineate individual steps in the viral life cycle, because it allowed the development of specific optical markers to label these morphological changes in space and time. As technology advances, innovative imaging techniques and novel tools for specimen labeling keep uncovering previously unseen facets of adenovirus biology emphasizing why imaging adenoviruses is as attractive today as it was in the past. This review will summarize past achievements and present developments in adenovirus imaging centered on fluorescence microscopy approaches.
Collapse
Affiliation(s)
- Noémie Pied
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| | - Harald Wodrich
- CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, France
| |
Collapse
|
7
|
Hidalgo P, Ip WH, Dobner T, Gonzalez RA. The biology of the adenovirus E1B 55K protein. FEBS Lett 2019; 593:3504-3517. [PMID: 31769868 DOI: 10.1002/1873-3468.13694] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 12/29/2022]
Abstract
The adenovirus E1B 55K (E1B) protein plays major roles in productive adenoviral infection and cellular transformation. Interest in E1B increased because of the potential of adenoviruses as therapeutic vectors, and the E1B gene is commonly deleted from adenovirus vectors for anticancer therapy. E1B activities are spatiotemporally regulated through SUMOylation and phosphorylation, and through interactions with multiple partners that occur presumably at different intracellular sites and times postinfection. E1B is implicated in the formation of viral replication compartments and regulates viral genome replication and transcription, transcriptional repression, degradation of cellular proteins, and several intranuclear steps of viral late mRNA biogenesis. Here, we review advances in our understanding of E1B during productive adenovirus replication and discuss fundamental aspects that remain unresolved.
Collapse
Affiliation(s)
- Paloma Hidalgo
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ramón A Gonzalez
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
8
|
Crisostomo L, Soriano AM, Mendez M, Graves D, Pelka P. Temporal dynamics of adenovirus 5 gene expression in normal human cells. PLoS One 2019; 14:e0211192. [PMID: 30677073 PMCID: PMC6345434 DOI: 10.1371/journal.pone.0211192] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023] Open
Abstract
Adenovirus executes a finely tuned transcriptional program upon infection of a cell. To better understand the temporal dynamics of the viral transcriptional program we performed highly sensitive digital PCR on samples extracted from arrested human lung fibroblasts infected with human adenovirus 5 strain dl309. We show that the first transcript made from viral genomes is the virus associated non-coding RNA, in particular we detected abundant levels of virus associated RNA II four hours after infection. Activation of E1 and E4 occurred nearly simultaneously later in infection, followed by other early genes as well as late genes. Our study determined that genomes begin to replicate between 29 and 30 hours after infection. This study provides a comprehensive view of viral mRNA steady-state kinetics in arrested human cells using digital PCR.
Collapse
Affiliation(s)
- Leandro Crisostomo
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Megan Mendez
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Drayson Graves
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
9
|
NF-κB Signaling in Targeting Tumor Cells by Oncolytic Viruses-Therapeutic Perspectives. Cancers (Basel) 2018; 10:cancers10110426. [PMID: 30413032 PMCID: PMC6265863 DOI: 10.3390/cancers10110426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022] Open
Abstract
In recent years, oncolytic virotherapy became a promising therapeutic approach, leading to the introduction of a novel generation of anticancer drugs. However, despite evoking an antitumor response, introducing an oncolytic virus (OV) to the patient is still inefficient to overcome both tumor protective mechanisms and the limitation of viral replication by the host. In cancer treatment, nuclear factor (NF)-κB has been extensively studied among important therapeutic targets. The pleiotropic nature of NF-κB transcription factor includes its involvement in immunity and tumorigenesis. Therefore, in many types of cancer, aberrant activation of NF-κB can be observed. At the same time, the activity of NF-κB can be modified by OVs, which trigger an immune response and modulate NF-κB signaling. Due to the limitation of a monotherapy exploiting OVs only, the antitumor effect can be enhanced by combining OV with NF-κB-modulating drugs. This review describes the influence of OVs on NF-κB activation in tumor cells showing NF-κB signaling as an important aspect, which should be taken into consideration when targeting tumor cells by OVs.
Collapse
|
10
|
Jehung JP, Kitamura T, Yanagawa-Matsuda A, Kuroshima T, Towfik A, Yasuda M, Sano H, Kitagawa Y, Minowa K, Shindoh M, Higashino F. Adenovirus infection induces HuR relocalization to facilitate virus replication. Biochem Biophys Res Commun 2017; 495:1795-1800. [PMID: 29225167 DOI: 10.1016/j.bbrc.2017.12.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
HuR is an RNA-binding protein of the embryonic lethal abnormal vision (ELAV) family, which binds to the AU-rich element (ARE) in the 3'-untranslated region (UTR) of certain mRNAs and is involved in the nucleo-cytoplasmic export and stabilization of ARE-mRNAs. The cytoplasmic relocalization of ARE-mRNAs with several proteins such as HuR and pp32 increases in cells transformed by the adenovirus oncogene product E4orf6. Additionally, these ARE-mRNAs were stabilized and acquired the potential to transform cells. Although, the relocalization of HuR and the stabilization of ARE-mRNAs are crucial for cell transformation, evidence regarding the relationship of HuR and ARE-mRNAs with adenovirus replication is lacking. In this report, we demonstrate that adenovirus infection induces the relocation of HuR to the cytoplasm of host cells. Analysis using the luciferase-ARE fusion gene and the tetracycline (tet)-off system revealed that the process of stabilizing ARE-mRNAs is activated in adenovirus-infected cells. Heat shock treatment or knockdown-mediated depletion of HuR reduced adenovirus production. Furthermore, expression of ARE-including viral IVa2 mRNA, decreased in HuR-depleted infected cells. These results indicate that HuR plays an important role in adenovirus replication, at least in part, by up-regulating IVa2 mRNA expression and that ARE-mRNA stabilization is required for both transformation and virus replication.
Collapse
Affiliation(s)
- Jumond P Jehung
- Department of Restorative Dentistry, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Tetsuya Kitamura
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Aya Yanagawa-Matsuda
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Takeshi Kuroshima
- Department of Oral Diagnosis and Medicine, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Alam Towfik
- Department of Dental Radiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Motoaki Yasuda
- Department of Oral Molecular Microbiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Hidehiko Sano
- Department of Restorative Dentistry, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Kazuyuki Minowa
- Department of Dental Radiology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Masanobu Shindoh
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan
| | - Fumihiro Higashino
- Department of Oral Pathology and Biology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Dental Medicine, Sapporo, Japan; Department of Molecular Oncology, Hokkaido University, Faculty of Dental Medicine, Graduate School of Biomedical Science and Engineering, Sapporo, Japan.
| |
Collapse
|
11
|
El-Mogy MA, Abdalla MA, Misic V, Haj-Ahmad Y. Effect of adenovirus infection on transgene expression under the adenoviral MLP/TPL and the CMVie promoter/enhancer in CHO cells. J Genet Eng Biotechnol 2017; 15:211-217. [PMID: 30647657 PMCID: PMC6296590 DOI: 10.1016/j.jgeb.2017.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 02/27/2017] [Accepted: 04/05/2017] [Indexed: 11/19/2022]
Abstract
The adenovirus major late promoter (MLP) and its translational regulator - the tripartite leader (TPL) sequence - can actively drive efficient gene expression during adenoviral infection. However, both elements have not been widely tested in transgene expression outside of the adenovirus genome context. In this study, we tested whether the combination of MLP and TPL would enhance transgene expression beyond that of the most widely used promoter in transgene expression in mammalian cells, the cytomegalovirus immediate early (CMVie) promoter/enhancer. The activity of these two regulatory elements was compared in Chinese hamster ovary (CHO) cells. Although transient expression was significantly higher under the control of the CMVie promoter/enhance compared to the MLP/TPL, this difference was greater at the level of transcription (30 folds) than translation (11 folds). Even with adenovirus infection to provide additional elements (in trans), CMVie promoter/enhancer exhibited significantly higher activity relative to MLP/TPL. Interestingly, the CMVie promoter/enhancer was 1.9 folds more active in adenovirus-infected cells than in non-infected cells. Our study shows that the MLP-TPL drives lower transgene expression than the CMVie promoter/enhancer particularly at the transcription level. The data also highlight the utility of the TPL sequence at the translation level and/or possible overwhelming of the cellular translational machinery by the high transcription activity of the CMVie promoter/enhancer. In addition, here we present data that show stimulation of the CMVie promoter/enhancer by adenovirus infection, which may prove interesting in future work to test the combination of CMVie/TPL sequence, and additional adenovirus elements, for transgene expression.
Collapse
Key Words
- Adenovirus
- CHO, Chinese hamster ovary
- CMVie promoter/enhancer
- CMVie, cytomegalovirus immediate early
- GFP, green fluorescence proteins
- IRES, internal ribosome entry site
- MLP
- MLP, major late promoter
- MOI, multiplicity of infection
- PFU, plaque forming unit
- RFU, relative fluorescence units
- TPL
- TPL, tripartite leader
- Transgene expression
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Mohamed A. El-Mogy
- Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
- Corresponding author at: Molecular Biology Department, National Research Centre, Dokki, Giza, Egypt.
| | - Moemen A.K. Abdalla
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Vanja Misic
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Yousef Haj-Ahmad
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
12
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
13
|
Automatic detection and measurement of viral replication compartments by ellipse adjustment. Sci Rep 2016; 6:36505. [PMID: 27819325 PMCID: PMC5098162 DOI: 10.1038/srep36505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 10/13/2016] [Indexed: 01/03/2023] Open
Abstract
Viruses employ a variety of strategies to hijack cellular activities through the orchestrated recruitment of macromolecules to specific virus-induced cellular micro-environments. Adenoviruses (Ad) and other DNA viruses induce extensive reorganization of the cell nucleus and formation of nuclear Replication Compartments (RCs), where the viral genome is replicated and expressed. In this work an automatic algorithm designed for detection and segmentation of RCs using ellipses is presented. Unlike algorithms available in the literature, this approach is deterministic, automatic, and can adjust multiple RCs using ellipses. The proposed algorithm is non iterative, computationally efficient and is invariant to affine transformations. The method was validated over both synthetic images and more than 400 real images of Ad-infected cells at various timepoints of the viral replication cycle obtaining relevant information about the biogenesis of adenoviral RCs. As proof of concept the algorithm was then used to quantitatively compare RCs in cells infected with the adenovirus wild type or an adenovirus mutant that is null for expression of a viral protein that is known to affect activities associated with RCs that result in deficient viral progeny production.
Collapse
|
14
|
Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells. J Virol 2016; 90:3411-27. [PMID: 26764008 DOI: 10.1128/jvi.00033-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle.
Collapse
|
15
|
The Human Adenovirus Type 5 E4orf6/E1B55K E3 Ubiquitin Ligase Complex Can Mimic E1A Effects on E2F. mSphere 2015; 1:mSphere00014-15. [PMID: 27303679 PMCID: PMC4863625 DOI: 10.1128/msphere.00014-15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/29/2015] [Indexed: 01/16/2023] Open
Abstract
During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication. The human adenovirus E4orf6/E1B55K E3 ubiquitin ligase is well known to promote viral replication by degrading an increasing number of cellular proteins that inhibit the efficient production of viral progeny. We report here a new function of the adenovirus 5 (Ad5) viral ligase complex that, although at lower levels, mimics effects of E1A products on E2F transcription factors. When expressed in the absence of E1A, the E4orf6 protein in complex with E1B55K binds E2F, disrupts E2F/retinoblastoma protein (Rb) complexes, and induces hyperphosphorylation of Rb, leading to induction of viral and cellular DNA synthesis as well as stimulation of early and late viral gene expression and production of viral progeny of E1/E3-defective adenovirus vectors. These new and previously undescribed functions of the E4orf6/E1B55K E3 ubiquitin ligase could play an important role in promoting the replication of wild-type viruses. IMPORTANCE During the course of work on the adenovirus E3 ubiquitin ligase formed by the viral E4orf6 and E1B55K proteins, we found, very surprisingly, that expression of these species was sufficient to permit low levels of replication of an adenovirus vector lacking E1A, the central regulator of infection. E1A products uncouple E2F transcription factors from Rb repression complexes, thus stimulating viral gene expression and cell and viral DNA synthesis. We found that the E4orf6/E1B55K ligase mimics these functions. This finding is of significance because it represents an entirely new function for the ligase in regulating adenovirus replication.
Collapse
|
16
|
Cheng PH, Wechman SL, McMasters KM, Zhou HS. Oncolytic Replication of E1b-Deleted Adenoviruses. Viruses 2015; 7:5767-79. [PMID: 26561828 PMCID: PMC4664978 DOI: 10.3390/v7112905] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/30/2023] Open
Abstract
Various viruses have been studied and developed for oncolytic virotherapies. In virotherapy, a relatively small amount of viruses used in an intratumoral injection preferentially replicate in and lyse cancer cells, leading to the release of amplified viral particles that spread the infection to the surrounding tumor cells and reduce the tumor mass. Adenoviruses (Ads) are most commonly used for oncolytic virotherapy due to their infection efficacy, high titer production, safety, easy genetic modification, and well-studied replication characteristics. Ads with deletion of E1b55K preferentially replicate in and destroy cancer cells and have been used in multiple clinical trials. H101, one of the E1b55K-deleted Ads, has been used for the treatment of late-stage cancers as the first approved virotherapy agent. However, the mechanism of selective replication of E1b-deleted Ads in cancer cells is still not well characterized. This review will focus on three potential molecular mechanisms of oncolytic replication of E1b55K-deleted Ads. These mechanisms are based upon the functions of the viral E1B55K protein that are associated with p53 inhibition, late viral mRNA export, and cell cycle disruption.
Collapse
Affiliation(s)
- Pei-Hsin Cheng
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen L Wechman
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Kelly M McMasters
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| | - Heshan Sam Zhou
- Department of Surgery, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40292, USA.
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
17
|
Oncolytic adenovirus research evolution: from cell-cycle checkpoints to immune checkpoints. Curr Opin Virol 2015; 13:33-9. [PMID: 25863716 DOI: 10.1016/j.coviro.2015.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 01/01/2023]
Abstract
Oncolytic adenoviruses are modified to exploit the aberrant expression of proteins in cancer cells to obtain cancer-selective replication. Moreover, the natural tropism of oncolytic adenoviruses can be redirected to tumor cells. Clinical trials revealed that oncolytic viruses showed poor replication in the tumor that is due in part to the immune response against the virus. More recent data demonstrated that tumor infection might subvert the tumor immune system and lead to an anti-tumor immune response. In the next few years, combination of adenoviruses with immune checkpoint antibodies and other immune modulators will be tested in clinical trials.
Collapse
|
18
|
Kuss SK, Mata MA, Zhang L, Fontoura BMA. Nuclear imprisonment: viral strategies to arrest host mRNA nuclear export. Viruses 2013; 5:1824-49. [PMID: 23872491 PMCID: PMC3738964 DOI: 10.3390/v5071824] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 06/27/2013] [Accepted: 07/11/2013] [Indexed: 12/15/2022] Open
Abstract
Viruses possess many strategies to impair host cellular responses to infection. Nuclear export of host messenger RNAs (mRNA) that encode antiviral factors is critical for antiviral protein production and control of viral infections. Several viruses have evolved sophisticated strategies to inhibit nuclear export of host mRNAs, including targeting mRNA export factors and nucleoporins to compromise their roles in nucleo-cytoplasmic trafficking of cellular mRNA. Here, we present a review of research focused on suppression of host mRNA nuclear export by viruses, including influenza A virus and vesicular stomatitis virus, and the impact of this viral suppression on host antiviral responses.
Collapse
Affiliation(s)
- Sharon K Kuss
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | | | | | | |
Collapse
|
19
|
Ching W, Koyuncu E, Singh S, Arbelo-Roman C, Hartl B, Kremmer E, Speiseder T, Meier C, Dobner T. A ubiquitin-specific protease possesses a decisive role for adenovirus replication and oncogene-mediated transformation. PLoS Pathog 2013; 9:e1003273. [PMID: 23555268 PMCID: PMC3610741 DOI: 10.1371/journal.ppat.1003273] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/11/2013] [Indexed: 11/17/2022] Open
Abstract
Adenoviral replication depends on viral as well as cellular proteins. However, little is known about cellular proteins promoting adenoviral replication. In our screens to identify such proteins, we discovered a cellular component of the ubiquitin proteasome pathway interacting with the central regulator of adenoviral replication. Our binding assays mapped a specific interaction between the N-terminal domains of both viral E1B-55K and USP7, a deubiquitinating enzyme. RNA interference-mediated downregulation of USP7 severely reduced E1B-55K protein levels, but more importantly negatively affected adenoviral replication. We also succeeded in resynthesizing an inhibitor of USP7, which like the knockdown background reduced adenoviral replication. Further assays revealed that not only adenoviral growth, but also adenoviral oncogene-driven cellular transformation relies on the functions of USP7. Our data provide insights into an intricate mechanistic pathway usurped by an adenovirus to promote its replication and oncogenic functions, and at the same time open up possibilities for new antiviral strategies. Adenoviral infections can result in severe outcomes leading to mortality especially in children undergoing immunosuppressive therapies. Unfortunately, no specific anti-adenoviral treatments are available to treat disseminated adenoviral infections. We have set out to identify host factors promoting adenoviral growth and could identify the cellular protein Ubiquitin-specific protease 7 (USP7) being central to adenoviral infection. Here we show that USP7 interacts with the viral protein E1B-55K, a central regulator of adenoviral replication and adenoviral oncogene-mediated cellular transformation. We demonstrate that USP7 ensures stability and/or proper expression levels of adenoviral proteins at early and late time points of infection. Consistent with this, small-molecule inhibitors of USP7 showed efficient reduction of capsid protein levels and viral progeny numbers. Thus, USP7 inhibition might be a useful treatment option in the context of disseminated adenoviral infections. Moreover, we were also able to show that adenoviral oncogene-mediated cellular transformation can be hampered by USP7 disruption. In summary, this study shows that two different adenoviral disease mechanisms can be inhibited by targeting one host cellular factor.
Collapse
Affiliation(s)
- Wilhelm Ching
- Department of Molecular Virology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kato SEM, Huang W, Flint S. Role of the RNA recognition motif of the E1B 55 kDa protein in the adenovirus type 5 infectious cycle. Virology 2011; 417:9-17. [PMID: 21605885 PMCID: PMC3377160 DOI: 10.1016/j.virol.2011.04.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 04/08/2011] [Accepted: 04/25/2011] [Indexed: 11/30/2022]
Abstract
Although the adenovirus type 5 (Ad5) E1B 55 kDa protein can bind to RNA in vitro, no UV-light-induced crosslinking of this E1B protein to RNA could be detected in infected cells, under conditions in which RNA binding by a known viral RNA-binding protein (the L4 100 kDa protein) was observed readily. Substitution mutations, including substitutions reported to inhibit RNA binding in vitro, did not impair synthesis of viral early or late proteins or alter significantly the efficiency of viral replication in transformed or normal human cells. However, substitutions of conserved residues in the C-terminal segment of an RNA recognition motif specifically inhibited degradation of Mre11. We conclude that, if the E1B 55 kDa protein binds to RNA in infected cells in the same manner as in in vitro assays, this activity is not required for such well established functions as induction of selective export of viral late mRNAs.
Collapse
Affiliation(s)
- Sayuri E. M. Kato
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544
| | - Wenying Huang
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544
| | - S.J. Flint
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, NJ 08544
| |
Collapse
|
21
|
Adenovirus and miRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:660-7. [PMID: 21621026 PMCID: PMC7102710 DOI: 10.1016/j.bbagrm.2011.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 05/05/2011] [Accepted: 05/09/2011] [Indexed: 01/15/2023]
Abstract
Adenovirus infection has a tremendous
impact on the cellular silencing machinery. Adenoviruses express high
amounts of non-coding virus associated (VA) RNAs able to saturate key
factors of the RNA interference (RNAi) processing pathway, such as
Exportin 5 and Dicer. Furthermore, a proportion of VA RNAs is cleaved by
Dicer into viral microRNAs (mivaRNAs) that can saturate Argonaute, an
essential protein for miRNA function. Thus, processing and function of
cellular miRNAs is blocked in adenoviral-infected cells. However, viral
miRNAs actively target the expression of cellular genes involved in
relevant functions such as cell proliferation, DNA repair or RNA
regulation. Interestingly, the cellular silencing machinery is active at
early times post-infection and can be used to control the adenovirus cell
cycle. This is relevant for therapeutic purposes against adenoviral
infections or when recombinant adenoviruses are used as vectors for gene
therapy. Manipulation of the viral genome allows the use of adenoviral
vectors to express therapeutic miRNAs or to be silenced by the RNAi
machinery leading to safer vectors with a specific tropism. This article
is part of a "Special Issue entitled:MicroRNAs in viral gene
regulation".
Collapse
|
22
|
Infection with E1B-mutant adenovirus stabilizes p53 but blocks p53 acetylation and activity through E1A. Oncogene 2010; 30:865-75. [PMID: 20935676 DOI: 10.1038/onc.2010.461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wild-type adenovirus type 5 eliminates p53 through the E1B-55kDa and E4-34kDa gene products. Deletion or mutation of E1B-55kDa has long been thought to confer p53-selective replication of oncolytic viruses. We show here that infection with E1B-defective adenovirus mutants induces massive accumulation of p53, without obvious defects in p53 localization, phosphorylation, conformation and oligomerization. Nonetheless, p53 completely failed to induce its target genes in this scenario, for example, p21/CDKN1A, Mdm2 and PUMA. Two regions of the E1A gene products independently contributed to the suppression of p21 transcription. Depending on the E1A conserved region 3, E1B-defective adenovirus impaired the ability of the transcription factor Sp1 to bind the p21 promoter. Moreover, the amino terminal region of E1A, binding the acetyl transferases p300 and CREB-binding protein, blocked p53 K382 acetylation in infected cells. Mutating either of these E1A regions, in addition to E1B, partially restored p21 mRNA levels. Our findings argue that adenovirus attenuates p53-mediated p21 induction, through at least two E1B-independent mechanisms. Other virus species and cancer cells may employ analogous strategies to impair p53 activity.
Collapse
|
23
|
Chen J, Morral N, Engel DA. Transcription releases protein VII from adenovirus chromatin. Virology 2007; 369:411-22. [PMID: 17888479 DOI: 10.1016/j.virol.2007.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/06/2007] [Accepted: 08/13/2007] [Indexed: 11/16/2022]
Abstract
Adenovirus protein VII is the major protein component of the viral nucleoprotein core. It is a nonspecific DNA-binding protein that condenses viral DNA inside the capsid. Protein VII remains associated with viral chromatin throughout early phase, indicating its continuing role during infection. Here we characterize the release of protein VII from infectious genomes during a time period that corresponds to the late phase of infection. Interestingly, the early viral transactivator E1A, but not other early gene products, is responsible for releasing protein VII by a mechanism that requires ongoing transcription but not viral DNA replication. Moreover transcription per se, in the absence of E1A, is also sufficient to trigger release. Accordingly, a recombinant genome containing only non-coding "stuffer" DNA is unable to support release of protein VII. Our data support a model in which early gene transcription results in a change in the structure of the viral chromatin.
Collapse
Affiliation(s)
- Jiangning Chen
- Department of Microbiology, University of Virginia Health System, PO Box 800734, Charlottesville, VA 22908-0734, USA
| | | | | |
Collapse
|
24
|
Ries SJ. Elucidation of the molecular mechanism underlying tumor-selective replication of the oncolytic adenovirus mutant ONYX-015. Future Oncol 2007; 1:763-6. [PMID: 16556054 DOI: 10.2217/14796694.1.6.763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Tumor-selective replicating viruses offer appealing advantages over conventional cancer therapy. ONYX-015 (dl1520) is the prototype for oncolytic adenoviral therapy. It has undergone extensive clinical testing with proven safety and evidence of promising clinical efficacy. The strategy underlying its tumor-selective cell killing is based on deletion of the viral E1B-55K gene, which is crucial for efficient viral replication in normal cells but dispensable in tumor cells. Originally, the successful replication of ONYX-015 was thought to strictly depend on deregulated p53 signaling in tumor cells. However, recent preclinical as well as clinical evidence questions this mechanism. The study by O'Shea and colleagues is of immense importance as it sheds new light into the molecular mechanism underlying the tumor-selective replication of ONYX-015. Based on these findings, modulation of the proposed molecular mechanism by pharmacologic agents or hyperthermia may largely enhance the therapeutic index of ONYX-015 for tumor cells versus normal tissue and improve clinical efficacy. Finally, new strategies to allow successful patient stratification for future clinical trials appear to be in reach, based on the reported results.
Collapse
Affiliation(s)
- Stefan J Ries
- Roche Diagnostics GmbH, Biomarker Program Oncology, Nonnenwald 2, Penzberg, Germany.
| |
Collapse
|
25
|
Iftode C, Flint SJ. Analysis of the efficiency of adenovirus transcription. METHODS IN MOLECULAR MEDICINE 2007; 131:1-14. [PMID: 17656771 DOI: 10.1007/978-1-59745-277-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This method is designed to measure rates of transcription from adenoviral promoters as a function of the concentrations within infected cells of the promoter(s) of interest. The latter parameter is assessed by quantification of viral DNA by hybridization of membrane-bound DNA following purification of DNA from nuclear fractions of adenovirus-infected cells. Two alternative protocols, primer extension and quantitative reverse transcription polymerase chain reaction, are described for determination of the concentrations of viral mRNAs purified from the cytoplasmic fractions of the same infected cell samples. An alternative procedure to measure rates of transcription directly using run-on transcription in isolated nuclei is also presented.
Collapse
|
26
|
Phromjai J, Aiba N, Suzuki M, Sato H, Takahara T, Kondo S, Shiraki K. Infection and direct injury in human hepatocyte explants and a hepatoblastoma cell line due to hepatiticomimetic (non-hepatitis) viruses. J Med Virol 2007; 79:413-25. [PMID: 17311334 DOI: 10.1002/jmv.20783] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatitis is caused by hepatitis viruses, but hepatitis or hepatocellular enzyme abnormalities is sometimes associated with infection by the hepatiticomimetic viruses. The direct and indirect effects of infection with hepatiticomimetic viruses were examined in two human hepatocyte systems. Poliovirus, adenovirus, and herpes simplex virus (HSV) induced cytopathology in Hep G2 cells. Measles virus caused no change in hepatocytes. Poliovirus infection did not affect cellular protein synthesis, and the peak of hepatocellular enzyme release coincided with the peak of virus release. The increase in adenovirus protein synthesis correlated with the decrease of transferrin synthesis, and enzyme release was not prominent. HSV induced viral protein synthesis with enhanced processing and inhibition of synthesis of alpha1-antitrypsin. The peak of enzyme release was later than the peak of virus release. In primary hepatocytes, poliovirus, adenovirus, and induced extensive cytopathology and enzyme release, and VZV caused cytopathology and significant but minute enzyme release. The ratio of lactate dehydrogenase to aspartate aminotransferase release was larger in poliovirus infection in both hepatocytes than in HSV or VZV infection. Although poliovirus and adenovirus are released by cytolysis and HSV and VZV are secreted by exocytosis of cytoplasmic vacuoles, enzyme release was independent of the type of virus release. Adenovirus showed strong cytotoxicity but did not modify the membrane nor cause enzyme release. Enzyme release was associated with modification of the surface membrane due to apoptosis with poliovirus and necrosis with HSV. Consequently hepatocellular injury by viral infection did not reflect the amount or pattern of hepatocellular enzyme release.
Collapse
|
27
|
Rao XM, Zheng X, Waigel S, Zacharias W, McMasters KM, Zhou HS. Gene expression profiles of normal human lung cells affected by adenoviral E1B. Virology 2006; 350:418-28. [PMID: 16542696 DOI: 10.1016/j.virol.2006.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 01/26/2006] [Accepted: 02/08/2006] [Indexed: 11/16/2022]
Abstract
Adenoviruses with deletion of E1b gene can selectively replicate in cancer cells. The underlying mechanisms in tumor-selective replication of E1b-deleted adenoviruses are insufficiently understood. Identifying genes with altered expression patterns caused by the E1B proteins in virus-infected cells will further increase our understanding of E1B functions and provide insight into the tumor-selective replication of E1b-mutated adenoviruses on the molecular level. An approach based on large-scale gene array was applied to analyze molecular changes affected by viral E1B. We identified a total of 345 genes with expression changes of two-fold or greater affected by wild-type adenovirus compared with its E1b-deleted counterpart. The gene array data were confirmed by quantitative real-time PCR and Western blot. E1B proteins affect the expression of a diverse range of genes involved in cell cycle regulation, apoptosis, stress responses and angiogenesis. This is the first study of the global profile of gene expression altered by the viral E1B proteins in human lung cells, and the majority of the genes were previously not known to be affected by the viral proteins. The data presented in this study will lead to more detailed analysis of E1B functions and may also lead to development of new agents and approaches for oncolytic therapy.
Collapse
Affiliation(s)
- Xiao-Mei Rao
- J. Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | | | | | | | | | | |
Collapse
|
28
|
Möritz C, Dobbelstein M. E1A genes of adenovirus type 2 and type 5 are expressed at different levels. Arch Virol 2006; 151:1085-92. [PMID: 16421637 DOI: 10.1007/s00705-005-0702-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 11/30/2005] [Indexed: 11/25/2022]
Abstract
Adenoviruses are an extensively studied system for modeling oncogenesis and for experimental cancer therapy. The most commonly analyzed virus types are 2 and 5, and little distinction has been made between them in past studies. Adenoviruses used for therapeutic purposes are frequently hybrids between these types, including the prototype dl1520/Onyx015. We tested the replication of the wild-type viruses WtD (a hybrid of the type 2 E1 region and type 5) and dl309 (type 5) in comparison with the mutants dl1520 (hybrid) and dl338 (type 5), the latter two lacking part of the E1B-55 kDa coding region. We found that the hybrid viruses replicated with considerably lower efficiency than their type 5 counterparts in H1299 cells (dl309:WtD = 3-4, dl338:dl1520 > 10). Moreover, adenovirus type 2 E1A expression from the hybrid viruses was strongly reduced in comparison to adenovirus type 5 E1A, as revealed by immunoblot analysis and RT-PCR, providing a potential explanation for the differences in virus yield. Differential E1A expression levels need to be taken into account for the construction of effective therapeutic viruses and when studying viral transformation.
Collapse
Affiliation(s)
- C Möritz
- Institut für Virologie, Klinikum der Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
29
|
Abstract
Adenovirus continues to be an important model system for investigating basic aspects of cell biology. Interactions of several cellular proteins with E1A conserved regions (CR) 1 and 2, and inhibition of apoptosis by E1B proteins are required for oncogenic transformation. CR2 binds RB family members, de-repressing E2F transcription factors, thus activating genes required for cell cycling. E1B-19K is a BCL2 homolog that binds and inactivates proapoptotic BAK and BAX. E1B-55K binds p53, inhibiting its transcriptional activation function. In productively infected cells, E1B-55K and E4orf6 assemble a ubiquitin ligase with cellular proteins Elongins B and C, Cullin 5 and RBX1 that polyubiquitinates p53 and one or more subunits of the MRN complex involved in DNA double-strand break repair, directing them to proteosomal degradation. E1A CR3 activates viral transcription by interacting with the MED23 Mediator subunit, stimulating preinitiation complex assembly on early viral promoters and probably also the rate at which they initiate transcription. The viral E1B-55K/E4orf6 ubiquitin ligase is also required for efficient viral late protein synthesis in many cell types, but the mechanism is not understood. E1A CR1 binds several chromatin-modifying complexes, but how this contributes to stimulation of cellular DNA synthesis and transformation is not clear. E1A CR4 binds the CtBP corepressor, but the mechanism by which this modulates the frequency of transformation remains to be determined. Clearly, adenovirus has much left to teach us about fundamental cellular processes.
Collapse
Affiliation(s)
- Arnold J Berk
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles (UCLA), 90095-1570, USA.
| |
Collapse
|
30
|
Granberg F, Svensson C, Pettersson U, Zhao H. Modulation of host cell gene expression during onset of the late phase of an adenovirus infection is focused on growth inhibition and cell architecture. Virology 2005; 343:236-45. [PMID: 16169035 DOI: 10.1016/j.virol.2005.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Revised: 08/01/2005] [Accepted: 08/17/2005] [Indexed: 12/01/2022]
Abstract
Microarray analysis of host cell gene expression during an adenovirus type 2 infection showed that the number of regulated genes, as well as the magnitude of change, was increased as the infection proceeded into the late phase. In contrast to the early phase of infection when the majority of differentially expressed genes were upregulated, expression of most of the regulated genes (82 out of 112) declined during the late phase. In particular, numerous TGF-beta inducible genes and several TGF-beta-independent growth-arrest-inducing genes were targeted. Of the 30 genes upregulated more than 2-fold at 20 h post-infection, nearly two-thirds of encoded proteins are involved in cell metabolism. The data indicate that adenovirus primarily targets cellular genes involved in antiviral defense, cell growth arrest and apoptosis, as well as cell metabolism, to ensure sufficient production of viral progeny.
Collapse
Affiliation(s)
- Fredrik Granberg
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
31
|
Abstract
DNA viruses have enormous utility in cancer research, both as tools for tumor target discovery as well as agents for lytic cancer therapies. This is because there is a profound functional overlap between the DNA viral and tumor cell programs. DNA viruses encode proteins that elicit growth deregulation in infected cells similar to that engendered by mutations in tumor cells. Evolution has refined viral proteins to target the critical cellular hubs that regulate growth. Thus, viral proteins are discriminating biochemical probes that can be used to identify and characterize novel tumor targets. Moreover, the overlap between the DNA viral and tumor programs can also be exploited for the development of lytic cancer therapies. Discovering whether tumor cells selectively complement the replication of viral mutants can reveal novel oncolytic viral therapies, as well as unexpected tumor properties. For example, altered RNA export was recently uncovered as a novel tumor cell property that underlies ONYX-015 replication, a promising oncolytic adenoviral therapy. A perspective is provided on how adenovirus could be systematically exploited to map the requisite role, or indeed the redundancy, of cellular pathways that act in an integrated program to elicit pathological replication. This knowledge has important applications for the rational design of the next generation of oncolytic viruses, as well as the discovery of efficacious combination cancer therapies.
Collapse
Affiliation(s)
- Clodagh C O'Shea
- Cancer Research Institute, University of California San Francisco, 94115, USA.
| |
Collapse
|
32
|
O'Shea CC, Soria C, Bagus B, McCormick F. Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. Cancer Cell 2005; 8:61-74. [PMID: 16023599 DOI: 10.1016/j.ccr.2005.06.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 05/11/2005] [Accepted: 06/23/2005] [Indexed: 12/15/2022]
Abstract
ONYX-015 is an E1B-55K-deleted adenovirus that has promising clinical activity as a cancer therapy. However, many tumor cells fail to support ONYX-015 oncolytic replication. E1B-55K functions include p53 degradation, RNA export, and host protein shutoff. Here, we show that resistant tumor cell lines fail to provide the RNA export functions of E1B-55K necessary for ONYX-015 replication; viral 100K mRNA export is necessary for host protein shutoff. However, heat shock rescues late viral RNA export and renders refractory tumor cells permissive to ONYX-015. These data indicate that heat shock and late adenoviral RNAs may converge upon a common mechanism for their export. Moreover, these data suggest that the concomitant induction of a heat shock response could significantly improve ONYX-015 cancer therapy.
Collapse
Affiliation(s)
- Clodagh C O'Shea
- Cancer Research Institute, University of California, San Francisco, CA 94115, USA.
| | | | | | | |
Collapse
|
33
|
Flint SJ, Huang W, Goodhouse J, Kyin S. A peptide inhibitor of exportin1 blocks shuttling of the adenoviral E1B 55 kDa protein but not export of viral late mRNAs. Virology 2005; 337:7-17. [PMID: 15914216 DOI: 10.1016/j.virol.2005.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 12/20/2004] [Accepted: 04/01/2005] [Indexed: 10/25/2022]
Abstract
The human subgroup C adenoviral E1B 55 kDa and E4 Orf6 proteins are required for efficient nuclear export of viral late mRNAs, but the cellular pathway that mediates such export has not been identified. As a first step to develop a general approach to address this issue, we have assessed the utility of cell-permeable peptide inhibitors of cellular export receptors. As both E1B and E4 proteins have been reported to contain a leucine-rich nuclear export signal (NES), we synthesized a cell-permeable peptide containing such an NES. This peptide induced substantial inhibition of export of the E1B protein, whereas a control, non-functional peptide did not. However, under the same conditions, the NES peptide had no effect on export of viral late mRNAs. These observations establish that viral late mRNAs are not exported by exportin1, as well as the value of peptide inhibitors in investigation of mRNA export regulation in adenovirus-infected cells.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, NJ 08544, USA.
| | | | | | | |
Collapse
|
34
|
Jiang H, Gomez-Manzano C, Alemany R, Medrano D, Alonso M, Bekele BN, Lin E, Conrad CC, Yung WKA, Fueyo J. Comparative effect of oncolytic adenoviruses with E1A-55 kDa or E1B-55 kDa deletions in malignant gliomas. Neoplasia 2005; 7:48-56. [PMID: 15720816 PMCID: PMC1490320 DOI: 10.1593/neo.04391] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Replication-competent oncolytic adenoviruses hold considerable promise for treating malignant gliomas. The toxicity of the clinically tested E1B-55 kDa mutant virus is negligible; however, its full clinical potential is still being evaluated. The purpose of the present study is to compare the antiglioma activity in vitro and in vivo between Delta-24, an E1A mutant adenovirus, and RA55, an E1B-55 kDa mutant adenovirus. We selected human glioma cell lines that were tumorigenic in nude mice and express wild-type p53 (U-87 MG, D54 MG) or mutant p53 (U-251 MG, U-373 MG) protein. Our studies demonstrated that Delta-24 induced a more potent antiglioma effect in vitro than RA55. Moreover, Delta-24 replicated markedly more efficiently than RA55 in both wild-type and mutant p53 scenarios. Importantly, direct intratumoral injection of Delta-24, but not RA55, significantly suppresses tumor growth in intracranial (U-87 MG, U-251 MG) or subcutaneous (D54 MG) animal models. Staining for hexon protein detected replicating adenoviruses in xenografts infected with Delta-24, but not with RA55. Collectively, these data indicate that E1A mutant adenoviruses targeting the Rb pathway are more powerful putative agents for antiglioma therapy than E1B mutant adenoviruses, and suggest that E1A mutant adenoviruses should be tested in the clinical setting for patients with malignant gliomas.
Collapse
Affiliation(s)
- Hong Jiang
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | - Diana Medrano
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Marta Alonso
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - B Nebiyou Bekele
- Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - E Lin
- Department of Biostatistics, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles C Conrad
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - W K Alfred Yung
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Juan Fueyo
- Brain Tumor Center, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Francis JD, Snyder RO. Production of research and clinical‐grade recombinant adeno‐associated virus vectors. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0075-7535(05)31002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
36
|
O'Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, Shen A, Boyle L, Pandey K, Soria C, Kunich J, Shen Y, Habets G, Ginzinger D, McCormick F. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6:611-23. [PMID: 15607965 DOI: 10.1016/j.ccr.2004.11.012] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 10/27/2004] [Accepted: 11/17/2004] [Indexed: 12/29/2022]
Abstract
ONYX-015 is an adenovirus that lacks the E1B-55K gene product for p53 degradation. Thus, ONYX-015 was conceived as an oncolytic virus that would selectively replicate in p53-defective tumor cells. Here we show that loss of E1B-55K leads to the induction, but not the activation, of p53 in ONYX-015-infected primary cells. We use a novel adenovirus mutant, ONYX-053, to demonstrate that loss of E1B-55K-mediated late viral RNA export, rather than p53 degradation, restricts ONYX-015 replication in primary cells. In contrast, we show that tumor cells that support ONYX-015 replication provide the RNA export function of E1B-55K. These data reveal that tumor cells have altered mechanisms for RNA export and resolve the controversial role of p53 in governing ONYX-015 oncolytic selectivity.
Collapse
|
37
|
McConnell MJ, Imperiale MJ. Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 2004; 15:1022-33. [PMID: 15610603 DOI: 10.1089/hum.2004.15.1022] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Michael J McConnell
- Department of Microbiology and Immunology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
38
|
Zou A, Atencio I, Huang WM, Horn M, Ramachandra M. Overexpression of adenovirus E3-11.6K protein induces cell killing by both caspase-dependent and caspase-independent mechanisms. Virology 2004; 326:240-9. [PMID: 15302210 DOI: 10.1016/j.virol.2004.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 06/01/2004] [Indexed: 11/17/2022]
Abstract
Recent studies have shown enhanced antitumor efficacy with adenoviruses that either lack E1B-19K or overexpress E3-11.6K (also known as adenoviral death protein). E1B-19K is a well-characterized anti-apoptotic protein, and viruses with E1B-19K deletions show increased cytopathicity. However, the mechanism of cell killing by E3-11.6K, which plays an important role in killing infected cells and virion release, is not well characterized. To understand the mechanism of cell killing following E3-11.6K overexpression, we constructed a recombinant adenovirus, Ad-ME, by introducing viral major late promoter upstream of the E3-11.6K sequence. Similar to the E1B-19K-deleted virus, E1B/19K-, Ad-ME induced cell death to a greater extent than the wild-type virus. Cell shrinkage, membrane blebbing, activation of caspases 3 and 9, cleavage of poly(ADP-ribose)polymerase (PARP), DNA degradation, and ratio of ADP to ATP in Ad-ME-infected cells indicated that apoptosis contributes to cell death following E3-11.6K overexpression. However, the levels of activation of caspases 3 and 9 were lower in cells infected with Ad-ME compared to those infected with E1B/19K-. Furthermore, cell killing by Ad-ME was not effectively inhibited by Z-VAD-FMK, a general caspase inhibitor. Taken together, our results suggest both caspase-dependent and caspase-independent mechanisms of cell killing due to overexpression of E3-11.6K.
Collapse
Affiliation(s)
- Aihua Zou
- Canji, Inc., San Diego, CA 92128, USA
| | | | | | | | | |
Collapse
|
39
|
Matsushita T, Okada T, Inaba T, Mizukami H, Ozawa K, Colosi P. The adenovirus E1A and E1B19K genes provide a helper function for transfection-based adeno-associated virus vector production. J Gen Virol 2004; 85:2209-2214. [PMID: 15269360 DOI: 10.1099/vir.0.79940-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Although the adenoviral E1, E2A, E4 and VA RNA regions are required for efficient adeno-associated virus (AAV) vector production, the role that the individual E1 genes (E1A, E1B19K, E1B55K and protein IX) play in AAV vector production has not been clearly determined. E1 mutants were analysed for their ability to mediate AAV vector production in HeLa or KB cells, when cotransfected with plasmids encoding all other packaging functions. Disruption of E1A and E1B19K genes resulted in vector yield reduction by up to 10- and 100-fold, respectively, relative to the wild-type E1. Interruption of the E1B55K and protein IX genes had a modest effect on vector production. Interestingly, expression of anti-apoptotic E1B19K cellular homologues such as Bcl-2 or Bcl-x(L) fully complemented E1B19K mutants for AAV vector production. These findings may be valuable for the future development of packaging cell lines for AAV vector production.
Collapse
Affiliation(s)
- Takashi Matsushita
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Kawachi, Tochigi 329-0489, Japan
| | - Takashi Okada
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Kawachi, Tochigi 329-0489, Japan
| | - Toshiya Inaba
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Kawachi, Tochigi 329-0489, Japan
| | - Keiya Ozawa
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical School, 3311-1 Yakushiji, Minami-kawachi, Kawachi, Tochigi 329-0489, Japan
| | | |
Collapse
|
40
|
Abstract
The potential use of adenoviruses in therapy against cancer has evoked a rapidly moving field of research. Unlike conventional gene therapy vectors, oncolytic adenoviruses retain the ability to replicate. However, replication is restricted as much as possible to tumor cells, with the aim of eliminating these cells through viral cytotoxicity. The two key issues are to improve the efficiency of virus replication and cell killing while ensuring the specificity of these activities for tumor cells. Wild-type adenoviruses as such may already be usable for cancer therapy. Strategies to further improve efficiency and specificity include the partial or complete removal of viral genes. The idea is that functions carried out by the corresponding gene products are not required for replication in tumor cells, but are needed in normal cells. Accordingly, the removal of genes encoding E1B-55 kDa or E1B-19 kDa, or the mutation of E1A may improve the selective killing of tumor cells. On the other hand, the overexpression of the adenovirus death protein (ADP) may enhance viral spread and oncolytic efficiency. Other strategies to improve the specific oncolytic activity of replicating adenoviruses have been pursued. For instance, some promoters are active specifically in tumor cells, and these promoters were introduced into the viral genome, to regulate essential viral genes. Moreover, replicating viruses were engineered to express toxic proteins or drug converters. A number of these viruses have been tested successfully using tumor xenografts in nude mice as a model system. An oncolytic adenovirus lacking the E1B-55 kDa gene product, termed dl1520 or ONYX015, was injected into squamous cell carcinomas of head and neck in phase II clinical trials, and the results were encouraging when chemotherapy was applied in parallel. In the future, further progress might be achieved on the level of virus constructs, but also by refining and adjusting simultaneous conventional therapies, and by standardizing the assessment of the clinical outcome. Recent progress has been made towards the use of replicating virus constructs in cancer therapy. The goal of these developments is to remove cancerous cells from patients with the help of viruses that selectively replicate in these cells. These viruses are generally termed oncolytic viruses. Some convenient properties of adenovirus make this virus particularly useful for this purpose. It infects a large number of human cell types, especially epithelial cells, which give rise to the vast majority of human malignancies. It can be grown easily and to high titers, and the creation of virus recombinants is well established. Finally, a large body of basic research has already been carried out on this virus, facilitating its manipulation. Various approaches to use adenovirus as a cancer drug have been reviewed (Alemany et al. 1999a, 2000; Curiel 2000; Galanis et al. 2001b; Gromeier 2001; Heise and Kirn 2000; Kirn 2000a; Kirn et al. 2001; Kirn and McCormick 1996; Smith and Chiocca 2000; Sunamura 2000; Wells 2000; Wodarz 2001). The aim of this chapter is to provide an integrated overview of these strategies.
Collapse
Affiliation(s)
- M Dobbelstein
- Institut für Virologie, Philipps-Universität Marburg, Robert Koch Str. 17, 35037 Marburg, Germany.
| |
Collapse
|
41
|
Russell IA, Royds JA, Braithwaite AW. Exploitation of Cell Cycle and Cell Death Controls by Adenoviruses: The Road to a Productive Infection. VIRUSES AND APOPTOSIS 2004; 36:207-43. [PMID: 15171614 DOI: 10.1007/978-3-540-74264-7_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- I Alasdair Russell
- Cell Transformation Group, Department of Pathology, Dunedin School of Medicine, University of Otago, Box 913, Dunedin, New Zealand
| | | | | |
Collapse
|
42
|
Corbin-Lickfett KA, Bridge E. Adenovirus E4-34kDa requires active proteasomes to promote late gene expression. Virology 2003; 315:234-44. [PMID: 14592775 DOI: 10.1016/s0042-6822(03)00527-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A complex of the Adenovirus (Ad) early region 1b 55-kDa protein (E1b-55kDa) and the early region 4 ORF6 34-kDa protein (E4-34kDa) promotes viral late RNA accumulation in the cytoplasm while inhibiting the transport of most newly synthesized cellular mRNA. The E4 ORF3 11-kDa protein (E4-11kDa) functionally compensates for at least some of the activities of this complex. We find that the same large central region of E4-34kDa that is required for proteasome-mediated degradation of p53 (J. Virol. 75, (2001) 699-709) is also required to promote viral late gene expression in a complementation assay. E4-34kDa does not promote late gene expression in complementation assays performed in the presence of proteasome inhibitors. A proteasome inhibitor also dramatically reduced late gene expression by a virus that lacks the E4-11kDa gene and therefore relies on E4-34kDa for late gene expression. Our results suggest that E4-34kDa activity in promoting late gene expression depends on the proteasome.
Collapse
|
43
|
Abstract
Analysis of virus-host interactions has revealed a variety of ways in which viruses utilize and/or alter host functions in an effort to facilitate efficient replication. Recent work has suggested that certain RNA viruses that replicate in the cytoplasm disrupt the normal trafficking of cellular RNAs and proteins within the host cell. This review will examine the recent evidence showing that poliovirus and vesicular stomatitis virus (VSV) can inhibit nucleo-cytoplasmic transport within cells. Interestingly, the data indicate that inhibition by both viruses involves targeting components of the nuclear pore complex (NPC). Following this, several possible explanations for why viruses might disrupt nucleo-cytoplasmic transport are discussed. Finally, the possibility that disruption of nucleo-cytoplasmic trafficking may be a more common feature of RNA virus-host interactions than previously thought is examined.
Collapse
Affiliation(s)
- Kurt E Gustin
- Department of Microbiology, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
44
|
Flint SJ, Gonzalez RA. Regulation of mRNA production by the adenoviral E1B 55-kDa and E4 Orf6 proteins. Curr Top Microbiol Immunol 2003; 272:287-330. [PMID: 12747554 DOI: 10.1007/978-3-662-05597-7_10] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The E1B 55-kDa and E4 Orf6 proteins of human subgroup C adenoviruses both counter host cell defenses mediated by the cellular p53 protein and regulate viral late gene expression. A complex containing the two proteins has been implicated in induction of selective export of viral late mRNAs from the nucleus to the cytoplasm, with concomitant inhibition of export of the majority of newly synthesized cellular mRNAs. The molecular mechanisms by which these viral proteins subvert cellular pathways of nuclear export are not yet clear. Here, we review recent efforts to identify molecular and biochemical functions of the E1B 55-kDa and E4 Orf6 proteins required for regulation of mRNA export, the several difficulties and discrepancies that have been encountered in studies of these viral proteins, and evidence indicating that the reorganization of the infected cell nucleus and production of viral late mRNA at specific intra-nuclear sites are important determinants of selective mRNA export in infected cells. In our view, it is not yet possible to propose a coherent molecular model for regulation of mRNA export by the E1B 55-kDa and E4 Orf6 proteins. However, it should now be possible to address specific questions about the roles of potentially relevant properties of these viral proteins.
Collapse
Affiliation(s)
- S J Flint
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08844, USA.
| | | |
Collapse
|
45
|
Akusjärvi G, Stévenin J. Remodelling of the host cell RNA splicing machinery during an adenovirus infection. Curr Top Microbiol Immunol 2003; 272:253-86. [PMID: 12747553 DOI: 10.1007/978-3-662-05597-7_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Adenovirus makes extensive use of RNA splicing to produce a complex set of spliced mRNAs during virus replication. All transcription units, except pIX and IVa2, encode multiple alternatively spliced mRNAs. The accumulation of viral mRNAs is subjected to a temporal regulation, a mechanism that ensures that proteins that are needed at certain stages of the viral life cycle are produced. The complex interaction between host cell RNA splicing factors and viral regulatory elements has been studied intensely during the last decade. Such studies have begun to produce a picture of how adenovirus remodels the host cell RNA splicing machinery to orchestrate the shift from the early to the late profile of viral mRNA accumulation. Recent progress has to a large extent focused on the mechanisms regulating E1A and L1 alternative splicing. Here we will review the current knowledge of cis-acting sequence element, trans-acting factors and mechanisms controlling E1A and L1 alternative splicing.
Collapse
Affiliation(s)
- G Akusjärvi
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, 751 23 Uppsala, Sweden
| | | |
Collapse
|
46
|
Lethbridge KJ, Scott GE, Leppard KN. Nuclear matrix localization and SUMO-1 modification of adenovirus type 5 E1b 55K protein are controlled by E4 Orf6 protein. J Gen Virol 2003; 84:259-268. [PMID: 12560556 DOI: 10.1099/vir.0.18820-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human adenovirus serotype 5 encodes three proteins, E1b 55K, E4 Orf3 and E4 Orf6, which interact with each other and with components of the nucleus to regulate mRNA processing and export, viral DNA replication and p53-dependent apoptosis. Previous studies have shown that, during wild-type infection, 55K associates initially with structures termed ND10, which are sites of localization of the promyelocytic leukaemia protein, and then moves, dependent upon its interaction with Orf6, to the establishing virus replication centres. Absence of either Orf3 or Orf6 affects the localization of 55K and so may affect its function. In this study, the influence of Orf3 and Orf6 expression on the association of 55K with the insoluble matrix fraction of the nucleus and with ND10 particularly was examined. Overexpression of Orf6 was sufficient to block the association of 55K with this fraction, irrespective of the presence of Orf3. This effect depended upon the two proteins being able to interact. However, the association of 55K with ND10, which persists throughout infection in the absence of Orf6, required Orf3 to be present, thus distinguishing two subsets of matrix-associated 55K. A modified form of 55K, formation of which was blocked by mutating the known site of SUMO-1 attachment, was more abundant in the absence of Orf6 but unaffected by the absence of Orf3. Thus, this modification is favoured when 55K remains associated with the matrix but does not correlate with its stable association with ND10, many components of which are modified by SUMO-1.
Collapse
Affiliation(s)
| | - Gillian E Scott
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Keith N Leppard
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
47
|
Herbert A, Wagner S, Nickerson JA. Induction of protein translation by ADAR1 within living cell nuclei is not dependent on RNA editing. Mol Cell 2002; 10:1235-46. [PMID: 12453429 DOI: 10.1016/s1097-2765(02)00737-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translation of mRNA is usually cytoplasmic. We report that the RNA editing enzyme ADAR1, which catalyzes the deamination of adenosine to inosine in double-stranded RNA substrates, induces translation within the nucleus, possibly at the surface of the nucleolus. This activity does not depend on RNA editing. Two regions within ADAR1 are defined that act independently of each other to induce translation: the first includes the double-stranded RNA binding domains (DRBMs) of ADAR1 while the second maps to the C-terminal portion of the catalytic domain. Point mutations within each domain are identified that reduce nuclear translation; those in the DRBM region are also known to diminish RNA binding. This report adds to the growing functionality ascribed to the nucleus.
Collapse
Affiliation(s)
- Alan Herbert
- Department of Neurology, E633, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| | | | | |
Collapse
|
48
|
Kim J, Cho JY, Kim JH, Jung KC, Yun CO. Evaluation of E1B gene-attenuated replicating adenoviruses for cancer gene therapy. Cancer Gene Ther 2002; 9:725-36. [PMID: 12189522 DOI: 10.1038/sj.cgt.7700494] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2002] [Indexed: 11/08/2022]
Abstract
Gene-attenuated replication-competent adenoviruses are emerging as a promising new modality for the treatment of cancer. For the aim of improving adenoviral vectors for cancer gene therapy, we have constructed genetically attenuated adenoviral vectors with different combinations of E1B genes and investigated the possibility of enhanced oncolytic and replication effects of these engineered replication-competent adenoviruses. We show here that the cytolytic potency of each gene-attenuated replicating adenovirus differed significantly depending on the presence or deletion of E1B 55 kDa and E1B 19 kDa function. More specifically, among the constructed vectors (Ad-deltaE1B19, Ad-deltaE1B55, Ad-deltaE1B19/55, and Ad-wt), E1B 19 kDa-inactivated adenovirus (Ad-deltaE1B19) was the most potent against all tumor cells tested, inducing the largest-sized plaques and marked CPE. Further, cells infected with either Ad-deltaE1B19 or E1B19/55 kDa-deleted adenovirus (Ad-deltaE1B19/55) showed complete cell lysis with disintegrated cellular structure, whereas cells infected with Ad-wt maintained intact cellular and nuclear membrane with properly structured organelles. TUNEL and DNA fragmentation assay also revealed that the Ad-deltaE1B19 or Ad-deltaE1B19/55 adenovirus-infected cells showed more profound induction of apoptosis in comparison to wild-type adenovirus-infected cells. The presence of E1B 55 kDa gene was required for efficient viral replication and deletion of E1B 19 kDa function in replicating adenovirus-induced apoptosis, leading to increased cytopathic effects. Moreover, Ad-deltaE1B19 adenovirus showed a better antitumor effect than other E1B-attenuated adenoviruses. Taken together, the replicating adenoviruses deleted in E1B 19 kDa function may serve as an improved vector for anticancer gene therapy in combination with apoptosis-inducing modalities such as chemotherapeutic agents and radiation therapy.
Collapse
Affiliation(s)
- Jaesung Kim
- Institute of Cancer Research, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
49
|
Holm PS, Bergmann S, Jurchott K, Lage H, Brand K, Ladhoff A, Mantwill K, Curiel DT, Dobbelstein M, Dietel M, Gansbacher B, Royer HD. YB-1 relocates to the nucleus in adenovirus-infected cells and facilitates viral replication by inducing E2 gene expression through the E2 late promoter. J Biol Chem 2002; 277:10427-34. [PMID: 11788582 DOI: 10.1074/jbc.m106955200] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The adenovirus early proteins E1A and E1B-55kDa are key regulators of viral DNA replication, and it was thought that targeting of p53 by E1B-55kDa is essential for this process. Here we have identified a previously unrecognized function of E1B for adenovirus replication. We found that E1B-55kDa is involved in targeting the transcription factor YB-1 to the nuclei of adenovirus type 5-infected cells where it is associated with viral inclusion bodies believed to be sites of viral transcription and replication. We show that YB-1 facilitates E2 gene expression through the E2 late promoter thus controlling E2 gene activity at later stages of infection. The role of YB-1 for adenovirus replication was demonstrated with an E1-minus adenovirus vector containing a YB-1 transgene. In infected cells, AdYB-1 efficiently replicated and produced infectious progeny particles. Thus, adenovirus E1B-55kDa protein and the host cell factor YB-1 act jointly to facilitate adenovirus replication in the late phase of infection.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Adenovirus E2 Proteins/genetics
- Antigens, Bacterial
- Bacterial Proteins/metabolism
- Blotting, Northern
- Blotting, Southern
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Line
- Cell Nucleus/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins
- Gene Expression Regulation
- HeLa Cells
- Humans
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- NFI Transcription Factors
- Nuclear Proteins
- Promoter Regions, Genetic
- Protein Binding
- Transcription Factors
- Transgenes
- Virus Replication
- Y-Box-Binding Protein 1
Collapse
Affiliation(s)
- Per S Holm
- Institut für Experimentelle Onkologie und Therapieforschung, Technische Universität München, Klinikum Rechts der Isar, München 81675, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Over the past few years there have been a number of interesting advances in our understanding of the functions encoded by the adenovirus early transcription unit 4 (Ad E4). A large body of recent data demonstrates that E4 proteins encompass an unexpectedly diverse collection of functions required for efficient viral replication. E4 gene products operate through a complex network of protein interactions with key viral and cellular regulatory components involved in transcription, apoptosis, cell cycle control and DNA repair, as well as host cell factors that regulate cell signaling, posttranslational modifications and the integrity of nuclear multiprotein complexes known as nuclear bodies (NBs) or PML oncogenic domains (PODs). As understood at present, some of the lytic functions overlap with roles in oncogenic transformation of primary mammalian cells. These observations, together with findings that E4 proteins substantially affect cell toxicity and the immune response of the host have profound implications for the development of Ad vectors for gene therapy. In this article we will summarize recent findings regarding the diverse functions of E4 gene products in the context of earlier work. We will emphasize the interaction of E4 proteins with cellular and viral interaction partners, the role of these interactions for lytic virus growth and how these interactions may contribute to viral oncogenesis. Finally, we will discuss their role in Ad vector and adeno-associated virus infections.
Collapse
Affiliation(s)
- B Täuber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | |
Collapse
|