1
|
Dong W, Guo D, Yang C, Xu Q, Wang J. PTX3 Deficiency Aggravates Periodontitis by the Complement C5a-C5aR1 Axis. J Dent Res 2025:220345251329027. [PMID: 40376885 DOI: 10.1177/00220345251329027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Dysregulation of the complement system plays a critical role in periodontitis progression. In addition to the harmful effects of biofilm, aberrant expression of complement regulatory proteins is also a potential cause of periodontitis. Pentraxin 3 (PTX3) is involved in complement activation and regulation, seeking a balance between amplifying complement-mediated immune responses and avoiding complement-mediated tissue damage. However, its role in periodontitis remains unexplored. This study aimed to investigate the effects of PTX3 on inflammation onset and resolution, with a particular emphasis on its complement regulatory function. We found that PTX3 is predominantly expressed in human and mouse inflammatory monocytes and is significantly upregulated during periodontitis. In vivo experiments showed that PTX3 deficiency led to the accumulation of complement C5a, massive infiltration of inflammatory monocytes, and alveolar bone loss in a ligation-induced mouse periodontitis model. Inhibition of C5a signaling with PMX53 or NLRP3 inflammasome with MCC950 significantly alleviated these adverse effects. In addition, PTX3 deficiency delayed the resolution of inflammation and alveolar bone repair during the recovery phase of periodontitis. In vitro studies showed that PTX3 deficiency promoted C5a conversion and release in monocytes, thereby activating the NLRP3 inflammasome via the C5a-C5aR1 axis-mediated mitogen-activated protein kinase and nuclear factor κB signaling in an inflammatory environment. In conclusion, these data elucidate the link between PTX3 in regulating complement activation and periodontitis progression, providing a potential target for innate immune-based therapy of periodontitis.
Collapse
Affiliation(s)
- W Dong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - D Guo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - C Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Q Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Carver JJ, Bunner WP, Denbrock RR, Yin C, Huang W, Szatmari EM, Didonna A. Loss of ADAP1/CentA1 Protects Against Autoimmune Demyelination. FASEB J 2025; 39:e70604. [PMID: 40326762 PMCID: PMC12054340 DOI: 10.1096/fj.202403078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
ArfGAP with dual PH domain-containing protein 1 (ADAP1), also known as Centaurin alpha-1 (CentA1), is an actin-binding protein highly expressed in the central nervous system (CNS) that was previously shown to regulate dendritic spine density and plasticity. In the context of disease, ADAP1/CentA1 has been linked to Alzheimer's disease (AD) pathogenesis, cancer progression, and human immunodeficiency virus (HIV) reactivation. Here, we document that ADAP1/CentA1 is also mechanistically involved in CNS autoimmunity. We show that ADAP1/CentA1 deficient mice exhibit partial resistance to developing experimental autoimmune encephalomyelitis (EAE), an in vivo disease model recapitulating several features of multiple sclerosis (MS) pathogenesis. MS is a chronic autoimmune disorder of the CNS characterized by focal immune cell infiltration, demyelination, and axonal injury. Its etiology is still elusive, but genetic and environmental factors contribute to disease risk. By combining detailed immunophenotyping and single-cell RNA sequencing (scRNA-seq), we demonstrate that ADAP1/CentA1 is necessary for mounting a sufficient autoimmune response for EAE initiation and progression. In particular, the current study highlights that ADAP1/CentA1 expression in the immune system mainly targets the functioning of regulatory T cells (Tregs), monocytes, and natural killer (NK) cells. In summary, our study defines a novel function for ADAP/CentA1 outside of the CNS and helps elucidate the early molecular events taking place in the peripheral immune system in response to encephalitogenic challenges.
Collapse
MESH Headings
- Animals
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Mice
- Mice, Inbred C57BL
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Mice, Knockout
- Female
- Microfilament Proteins/genetics
- Microfilament Proteins/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Jonathan J. Carver
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Wyatt P. Bunner
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
- Center for Immunotherapy & Precision Immuno‐OncologyCleveland ClinicClevelandOhioUSA
| | - Rachael R. Denbrock
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Erzsebet M. Szatmari
- Department of Physical Therapy, College of Allied Health SciencesEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Alessandro Didonna
- Department of Anatomy and Cell Biology, Brody School of MedicineEast Carolina UniversityGreenvilleNorth CarolinaUSA
| |
Collapse
|
3
|
Chavez Alvarez AC, Bouzriba C, Ouellette V, Gagné-Boulet M, Patenaude A, Pilote S, C.-Gaudreault R, Simard C, Fortin S. Toxicity, Half-Life and Antitumor Activity of Phenyl 4-(2-Oxo-3-alkylimidazolidin-1-yl)benzenesulfonates as Novel Antimitotic CYP1A1-Targeted Prodrugs in Female Mouse Models. Pharmaceutics 2025; 17:233. [PMID: 40006600 PMCID: PMC11859775 DOI: 10.3390/pharmaceutics17020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Chemoresistance of breast cancers (BCs) is a major impediment to current chemotherapeutics that urges the development of new drugs and new therapeutic approaches. To that end, phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) were recently prepared to fulfill some of the unmet needs with classic chemotherapeutics. PAIB-SOs are prodrugs bioactivated into potent antimitotics by the cytochrome P450 1A1 (CYP1A1), which is a frequent enzyme in resistant BC cells, but mostly missing in normal cells. Our screening program studies of PAIB-SO chemolibraries selected three prototypical PAIB-SOs as antimitotic prodrugs amenable for studies using BC animal models. Methods: Healthy female CD1® IGS mice were treated with three prototypical PAIB-SOs, namely CEU-835, -934, and -938, for the determination of their toxicity and half-lives. Moreover, MCF7 tumor-bearing CD1-Foxn1nu Nude female mice were treated with the three prototypical PAIB-SOs for the determination of their antitumor activity. Results: Herein, we show that multi-intravenous administrations of CEU-835, -934, and -938 at their maximal solubilities are well tolerated in healthy female CD1® IGS mice, as depicted by the evaluation of distress behaviors, organ necropsy, total blood cell count, and histology. Moreover, the half-life of CEU-835, -934, and -938 administered intravenously in healthy CD1® IGS female mice were 8.1, 23.2, and 21.5 h, respectively. Finally, their intravenous administrations of CEU-934 and -938 decreased MCF7 tumor growth as efficiently as paclitaxel in MCF7 tumor-bearing CD1-Foxn1nu Nude mouse model. Conclusions: overall, our study demonstrated for the first time that pentyl-bearing PAIB-SOs are new CYP1A1-dependent prodrugs efficiently decrease breast cancer tumor growth, and show no side effects at their pharmacological concentration in mouse models.
Collapse
Affiliation(s)
- Atziri Corin Chavez Alvarez
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; (C.B.); (V.O.); (M.G.-B.); (C.S.)
- Centre de Recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d’Assise, 10 Rue de l’Espinay, Québec, QC G1L 3L5, Canada; (A.P.); (R.C.-G.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec-Université Laval, Axe Cardiologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada;
| | - Chahrazed Bouzriba
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; (C.B.); (V.O.); (M.G.-B.); (C.S.)
- Centre de Recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d’Assise, 10 Rue de l’Espinay, Québec, QC G1L 3L5, Canada; (A.P.); (R.C.-G.)
| | - Vincent Ouellette
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; (C.B.); (V.O.); (M.G.-B.); (C.S.)
- Centre de Recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d’Assise, 10 Rue de l’Espinay, Québec, QC G1L 3L5, Canada; (A.P.); (R.C.-G.)
| | - Mathieu Gagné-Boulet
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; (C.B.); (V.O.); (M.G.-B.); (C.S.)
- Centre de Recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d’Assise, 10 Rue de l’Espinay, Québec, QC G1L 3L5, Canada; (A.P.); (R.C.-G.)
| | - Alexandre Patenaude
- Centre de Recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d’Assise, 10 Rue de l’Espinay, Québec, QC G1L 3L5, Canada; (A.P.); (R.C.-G.)
| | - Sylvie Pilote
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec-Université Laval, Axe Cardiologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada;
| | - René C.-Gaudreault
- Centre de Recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d’Assise, 10 Rue de l’Espinay, Québec, QC G1L 3L5, Canada; (A.P.); (R.C.-G.)
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Chantale Simard
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; (C.B.); (V.O.); (M.G.-B.); (C.S.)
- Centre de Recherche de l’Institut Universitaire de Cardiologie et Pneumologie de Québec-Université Laval, Axe Cardiologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 2725 Chemin Sainte-Foy, Québec, QC G1V 4G5, Canada;
| | - Sébastien Fortin
- Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada; (C.B.); (V.O.); (M.G.-B.); (C.S.)
- Centre de Recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d’Assise, 10 Rue de l’Espinay, Québec, QC G1L 3L5, Canada; (A.P.); (R.C.-G.)
| |
Collapse
|
4
|
Yuan Z, Shu L, Fu J, Yang P, Wang Y, Sun J, Zheng M, Liu Z, Yang J, Song J, Song S, Cai Z. Single-Cell RNA Sequencing Deconstructs the Distribution of Immune Cells Within Abdominal Aortic Aneurysms in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1986-2003. [PMID: 39051127 DOI: 10.1161/atvbaha.124.321129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Inflammation is a key component in the development of abdominal aortic aneurysm (AAA), yet insights into the roles of immune cells and their interactions in this process are limited. METHODS Using single-cell RNA transcriptomic analysis, we deconstructed the CD45+ cell population in elastase-induced murine AAA at the single-cell level. We isolated each group of immune cells from murine AAA tissue at different time points and divided them into several subtypes, listed the remarkable differentially expressed genes, explored the developmental trajectories of immune cells, and demonstrated the interactions among them. RESULTS Our findings reveal significant differences in several immune cell subsets, including macrophages, dendritic cells, and T cells, within the AAA microenvironment compared with the normal aorta. Especially, conventional dendritic cell type 1 exclusively existed in the AAA tissue rather than the normal aortas. Via CellChat analysis, we identified several intercellular communication pathways like visfatin, which targets monocyte differentiation and neutrophil extracellular trap-mediated interaction between neutrophils and dendritic cells, which might contribute to AAA development. Some of these pathways were validated in human AAA. CONCLUSIONS Despite the absence of external pathogenic stimuli, AAA tissues develop a complex inflammatory microenvironment involving numerous immune cells. In-depth studies of the inflammatory network shall provide new strategies for patients with AAA.
Collapse
MESH Headings
- Aortic Aneurysm, Abdominal/immunology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Animals
- Single-Cell Analysis
- Disease Models, Animal
- Mice, Inbred C57BL
- Aorta, Abdominal/pathology
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/immunology
- Mice
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Male
- Transcriptome
- RNA-Seq
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Gene Expression Profiling/methods
- Pancreatic Elastase
- Cell Communication
Collapse
Affiliation(s)
- Zhen Yuan
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Li Shu
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jiantao Fu
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Peipei Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Yidong Wang
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| | - Jie Sun
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Zheng
- Pathology (J. Sun, M.Z.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenjie Liu
- Vascular Surgery (Z.L.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Yang
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, China (J.F., P.Y., J.Y.)
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Shen Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China (J. Song, S.S.)
| | - Zhejun Cai
- Departments of Cardiology (Z.Y., L.S., Y.W., Z.C.), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- State Key Laboratory of Transvascular Implantation Devices, China (Z.Y., L.S., Y.W., Z.C.)
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China (Z.Y., L.S., Y.W., Z.C.)
| |
Collapse
|
5
|
Jiang T, Xia T, Qiao F, Wang N, Jiang Y, Xin H. Role and Regulation of Transcription Factors in Osteoclastogenesis. Int J Mol Sci 2023; 24:16175. [PMID: 38003376 PMCID: PMC10671247 DOI: 10.3390/ijms242216175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Bones serve mechanical and defensive functions, as well as regulating the balance of calcium ions and housing bone marrow.. The qualities of bones do not remain constant. Instead, they fluctuate throughout life, with functions increasing in some situations while deteriorating in others. The synchronization of osteoblast-mediated bone formation and osteoclast-mediated bone resorption is critical for maintaining bone mass and microstructure integrity in a steady state. This equilibrium, however, can be disrupted by a variety of bone pathologies. Excessive osteoclast differentiation can result in osteoporosis, Paget's disease, osteolytic bone metastases, and rheumatoid arthritis, all of which can adversely affect people's health. Osteoclast differentiation is regulated by transcription factors NFATc1, MITF, C/EBPα, PU.1, NF-κB, and c-Fos. The transcriptional activity of osteoclasts is largely influenced by developmental and environmental signals with the involvement of co-factors, RNAs, epigenetics, systemic factors, and the microenvironment. In this paper, we review these themes in regard to transcriptional regulation in osteoclastogenesis.
Collapse
Affiliation(s)
- Tao Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Tianshuang Xia
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Fangliang Qiao
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, China;
| | - Yiping Jiang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
| | - Hailiang Xin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (T.J.); (T.X.); (F.Q.)
- School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
6
|
Ruder AV, Wetzels SMW, Temmerman L, Biessen EAL, Goossens P. Monocyte heterogeneity in cardiovascular disease. Cardiovasc Res 2023; 119:2033-2045. [PMID: 37161473 PMCID: PMC10478755 DOI: 10.1093/cvr/cvad069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 05/11/2023] Open
Abstract
Monocytes circulate the vasculature at steady state and are recruited to sites of inflammation where they differentiate into macrophages (MФ) to replenish tissue-resident MФ populations and engage in the development of cardiovascular disease (CVD). Monocytes display considerable heterogeneity, currently reflected by a nomenclature based on their expression of cluster of differentiation (CD) 14 and CD16, distinguishing CD14++CD16- classical (cMo), CD14++CD16+ intermediate (intMo) and CD14+CD16++ non-classical (ncMo) monocytes. Several reports point to shifted subset distributions in the context of CVD, with significant association of intMo numbers with atherosclerosis, myocardial infarction, and heart failure. However, clear indications of their causal involvement as well as their predictive value for CVD are lacking. As recent high-parameter cytometry and single-cell RNA sequencing (scRNA-Seq) studies suggest an even higher degree of heterogeneity, better understanding of the functionalities of these subsets is pivotal. Considering their high heterogeneity, surprisingly little is known about functional differences between MФ originating from monocytes belonging to different subsets, and implications thereof for CVD pathogenesis. This paper provides an overview of recent findings on monocyte heterogeneity in the context of homeostasis and disease as well as functional differences between the subsets and their potential to differentiate into MФ, focusing on their role in vessels and the heart. The emerging paradigm of monocyte heterogeneity transcending the current tripartite subset division argues for an updated nomenclature and functional studies to substantiate marker-based subdivision and to clarify subset-specific implications for CVD.
Collapse
Affiliation(s)
- Adele V Ruder
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Suzan M W Wetzels
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Lieve Temmerman
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Pieter Goossens
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center (MUMC+), P. Debyelaan 25, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
7
|
Hoch J, Burkhard N, Zhang S, Rieder M, Marchini T, Geest V, Krauel K, Zahn T, Schommer N, Hamad MA, Bauer C, Gauchel N, Stallmann D, Normann C, Wolf D, Scharf RE, Duerschmied D, Schanze N. Serotonin transporter-deficient mice display enhanced adipose tissue inflammation after chronic high-fat diet feeding. Front Immunol 2023; 14:1184010. [PMID: 37520561 PMCID: PMC10372416 DOI: 10.3389/fimmu.2023.1184010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/13/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Serotonin is involved in leukocyte recruitment during inflammation. Deficiency of the serotonin transporter (SERT) is associated with metabolic changes in humans and mice. A possible link and interaction between the inflammatory effects of serotonin and metabolic derangements in SERT-deficient mice has not been investigated so far. Methods SERT-deficient (Sert -/-) and wild type (WT) mice were fed a high-fat diet, starting at 8 weeks of age. Metabolic phenotyping (metabolic caging, glucose and insulin tolerance testing, body and organ weight measurements, qPCR, histology) and assessment of adipose tissue inflammation (flow cytometry, histology, qPCR) were carried out at the end of the 19-week high-fat diet feeding period. In parallel, Sert -/- and WT mice received a control diet and were analyzed either at the time point equivalent to high-fat diet feeding or as early as 8-11 weeks of age for baseline characterization. Results After 19 weeks of high-fat diet, Sert -/- and WT mice displayed similar whole-body and fat pad weights despite increased relative weight gain due to lower starting body weight in Sert -/-. In obese Sert -/- animals insulin resistance and liver steatosis were enhanced as compared to WT animals. Leukocyte accumulation and mRNA expression of cytokine signaling mediators were increased in epididymal adipose tissue of obese Sert -/- mice. These effects were associated with higher adipose tissue mRNA expression of the chemokine monocyte chemoattractant protein 1 and presence of monocytosis in blood with an increased proportion of pro-inflammatory Ly6C+ monocytes. By contrast, Sert -/- mice fed a control diet did not display adipose tissue inflammation. Discussion Our observations suggest that SERT deficiency in mice is associated with inflammatory processes that manifest as increased adipose tissue inflammation upon chronic high-fat diet feeding due to enhanced leukocyte recruitment.
Collapse
Affiliation(s)
- Johannes Hoch
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Niklas Burkhard
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Shanshan Zhang
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marina Rieder
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Translational Cardiology, Department of Cardiology, Inselspital, Bern, Switzerland
| | - Timoteo Marchini
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vincent Geest
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Krystin Krauel
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Timm Zahn
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nicolas Schommer
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Muataz Ali Hamad
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolina Bauer
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadine Gauchel
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniela Stallmann
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claus Normann
- Department of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Center for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dennis Wolf
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rüdiger Eberhard Scharf
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Division of Experimental and Clinical Hemostasis, Hemotherapy, and Transfusion Medicine, Blood and Hemophilia Comprehensive Care Center, Institute of Transplantation Diagnostics and Cell Therapy, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Daniel Duerschmied
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Nancy Schanze
- Cardiology and Angiology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Zhang L, Jiang Y, He J, Chen J, Qi R, Yuan L, Shao T, Zhao H, Chen C, Chen Y, Wang X, Lei X, Gao Q, Zhuang C, Zhou M, Ma J, Liu W, Yang M, Fu R, Wu Y, Chen F, Xiong H, Nie M, Chen Y, Wu K, Fang M, Wang Y, Zheng Z, Huang S, Ge S, Cheng SC, Zhu H, Cheng T, Yuan Q, Wu T, Zhang J, Chen Y, Zhang T, Li C, Qi H, Guan Y, Xia N. Intranasal influenza-vectored COVID-19 vaccine restrains the SARS-CoV-2 inflammatory response in hamsters. Nat Commun 2023; 14:4117. [PMID: 37433761 DOI: 10.1038/s41467-023-39560-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants and "anatomical escape" characteristics threaten the effectiveness of current coronavirus disease 2019 (COVID-19) vaccines. There is an urgent need to understand the immunological mechanism of broad-spectrum respiratory tract protection to guide broader vaccines development. Here we investigate immune responses induced by an NS1-deleted influenza virus vectored intranasal COVID-19 vaccine (dNS1-RBD) which provides broad-spectrum protection against SARS-CoV-2 variants in hamsters. Intranasal delivery of dNS1-RBD induces innate immunity, trained immunity and tissue-resident memory T cells covering the upper and lower respiratory tract. It restrains the inflammatory response by suppressing early phase viral load post SARS-CoV-2 challenge and attenuating pro-inflammatory cytokine (Il6, Il1b, and Ifng) levels, thereby reducing excess immune-induced tissue injury compared with the control group. By inducing local cellular immunity and trained immunity, intranasal delivery of NS1-deleted influenza virus vectored vaccine represents a broad-spectrum COVID-19 vaccine strategy to reduce disease burden.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yao Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jinhang He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Junyu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Ruoyao Qi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Lunzhi Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Tiange Shao
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Hui Zhao
- National Institute for Food and Drug Control, 102629, Beijing, China
| | - Congjie Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yaode Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xijing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xing Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Qingxiang Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Ming Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Wei Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Man Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Rao Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yangtao Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Feng Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Hualong Xiong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Meifeng Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yiyi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Kun Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Mujin Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Yingbin Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Zizheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Shih Chin Cheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Huachen Zhu
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, 515063, Shantou, China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Quan Yuan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Yixin Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Tianying Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| | - Changgui Li
- National Institute for Food and Drug Control, 102629, Beijing, China.
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Laboratory of Dynamic Immunobiology, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Yi Guan
- State Key Laboratory of Emerging Infectious Diseases, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, China.
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases/Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, 515063, Shantou, China.
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics; National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health & School of Life Sciences, Xiamen University, 361102, Xiamen, Fujian, China.
- Xiang An Biomedicine Laboratory, 361102, Xiamen, Fujian, China.
| |
Collapse
|
9
|
Zhao S, Tang J, Yu S, Maimaitiaili R, Teliewubai J, Xu C, Li J, Chi C, Xu Y, Zhang Y. Monocyte to high-density lipoprotein ratio presents a linear association with atherosclerosis and nonlinear association with arteriosclerosis in elderly Chinese population: The Northern Shanghai Study. Nutr Metab Cardiovasc Dis 2023; 33:577-583. [PMID: 36646605 DOI: 10.1016/j.numecd.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/16/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Inflammation closely correlates with atherosclerosis and cardiovascular disease (CVD). Monocyte to high-density lipoprotein cholesterol ratio (MHR) is a novel inflammation index that can be obtained by routine blood tests. We aimed to investigate the associations between MHR and atherosclerosis and arteriosclerosis. METHODS AND RESULTS We enrolled 2451 participants from the Northern Shanghai Study. Atherosclerosis (carotid plaque (CP), lower extremity atherosclerotic (LEA) assessed by ankle-brachial index) and arteriosclerosis (arterial stiffness (AS) assessed by carotid-femoral pulse wave velocity) were measured using standard methods. In the univariable logistic regression model, higher MHR was significantly associated with increased AS, CP, and LEA risk. In the multivariable logistic regression model, after adjustment for age, sex, hypertension, diabetes mellitus, body mass index, smoking habit, low-density lipoprotein cholesterol, and family history of premature CVD, quartile 4 (Q4) of MHR was associated with an increased risk of AS (odds ratio (OR) = 1.41; 95% confidence interval (CI):1.05-1.88; P fortrend = 0.036), CP (OR = 1.35; 95%CI:1.04-1.77; P for trend = 0.044), and LEA (OR = 2.23; 95%CI:1.49-3.35; P for trend< 0.001). Similar results were observed when MHR was analyzed as a continuous variable. The restricted cubic spline (RCS) curve showed that the association between MHR and AS was nonlinear (P nonlinear = 0.021), but not LEA (P nonlinear = 0.177) or CP (P nonlinear = 0.72). CONCLUSION MHR presents a linear association with atherosclerosis and a nonlinear association with arteriosclerosis in the elderly Chinese population. These findings may indicate the need for early assessment and intervention for inflammation. The registration number for clinical trials: NCT02368938.
Collapse
Affiliation(s)
- Song Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Jiamin Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Shikai Yu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Rusitanmujiang Maimaitiaili
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Jiadela Teliewubai
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Chong Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Jiaxin Li
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Chen Chi
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China
| | - Yi Zhang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 20072, China.
| |
Collapse
|
10
|
Li B, Qi X, Liu Y, Yan Y, Shan J, Cai X, Lv J, Zhou X, Yu T, Ma X. Monocyte-derived macrophages: The supplements of hepatic macrophage in Echinococcus multilocularis infected mice. Immun Inflamm Dis 2022; 10:e699. [PMID: 36169259 PMCID: PMC9511960 DOI: 10.1002/iid3.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Alveolar echinococcosis is a potentially lethal zoonosis caused by the cestode Echinococcus multilocularis. This study is to investigate the dynamic changes of monocytes, macrophages, and related cytokines in animal models of persistent infection of E. multilocularis. METHODS An infection model was established by intraperitoneal injection of a protoscolex suspension. The pathological changes of liver were observed by HE staining. The percentage of Ly6Chi and Ly6Clo Monocytes in peripheral blood was detected by flow cytometry. The distribution and expression of CX3CL1, CX3CR1, iNOS, CD163, and CD11b in the liver were detected by immunohistochemistry. The mRNA expression of tumor necrosis factor-α (TNF-α) and Arg1 in the liver was detected by quantitative reverse transcription polymerase chain reaction. The expression of INF-γ, interleukin-17 (IL-17), IL-4, and IL-10 in peripheral blood was detected by enzyme-linked immunosorbent assay. RESULTS Hematoxylin-eosin(HE) staining showed that significant lesions appeared in the later stages of infection in the liver. The proportion of Ly6Chi monocytes in the peripheral blood of the experimental group mice decreased after a brief rise, Ly6Clo monocytes decreased first and then increased. The expression of CX3CL1, CX3CR1, CD11b, CD163, and iNOS in the mice liver of the experimental group was increased. The expression level of TNF-α and Arg1 mRNA in the liver of the experimental group mice increased. The expression level of IFN-γ, IL-17, IL-4, and IL-10 increased with the duration of infection. CONCLUSIONS Monocytes as a supplement to hepatic macrophage, monocytes and kupffer cells may both participate in Th1 and Th2 immune responses by differentiating into M1 or M2 at different stages of E. multilocularis infection.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Xinwei Qi
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Yumei Liu
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Clinical Laboratory CenterChildren's Hospital of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Yi Yan
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Jiaoyu Shan
- Basic Medical CollegeXinjiang Medical UniversityUrumqiXinjiangChina
| | - Xuanlin Cai
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
| | - Tao Yu
- Shandong Institute of Parasitic DiseasesShandong First Medical University & Shandong Academy of Medical SciencesJiningChina
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Laboratory CenterTumor Hospital Affiliated to Xinjiang Medical UniversityUrumqiChina
- Department of Hepatic HydatidFirst Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| |
Collapse
|
11
|
Oliveira RD, Mousel MR, Gonzalez MV, Durfee CJ, Davenport KM, Murdoch BM, Taylor JB, Neibergs HL, White SN. A high-density genome-wide association with absolute blood monocyte count in domestic sheep identifies novel loci. PLoS One 2022; 17:e0266748. [PMID: 35522671 PMCID: PMC9075649 DOI: 10.1371/journal.pone.0266748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
Monocytes are a core component of the immune system that arise from bone marrow and differentiate into cells responsible for phagocytosis and antigen presentation. Their derivatives are often responsible for the initiation of the adaptive immune response. Monocytes and macrophages are central in both controlling and propagating infectious diseases such as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513 Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD genotyped sheep were combined with the data from an additional 258 unique sheep to form a 480-sheep reference panel; this panel was used to impute the low-density genotypes to the HD genotyping density. Then, a genome-wide association analysis was conducted to identify loci associated with absolute monocyte counts from blood. The analysis used a single-locus mixed linear model implementing EMMAX with age and ten principal components as fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromosomes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chromosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes, some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regulator associated with myeloid cell differentiation. Further investigation of these loci is being conducted to understand their contributions to monocyte counts. Investigating the genetic basis of monocyte lineages and numbers may in turn provide information about pathogens of veterinary importance and elucidate fundamental immunology.
Collapse
Affiliation(s)
- Ryan D. Oliveira
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - Michelle R. Mousel
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Michael V. Gonzalez
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Codie J. Durfee
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
| | - Kimberly M. Davenport
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - J. Bret Taylor
- USDA-ARS Range Sheep Production Efficiency Research, Dubois, Idaho, United States of America
| | - Holly L. Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Resistin production does not affect outcomes in a mouse model of acute surgical sepsis. PLoS One 2022; 17:e0265241. [PMID: 35286340 PMCID: PMC8920279 DOI: 10.1371/journal.pone.0265241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Because of the strong correlation between the blood concentration of circulating resistin and the illness severity of septic patients, resistin has been proposed as a mediator of sepsis pathophysiology. In vitro data indicate that human resistin directly impairs neutrophil migration and intracellular bacterial killing, although the significance of these findings in vivo remain unclear. Objective The objectives of the present study were: (1) to validate the expression of human resistin in a clinically relevant, murine model of surgical sepsis, (2) to assess how sepsis-induced changes in resistin correlate with markers of infection and organ dysfunction, and (3) to investigate whether the expression of human resistin alters immune function or disease outcomes in vivo. Methods 107 male, C57BL/6 mice transgenic for the human resistin gene and its promoter elements (Retn+/−/−, or Retn+) were generated on a Retn−/− (mouse resistin knockout, or Rko) background. Outcomes were compared between age-matched transgenic and knockout mice. Acute sepsis was defined as the initial 24 h following cecal ligation and puncture (CLP). Physiologic and laboratory parameters correlating to the human Sequential Organ Failure Assessment (SOFA) Score were measured in mice, and innate immune cell number/function in the blood and peritoneal cavity were assessed. Results CLP significantly increased circulating levels of human resistin. The severity of sepsis-induced leukopenia was comparable between Retn+ and Rko mice. Resistin was associated with increased production of neutrophil reactive oxygen species, a decrease in circulating neutrophils at 6 h and an increase in peritoneal Ly6Chi monocytes at 6 h and 24 h post-sepsis. However, intraperitoneal bacterial growth, organ dysfunction and mouse survival did not differ with resistin production in septic mice. Significance Ex vivo resistin-induced impairment of neutrophil function do not appear to translate to increased sepsis severity or poorer outcomes in vivo following CLP.
Collapse
|
13
|
Myeloid leukocytes' diverse effects on cardiovascular and systemic inflammation in chronic kidney disease. Basic Res Cardiol 2022; 117:38. [PMID: 35896846 PMCID: PMC9329413 DOI: 10.1007/s00395-022-00945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Chronic kidney disease's prevalence rises globally. Whereas dialysis treatment replaces the kidney's filtering function and prolongs life, dreaded consequences in remote organs develop inevitably over time. Even milder reductions in kidney function not requiring replacement therapy associate with bacterial infections, cardiovascular and heart valve disease, which markedly limit prognosis in these patients. The array of complications is diverse and engages a wide gamut of cellular and molecular mechanisms. The innate immune system is profoundly and systemically altered in chronic kidney disease and, as a unifying element, partakes in many of the disease's complications. As such, a derailed immune system fuels cardiovascular disease progression but also elevates the propensity for serious bacterial infections. Recent data further point towards a role in developing calcific aortic valve stenosis. Here, we delineate the current state of knowledge on how chronic kidney disease affects innate immunity in cardiovascular organs and on a systemic level. We review the role of circulating myeloid cells, monocytes and neutrophils, resident macrophages, dendritic cells, ligands, and cellular pathways that are activated or suppressed when renal function is chronically impaired. Finally, we discuss myeloid cells' varying responses to uremia from a systems immunology perspective.
Collapse
|
14
|
Lyadova I, Gerasimova T, Nenasheva T. Macrophages Derived From Human Induced Pluripotent Stem Cells: The Diversity of Protocols, Future Prospects, and Outstanding Questions. Front Cell Dev Biol 2021; 9:640703. [PMID: 34150747 PMCID: PMC8207294 DOI: 10.3389/fcell.2021.640703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/25/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (Mφ) derived from induced pluripotent stem cells (iMphs) represent a novel and promising model for studying human Mφ function and differentiation and developing new therapeutic strategies based on or oriented at Mφs. iMphs have several advantages over the traditionally used human Mφ models, such as immortalized cell lines and monocyte-derived Mφs. The advantages include the possibility of obtaining genetically identical and editable cells in a potentially scalable way. Various applications of iMphs are being developed, and their number is rapidly growing. However, the protocols of iMph differentiation that are currently used vary substantially, which may lead to differences in iMph differentiation trajectories and properties. Standardization of the protocols and identification of minimum required conditions that would allow obtaining iMphs in a large-scale, inexpensive, and clinically suitable mode are needed for future iMph applications. As a first step in this direction, the current review discusses the fundamental basis for the generation of human iMphs, performs a detailed analysis of the generalities and the differences between iMph differentiation protocols currently employed, and discusses the prospects of iMph applications.
Collapse
Affiliation(s)
- Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
15
|
Kosyreva A, Dzhalilova D, Lokhonina A, Vishnyakova P, Fatkhudinov T. The Role of Macrophages in the Pathogenesis of SARS-CoV-2-Associated Acute Respiratory Distress Syndrome. Front Immunol 2021; 12:682871. [PMID: 34040616 PMCID: PMC8141811 DOI: 10.3389/fimmu.2021.682871] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Macrophages are cells that mediate both innate and adaptive immunity reactions, playing a major role in both physiological and pathological processes. Systemic SARS-CoV-2-associated complications include acute respiratory distress syndrome (ARDS), disseminated intravascular coagulation syndrome, edema, and pneumonia. These are predominantly effects of massive macrophage activation that collectively can be defined as macrophage activation syndrome. In this review we focus on the role of macrophages in COVID-19, as pathogenesis of the new coronavirus infection, especially in cases complicated by ARDS, largely depends on macrophage phenotypes and functionalities. We describe participation of monocytes, monocyte-derived and resident lung macrophages in SARS-CoV-2-associated ARDS and discuss possible utility of cell therapies for its treatment, notably the use of reprogrammed macrophages with stable pro- or anti-inflammatory phenotypes.
Collapse
Affiliation(s)
- Anna Kosyreva
- Department of Neuromorphology, Science Research Institute of Human Morphology, Moscow, Russia
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
| | - Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Science Research Institute of Human Morphology, Moscow, Russia
| | - Anastasia Lokhonina
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Polina Vishnyakova
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Histology Department, Peoples Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Growth and Development, Science Research Institute of Human Morphology, Moscow, Russia
| |
Collapse
|
16
|
Park HJ, Jeong OY, Chun SH, Cheon YH, Kim M, Kim S, Lee SI. Butyrate Improves Skin/Lung Fibrosis and Intestinal Dysbiosis in Bleomycin-Induced Mouse Models. Int J Mol Sci 2021; 22:ijms22052765. [PMID: 33803282 PMCID: PMC7967124 DOI: 10.3390/ijms22052765] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune disorder characterized by fibrosis of the skin and internal organs. Despite several studies on SSc treatments, effective treatments for SSc are still lacking. Since evidence suggests an association between intestinal microbiota and SSc, we focused on butyrate, which has beneficial effects in autoimmune diseases as a bacterial metabolite. Here, we investigated the therapeutic potential of sodium butyrate (SB) using a bleomycin-induced fibrosis mouse model of SSc and human dermal fibroblasts (HDFs). SB attenuated bleomycin-induced dermal and lung fibrosis in mice. SB influenced fecal microbiota composition (phyla Actinobacteria and Bacteroidetes, genera Bifidobacterium and Ruminococcus_g2). SB controlled macrophage differentiation in mesenteric lymph nodes, spleen, and bronchoalveolar lavage cells of mice with bleomycin-induced skin fibrosis. Profibrotic and proinflammatory gene expression was suppressed by SB administration in skin. Furthermore, SB inhibited transforming growth factor β1-responsive proinflammatory expression with increased acetylation of histone 3 in HDFs. Subcutaneous SB application had antifibrogenic effects on the skin. Butyrate ameliorated skin and lung fibrosis by improving anti-inflammatory activity in a mouse model of SSc. Butyrate may exhibit indirect and direct anti-fibrogenic action on fibroblasts by regulating macrophage differentiation and inhibition of histone deacetylase 3. These findings suggest butyrate as an SSc treatment.
Collapse
Affiliation(s)
- Hee Jin Park
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Ok-Yi Jeong
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
| | - Sung Hak Chun
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Yun Hong Cheon
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Mingyo Kim
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
| | - Suhee Kim
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
- Correspondence: (S.K.); (S.-I.L.)
| | - Sang-Il Lee
- Department of Internal Medicine and Institute of Health Science, College of Medicine, Gyeongsang National University and Hospital, Jinju 52727, Korea; (H.J.P.); (O.-Y.J.); (S.H.C.); (Y.H.C.); (M.K.)
- Department of Convergence Medical Science, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (S.K.); (S.-I.L.)
| |
Collapse
|
17
|
Cao Y, Ao T, Wang X, Wei W, Fan J, Tian X. CD300a and CD300f molecules regulate the function of leukocytes. Int Immunopharmacol 2021; 93:107373. [PMID: 33548578 DOI: 10.1016/j.intimp.2021.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
The CD300 molecule family is a type I transmembrane glycoprotein expressed on cell membrane of human and other mammals, and of its eight members, only CD300a and CD300f are classified as inhibitory receptors. CD300a and CD300f play an important role in regulating the function of leukocytes, such as activation, proliferation, differentiation, migration and immunity function. They are considered as potential targets for studying the development and progression of inflammation, infection and other diseases. Here, we review the expression and regulatory mechanisms of CD300a and CD300f on leukocytes, as well as their effects on relevant diseases.
Collapse
Affiliation(s)
- Yue Cao
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Tianrang Ao
- Department of Cardiology, Peking Union Medical College Hospital, Tsinghua University, Beijing 100730, China
| | - Xiaohong Wang
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Wumei Wei
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Fan
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaohong Tian
- Department of Tissue Engineering, School of Fundamental Science, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
18
|
Das A, Wang X, Kang J, Coulter A, Shetty AC, Bachu M, Brooks SR, Dell'Orso S, Foster BL, Fan X, Ozato K, Somerman MJ, Thumbigere-Math V. Monocyte Subsets With High Osteoclastogenic Potential and Their Epigenetic Regulation Orchestrated by IRF8. J Bone Miner Res 2021; 36:199-214. [PMID: 32804442 PMCID: PMC8168257 DOI: 10.1002/jbmr.4165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Osteoclasts (OCs) are bone-resorbing cells formed by the serial fusion of monocytes. In mice and humans, three distinct subsets of monocytes exist; however, it is unclear if all of them exhibit osteoclastogenic potential. Here we show that in wild-type (WT) mice, Ly6Chi and Ly6Cint monocytes are the primary source of OC formation when compared to Ly6C- monocytes. Their osteoclastogenic potential is dictated by increased expression of signaling receptors and activation of preestablished transcripts, as well as de novo gain in enhancer activity and promoter changes. In the absence of interferon regulatory factor 8 (IRF8), a transcription factor important for myelopoiesis and osteoclastogenesis, all three monocyte subsets are programmed to display higher osteoclastogenic potential. Enhanced NFATc1 nuclear translocation and amplified transcriptomic and epigenetic changes initiated at early developmental stages direct the increased osteoclastogenesis in Irf8-deficient mice. Collectively, our study provides novel insights into the transcription factors and active cis-regulatory elements that regulate OC differentiation. © 2020 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Amitabh Das
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Xiaobei Wang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Jessica Kang
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Alyssa Coulter
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahesh Bachu
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA.,Arthritis and Tissue Degeneration Program and the David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Stefania Dell'Orso
- Biodata Mining and Discovery Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Brian L Foster
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Xiaoxuan Fan
- Flow Cytometry Shared Service, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Keiko Ozato
- Molecular Genetics of Immunity Section, Division of Developmental Biology, National Institute of Child Health and Human Development (NICHD), Bethesda, MD, USA
| | - Martha J Somerman
- Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA.,Laboratory of Oral and Connective Tissue Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), Bethesda, MD, USA
| |
Collapse
|
19
|
Yang D, Liu HQ, Liu FY, Tang N, Guo Z, Ma SQ, An P, Wang MY, Wu HM, Yang Z, Fan D, Tang QZ. Critical roles of macrophages in pressure overload-induced cardiac remodeling. J Mol Med (Berl) 2020; 99:33-46. [PMID: 33130927 DOI: 10.1007/s00109-020-02002-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/07/2020] [Accepted: 10/28/2020] [Indexed: 12/19/2022]
Abstract
Macrophages are integral components of the mammalian heart that show extensive expansion in response to various internal or external stimuli. After the onset of sustained pressure overload (PO), the accumulation of cardiac macrophages through local macrophage proliferation and monocyte migration has profound effects on the transition to cardiac hypertrophy and remodeling. In this review, we describe the heterogeneity and diversity of cardiac macrophages and summarize the current understanding of the important roles of macrophages in PO-induced cardiac remodeling. In addition, the possible mechanisms involved in macrophage modulation are also described. Finally, considering the significant effects of cardiac macrophages, we highlight their emerging role as therapeutic targets for alleviating pathological cardiac remodeling after PO.
Collapse
Affiliation(s)
- Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Han-Qing Liu
- Department of Thyroid and Breast, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Shu-Qing Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Peng An
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Hai-Ming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China
| | - Di Fan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Jiefang Road 238, Wuhan, 430060, People's Republic of China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
20
|
Park J, Chang JY, Kim JY, Lee JE. Monocyte Transmodulation: The Next Novel Therapeutic Approach in Overcoming Ischemic Stroke? Front Neurol 2020; 11:578003. [PMID: 33193029 PMCID: PMC7642685 DOI: 10.3389/fneur.2020.578003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The immune response following neuroinflammation is a vital element of ischemic stroke pathophysiology. After the onset of ischemic stroke, a specialized vasculature system that effectively protects central nervous system tissues from the invasion of blood cells and other macromolecules is broken down within minutes, thereby triggering the inflammation cascade, including the infiltration of peripheral blood leukocytes. In this series of processes, blood-derived monocytes have a significant effect on the outcome of ischemic stroke through neuroinflammatory responses. As neuroinflammation is a necessary and pivotal component of the reparative process after ischemic stroke, understanding the role of infiltrating monocytes in the modulation of inflammatory responses may offer a great opportunity to explore new therapies for ischemic stroke. In this review, we discuss and highlight the function and involvement of monocytes in the brain after ischemic injury, as well as their impact on tissue damage and repair.
Collapse
Affiliation(s)
- Joohyun Park
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji Young Chang
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
21
|
Xie Z, Peng M, Lu R, Meng X, Liang W, Li Z, Qiu M, Zhang B, Nie G, Xie N, Zhang H, Prasad PN. Black phosphorus-based photothermal therapy with aCD47-mediated immune checkpoint blockade for enhanced cancer immunotherapy. LIGHT, SCIENCE & APPLICATIONS 2020; 9:161. [PMID: 33014356 PMCID: PMC7492464 DOI: 10.1038/s41377-020-00388-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/13/2020] [Accepted: 08/13/2020] [Indexed: 05/19/2023]
Abstract
Here, we describe a combination strategy of black phosphorus (BP)-based photothermal therapy together with anti-CD47 antibody (aCD47)-based immunotherapy to synergistically enhance cancer treatment. Tumour resistance to immune checkpoint blockades in most cancers due to immune escape from host surveillance, along with the initiation of metastasis through immunosuppressive cells in the tumour microenvironment, remains a significant challenge for cancer immunotherapy. aCD47, an agent for CD47/SIRPα axis blockade, induces modest phagocytic activity and a low response rate for monotherapy, resulting in failures in clinical trials. We showed that BP-mediated ablation of tumours through photothermal effects could serve as an effective strategy for specific immunological stimulation, improving the inherently poor immunogenicity of tumours, which is particularly useful for enhancing cancer immunotherapy. BP in combination with aCD47 blockade activates both innate and adaptive immunities and promotes local and systemic anticancer immune responses, thus offering a synergistically enhanced effect in suppression of tumour progression and in inducing abscopal effects for inhibition of metastatic cancers. Our combination strategy provides a promising platform in which photothermal agents could help to enhance the therapeutic efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
| | - Minhua Peng
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong PR China
| | - Ruitao Lu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 Guangdong PR China
| | - Xiangying Meng
- Shenzhen International Institute for Biomedical Research, Shenzhen, 518116 Guangdong PR China
| | - Weiyuan Liang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Zhongjun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100 PR China
| | - Bin Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Guohui Nie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Ni Xie
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Institute of Microscale Optoelectronics, and Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People’s Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060 PR China
| | - Paras N. Prasad
- Department of Chemistry, Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, StateUniversity of New York, Buffalo, NY USA
| |
Collapse
|
22
|
Voisin A, Saez F, Drevet JR, Guiton R. The epididymal immune balance: a key to preserving male fertility. Asian J Androl 2020; 21:531-539. [PMID: 30924450 PMCID: PMC6859654 DOI: 10.4103/aja.aja_11_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Up to 15% of male infertility has an immunological origin, either due to repetitive infections or to autoimmune responses mainly affecting the epididymis, prostate, and testis. Clinical observations and epidemiological data clearly contradict the idea that the testis confers immune protection to the whole male genital tract. As a consequence, the epididymis, in which posttesticular spermatozoa mature and are stored, has raised some interest in recent years when it comes to its immune mechanisms. Indeed, sperm cells are produced at puberty, long after the establishment of self-tolerance, and they possess unique surface proteins that cannot be recognized as self. These are potential targets of the immune system, with the risk of inducing autoantibodies and consequently male infertility. Epididymal immunity is based on a finely tuned equilibrium between efficient immune responses to pathogens and strong tolerance to sperm cells. These processes rely on incompletely described molecules and cell types. This review compiles recent studies focusing on the immune cell types populating the epididymis, and proposes hypothetical models of the organization of epididymal immunity with a special emphasis on the immune response, while also discussing important aspects of the epididymal immune regulation such as tolerance and tumour control.
Collapse
Affiliation(s)
- Allison Voisin
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Fabrice Saez
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Joël R Drevet
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Rachel Guiton
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| |
Collapse
|
23
|
Nenasheva T, Gerasimova T, Serdyuk Y, Grigor'eva E, Kosmiadi G, Nikolaev A, Dashinimaev E, Lyadova I. Macrophages Derived From Human Induced Pluripotent Stem Cells Are Low-Activated "Naïve-Like" Cells Capable of Restricting Mycobacteria Growth. Front Immunol 2020; 11:1016. [PMID: 32582159 PMCID: PMC7287118 DOI: 10.3389/fimmu.2020.01016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
In peripheral tissues, immune protection critically depends on the activity of tissue resident macrophages, which makes our understanding of the biology of these cells of great significance. Until recently, human macrophage studies were largely based on the analysis of monocyte-derived macrophages that differ from tissue resident macrophages by many characteristics. To model tissue resident macrophages, methods of generating macrophages from pluripotent stem cells have been developed. However, the immunological properties of macrophages derived from pluripotent stem cells remain under-investigated. In this study, we aimed to perform the multifarious immunological characteristics of macrophages generated from human induced pluripotent stem cells (iMϕs), including an analysis of their phenotype, secretory and antibacterial activities, as well as their comparison with macrophages derived from blood monocytes and infected lung tissue. We report that iMϕs displayed the morphology and the CD11b+CD45+CD14+ phenotype typical for mononuclear phagocytes. The cells co-expressed markers known to be associated with classically (CD80, CD86, CCR5) and alternatively (CD163 and CD206) activated macrophages, with a bias toward a higher expression of the latter. iMϕs secreted pro-inflammatory (IL-6, CXCL8, CCL2, CCL4, CXCL1, CXCL10) and anti-inflammatory (IL-10, IL-1RA, CCL22) cytokines with a high IL-10/IL-12p70 index (>20). iMϕs were phagocytic and restricted Mycobacterium tuberculosis growth in vitro by >75%. iMϕs differed from blood monocytes/macrophages by a lower expression level of HLA-DR and the CD14+CD16int phenotype and shared several phenotypic characteristics with lung macrophages. In response to LPS, iMϕs up-regulated HLA-DR and produced TNF-α. IFN-γ increased iMϕ reactivity to LPS, but did not increase iMϕ mycobactericidal capacity. The results characterize iMϕs as differentiated but low-activated/low-polarized “naïve-like” macrophages that are capable of mounting inflammatory and antibacterial responses when exposed to inflammatory stimuli or pathogens. iMϕs represent a valuable model for studying antibacterial responses of tissue resident macrophages and for developing approaches to modulating macrophage activity.
Collapse
Affiliation(s)
- Tatiana Nenasheva
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Tatiana Gerasimova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Yana Serdyuk
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Elena Grigor'eva
- Laboratory of Developmental Epigenetics, Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - George Kosmiadi
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Alexander Nikolaev
- Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| | - Erdem Dashinimaev
- Center for Genome Technologies, Pirogov Russian National Research Medical University, Moscow, Russia.,Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina Lyadova
- Laboratory of Cellular and Molecular Basis of Histogenesis, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia.,Laboratory of Biotechnology, Department of Immunology, Central Tuberculosis Research Institute, Moscow, Russia
| |
Collapse
|
24
|
MSCs Contribute to the Conversion of Ly6C high Monocytes into Ly6C low Subsets under AMI. Stem Cells Int 2020; 2020:2460158. [PMID: 32399040 PMCID: PMC7201476 DOI: 10.1155/2020/2460158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022] Open
Abstract
Background Ly6Chigh monocytes are inflammatory cells that accumulate in an infarcted myocardium, and Ly6Clow monocytes are believed to be reparative and curb myocardial remodeling. NR4A1 is a novel target for modulating the inflammatory phenotype of monocytes during atherogenesis. Objectives We aimed to investigate whether MSCs can contribute to the heterogeneity of Ly6Chigh monocytes differentiated into Ly6Clow monocytes and whether this regulation is related to nuclear receptor NR4A1. Methods Ly6Chigh/low monocytes were first cocultured with MSCs. C57BL/6CX3CR1-/- mice and C57BL/6 wild-type mice were then used to construct AMI models, and survival functions in the two groups were further compared. Ly6Chigh/low monocytes in circulation and in MI tissue of C57BL/6CX3CR1-/- AMI mice with or without MSC transplantation were determined by flow cytometry at day 1 and day 3. NR4A1 expression was further determined by Western blot. Apoptosis of cardiac myocytes in the infarct border zone at day 3 and day 7 was identified by TUNEL kits. Angiogenesis in the AMI heart at day 7 and day 21 was determined through immunohistochemistry by CD31. Results We first demonstrated that the percentage of Ly6Clow monocytes increased greatly after 3 days of coculture with MSCs (12.8% ± 3.77% vs. 3.69% ± 0.74%, p < 0.001). The expression of NR4A1 in Ly6Chigh/low monocytes was also significantly elevated at that time (1.81 ± 0.46 vs. 0.43 ± 0.09, p < 0.001). Following AMI, the percentage of circulating Ly6Clow monocytes in C57BL/6CX3CR1-/- mice was significantly lower than that in C57BL/6 wild-type mice (4.36% ± 1.27% vs. 12.17% ± 3.81%, p < 0.001). The survival rate of C57BL/6CX3CR1-/- mice (25%) was significantly lower than that of C57BL/6 wild-type mice (56.3%) after AMI (χ2 = 4.343, p = 0.037). After MSCs were transplanted, we observed a significant increase in Ly6Clow monocytes both in circulation (16.7% ± 3.67% vs. 3.22% ± 0.44%, p < 0.001) and in the MI heart (3.31% ± 0.69% vs. 0.42% ± 0.21%, p < 0.001) of C57BL/6CX3CR1-/- mice. Western blot analysis further showed that the expression level of NR4A1 in the MI hearts of C57BL/6CX3CR1-/- mice increased significantly under MSC transplantation (0.39 ± 0.10 vs. 0.11 ± 0.04, p < 0.001). We also found significantly decreased TUNEL+ cardiac myocytes (15.45% ± 4.42% vs. 22.78% ± 6.40%, p < 0.001) in mice with high expression levels of NR4A1 compared to mice with low expression levels. Meanwhile, we further identified increased capillary density in the infarct zones of mice with high expression levels of NR4A1 (0.193 ± 0.036 vs. 0.075 ± 0.019, p < 0.001) compared to mice with low expression levels 21 days after AMI. Conclusions MSCs can control the heterogeneity of Ly6Chigh monocyte differentiation into Ly6Clow monocytes and further reduce inflammation after AMI. The underlying mechanism might be that MSCs contribute to the increased expression of NR4A1 in Ly6Chigh/low monocytes.
Collapse
|
25
|
Butenko S, Satyanarayanan SK, Assi S, Schif-Zuck S, Sher N, Ariel A. Transcriptomic Analysis of Monocyte-Derived Non-Phagocytic Macrophages Favors a Role in Limiting Tissue Repair and Fibrosis. Front Immunol 2020; 11:405. [PMID: 32296415 PMCID: PMC7136412 DOI: 10.3389/fimmu.2020.00405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 02/20/2020] [Indexed: 01/08/2023] Open
Abstract
Monocyte-derived macrophages are readily differentiating cells that adapt their gene expression profile to environmental cues and functional needs. During the resolution of inflammation, monocytes initially differentiate to reparative phagocytic macrophages and later to pro-resolving non-phagocytic macrophages that produce high levels of IFNβ to boost resolutive events. Here, we performed in-depth analysis of phagocytic and non-phagocytic myeloid cells to reveal their distinct features. Unexpectedly, our analysis revealed that the non-phagocytic compartment of resolution phase myeloid cells is composed of Ly6CmedF4/80− and Ly6ChiF4/80lo monocytic cells in addition to the previously described Ly6C−F4/80+ satiated macrophages. In addition, we found that both Ly6C+ monocytic cells differentiate to Ly6C−F4/80+macrophages, and their migration to the peritoneum is CCR2 dependent. Notably, satiated macrophages expressed high levels of IFNβ, whereas non-phagocytic monocytes of either phenotype did not. A transcriptomic comparison of phagocytic and non-phagocytic resolution phase F4/80+ macrophages showed that both subtypes express similar gene signatures that make them distinct from other myeloid cells. Moreover, we confirmed that these macrophages express closer transcriptomes to monocytes than to resident peritoneal macrophages (RPM) and resemble resolutive Ly6Clo macrophages and monocyte-derived macrophages more than their precursors, inflammatory Ly6Chi monocytes, recovered following liver injury and healing, and thioglycolate-induced peritonitis, respectively. A direct comparison of these subsets indicated that the non-phagocytic transcriptome is dominated by satiated macrophages and downregulate gene clusters associated with excessive tissue repair and fibrosis, ROS and NO synthesis, glycolysis, and blood vessel morphogenesis. On the other hand, non-phagocytic macrophages enhance the expression of genes associated with migration, oxidative phosphorylation, and mitochondrial fission as well as anti-viral responses when compared to phagocytic macrophages. Notably, conversion from phagocytic to satiated macrophages is associated with a reduction in the expression of extracellular matrix constituents that were demonstrated to be associated with idiopathic pulmonary fibrosis (IPF). Thus, macrophage satiation during the resolution of inflammation seems to bring about a transcriptomic transition that resists tissue fibrosis and oxidative damage while promoting the restoration of tissue homeostasis to complete the resolution of inflammation.
Collapse
Affiliation(s)
- Sergei Butenko
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Simaan Assi
- Department of Human Biology, University of Haifa, Haifa, Israel
| | | | - Noa Sher
- Tauber Bioinformatics Center, University of Haifa, Haifa, Israel
| | - Amiram Ariel
- Department of Human Biology, University of Haifa, Haifa, Israel
| |
Collapse
|
26
|
Gross-Vered M, Trzebanski S, Shemer A, Bernshtein B, Curato C, Stelzer G, Salame TM, David E, Boura-Halfon S, Chappell-Maor L, Leshkowitz D, Jung S. Defining murine monocyte differentiation into colonic and ileal macrophages. eLife 2020; 9:e49998. [PMID: 31916932 PMCID: PMC6952180 DOI: 10.7554/elife.49998] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022] Open
Abstract
Monocytes are circulating short-lived macrophage precursors that are recruited on demand from the blood to sites of inflammation and challenge. In steady state, classical monocytes give rise to vasculature-resident cells that patrol the luminal side of the endothelium. In addition, classical monocytes feed macrophage compartments of selected organs, including barrier tissues, such as the skin and intestine, as well as the heart. Monocyte differentiation under conditions of inflammation has been studied in considerable detail. In contrast, monocyte differentiation under non-inflammatory conditions remains less well understood. Here we took advantage of a combination of cell ablation and precursor engraftment to investigate the generation of gut macrophages from monocytes. Collectively, we identify factors associated with the gradual adaptation of monocytes to tissue residency. Moreover, comparison of monocyte differentiation into the colon and ileum-resident macrophages revealed the graduated acquisition of gut segment-specific gene expression signatures.
Collapse
Affiliation(s)
- Mor Gross-Vered
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | | | - Anat Shemer
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Biana Bernshtein
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Caterina Curato
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | - Gil Stelzer
- Bioinformatics Unit, Life Science Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Tomer-Meir Salame
- Bioinformatics Unit, Life Science Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Eyal David
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| | | | | | - Dena Leshkowitz
- Bioinformatics Unit, Life Science Core FacilitiesWeizmann Institute of ScienceRehovotIsrael
| | - Steffen Jung
- Department of ImmunologyWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
27
|
Jung KT, Oh SH. Poly-ubiquitinated p62/SQSTM1-mediated hemeoxygenase-1 stabilization plays a critical role in cadmium-induced apoptosis of mouse monocyte Raw264.7 cells. Biochem Biophys Res Commun 2019; 519:409-414. [DOI: 10.1016/j.bbrc.2019.09.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022]
|
28
|
Limkar AR, Mai E, Sek AC, Percopo CM, Rosenberg HF. Frontline Science: Cytokine-mediated developmental phenotype of mouse eosinophils: IL-5-associated expression of the Ly6G/Gr1 surface Ag. J Leukoc Biol 2019; 107:367-377. [PMID: 31674692 DOI: 10.1002/jlb.1hi1019-116rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 01/21/2023] Open
Abstract
Eosinophils have broad and extensive immunomodulatory capacity; recent studies have focused on the roles of distinct eosinophil subsets in specific tissue microenvironments. Ly6G is a GPI-linked leukocyte surface Ag understood primarily as a marker of mouse neutrophils, although its full function is not known. Here, we show that Ly6G/Gr1, detected by mAbs 1A8 (anti-Ly6G) and RB6-8C5 (anti-Gr1), is detected prominently on a significant fraction of eosinophils from mouse bone marrow and bone marrow-derived culture, with fractions expressing this Ag increasing in IL-5-enriched microenvironments. Among our findings, we identified SiglecF+ Gr1+ eosinophils in bone marrow from naïve, allergen-challenged and IL-5 transgenic mice; SiglecF+ Gr1+ eosinophils were also prominent ex vivo in bone marrow-derived eosinophils (bmEos) in IL-5-enriched culture. Reducing the IL-5 concentration 20-fold had no impact on the rate of generation of SiglecF+ bmEos but did result in a marked increase in the Gr1- fraction (from 17.4 ± 2% to 30 ± 2.3%, ***P < 0.005). Reducing the IL-5 concentration also enhanced chemotaxis; SiglecF+ Gr1- bmEos were considerably more responsive to eotaxin-1 than were their SiglecF+ Gr1+ counterparts. These results suggest that (i) IL-5 regulates the expression of Ly6G/Gr1, either directly or indirectly, in cells of the eosinophil lineage, (ii) eosinophils generated in response to high concentrations of IL-5 can be distinguished from those generated under homeostatic conditions by expression of the Ly6G/Gr1 cell surface Ag, and (iii) expression of Ly6G/Gr1 may have an impact on function, directly or indirectly, including the potential to undergo chemotaxis in response to eotaxin-1.
Collapse
Affiliation(s)
- Ajinkya R Limkar
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Mai
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Albert C Sek
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline M Percopo
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Helene F Rosenberg
- Inflammation Immunobiology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Lafuse WP, Rajaram MVS, Wu Q, Moliva JI, Torrelles JB, Turner J, Schlesinger LS. Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to Mycobacterium tuberculosis Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2252-2264. [PMID: 31511357 DOI: 10.4049/jimmunol.1900495] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
The elderly population is more susceptible to pulmonary infections, including tuberculosis. In this article, we characterize the impact of aging on the phenotype of mouse alveolar macrophages (AMs) and their response to Mycobacterium tuberculosis. Uninfected AMs were isolated from bronchoalveolar lavage of young (3 mo) and old (18 mo) C57BL/6 mice. AMs from old mice expressed higher mRNA levels of CCL2, IFN-β, IL-10, IL-12p40, TNF-α, and MIF than young mice, and old mice contained higher levels of CCL2, IL-1β, IFN-β, and MIF in their alveolar lining fluid. We identified two distinct AM subpopulations, a major CD11c+ CD11b- population and a minor CD11c+ CD11b+ population; the latter was significantly increased in old mice (4-fold). Expression of CD206, TLR2, CD16/CD32, MHC class II, and CD86 was higher in CD11c+ CD11b+ AMs, and these cells expressed monocytic markers Ly6C, CX3CR1, and CD115, suggesting monocytic origin. Sorted CD11c+ CD11b+ AMs from old mice expressed higher mRNA levels of CCL2, IL-1β, and IL-6, whereas CD11c+ CD11b- AMs expressed higher mRNA levels of immune-regulatory cytokines IFN-β and IL-10. CD11c+ CD11b+ AMs phagocytosed significantly more M. tuberculosis, which expressed higher RNA levels of genes required for M. tuberculosis survival. Our studies identify two distinct AM populations in old mice: a resident population and an increased CD11c+ CD11b+ AM subpopulation expressing monocytic markers, a unique inflammatory signature, and enhanced M. tuberculosis phagocytosis and survival when compared with resident CD11c+ CD11b- AMs, which are more immune regulatory in nature.
Collapse
Affiliation(s)
- William P Lafuse
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Murugesan V S Rajaram
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Qian Wu
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and
| | - Juan I Moliva
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Joanne Turner
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| | - Larry S Schlesinger
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210; and.,Texas Biomedical Research Institute, San Antonio, TX 78227
| |
Collapse
|
30
|
Irvine KM, Caruso M, Cestari MF, Davis GM, Keshvari S, Sehgal A, Pridans C, Hume DA. Analysis of the impact of CSF‐1 administration in adult rats using a novel
Csf1r
‐mApple reporter gene. J Leukoc Biol 2019; 107:221-235. [DOI: 10.1002/jlb.ma0519-149r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/04/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Affiliation(s)
| | - Melanie Caruso
- Mater Research The University of Queensland Brisbane Australia
| | | | - Gemma M. Davis
- Faculty of Life Sciences The University of Manchester Manchester United Kingdom
| | - Sahar Keshvari
- Mater Research The University of Queensland Brisbane Australia
| | - Anuj Sehgal
- Mater Research The University of Queensland Brisbane Australia
| | - Clare Pridans
- Centre for Inflammation Research The University of Edinburgh Edinburgh United Kingdom
| | - David A. Hume
- Mater Research The University of Queensland Brisbane Australia
- Centre for Inflammation Research The University of Edinburgh Edinburgh United Kingdom
| |
Collapse
|
31
|
Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Role of the Monocyte-Macrophage System in Normal Pregnancy and Preeclampsia. Int J Mol Sci 2019; 20:3695. [PMID: 31357698 PMCID: PMC6696152 DOI: 10.3390/ijms20153695] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the monocyte-macrophage system, an important unit of innate immunity, ensures the normal course of pregnancy. In this review, we present the current data on the origin of the monocyte-macrophage system and its functioning in the female reproductive system during the ovarian cycle, and over the course of both normal and complicated pregnancy. Preeclampsia is a crucial gestation disorder characterized by pronounced inflammation in the maternal body that affects the work of the monocyte-macrophage system. The effects of inflammation at preeclampsia manifest in changes in monocyte counts and their subset composition, and changes in placental macrophage counts and their polarization. Here we summarize the recent data on this issue for both the maternal organism and the fetus. The influence of estrogen on macrophages and their altered levels in preeclampsia are also discussed.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia.
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, 117418 Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|
32
|
Petit V, Parcelier A, Mathé C, Barroca V, Torres C, Lewandowski D, Ferri F, Gallouët AS, Dalloz M, Dinet O, Boschetti G, Vozenin MC, Roméo PH. TRIM33 deficiency in monocytes and macrophages impairs resolution of colonic inflammation. EBioMedicine 2019; 44:60-70. [PMID: 31130476 PMCID: PMC6604767 DOI: 10.1016/j.ebiom.2019.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Mature myeloid cells play a crucial role in Crohn's disease (CD) but the molecular players that regulate their functions in CD are not fully characterized. We and others have shown that TRIM33 is involved in the innate immune response and in the inflammatory response but TRIM33 role in intestinal inflammation is not known. In this study, we investigated the role of TRIM33 in myeloid cells during dextran sulfate sodium (DSS)-induced colitis. METHODS We study the role of TRIM33 during DSS-induced colitis which mimics intestinal inflammation using mice deleted for Trim33 only in mature myeloid cells (Trim33-/- mice) FINDINGS: We first show that Trim33 mRNA level is decreased in CD patient's blood monocytes suggesting a role of TRIM33 in CD. Using Trim33-/- mice, we show that these mice display an impaired resolution of colonic inflammation with an increased number of blood and colon monocytes and a decreased number of colonic macrophages. Trim33-/- monocytes are less competent for recruitment and macrophage differentiation. Finally, during resolution of inflammation, Trim33-/- colonic macrophages display an impaired M1/M2 switch and express a low level of membrane-bound TNF that is associated with an increased number of colonic neutrophils. INTERPRETATION Our study shows an important role of TRIM33 in monocytes/macrophages during DSS-induced colitis and suggests that the decreased expression of TRIM33 in CD patient's blood monocytes might not be a consequence but might be involved in CD progression. FUND: La Ligue contre le Cancer (équipe labelisée), INSERM, CEA, Université Paris-Diderot, Université Paris-Sud.
Collapse
Affiliation(s)
- Vanessa Petit
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France.
| | - Aude Parcelier
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France; Yposkei (Genethon), 91200 Corbeil-Essonnes, France
| | - Cecile Mathé
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France
| | - Vilma Barroca
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France
| | - Claire Torres
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France
| | - Daniel Lewandowski
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France
| | - Federica Ferri
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France
| | - Anne-Sophie Gallouët
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France; CEA/DRF/JACOB/IDMIT, 92265 Fontenay-aux-Roses Cedex, France
| | - Marion Dalloz
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France; Servier, Oncology, 78290 Croissy, France
| | - Océane Dinet
- Hospices Civils de Lyon, Department of Gastroenterology, Centre Hospitalier Lyon Sud, Pierre-Bénite, France; CIRI, International Center for Infectiology Research, INSERM U1111, Lyon, France
| | - Gilles Boschetti
- Hospices Civils de Lyon, Department of Gastroenterology, Centre Hospitalier Lyon Sud, Pierre-Bénite, France; CIRI, International Center for Infectiology Research, INSERM U1111, Lyon, France
| | - Marie-Catherine Vozenin
- Radio-Oncology Research Laboratory, Vaudois University Hospital Centre (CHUV), Epalinges, Switzerland
| | - Paul-Henri Roméo
- CEA/DRF/IBFJ/iRCM/LRTS, 92265 Fontenay-aux-Roses Cedex, France; Inserm U967, 92265 Fontenay-aux-Roses Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Sud, Paris 11, France; Equipe labellisée Ligue contre le Cancer, France.
| |
Collapse
|
33
|
Meng L, Almeida LN, Clauder AK, Lindemann T, Luther J, Link C, Hofmann K, Kulkarni U, Wong DM, David JP, Manz RA. Bone Marrow Plasma Cells Modulate Local Myeloid-Lineage Differentiation via IL-10. Front Immunol 2019; 10:1183. [PMID: 31214168 PMCID: PMC6555095 DOI: 10.3389/fimmu.2019.01183] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/09/2019] [Indexed: 12/16/2022] Open
Abstract
Bone marrow plasma cells have been reported to represent a major source of IL-10; however, the impact of plasma cell derived IL-10 in that tissue remains poorly understood. We confirm in this study that even in the absence of acute immune reactions, mature plasma cells represent the dominant IL-10+ cell population in the bone marrow, and identify myeloid-lineage cells as a main local target for plasma cell derived IL-10. Using Vert-X IL-10 transcriptional reporter mice, we found that more than 50% of all IL-10+ cells in bone marrow were CD138+ plasma cells, while other IL-10+ B lineage cells were nearly absent in this organ. Accordingly, IL-10 was found in the supernatants of short-term cultures of FACS-sorted bone marrow plasma cells, confirming IL-10 secretion from these cells. IL-10+ bone marrow plasma cells showed a B220-/CD19-/MHCII low phenotype suggesting that these cells represent a mature differentiation stage. Approximately 5% of bone marrow leucocytes expressed the IL-10 receptor (IL-10R), most of them being CD115+/Ly6C+/CD11c- monocytes. Compared to littermate controls, young B lineage specific IL-10 KO mice showed increased numbers of CD115+ cells but normal populations of other myeloid cell types in bone marrow. However, at 7 months of age B lineage specific IL-10 KO mice exhibited increased populations of CD115+ myeloid and CD11c+ dendritic cells (DCs), and showed reduced F4/80 expression in this tissue; hence, indicating that bone marrow plasma cells modulate the differentiation of local myeloid lineage cells via IL-10, and that this effect increases with age. The effects of B cell/plasma cell derived IL-10 on the differentiation of CD115+, CD11c+, and F4/80+ myeloid cells were confirmed in co-culture experiments. Together, these data support the idea that IL-10 production is not limited to early plasma cell stages in peripheral tissues but is also an important feature of mature plasma cells in the bone marrow. Moreover, we provide evidence that already under homeostatic conditions in the absence of acute immune reactions, bone marrow plasma cells represent a non-redundant source for IL-10 that modulates local myeloid lineage differentiation. This is particularly relevant in older individuals.
Collapse
Affiliation(s)
- Lingzhang Meng
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany.,Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| | | | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Timo Lindemann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher Link
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katharina Hofmann
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Upasana Kulkarni
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - David Ming Wong
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
34
|
Guiton R, Voisin A, Henry-Berger J, Saez F, Drevet JR. Of vessels and cells: the spatial organization of the epididymal immune system. Andrology 2019; 7:712-718. [PMID: 31106984 DOI: 10.1111/andr.12637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND One third of infertility cases in couples worldwide has an exclusive male origin and immune disorders, essentially due to repetitive infections, are emerging an cause of male infertility. As the place of sperm maturation, epididymis must be preserved from excessive immune responses that may arise following infections of the male genital tract. At the same time, epididymis must set and maintain a tolerogenic environment in order not to destroy sperm cells that enter the tissue at puberty, long after the immune system has been taught to recognize self pathogens. The immune cells that populate the epididymis have raised growing interest over the last thirty years but they may be not sufficient to understand the immune balance existing in this organ, between immune response to pathogens and tolerance to spermatozoa. Indeed, immune cells are the most motile cells in the organism and need blood and lymphatic vessels to traffic between lymphoid organs and sites of infection to induce efficient responses. OBJECTIVES To review the literature on the blood and lymphatic vessels, and on the immune cells present at steady state in the rodent epididymis (rat and mouse). MATERIALS AND METHODS PubMed database was searched for studies reporting on the spatial organization of the rodent epididymal vasculature and immune cell types at steady state. This search was combined with recent findings from our team. RESULTS At steady state, the rodent epididymis presents with dense blood and lymphatic networks, and a large panel of immune cells distributed across the interstitum and epithelium along the organ. CONCLUSIONS The immune system of the rodent epididymis is highly organized. Exploring its functions, especially in an infectious context, is the essential coming step before any transposition to human.
Collapse
Affiliation(s)
- R Guiton
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - A Voisin
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - J Henry-Berger
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - F Saez
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| | - J R Drevet
- GReD laboratory, CNRS, UMR 6293 - INSERM U1103 - Clermont Auvergne University, Clermont-Ferrand, France
| |
Collapse
|
35
|
Prabowo SA, Painter H, Zelmer A, Smith SG, Seifert K, Amat M, Cardona PJ, Fletcher HA. RUTI Vaccination Enhances Inhibition of Mycobacterial Growth ex vivo and Induces a Shift of Monocyte Phenotype in Mice. Front Immunol 2019; 10:894. [PMID: 31114572 PMCID: PMC6503078 DOI: 10.3389/fimmu.2019.00894] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a major global health problem and there is a dire need for an improved treatment. A strategy to combine vaccination with drug treatment, termed therapeutic vaccination, is expected to provide benefit in shortening treatment duration and augmenting treatment success rate. RUTI candidate vaccine has been specifically developed as a therapeutic vaccine for TB. The vaccine is shown to reduce bacillary load when administered after chemotherapy in murine and guinea pig models, and is also immunogenic when given to healthy adults and individuals with latent TB. In the absence of a validated correlate of vaccine-induced protection for TB vaccine testing, mycobacterial growth inhibition assay (MGIA) has been developed as a comprehensive tool to evaluate vaccine potency ex vivo. In this study, we investigated the potential of RUTI vaccine to control mycobacterial growth ex vivo and demonstrated the capacity of MGIA to aid the identification of essential immune mechanism. We found an association between the peak response of vaccine-induced growth inhibition and a shift in monocyte phenotype following RUTI vaccination in healthy mice. The vaccination significantly increased the frequency of non-classical Ly6C− monocytes in the spleen after two doses of RUTI. Furthermore, mRNA expressions of Ly6C−-related transcripts (Nr4a1, Itgax, Pparg, Bcl2) were upregulated at the peak vaccine response. This is the first time the impact of RUTI has been assessed on monocyte phenotype. Given that non-classical Ly6C− monocytes are considered to play an anti-inflammatory role, our findings in conjunction with previous studies have demonstrated that RUTI could induce a balanced immune response, promoting an effective cell-mediated response whilst at the same time limiting excessive inflammation. On the other hand, the impact of RUTI on non-classical monocytes could also reflect its impact on trained innate immunity which warrants further investigation. In summary, we have demonstrated a novel mechanism of action of the RUTI vaccine, which suggests the importance of a balanced M1/M2 monocyte function in controlling mycobacterial infection. The MGIA could be used as a screening tool for therapeutic TB vaccine candidates and may aid the development of therapeutic vaccination regimens for TB in the near future.
Collapse
Affiliation(s)
- Satria A Prabowo
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Hannah Painter
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrea Zelmer
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Steven G Smith
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Karin Seifert
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Pere-Joan Cardona
- Experimental Tuberculosis Unit (UTE), Fundació Institut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona (UAB), Badalona, Spain.,Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Helen A Fletcher
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Tuberculosis Centre, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
36
|
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019; 11:E168. [PMID: 30791481 PMCID: PMC6410039 DOI: 10.3390/v11020168] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.
Collapse
Affiliation(s)
- Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
37
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
38
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
39
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
40
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
41
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
42
|
The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
43
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2019. [DOI: 10.1016/j.it.2018.11.007 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
44
|
Zigmond RE, Echevarria FD. Macrophage biology in the peripheral nervous system after injury. Prog Neurobiol 2018; 173:102-121. [PMID: 30579784 DOI: 10.1016/j.pneurobio.2018.12.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/19/2018] [Accepted: 12/17/2018] [Indexed: 12/23/2022]
Abstract
Neuroinflammation has positive and negative effects. This review focuses on the roles of macrophage in the PNS. Transection of PNS axons leads to degeneration and clearance of the distal nerve and to changes in the region of the axotomized cell bodies. In both locations, resident and infiltrating macrophages are found. Macrophages enter these areas in response to expression of the chemokine CCL2 acting on the macrophage receptor CCR2. In the distal nerve, macrophages and other phagocytes are involved in clearance of axonal debris, which removes molecules that inhibit nerve regeneration. In the cell body region, macrophage trigger the conditioning lesion response, a process in which neurons increase their regeneration after a prior lesion. In mice in which the genes for CCL2 or CCR2 are deleted, neither macrophage infiltration nor the conditioning lesion response occurs in dorsal root ganglia (DRG). Macrophages exist in different phenotypes depending on their environment. These phenotypes have different effects on axonal clearance and neurite outgrowth. The mechanism by which macrophages affect neuronal cell bodies is still under study. Overexpression of CCL2 in DRG in uninjured animals leads to macrophage accumulation in the ganglia and to an increase in the growth potential of DRG neurons. This increased growth requires activation of neuronal STAT3. In contrast, in acute demyelinating neuropathies, macrophages are involved in stripping myelin from peripheral axons. The molecular mechanisms that trigger macrophage action after trauma and in autoimmune disease are receiving increased attention and should lead to avenues to promote regeneration and protect axonal integrity.
Collapse
Affiliation(s)
- Richard E Zigmond
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA.
| | - Franklin D Echevarria
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, 44106-4975, USA
| |
Collapse
|
45
|
Hume DA, Irvine KM, Pridans C. The Mononuclear Phagocyte System: The Relationship between Monocytes and Macrophages. Trends Immunol 2018; 40:98-112. [PMID: 30579704 DOI: 10.1016/j.it.2018.11.007] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/18/2018] [Accepted: 11/30/2018] [Indexed: 02/07/2023]
Abstract
The mononuclear phagocyte system (MPS) is defined as a cell lineage in which committed marrow progenitors give rise to blood monocytes and tissue macrophages. Here, we discuss the concept of self-proscribed macrophage territories and homeostatic regulation of tissue macrophage abundance through growth factor availability. Recent studies have questioned the validity of the MPS model and argued that tissue-resident macrophages are a separate lineage seeded during development and maintained by self-renewal. We address this issue; discuss the limitations of inbred mouse models of monocyte-macrophage homeostasis; and summarize the evidence suggesting that during postnatal life, monocytes can replace resident macrophages in all major organs and adopt their tissue-specific gene expression. We conclude that the MPS remains a valid and accurate framework for understanding macrophage development and homeostasis.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia.
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Clare Pridans
- University of Edinburgh Centre for Inflammation Research, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| |
Collapse
|
46
|
Voisin A, Whitfield M, Damon-Soubeyrand C, Goubely C, Henry-Berger J, Saez F, Kocer A, Drevet JR, Guiton R. Comprehensive overview of murine epididymal mononuclear phagocytes and lymphocytes: Unexpected populations arise. J Reprod Immunol 2018; 126:11-17. [PMID: 29421624 DOI: 10.1016/j.jri.2018.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 12/01/2022]
Abstract
Despite increasing evidence that epididymal immune disorders can lead to infertility, the cells and mechanisms underlying epididymal immunity remain poorly understood. In this study, we propose a rather exhaustive overview of innate and adaptive immune cells present in the murine caput and cauda epididymis. Using flow cytometry and a wide set of markers, we screened the broadest panel of immune cells ever, in this organ. For the first time, we unequivocally quantified the innate populations of monocytes, macrophages, and dendritic cells subtypes. We also revealed the presence of B cells, gamma delta T cells, and double negative T cells in the murine epididymis. They were localized by immunofluorescence stainings, and appeared to be all present in the interstitium and epithelium along the organ, but with respective preferential regional distribution. Altogether, these findings provide new insights on the actors and potential mechanisms involved in the immune responses against genital tract ascending pathogens and in the setting and maintenance of tolerance toward the sperm cells.
Collapse
Affiliation(s)
- Allison Voisin
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Marjorie Whitfield
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | | | - Chantal Goubely
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joëlle Henry-Berger
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Fabrice Saez
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ayhan Kocer
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| | - Joël R Drevet
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France.
| | - Rachel Guiton
- GReD laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
47
|
Kurotaki D, Sasaki H, Tamura T. Transcriptional control of monocyte and macrophage development. Int Immunol 2018; 29:97-107. [PMID: 28379391 DOI: 10.1093/intimm/dxx016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytes and macrophages play critical roles in immune responses, tissue homeostasis and disease progression. There are a number of functionally and phenotypically distinct subpopulations throughout the body. However, the mechanisms by which macrophage and monocyte heterogeneity is established remain unclear. Recent studies have suggested that most tissue-resident macrophages originate from fetal progenitors but not from hematopoietic stem cells, whereas some subpopulations are derived from adult monocytes. In addition, transcription factors specifically required for the development of each subpopulation have been identified. Interestingly, local environmental factors such as heme, retinoic acid and RANKL induce the expression and/or activation of tissue-specific transcription factors, thereby controlling transcriptional programs specific for the subpopulations. Thus, distinct differentiation pathways and local microenvironments appear to contribute to the determination of macrophage transcriptional identities. In this review, we highlight recent advances in our knowledge of the transcriptional control of macrophage and monocyte development.
Collapse
Affiliation(s)
- Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Haruka Sasaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
48
|
Weingrill RB, Hoshida MS, Martinhago CD, Correa-Silva S, Cardoso E, Palmeira P, Marinho CRF, Bevilacqua E. Chemokine (C-C motif) ligand 25 expressed by trophoblast cells and leukocytes bearing its receptor Ccr9: An alliance during embryo implantation? Am J Reprod Immunol 2017; 79. [PMID: 29154408 DOI: 10.1111/aji.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/17/2022] Open
Abstract
PROBLEM We hypothesized that trophoblast expression of Ccl25 attracts a specific leukocyte cell population to the implantation site for local regulation. METHOD OF STUDY Mice blastocysts, ectoplacental cones, and decidua at gestational days 3.5-7.5 were evaluated for Ccl25 and Ccr9 expressions. Peripheral availability and characterization of Ccr9+ leukocytes were determined by flow cytometry. Leukocyte chemotaxis was assessed in the presence of Ccl25 recombinant protein and embryos using antisense oligomers (ODNs) to Ccl25 and Ccr9 neutralizing antibody. RESULTS Ccl25 was expressed by embryonic cells, whereas Ccr9 expression was strong at the maternal compartment and in PBMC. Immunolocalization confirmed this expression. In vitro, chemotaxis assays showed that the embryonic Ccl25 signals to Ccr9+ PBMCs. Maternal Ccr9+α4β7+ monocytes switch from an anti-inflammatory phenotype (F4/80+11b+Ly6C-TGF-β+ cells, pre-implantation) to an inflammatory profile (F4/80+11b+Ly6C+TNF-α+ cells, post-implantation). CONCLUSION Our data support the establishment of a CCL25/CCR9-axis at the maternal-fetal interface in mice, which may be involved in immune regulatory mechanisms during embryo implantation.
Collapse
Affiliation(s)
- Rodrigo Barbano Weingrill
- Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mara S Hoshida
- Department of Obstetrics and Gynecology, Laboratory of Medical Investigation, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Simone Correa-Silva
- Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Elaine Cardoso
- Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Patrícia Palmeira
- Department of Pediatrics, Laboratory of Medical Investigation, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Estela Bevilacqua
- Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Korin B, Ben-Shaanan TL, Schiller M, Dubovik T, Azulay-Debby H, Boshnak NT, Koren T, Rolls A. High-dimensional, single-cell characterization of the brain's immune compartment. Nat Neurosci 2017; 20:1300-1309. [DOI: 10.1038/nn.4610] [Citation(s) in RCA: 219] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
|
50
|
Wolf Y, Shemer A, Polonsky M, Gross M, Mildner A, Yona S, David E, Kim KW, Goldmann T, Amit I, Heikenwalder M, Nedospasov S, Prinz M, Friedman N, Jung S. Autonomous TNF is critical for in vivo monocyte survival in steady state and inflammation. J Exp Med 2017; 214:905-917. [PMID: 28330904 PMCID: PMC5379969 DOI: 10.1084/jem.20160499] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 12/30/2016] [Accepted: 02/15/2017] [Indexed: 11/04/2022] Open
Abstract
Monocytes are circulating mononuclear phagocytes, poised to extravasate to sites of inflammation and differentiate into monocyte-derived macrophages and dendritic cells. Tumor necrosis factor (TNF) and its receptors are up-regulated during monopoiesis and expressed by circulating monocytes, as well as effector monocytes infiltrating certain sites of inflammation, such as the spinal cord, during experimental autoimmune encephalomyelitis (EAE). In this study, using competitive in vitro and in vivo assays, we show that monocytes deficient for TNF or TNF receptors are outcompeted by their wild-type counterpart. Moreover, monocyte-autonomous TNF is critical for the function of these cells, as TNF ablation in monocytes/macrophages, but not in microglia, delayed the onset of EAE in challenged animals and was associated with reduced acute spinal cord infiltration of Ly6Chi effector monocytes. Collectively, our data reveal a previously unappreciated critical cell-autonomous role of TNF on monocytes for their survival, maintenance, and function.
Collapse
Affiliation(s)
- Yochai Wolf
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anat Shemer
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Polonsky
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mor Gross
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Alexander Mildner
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Simon Yona
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ki-Wook Kim
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Goldmann
- Institute for Neuropathology, University of Freiburg, 79085 Freiburg, Germany
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mathias Heikenwalder
- Institut für Virologie, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Department of Chronic Inflammation and Cancer, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sergei Nedospasov
- Engelhardt Institute of Molecular Biology, Moscow, Russia 119991.,German Rheumatism Research Center, 10117 Berlin, Germany
| | - Marco Prinz
- Institute for Neuropathology, University of Freiburg, 79085 Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79085 Freiburg, Germany
| | - Nir Friedman
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|