1
|
Damian D. The Growing Threat of Tick-Borne Viruses: Global Trends, Clinical Outcomes, and Diagnostic Strategies. Viral Immunol 2025; 38:125-136. [PMID: 40274388 DOI: 10.1089/vim.2025.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Tick-borne viruses are an increasing global health concern due to their significant impact on humans and animals, as well as their expanding geographic distribution. Notable viruses in this group include the tick-borne encephalitis virus (TBEV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), and Powassan virus (POWV). This review evaluates their geographic spread, clinical effects, diagnostic challenges, treatment options, and research gaps. These viruses are increasingly spreading due to climate change and shifting tick habitats. The TBEV is moving into new areas of Europe and Asia, while the CCHFV is advancing into the Balkans and Caucasus. The HRTV has become more common in the United States, and the POWV is emerging in new regions of North America. Symptoms can vary from mild fever to severe neurological and hemorrhagic conditions. Diagnostic difficulties stem from inconsistent test accuracy, and treatment options are scarce, with only a few vaccines available. Tick-borne viruses represent a significant and expanding health threat, given their diverse clinical outcomes and diagnostic difficulties. Developing more accurate and accessible diagnostic tools is critical for early identification and treatment. Additionally, creating effective vaccines will be essential to reducing the overall burden of these viruses. With the increasing spread of tick-borne viruses, enhanced surveillance, ongoing research efforts, and strategic public health interventions are necessary to effectively control their impact and prevent further outbreaks.
Collapse
Affiliation(s)
- Donath Damian
- University of Dar es Salaam-Mbeya College of Health and Allied Sciences, Mbeya, Tanzania
| |
Collapse
|
2
|
Hasbek M, Kıymaz YÇ, Büyüktuna SA, Yavuz H. Prognostic Value of Ratios of Inflammatory Markers in the Prognosis of Crimean-Congo Hemorrhagic Fever. Trop Med Infect Dis 2025; 10:99. [PMID: 40278772 PMCID: PMC12031591 DOI: 10.3390/tropicalmed10040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne zoonotic disease, causing clinical presentations ranging from asymptomatic infection to fatal viral hemorrhagic fever. Throughout the course of CCHF, the levels of certain biomarkers, such as platelets (PLTs), white blood cells (WBCs), C-reactive protein (CRP), and interleukin-6 (IL-6), may vary, decreasing below or rising above normal limits. This study aimed to investigate the role of parameters such as WBC/PLT, WBC/IL-6, WBC/CRP, and WBC/D-dimer ratios in predicting disease prognosis in patients diagnosed with CCHF. The study population consisted of 60 CCHF patients and 30 controls. Statistically significant differences were observed in hemoglobin (HGB), PLT, WBC, activated partial thromboplastin time (aPTT), international normalized ratio (INR), fibrinogen, and d-dimer values between the patients and controls. Statistically significant differences were observed in WBC/aPTT, WBC/fibrinogen, WBC/D-dimer, and WBC/IL-6 values between the patient and control groups. WBC/INR and WBC/fibrinogen values were lower in fatal cases compared to survivors. WBC/D-dimer and WBC/IL-6 values, on the other hand, were higher in fatal cases compared to survivors. In patients requiring intensive care unit (ICU), WBC/PLT, WBC/INR, WBC/aPTT, and WBC/fibrinogen values were higher compared to those who did not. However, WBC/D-dimer and WBC/IL-6 values were lower in patients requiring ICU compared to those who did not.
Collapse
Affiliation(s)
- Mürşit Hasbek
- Department of Medical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas 58000, Turkey
| | - Yasemin Çakır Kıymaz
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas 58000, Turkey; (Y.Ç.K.); (S.A.B.)
| | - Seyit Ali Büyüktuna
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas 58000, Turkey; (Y.Ç.K.); (S.A.B.)
| | - Hayrettin Yavuz
- Department of Nephrology, Faculty of Medicine, Virginia University, Charlottesville, VA 22903, USA;
| |
Collapse
|
3
|
Semper AE, Olver J, Warner J, Cehovin A, Fay PC, Hart PJ, Golding JP, Benassi V, Preziosi MP, Al-Asadi KHR, Blumberg LH, de la Fuente J, Elaldi N, Fletcher T, Formenty PBH, Gouya MM, Günther S, Hewson R, Jamil B, Kobinger G, Korukluoglu G, Lempereur L, Palacios G, Papa A, Pshenichnaya N, Schmaljohn C, Sow SO, Sprong H, Vatansever Z, Brooks TJG. Research and product development for Crimean-Congo haemorrhagic fever: priorities for 2024-30. THE LANCET. INFECTIOUS DISEASES 2025; 25:e223-e234. [PMID: 39522529 DOI: 10.1016/s1473-3099(24)00656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 11/16/2024]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a widely distributed and potentially fatal tick-borne viral disease with no licensed specific treatments or vaccines. In 2019, WHO published an advanced draft of a research and development roadmap for CCHF that prioritised the development and deployment of the medical countermeasures most needed by CCHF-affected countries. This Personal View presents updated CCHF research and development priorities and is the product of broad consultation with a working group of 20 leading experts in 2023-24. The strategic goals, milestones, and timelines have been revised and expanded to reflect scientific advances since 2019, including the identification of antibodies with therapeutic potential and the progression of four vaccine candidates through phase 1 clinical trials. This update emphasises the need for a One Health approach to manage CCHF, from integrated cross-sectoral surveillance to novel interventions that target ticks and their vertebrate hosts to reduce CCHF virus transmission to humans. The overarching vision for rapid diagnostics and specific therapeutics by 2028, followed by options to limit CCHF virus transmission and control disease by 2030, is deliberately ambitious and will only be achieved through coordinated international action from affected countries, funders, scientists, product developers, manufacturers, regulators, national authorities, and policy makers.
Collapse
Affiliation(s)
- Amanda E Semper
- Epidemic and Emerging Infections Group, UK Health Security Agency, Salisbury, UK.
| | - Janie Olver
- Epidemic and Emerging Infections Group, UK Health Security Agency, Salisbury, UK
| | - Jenny Warner
- Science Group, UK Health Security Agency, Salisbury, UK
| | | | | | | | | | | | | | | | - Lucille H Blumberg
- Department of Public Health and Outbreak Response, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - José de la Fuente
- Group of Health and Biotechnology (SaBio), Instituto de Investigación en Recursos Cinegéticos IREC (Spanish National Research Council CSIC, University of Castilla-La Mancha UCLM, Autonomous Regional Government of Castile-La Mancha JCCM), Ciudad Real, Spain
| | - Nazif Elaldi
- Department of Infectious Diseases & Clinical Microbiology, Sivas Cumhuriyet University, Sivas, Türkiye
| | - Tom Fletcher
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | - Mohammad Mehdi Gouya
- Faculty of Public Health, Iran University of Medical Sciences & Health Services, Tehran, Iran
| | - Stephan Günther
- Department of Virology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
| | - Roger Hewson
- Science Group, UK Health Security Agency, Salisbury, UK; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Bushra Jamil
- Section of Infectious Diseases, Department of Medicine, AgaKhan University, Karachi, Pakistan
| | - Gary Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Gülay Korukluoglu
- University of Health Sciences, Ankara Bilkent City Hospital, Ankara, Türkiye
| | | | - Gustavo Palacios
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anna Papa
- Department of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Natalia Pshenichnaya
- Central Research Institute of Epidemiology of Rospotrebnadzor, Moscow, Russia; Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Connie Schmaljohn
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases-National Institutes of Health, Fort Detrick, Frederick, MD, USA
| | - Samba O Sow
- Centre for Vaccine Development, Bamako, Mali
| | - Hein Sprong
- National Institute of Public Health & the Environment, Bilthoven, Netherlands
| | - Zati Vatansever
- Department of Parasitology, Faculty of Veterinary Medicine, Kafkas University, Kars, Türkiye
| | - Timothy J G Brooks
- Epidemic and Emerging Infections Group, UK Health Security Agency, Salisbury, UK
| |
Collapse
|
4
|
Karanam SK, Nagvishnu K, Uppala PK, Edhi S, Varri SR. Crimean-Congo hemorrhagic fever: Pathogenesis, transmission and public health challenges. World J Virol 2025; 14:100003. [PMID: 40134837 PMCID: PMC11612873 DOI: 10.5501/wjv.v14.i1.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/11/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The dangerous Crimean-Congo hemorrhagic fever virus (CCHFV), an encapsulated negative-sense RNA virus of the family Nairoviridae, is transmitted from person to person via ticks. With a case fatality rate between 10% to 40%, the most common ways that the disease may spread to humans are via tick bites or coming into touch with infected animals' blood or tissues. Furthermore, the transfer of bodily fluids between individuals is another potential route of infection. There is a wide range of symptoms experienced by patients throughout each stage, from myalgia and fever to extreme bruising and excess bleeding. Tick management measures include minimising the spread of ticks from one species to another and from people to animals via the use of protective clothing, repellents, and proper animal handling. In order to prevent the spread of illness, healthcare workers must adhere to stringent protocols. Despite the lack of an authorised vaccine, the main components of treatment now consist of preventative measures and supportive care, which may include the antiviral medicine ribavirin. We still don't know very much about the virus's mechanisms, even though advances in molecular virology and animal models have improved our understanding of the pathogenesis of CCHFV. A critical need for vaccination that is both safe and effective, as well as for quick diagnosis and efficient treatments to lessen the disease's impact in areas where it is most prevalent. Important steps towards lowering Crimean-Congo hemorrhagic fever mortality and morbidity rates were to anticipatethe future availability of immunoglobulin products.
Collapse
Affiliation(s)
- Sita Kumari Karanam
- Department of Pharmaceutical Biotechnology, Maharajah’s College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| | - Kandra Nagvishnu
- Department of Pharmacology, Santhiram Medical College and General Hospital, Nandyal 518501, Andhra Pradesh, India
| | - Praveen Kumar Uppala
- Department of Pharmacology, Maharajah's College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| | - Sandhya Edhi
- Department of Pharmacy, Maharajah's College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| | - Srinivasa Rao Varri
- Department of Pharmaceutical Analysis, Maharajah's College of Pharmacy, Vizianagaram 535002, Andhra Pradesh, India
| |
Collapse
|
5
|
Celina SS, Italiya J, Tekkara AO, Černý J. Crimean-Congo haemorrhagic fever virus in ticks, domestic, and wild animals. Front Vet Sci 2025; 11:1513123. [PMID: 39897158 PMCID: PMC11782920 DOI: 10.3389/fvets.2024.1513123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/17/2024] [Indexed: 02/04/2025] Open
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) poses a significant public health threat due to its potential for causing severe disease in humans and its wide geographic distribution. The virus, primarily transmitted by Hyalomma ticks, is prevalent across Africa, Asia, Europe, and the Middle East. Understanding the virus's spread among tick populations is crucial for assessing its transmission dynamics. Vertebrates play a key role in CCHF epidemiology by supporting tick populations and acting as virus carriers during viremia. Livestock, such as cattle, sheep, and goats, amplify the virus and increase tick numbers, posing zoonotic risks. Wildlife, while asymptomatic, can serve as reservoirs. Birds generally do not show signs of the virus but can introduce infected ticks to new regions. This review compiles information on CCHFV's tick vectors and vertebrate hosts, emphasizing their roles in the virus's transmission dynamics. Understanding these dynamics is essential for developing effective control and prevention strategies.
Collapse
Affiliation(s)
- Seyma S. Celina
- Center for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | | |
Collapse
|
6
|
Chen Q, Fang Y, Zhang N, Wan C. Development of a Luciferase Immunosorbent Assay for Detecting Crimean-Congo Hemorrhagic Fever Virus IgG Antibodies Based on Nucleoprotein. Viruses 2024; 17:32. [PMID: 39861821 PMCID: PMC11769549 DOI: 10.3390/v17010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a serious tick-borne disease with a wide geographical distribution. Classified as a level 4 biosecurity risk pathogen, CCHF can be transmitted cross-species due to its aerosol infectivity and ability to cause severe hemorrhagic fever outbreaks with high morbidity and mortality. However, current methods for detecting anti-CCHFV antibodies are limited. This study aimed to develop a novel luciferase immunosorbent assay (LISA) for the detection of CCHFV-specific IgG antibodies. We designed specific antigenic fragments of the nucleoprotein and evaluated their sensitivity and specificity in detecting IgG in serum samples from mice and horses. In addition, we compared the efficacy of our LISA to a commercial enzyme-linked immunosorbent assay (ELISA). Our results demonstrated that the optimal antigen for detecting anti-CCHFV IgG was located within the stalk cut-off domain of the nucleoprotein. The LISA exhibited high specificity for serum samples from indicated species and significantly higher sensitivity (at least 128 times) compared with the commercial ELISA. The proposed CCHFV-LISA has the potential to facilitate serological diagnosis and epidemiological investigation of CCHFV in natural foci, providing valuable technical support for surveillance and early warning of this disease.
Collapse
Affiliation(s)
- Qi Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Q.C.); (Y.F.); (N.Z.)
| | - Yuting Fang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Q.C.); (Y.F.); (N.Z.)
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen 518060, China
| | - Ning Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Q.C.); (Y.F.); (N.Z.)
| | - Chengsong Wan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (Q.C.); (Y.F.); (N.Z.)
| |
Collapse
|
7
|
Leventhal SS, Bisom T, Clift D, Rao D, Meade-White K, Shaia C, Murray J, Mihalakakos EA, Hinkley T, Reynolds SJ, Best SM, Erasmus JH, James LC, Feldmann H, Hawman DW. Antibodies targeting the Crimean-Congo Hemorrhagic Fever Virus nucleoprotein protect via TRIM21. Nat Commun 2024; 15:9236. [PMID: 39455551 PMCID: PMC11511847 DOI: 10.1038/s41467-024-53362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a negative-sense RNA virus spread by Hyalomma genus ticks across Europe, Asia, and Africa. CCHF disease begins as a non-specific febrile illness which may progress into a severe hemorrhagic disease with no widely approved or highly efficacious interventions currently available. Recently, we reported a self-replicating, alphavirus-based RNA vaccine that expresses the CCHFV nucleoprotein and is protective against lethal CCHFV disease in mice. This vaccine induces high titers of non-neutralizing anti-NP antibodies and we show here that protection does not require Fc-gamma receptors or complement. Instead, vaccinated mice deficient in the intracellular Fc-receptor TRIM21 were unable to control the infection despite mounting robust CCHFV-specific immunity. We also show that passive transfer of NP-immune sera confers significant TRIM21-dependent protection against lethal CCHFV challenge. Together our data identifies TRIM21-mediated mechanisms as the Fc effector function of protective antibodies against the CCHFV NP and provides mechanistic insight into how vaccines against the CCHFV NP confer protection.
Collapse
Affiliation(s)
- Shanna S Leventhal
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Thomas Bisom
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Deepashri Rao
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Justin Murray
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | - Evan A Mihalakakos
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Steven J Reynolds
- Laboratory of Immunoregulation, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Sonja M Best
- Laboratory of Neurological Infections and Immunity, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA
| | | | - Leo C James
- Medical Research Council Laboratory of Molecular Biology, Cambridge, CB20QH, UK
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| | - David W Hawman
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, 59840, USA.
| |
Collapse
|
8
|
Srivastava S, Kumar S, Sharma PK, Rustagi S, Mohanty A, Donovan S, Henao‐Martinez AF, Sah R, Franco‐Paredes C. Control strategies for emerging infectious diseases: Crimean-Congo hemorrhagic fever management. Health Sci Rep 2024; 7:e70053. [PMID: 39229478 PMCID: PMC11368823 DOI: 10.1002/hsr2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Background and Aims Crimean-Congo Hemorrhagic Fever (CCHF) is a significant public health concern transmitted by ticks. This study seeks to thoroughly grasp the epidemiology and transmission patterns of CCHF, which is caused by the CCHF virus (CCHFV), a member of the Nairovirus genus in the Bunyaviridae family. Methods The study investigates the global distribution and endemicity of CCHF, its mortality rates, modes of transmission (including tick bites, contact with infected animal blood, and limited person-to-person transmission), and factors influencing its prevalence across different regions. Genetic diversity within CCHFV and its impact on transmission dynamics are explored, along with efforts to control the disease through tick prevention, antiviral treatment, and the development of vaccines and diagnostics. Results CCHFV exhibits widespread distribution, particularly in the Middle East, Africa, Asia, and Eastern Europe, with an overall mortality rate of approximately 30% and a case fatality rate ranging from 10% to 40%. Transmission occurs primarily through tick bites and contact with infected animal blood, with limited person-to-person transmission. Livestock workers, slaughterhouse employees, and animal herders in endemic areas are most affected by their frequent interaction with sick animals and ticks. Genetic diversity within CCHFV contributes to variations in transmission dynamics, complicating control efforts. Antiviral ribavirin shows efficacy in treating CCHF infection. Conclusion This study underscores the importance of further research to understand the enzootic environment, transmission routes, and genetic diversity of CCHFV for effective control measures, including the development of vaccines, treatment options, and diagnostics.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of PharmacologyDelhi Pharmaceutical Sciences and Research University (DPSRU)Sector 3 Pushp ViharNew DelhiIndia
- Department of Pharmacy, School of Medical and Allied SciencesGalgotias UniversityGreater NoidaIndia
| | - Sachin Kumar
- Department of PharmacologyDelhi Pharmaceutical Sciences and Research University (DPSRU)Sector 3 Pushp ViharNew DelhiIndia
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied SciencesGalgotias UniversityGreater NoidaIndia
| | - Sarvesh Rustagi
- School of Applied and Life SciencesUttaranchal UniversityDehradunUttarakhandIndia
| | - Aroop Mohanty
- Department of MicrobiologyAll India Institute of Medical SciencesGorakhpurIndia
| | - Suzanne Donovan
- Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | | | - Ranjit Sah
- Department of MicrobiologyTribhuvan University Teaching Hospital, Institute of MedicineKathmanduNepal
- Department of MicrobiologyDr. D. Y. Patil Medical College, Hospital and Research CentreDr. D. Y. Patil VidyapeethPuneMaharashtraIndia
- Department of Public Health DentistryDr. D.Y. Patil Dental College and HospitalDr. D.Y. Patil VidyapeethPuneMaharashtraIndia
| | - Carlos Franco‐Paredes
- Hospital Infantil de México, Federico Gómez, México; and Department of Microbiology, Immunology, and PathologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
9
|
Okesanya OJ, Olatunji GD, Kokori E, Olaleke NO, Adigun OA, Manirambona E, Lucero-Prisno DE. Looking Beyond the Lens of Crimean-Congo Hemorrhagic Fever in Africa. Emerg Infect Dis 2024; 30:1319-1325. [PMID: 38916548 PMCID: PMC11210649 DOI: 10.3201/eid3007.230810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a lethal viral disease that has severe public health effects throughout Africa and a case fatality rate of 10%-40%. CCHF virus was first discovered in Crimea in 1944 and has since caused a substantial disease burden in Africa. The shortage of diagnostic tools, ineffective tick control efforts, slow adoption of preventive measures, and cultural hurdles to public education are among the problems associated with continued CCHF virus transmission. Progress in preventing virus spread is also hampered by the dearth of effective serodiagnostic testing for animals and absence of precise surveillance protocols. Intergovernmental coordination, creation of regional reference laboratories, multiinstitutional public education partnerships, investments in healthcare infrastructure, vaccine development, and a One Health approach are strategic methods for solving prevention challenges. Coordinated efforts and financial commitments are needed to combat Crimean-Congo hemorrhagic fever and improve all-around readiness for newly developing infectious illnesses in Africa.
Collapse
|
10
|
Muzammil K, Rayyani S, Abbas Sahib A, Gholizadeh O, Naji Sameer H, Jwad Kazem T, Badran Mohammed H, Ghafouri Kalajahi H, Zainul R, Yasamineh S. Recent Advances in Crimean-Congo Hemorrhagic Fever Virus Detection, Treatment, and Vaccination: Overview of Current Status and Challenges. Biol Proced Online 2024; 26:20. [PMID: 38926669 PMCID: PMC11201903 DOI: 10.1186/s12575-024-00244-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus, and zoonosis, and affects large regions of Asia, Southwestern and Southeastern Europe, and Africa. CCHFV can produce symptoms, including no specific clinical symptoms, mild to severe clinical symptoms, or deadly infections. Virus isolation attempts, antigen-capture enzyme-linked immunosorbent assay (ELISA), and reverse transcription polymerase chain reaction (RT-PCR) are all possible diagnostic tests for CCHFV. Furthermore, an efficient, quick, and cheap technology, including biosensors, must be designed and developed to detect CCHFV. The goal of this article is to offer an overview of modern laboratory tests available as well as other innovative detection methods such as biosensors for CCHFV, as well as the benefits and limits of the assays. Furthermore, confirmed cases of CCHF are managed with symptomatic assistance and general supportive care. This study examined the various treatment modalities, as well as their respective limitations and developments, including immunotherapy and antivirals. Recent biotechnology advancements and the availability of suitable animal models have accelerated the development of CCHF vaccines by a substantial margin. We examined a range of potential vaccines for CCHF in this research, comprising nucleic acid, viral particles, inactivated, and multi-epitope vaccines, as well as the present obstacles and developments in this field. Thus, the purpose of this review is to present a comprehensive summary of the endeavors dedicated to advancing various diagnostic, therapeutic, and preventive strategies for CCHF infection in anticipation of forthcoming hazards.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, King Khalid University, Khamis Mushait Campus, Abha, 62561, Saudi Arabia
| | - Saba Rayyani
- Medical Faculty, University of Georgi, Tbilisi, Georgia
| | | | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Tareq Jwad Kazem
- Scientific Affairs Department, Al-Mustaqbal University, Hillah, Babylon, 51001, Iraq
| | - Haneen Badran Mohammed
- Optics techniques department, health and medical techniques college, Al-Noor University, Mosul, Iraq
| | | | - Rahadian Zainul
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Padang, Indonesia.
| | - Saman Yasamineh
- Center for Advanced Material Processing, Artificial Intelligence, and Biophysics Informatics (CAMPBIOTICS), Universitas Negeri Padang, Padang, Indonesia.
| |
Collapse
|
11
|
Tahir I, Motwani J, Moiz MA, Kumar V, Shah HH, Hussain MS, Tahir HM, Haque MA. Crimean-Congo hemorrhagic fever outbreak affecting healthcare workers in Pakistan: an urgent rising concern. Ann Med Surg (Lond) 2024; 86:3201-3203. [PMID: 38846901 PMCID: PMC11152863 DOI: 10.1097/ms9.0000000000002127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/22/2024] [Indexed: 06/09/2024] Open
Affiliation(s)
- Iman Tahir
- Department of Medicine, Liaquat National Hospital and Medical College
| | - Jatin Motwani
- Department of Medicine, Liaquat National Hospital and Medical College
| | - Muhammad A. Moiz
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Vijay Kumar
- Department of Medicine, Liaquat National Hospital and Medical College
| | - Hussain H. Shah
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Muhammad S. Hussain
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Haya M. Tahir
- Department of Medicine, Liaquat National Hospital and Medical College
| | - Md Ariful Haque
- Department of Public Health, Atish Dipankar University of Science and Technology
- Voice of Doctors Research School, Dhaka, Bangladesh
- Department of Orthopedic Surgery, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
12
|
Daodu OB, Shaibu JO, Audu RA, Oluwayelu DO. Seromolecular survey and risk factor analysis of Crimean-Congo haemorrhagic fever orthonairovirus in occupationally exposed herdsmen and unexposed febrile patients in Kwara State, Nigeria. PLoS One 2024; 19:e0303099. [PMID: 38723009 PMCID: PMC11081240 DOI: 10.1371/journal.pone.0303099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Crimean-Congo haemorrhagic fever virus (CCHFV) is a globally significant tick-borne zoonotic pathogen that causes fatal haemorrhagic disease in humans. Despite constituting an ongoing public health threat, limited research exists on the presence of CCHFV among herdsmen, an occupationally exposed population that has prolonged contact with ruminants and ticks. This cross-sectional study, conducted between October 2018 and February 2020 in Kwara State, Nigeria, was aimed at assessing CCHFV seroprevalence among herdsmen and non-herdsmen febrile patients, and identifying the associated risk factors. Blood samples from herdsmen (n = 91) and febrile patients in hospitals (n = 646) were analyzed for anti-CCHFV IgG antibodies and CCHFV S-segment RNA using ELISA and RT-PCR, respectively. Results revealed a remarkably high CCHFV seroprevalence of 92.3% (84/91) among herdsmen compared to 7.1% (46/646) in febrile patients. Occupational risk factors like animal and tick contact, tick bites, and hand crushing of ticks significantly contributed to higher seroprevalence in the herdsmen (p<0.0001). Herdsmen were 156.5 times more likely (p<0.0001) to be exposed to CCHFV than febrile patients. Notably, the odds of exposure were significantly higher (OR = 191.3; p<0.0001) in herdsmen with a history of tick bites. Although CCHFV genome was not detectable in the tested sera, our findings reveal that the virus is endemic among herdsmen in Kwara State, Nigeria. CCHFV should be considered as a probable cause of febrile illness among humans in the study area. Given the nomadic lifestyle of herdsmen, further investigations into CCHF epidemiology in this neglected population are crucial. This study enhances our understanding of CCHFV dynamics and emphasizes the need for targeted interventions in at-risk communities.
Collapse
Affiliation(s)
- Oluwafemi Babatunde Daodu
- Department of Veterinary Microbiology, Virology Unit, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Joseph Ojonugwa Shaibu
- Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Rosemary Ajuma Audu
- Centre for Human Virology and Genomics, Nigerian Institute of Medical Research, Yaba, Lagos State, Nigeria
| | - Daniel Oladimeji Oluwayelu
- Department of Veterinary Microbiology, Arbovirology Unit, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
- Centre for Control and Prevention of Zoonoses, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
13
|
Yimer SA, Booij BB, Tobert G, Hebbeler A, Oloo P, Brangel P, L'Azou Jackson M, Jarman R, Craig D, Avumegah MS, Mandi H, Endy T, Wooden S, Clark C, Bernasconi V, Shurtleff A, Kristiansen PA. Rapid diagnostic test: a critical need for outbreak preparedness and response for high priority pathogens. BMJ Glob Health 2024; 9:e014386. [PMID: 38688565 PMCID: PMC11085978 DOI: 10.1136/bmjgh-2023-014386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/30/2024] [Indexed: 05/02/2024] Open
Abstract
Rapid diagnostic tests (RDTs) are critical for preparedness and response against an outbreak or pandemic and have been highlighted in the 100 Days Mission, a global initiative that aims to prepare the world for the next epidemic/pandemic by driving the development of diagnostics, vaccines and therapeutics within 100 days of recognition of a novel Disease X threat.RDTs play a pivotal role in early case identification, surveillance and case management, and are critical for initiating deployment of vaccine and monoclonal antibodies. Currently available RDTs, however, have limited clinical sensitivity and specificity and inadequate validation. The development, validation and implementation of RDTs require adequate and sustained financing from both public and private sources. While the World Health Assembly recently passed a resolution on diagnostic capacity strengthening that urges individual Member States to commit resources towards this, the resolution is not binding and implementation will likely be impeded by limited financial resources and other competing priorities, particularly in low-income countries. Meanwhile, the diagnostic industry has not sufficiently invested in RDT development for high priority pathogens.Currently, vaccine development projects are getting the largest funding support among medical countermeasures. Yet vaccines are insufficient tools in isolation, and pandemic preparedness will be incomplete without parallel investment in diagnostics and therapeutics.The Pandemic Fund, a global financing mechanism recently established for strengthening pandemic prevention, preparedness and response, may be a future avenue for supporting diagnostic development.In this paper, we discuss why RDTs are critical for preparedness and response. We also discuss RDT investment challenges and reflect on the way forward.
Collapse
Affiliation(s)
| | | | - Gwen Tobert
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | - Andrew Hebbeler
- Coalition for Epidemic Preparedness Innovations, Washington, DC, USA
| | - Paul Oloo
- Coalition for Epidemic Preparedness Innovations, London, UK
| | - Polina Brangel
- Coalition for Epidemic Preparedness Innovations, London, UK
| | | | - Richard Jarman
- Coalition for Epidemic Preparedness Innovations, Washington, DC, USA
| | - Danielle Craig
- Coalition for Epidemic Preparedness Innovations, Washington, DC, USA
| | | | - Henshaw Mandi
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | - Timothy Endy
- Coalition for Epidemic Preparedness Innovations, Washington, DC, USA
| | - Stacey Wooden
- Coalition for Epidemic Preparedness Innovations, Washington, DC, USA
| | - Carolyn Clark
- Coalition for Epidemic Preparedness Innovations, Oslo, Norway
| | | | - Amy Shurtleff
- Coalition for Epidemic Preparedness Innovations, Washington, DC, USA
| | | |
Collapse
|
14
|
Choi Y, Kim Y. Application of multiplex realtime PCR detection for hemorrhagic fever syndrome viruses. J Infect Public Health 2023; 16:1933-1941. [PMID: 37866271 DOI: 10.1016/j.jiph.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Multiplex real-time PCR is a quick and cost effective method for detection of various gene simultaneously. HFSV (Hemorrhagic Fever Syndrome Virus) is a newly emerging infectious disease because of globalization and climate change. We tried to develop a molecular diagnostic technique for various causative viruses and evaluate its usefulness for improving public health. METHODS Molecular diagnostic test method that qualitatively detects viruses causing viral hemorrhagic fevers hired Taq-Man Real-time RT-PCR technique. The Ct value was experimentally observed three or more times at the RNA concentration before and after the detection limit. After designing a multiplex real-time RT-PCR test for target gene of selected 17 viruses, the detection limit for each target and the presence or absence of cross-reaction and interference reaction were evaluated to determine its availability. RESULTS Six kinds of viruses, including Crimean-Congo hemorrhagic fever virus, Omsk hemorrhagic fever virus, Sabia virus, Chapare virus, Yellow fever virus, and Variola virus (A4L gene, B12R gene), were able to confirm the detection limit of 0.5 copies/μl, and other Ebola virus, Marburg virus, Rift Valley fever virus, Kyasanur Forest disease virus, Junin virus, Guanarito virus, Machupo virus, Chikungunya virus, Hantavirus, Dengue virus types 1-4, and Lassa virus (L gene, GPC gene), and 11 kinds of viruses, the detection limit was confirmed at 5 copies/μl. No cross-reaction or interference between detected genes was observed. CONCLUSION The virus test method developed through this study using multiplex is expected to be used for public health and quarantine as a test method that can be used when a hemorrhagic fever virus of unknown cause is introduced.
Collapse
Affiliation(s)
- Yoonhyuk Choi
- Department of Convergence Engineering, Graduate School of Venture, Hoseo University, Seoul, 06724, South Korea; MDx Center, Diagnosis Division, iNtRON Biotechnology, South Korea
| | - Younghee Kim
- Department of Convergence Engineering, Graduate School of Venture, Hoseo University, Seoul, 06724, South Korea.
| |
Collapse
|
15
|
Blacksell SD, Dhawan S, Kusumoto M, Le KK, Summermatter K, O'Keefe J, Kozlovac J, Almuhairi SS, Sendow I, Scheel CM, Ahumibe A, Masuku ZM, Bennett AM, Kojima K, Harper DR, Hamilton K. The Biosafety Research Road Map: The Search for Evidence to Support Practices in the Laboratory-Crimean Congo Haemorrhagic Fever Virus and Lassa Virus. APPLIED BIOSAFETY 2023; 28:216-229. [PMID: 38090357 PMCID: PMC10712363 DOI: 10.1089/apb.2022.0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Introduction Crimean Congo Hemorrhagic Fever (CCHF) virus and Lassa virus (LASV) are zoonotic agents regarded as high-consequence pathogens due to their high case fatality rates. CCHF virus is a vector-borne disease and is transmitted by tick bites. Lassa virus is spread via aerosolization of dried rat urine, ingesting infected rats, and direct contact with or consuming food and water contaminated with rat excreta. Methods The scientific literature for biosafety practices has been reviewed for both these two agents to assess the evidence base and biosafety-related knowledge gaps. The review focused on five main areas, including the route of inoculation/modes of transmission, infectious dose, laboratory-acquired infections, containment releases, and disinfection and decontamination strategies. Results There is a lack of data on the safe collection and handling procedures for tick specimens and the infectious dose from an infective tick bite for CCHF investigations. In addition, there are gaps in knowledge about gastrointestinal and contact infectious doses for Lassa virus, sample handling and transport procedures outside of infectious disease areas, and the contribution of asymptomatic carriers in viral circulation. Conclusion Due to the additional laboratory hazards posed by these two agents, the authors recommend developing protocols that work effectively and safely in highly specialized laboratories in non-endemic regions and a laboratory with limited resources in endemic areas.
Collapse
Affiliation(s)
- Stuart D. Blacksell
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, United Kingdom
| | - Sandhya Dhawan
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Marina Kusumoto
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kim Khanh Le
- Mahidol-Oxford Tropical Research Medicine Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Joseph O'Keefe
- Ministry for Primary Industries, Wellington, New Zealand
| | - Joseph Kozlovac
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | | | - Indrawati Sendow
- Research Center for Veterinary Science, National Research and Innovation Agency, Indonesia
| | - Christina M. Scheel
- WHO Collaborating Center for Biosafety and Biosecurity, Office of the Associate Director for Laboratory Science, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Anthony Ahumibe
- Nigeria Centre for Disease Control, Abuja and Prevention, Nigeria
| | - Zibusiso M. Masuku
- National Institute for Communicable Diseases of the National Health Laboratory Services, Sandringham, South Africa
| | | | - Kazunobu Kojima
- Department of Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - David R. Harper
- The Royal Institute of International Affairs, London, United Kingdom
| | - Keith Hamilton
- World Organisation for Animal Health (OIE), Paris, France
| |
Collapse
|
16
|
El Ghassem A, Apolloni A, Vial L, Bouvier R, Bernard C, Khayar MS, Cheikh Ahmed M, Fausther-Bovendo H, Beyit AD, Yahya B, Ould El Mamy MB, Elbara A, Bollahi MA, Cêtre-Sossah C, Ould Mohamed Salem Boukhary A. Risk factors associated with Crimean-Congo hemorrhagic fever virus circulation among human, livestock and ticks in Mauritania through a one health retrospective study. BMC Infect Dis 2023; 23:764. [PMID: 37932678 PMCID: PMC10626674 DOI: 10.1186/s12879-023-08779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Crimean Congo hemorrhagic fever (CCHF) is endemic in Southern Mauritania where recurrent outbreaks have been constantly observed since the 1980's. The present study is the first to assess CCHFV antibodies and RNA in humans. METHODS A retrospective study was conducted using 263 humans and 1380 domestic animals serum samples, and 282 tick specimens of Hyalomma genus collected from 54 settings in 12 provinces across Mauritania. Antibodies targeting CCHF viral nucleoprotein were detected in animal and human sera using double-antigen ELISA. CCHFV specific RNA was detected in human and animal sera as well as tick supernatants using a CCHFV real time RT-PCR kit. Individual characteristics of sampled hosts were collected at the same time and data were geo-referenced. Satellite data of several environmental and climatic factors, were downloaded from publicly available datasets, and combined with data on livestock mobility, animal and human density, road accessibility and individual characteristics to identify possible risk factors for CCHFV spatial distribution. To this end, multivariate logistic models were developed for each host category (human, small and large ruminants). RESULTS The overall CCHFV antibody prevalence was 11.8% [95% CI: 8.4-16.3] in humans (17.9% in 2020 and 5.4% in 2021; p = 0.0017) and 33.1% (95% CI: 30.1-36.3) in livestock. CCHFV-specific antibodies were detected in 91 (18.1%) out of 502 sheep, 43 (9.0%) out of 477 goats, 144 (90.5%) out of 161 dromedaries and 179 (74.6%) out of 240 cattle. CCHFV RNA was detected in only 2 (0.7%) sera out of 263 animals herders samples from Hodh El Gharbi province and in 32 (11.3%) out of 282 Hyalomma ticks. In humans as well as in animals, seropositivity was not associated with sex or age groups. The multivariate analysis determined the role of different environmental, climatic and anthropic factors in the spatial distribution of the disease with animal mobility and age being identified as risk factors. CONCLUSION Results of the present study demonstrate the potential risk of CCHF for human population in Mauritania primarily those living in rural areas in close vicinity with animals. Future studies should prioritize an integrative human and veterinary approach for better understanding and managing Crimean-Congo hemorrhagic fever.
Collapse
Affiliation(s)
- Abdellahi El Ghassem
- Université de Nouakchott, UR GEMI, BP 5026, Nouakchott, Mauritania.
- ONARDEP, BP 167, Nouakchott, Mauritania.
| | - Andrea Apolloni
- CIRAD, UMR ASTRE, Montpellier Cedex, 34398, France.
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France.
| | - Laurence Vial
- CIRAD, UMR ASTRE, Montpellier Cedex, 34398, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | - Romain Bouvier
- CIRAD, UMR ASTRE, Montpellier Cedex, 34398, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | - Celia Bernard
- CIRAD, UMR ASTRE, Montpellier Cedex, 34398, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | | | | | - Hugues Fausther-Bovendo
- GUARD, Batiscan, QC, G0X 1A0, Canada
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, United States
| | | | | | | | | | | | - Catherine Cêtre-Sossah
- CIRAD, UMR ASTRE, Montpellier Cedex, 34398, France
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
| | | |
Collapse
|
17
|
Sankhe S, Talla C, Thiam MS, Faye M, Barry MA, Diarra M, Dia M, Ndiaye O, Sembene PM, Diop B, Fall G, Faye O, Faye O, Diagne MM, Loucoubar C. Seroprevalence of Crimean-Congo Hemorrhagic Fever Virus and Rift Valley Fever Virus in human population in Senegal from October to November 2020. IJID REGIONS 2023; 7:216-221. [PMID: 37153883 PMCID: PMC10160495 DOI: 10.1016/j.ijregi.2023.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/10/2023]
Abstract
Objectives Rift Valley Fever and Crimean-Congo Hemorrhagic Fever are two infections classified among the emerging diseases to be monitored with highest priority. Studies undertaken in human and animals have shown endemicity of these two arboviruses in several African countries. However, most of the investigations were carried out on domestic cattle and the studies conducted on human populations are either outdated or limited to a small number of well-known endemic areas. It is then critical to better evaluate the burden of these viruses in Senegal at a national scale. Methods This work relies on a previous seroprevalence survey undertaken in all regions of Senegal at the end of 2020. The existing biobank was used to determine the immunoglobulin G [IgG] Rift Valley Fever and Crimean-Congo Hemorrhagic Fever seroprevalences by indirect enzyme-linked immunosorbent assay. Results The crude seroprevalences of Rift Valley Fever and Crimean-Congo Hemorrhagic Fever were 3.94% and 0.7% respectively, with the northern and central part of the countries as the main exposed areas. However, acute infections reported in both high and low exposed regions suggest sporadic introductions. Conclusions This study gives updated information and could be of interest to support the stakeholders in the management of these zoonoses.
Collapse
Affiliation(s)
- Safietou Sankhe
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
- Animal Biology Department, Faculty of Sciences and Techniques, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Cheikh Talla
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Mareme Seye Thiam
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Martin Faye
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Maryam Diarra
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Moussa Dia
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Oumar Ndiaye
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Pape Mbacke Sembene
- Animal Biology Department, Faculty of Sciences and Techniques, Cheikh Anta Diop University of Dakar, Dakar, Senegal
| | - Boly Diop
- Epidemiological Surveillance Division, Prevention Department, Ministry of Health, Dakar, Senegal
| | - Gamou Fall
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Oumar Faye
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Ousmane Faye
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| | - Moussa Moise Diagne
- Arboviruses and Hemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
- Corresponding author
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, BP220 Dakar, Senegal
| |
Collapse
|
18
|
Febrer-Sendra B, Fernández-Soto P, García-Bernalt Diego J, Crego-Vicente B, Negredo A, Muñor-Bellido JL, Belhassen-García M, Sánchez-Seco MP, Muro A. A Novel RT-LAMP for the Detection of Different Genotypes of Crimean–Congo Haemorrhagic Fever Virus in Patients from Spain. Int J Mol Sci 2023; 24:ijms24076411. [PMID: 37047384 PMCID: PMC10094476 DOI: 10.3390/ijms24076411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Crimean–Congo haemorrhagic fever (CCHF) is a potentially lethal tick-borne viral disease with a wide distribution. In Spain, 12 human cases of CCHF have been confirmed, with four deaths. The diagnosis of CCHF is hampered by the nonspecific symptoms, the high genetic diversity of CCHFV, and the biosafety requirements to manage the virus. RT-qPCR and serological tests are used for diagnosis with limitations. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) could be an effective alternative in the diagnosis of the disease. However, none of the few RT-LAMP assays developed to date has detected different CCHFV genotypes. Here, we designed a RT-LAMP using a degenerate primer set to compensate for the variability of the CCHFV target sequence. RT-LAMP was performed in colorimetric and real-time tests on RT-qPCR-confirmed CCHF patient samples notified in Spain in 2020 and 2021. Urine from an inpatient was analysed by RT-LAMP for the first time and compared with RT-qPCR. The amplicons obtained by RT-qPCR were sequenced and African III and European V genotypes were identified. RT-LAMP amplified both genotypes and was more sensitive than RT-qPCR in urine samples. We have developed a novel, rapid, specific, and sensitive RT-LAMP test that allows the detection of different CCHFV genotypes in clinical samples. This pan-CCHFV RT-LAMP detected viral RNA for the first time in urine samples. It can be easily performed as a single-tube isothermal colorimetric method on a portable platform in real time and without the need for expensive equipment, thus bringing molecular diagnostics closer to rural or resource-poor areas, where CCHF usually occurs.
Collapse
|
19
|
Mo Q, Feng K, Dai S, Wu Q, Zhang Z, Ali A, Deng F, Wang H, Ning YJ. Transcriptome profiling highlights regulated biological processes and type III interferon antiviral responses upon Crimean-Congo hemorrhagic fever virus infection. Virol Sin 2023; 38:34-46. [PMID: 36075566 PMCID: PMC10006212 DOI: 10.1016/j.virs.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a biosafety level-4 (BSL-4) pathogen that causes Crimean-Congo hemorrhagic fever (CCHF) characterized by hemorrhagic manifestation, multiple organ failure and high mortality rate, posing great threat to public health. Despite the recently increasing research efforts on CCHFV, host cell responses associated with CCHFV infection remain to be further characterized. Here, to better understand the cellular response to CCHFV infection, we performed a transcriptomic analysis in human kidney HEK293 cells by high-throughput RNA sequencing (RNA-seq) technology. In total, 496 differentially expressed genes (DEGs), including 361 up-regulated and 135 down-regulated genes, were identified in CCHFV-infected cells. These regulated genes were mainly involved in host processes including defense response to virus, response to stress, regulation of viral process, immune response, metabolism, stimulus, apoptosis and protein catabolic process. Therein, a significant up-regulation of type III interferon (IFN) signaling pathway as well as endoplasmic reticulum (ER) stress response was especially remarkable. Subsequently, representative DEGs from these processes were well validated by RT-qPCR, confirming the RNA-seq results and the typical regulation of IFN responses and ER stress by CCHFV. Furthermore, we demonstrate that not only type I but also type III IFNs (even at low dosages) have substantial anti-CCHFV activities. Collectively, the data may provide new and comprehensive insights into the virus-host interactions and particularly highlights the potential role of type III IFNs in restricting CCHFV, which may help inform further mechanistic delineation of the viral infection and development of anti-CCHFV strategies.
Collapse
Affiliation(s)
- Qiong Mo
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Kuan Feng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Shiyu Dai
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Qiaoli Wu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Zhong Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China
| | - Ashaq Ali
- University of Chinese Academy of Sciences, Beijing, 101408, China; Centre of Excellence in Science and Applied Technologies, Islamabad, 45320, Pakistan
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Hualin Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| | - Yun-Jia Ning
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071/430207, China; Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071/430207, China.
| |
Collapse
|
20
|
Cosgun Y, Aydemir A, Hedef H, Öz Kamiloglu A, Klemens O, Lattwein E, Klemens JM, Saschenbrecker S, Steinhagen K, Korukluoglu G. Evaluation of Nucleoprotein-Based Enzyme-Linked Immunosorbent Assay for Serodiagnosis of Acute Crimean-Congo Hemorrhagic Fever Virus Infections in a Turkish Population. Vector Borne Zoonotic Dis 2023; 23:44-53. [PMID: 36576857 DOI: 10.1089/vbz.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Crimean-Congo hemorrhagic fever virus (CCHFV) causes a highly contagious tick-borne disease with high case-fatality rates in humans. It is circulating not only in many Asian and African countries, but also spreading to and within Europe. To cope better with future outbreaks of Crimean-Congo hemorrhagic fever (CCHF), the WHO has prioritized the need for the development and validation of CCHF diagnostics, including serological assays. In this study, we evaluated the performance of the new EUROIMMUN anti-CCHFV IgM and IgG enzyme-linked immunosorbent assays (ELISAs). Materials and Methods: Both ELISAs were compared to the Vector-Best VectoCrimean-CHF-IgM and -IgG ELISAs using the EUROIMMUN CCHFV Mosaic 2 IgM and IgG indirect immunofluorescence assays (IFA) as reference. Forty-nine acute-phase serum samples from patients with CCHFV infection confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and/or anti-CCHFV IgM IFA positivity were used to determine assay sensitivity. The assessment of specificity was based on sera from 30 control patients, 30 healthy blood donors, and 29 patients with hantavirus or sandfly fever virus infections. All samples originated from Turkey. Results: Sensitivity of the EUROIMMUN ELISAs (IgM 98.0%, IgG 47.1%) exceeded that of the Vector-Best ELISAs (IgM 95.9%, IgG 35.3%). Specificity of the EUROIMMUN ELISA IgM (86.4%) was slightly higher compared with the Vector-Best ELISA IgM (84.7%), while specificity for IgG was 100% for both assays. Qualitative agreement between the EUROIMMUN and Vector-Best ELISAs was substantial for detecting anti-CCHFV IgM (84.1%, ĸ = 0.673) and IgG (94.9%, ĸ = 0.791), whereas the quantitative results indicated a very strong positive correlation (IgM: r = 0.868, IgG: r = 0.913). Conclusion: The new EUROIMMUN anti-CCHFV ELISAs are standardized and easy-to-use tools that reliably support the identification of acute CCHF cases, and thus suitable for laboratories involved in on-site outbreak support.
Collapse
Affiliation(s)
- Yasemin Cosgun
- National Arboviruses and Viral Zoonotic Diseases Laboratory, Microbiology Reference Laboratories Department, Public Health General Directorate of Turkey, Ankara, Turkey
| | - Ahmet Aydemir
- National Arboviruses and Viral Zoonotic Diseases Laboratory, Microbiology Reference Laboratories Department, Public Health General Directorate of Turkey, Ankara, Turkey
| | - Hakan Hedef
- National Arboviruses and Viral Zoonotic Diseases Laboratory, Microbiology Reference Laboratories Department, Public Health General Directorate of Turkey, Ankara, Turkey
| | | | - Oliver Klemens
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Erik Lattwein
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Julia Maria Klemens
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Sandra Saschenbrecker
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Katja Steinhagen
- Institute for Experimental Immunology, affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Gulay Korukluoglu
- National Arboviruses and Viral Zoonotic Diseases Laboratory, Microbiology Reference Laboratories Department, Public Health General Directorate of Turkey, Ankara, Turkey
| |
Collapse
|
21
|
Recent advances in treatment Crimean-Congo hemorrhagic fever virus: A concise overview. Microb Pathog 2022; 169:105657. [PMID: 35753597 DOI: 10.1016/j.micpath.2022.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/19/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
The Crimean Congo Hemorrhagic Fever Virus (CCHFV) is widespread in Africa, Asia, and Europe, among other places. The disease was initially discovered in the Crimean cities of the Soviet Union and the Congo, and it was given the name Crimean Congo because it induces hemorrhagic fever. According to studies, when the virus enters the body, it settles in immune cells such as macrophages and dendritic cells, causing them to malfunction and secrete inflammatory cytokines such as TNF-alpha, IL1, and IL6, resulting in cytokine storms that induces shock via endothelial activation and vascular leakage, while on the other hand, clots and disseminated intravascular coagulation (DIC) formation causes massive defects in various organs such as the liver and kidneys, as well as fatal bleeding. Disease prevention and treatment are crucial since no other effective vaccination against the disease has yet been developed. Immunotherapy is utilized as a consequence. One of the most effective treatments, when combined with compensatory therapies such as blood and platelet replacement, water, electrolytes, Fresh Frozen Plasma (FFP) replacement, and other compensatory therapies, is one of the most effective treatments. Studies; show that immunotherapy using IVIG and neutralizing and non-neutralizing monoclonal antibodies; cytokine therapy, and anti-inflammatory therapy using corticosteroids are effective ways to treat the disease.
Collapse
|
22
|
Sana M, Javed A, Babar Jamal S, Junaid M, Faheem M. Development of multivalent vaccine targeting M segment of Crimean Congo Hemorrhagic Fever Virus (CCHFV) using immunoinformatic approaches. Saudi J Biol Sci 2022; 29:2372-2388. [PMID: 35531180 PMCID: PMC9072894 DOI: 10.1016/j.sjbs.2021.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/25/2021] [Accepted: 12/04/2021] [Indexed: 01/23/2023] Open
Abstract
Crimean-Congo Hemorrhagic Fever (CCHF) is a tick-borne viral infection with no licensed vaccine or therapeutics available for its treatment. In the present study we have developed the first multi-epitope subunit vaccine effective against all the seven genotypes of CCHF virus (CCHFV). The vaccine contains five B-cell, two MHC-II (HTL), and three MHC-I (CTL) epitopes screened from two structural glycoproteins (Gc and Gn in M segment) of CCHFV with an N-terminus human β-defensin as an adjuvant, as well as an N-terminus EAAAK sequence. The epitopes were rigorously investigated for their antigenicity, allergenicity, IFN gamma induction, anti-inflammatory responses, stability, and toxicity. The three-dimensional structure of the vaccine was predicted and docked with TLR-3, TLR-8, and TLR-9 receptors to find the strength of the binding complexes via molecular dynamics simulation. After codon adaptation, the subunit vaccine construct was developed in a pDual-GC plasmid and has population coverage of 98.47% of the world's population (HLA-I & II combined). The immune simulation studies were carried out on the C-ImmSim in-silico interface showing a marked increase in the production of cellular and humoral response (B-cell and T-cell) as well as TGFβ, IL-2, IL-10, and IL-12 indicating that the proposed vaccine would be able to sufficiently provoke both humoral and cell-mediated immune responses. Thus, making it a new and promising vaccine candidate against CCHFV.
Collapse
Affiliation(s)
- Maaza Sana
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Aneela Javed
- Atta-ur-Rahman School of Applied Biosciences, National University of Science and Technology, Sector H-12, Islamabad, Pakistan
| | - Syed Babar Jamal
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| | - Muhammad Junaid
- Precision Medicine Laboratory, Rehman Medical Institute, Hayatabad, Peshawar, KPK, 25000, Pakistan
| | - Muhammad Faheem
- Deparment of Biological Sciences, National University of Medical Sciences, Abid Majeed Rd, Rawalpindi, Punjab 46000, Pakistan
| |
Collapse
|
23
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
24
|
Lombe BP, Saito T, Miyamoto H, Mori-Kajihara A, Kajihara M, Saijo M, Masumu J, Hattori T, Igarashi M, Takada A. Mapping of Antibody Epitopes on the Crimean-Congo Hemorrhagic Fever Virus Nucleoprotein. Viruses 2022; 14:v14030544. [PMID: 35336951 PMCID: PMC8955205 DOI: 10.3390/v14030544] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV), a nairovirus, is a tick-borne zoonotic virus that causes hemorrhagic fever in humans. The CCHFV nucleoprotein (NP) is the antigen most used for serological screening of CCHFV infection in animals and humans. To gain insights into antibody epitopes on the NP molecule, we produced recombinant chimeric NPs between CCHFV and Nairobi sheep disease virus (NSDV), which is another nairovirus, and tested rabbit and mouse antisera/immune ascites, anti-NP monoclonal antibodies, and CCHFV-infected animal/human sera for their reactivities to the NP antigens. We found that the amino acids at positions 161–320 might include dominant epitopes recognized by anti-CCHFV IgG antibodies, whereas cross-reactivity between anti-CCHFV and anti-NSDV antibodies was limited. Their binding capacities were further tested using a series of synthetic peptides whose sequences were derived from CCHFV NP. IgG antibodies in CCHFV-infected monkeys and patients were reactive to some of the synthetic peptide antigens (e.g., amino acid residues at positions 131–150 and 211–230). Only a few peptides were recognized by IgG antibodies in the anti-NSDV serum. These results provide useful information to improve NP-based antibody detection assays as well as antigen detection tests relying on anti-NP monoclonal antibodies.
Collapse
Affiliation(s)
- Boniface Pongombo Lombe
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- Central Veterinary Laboratory of Kinshasa, Kinshasa B.P. 8842, Democratic Republic of the Congo;
- Faculty of Veterinary Medicine, National Pedagogic University, Kinshasa B.P. 8815, Democratic Republic of the Congo
| | - Takeshi Saito
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Hiroko Miyamoto
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Akina Mori-Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Masahiro Kajihara
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Musashimurayama 208-0011, Japan;
| | - Justin Masumu
- Central Veterinary Laboratory of Kinshasa, Kinshasa B.P. 8842, Democratic Republic of the Congo;
- Faculty of Veterinary Medicine, National Pedagogic University, Kinshasa B.P. 8815, Democratic Republic of the Congo
- National Institute of Biomedical Research, Kinshasa B.P. 1197, Democratic Republic of the Congo
| | - Takanari Hattori
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
| | - Manabu Igarashi
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan; (B.P.L.); (T.S.); (H.M.); (A.M.-K.); (M.K.); (T.H.); (M.I.)
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka 10101, Zambia
- Correspondence:
| |
Collapse
|
25
|
Li H, Bello A, Smith G, Kielich DMS, Strong JE, Pickering BS. Degenerate sequence-based CRISPR diagnostic for Crimean-Congo hemorrhagic fever virus. PLoS Negl Trop Dis 2022; 16:e0010285. [PMID: 35271569 PMCID: PMC8939784 DOI: 10.1371/journal.pntd.0010285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 03/22/2022] [Accepted: 02/27/2022] [Indexed: 11/19/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats), an ancient defense mechanism used by prokaryotes to cleave nucleic acids from invading viruses and plasmids, is currently being harnessed by researchers worldwide to develop new point-of-need diagnostics. In CRISPR diagnostics, a CRISPR RNA (crRNA) containing a "spacer" sequence that specifically complements with the target nucleic acid sequence guides the activation of a CRISPR effector protein (Cas13a, Cas12a or Cas12b), leading to collateral cleavage of RNA or DNA reporters and enormous signal amplification. CRISPR function can be disrupted by some types of sequence mismatches between the spacer and target, according to previous studies. This poses a potential challenge in the detection of variable targets such as RNA viruses with a high degree of sequence diversity, since mismatches can result from target variations. To cover viral diversity, we propose in this study that during crRNA synthesis mixed nucleotide types (degenerate sequences) can be introduced into the spacer sequence positions corresponding to viral sequence variations. We test this crRNA design strategy in the context of the Cas13a-based SHERLOCK (specific high-sensitivity enzymatic reporter unlocking) technology for detection of Crimean-Congo hemorrhagic fever virus (CCHFV), a biosafety level 4 pathogen with wide geographic distribution and broad sequence variability. The degenerate-sequence CRISPR diagnostic proves functional, sensitive, specific and rapid. It detects within 30-40 minutes 1 copy/μl of viral RNA from CCHFV strains representing all clades, and from more recently identified strains with new mutations in the CRISPR target region. Also importantly, it shows no cross-reactivity with a variety of CCHFV-related viruses. This proof-of-concept study demonstrates that the degenerate sequence-based CRISPR diagnostic is a promising tool of choice for effective detection of highly variable viral pathogens.
Collapse
Affiliation(s)
- Hongzhao Li
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Alexander Bello
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
| | - Dominic M. S. Kielich
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - James E. Strong
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Pediatrics & Child Health, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Bradley S. Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Iowa State University, College of Veterinary Medicine, Department of Veterinary Microbiology and Preventive Medicine, Ames, Iowa, United States of America
| |
Collapse
|
26
|
No Detection of Crimean-Congo Hemorrhagic Fever Virus in Hard Ticks (Ixodidae) from a Highly Endemic Area in Southeast Iran. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Matsuno K, Saijo M. [Crimean-Congo hemorrhagic fever]. Uirusu 2022; 72:19-30. [PMID: 37899226 DOI: 10.2222/jsv.72.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is an acute febrile illness with a high case fatality rate caused by the infection with Crimean-Congo hemorrhagic fever virus (CCHFV). The disease is endemic to a wide regions from the African continent to Asia through Europe. CCHFV is maintained in nature between Hyalomma species ticks and some species of animals. Humans are infected with CCHFV from CCHFV-positive tick bite or through a close contact with viremic animals in clucling hum am patients with CCHF. The CCHF-endemic regions depend on the distribution of the species of ticks such as Hyalomma species ticks, main vectors for CCHFV. There have been no confirmed cases of CCHF patients in Japan so far. CCHF is one of the zoonotic virus infections. Main clinical signs of the disease in humans are fever with nonspecific symptoms, and hemorrhage and deterioration in consciousness appear in severe cases. CCHF is classified in the disease category of viral hemorrhagic fevers, which include ebolavirus disease. Viral tick-borne diseases including tick-borne encephalitis, severe fever with thrombocytopenia syndrome, and Yezo virus infection, which has recently been discovered as a novel bunyavirus infection in Hokkaido, Japan, are becoming major concerns for public health in Japan. Trends of CCHF in terms of epidemiology should closely be monitored.
Collapse
Affiliation(s)
- Keita Matsuno
- Division of Risk Analysis and Management, International Institute for Zoonosis Control, Hokkaido University
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University
- One Health Research Center, Hokkaido University
| | - Masayuki Saijo
- Sapporo City Public Health Office
- National Institute of Infectious Diseases
| |
Collapse
|
28
|
Bendary HA, Rasslan F, Wainwright M, Alfarraj S, Zaki AM, Abdulall AK. Crimean-Congo hemorrhagic fever virus in ticks collected from imported camels in Egypt. Saudi J Biol Sci 2021; 29:2597-2603. [PMID: 35531170 PMCID: PMC9072913 DOI: 10.1016/j.sjbs.2021.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/21/2021] [Accepted: 12/16/2021] [Indexed: 10/29/2022] Open
|
29
|
Obanda V, Agwanda B, Blanco-Penedo I, Mwangi IA, King'ori E, Omondi GP, Ahlm C, Evander M, Lwande OW. Livestock Presence Influences the Seroprevalence of Crimean Congo Hemorrhagic Fever Virus on Sympatric Wildlife in Kenya. Vector Borne Zoonotic Dis 2021; 21:809-816. [PMID: 34559011 DOI: 10.1089/vbz.2021.0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Crimean Congo Hemorrhagic Fever (CCHF) is an emerging tick-borne zoonotic viral disease with the potential of causing public health emergencies. However, less is known about the role of wildlife and livestock in spreading the virus. Therefore, we aimed to assess how the interactions between African buffalo (Syncerus caffer) and cattle may influence the seroprevalence of CCHF across livestock-wildlife management systems in Kenya. The study included archived sera samples from buffalo and cattle from wildlife only habitats (Lake Nakuru National Park and Solio conservancy), open wildlife-livestock integrated habitats (Maasai Mara ecosystem and Meru National Park), and closed wildlife-livestock habitats (Ol Pejeta Conservancy) in Kenya. We analyzed 191 buffalo and 139 cattle sera using IDvet multispecies, double-antigen IgG enzyme-linked immunosorbent assay (ELISA). The seroprevalence toward Crimean Congo hemorrhagic fever virus (CCHFV) was significantly higher for buffalo compared to cattle (75.3% and 28.1%, respectively, p < 0.001). We obtained the highest seroprevalence among buffalo of 92.1% in closed wildlife only systems compared to 28.8% and 46.1% prevalence in closed-integrated and open-integrated systems, respectively. The regression coefficients were all negative for cattle compared to buffalo in both closed-integrated and open-integrated compared to wildlife only system. Our results show that CCHFV circulates among the diverse animal community in Kenya in spatially disconnected foci. The habitat overlap between cattle and buffalo makes cattle a "bridge species" or superspreader host for CCHFV and increases transmission risks to humans. The effect of animal management system on prevalence is depended on tick control on the cattle and not the animal per se. We conclude that buffalo, a host with a longer life span than livestock, is a reservoir and may serve as a sentinel population for longitudinal surveillance of CCHFV.
Collapse
Affiliation(s)
- Vincent Obanda
- Department of Veterinary Services, Kenya Wildlife Service, Nairobi, Kenya
| | - Bernard Agwanda
- Department of Mammalogy, National Museums of Kenya, Nairobi, Kenya
| | - Isabel Blanco-Penedo
- Unit of Veterinary Epidemiology, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Irene Ann Mwangi
- Department of Medical Microbiology, Kenya AIDs Vaccine Initiative Institute of Clinical Research, University of Nairobi, Nairobi, Kenya
| | - Edward King'ori
- Department of Veterinary Services, Kenya Wildlife Service, Nairobi, Kenya
| | - George P Omondi
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, Minnesota, USA.,Ahadi Veterinary Resource Center, Nairobi, Kenya
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Magnus Evander
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | |
Collapse
|
30
|
Gilbride C, Saunders J, Sharpe H, Maze EA, Limon G, Ludi AB, Lambe T, Belij-Rammerstorfer S. The Integration of Human and Veterinary Studies for Better Understanding and Management of Crimean-Congo Haemorrhagic Fever. Front Immunol 2021; 12:629636. [PMID: 33815379 PMCID: PMC8012513 DOI: 10.3389/fimmu.2021.629636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Outbreaks that occur as a result of zoonotic spillover from an animal reservoir continue to highlight the importance of studying the disease interface between species. One Health approaches recognise the interdependence of human and animal health and the environmental interplay. Improving the understanding and prevention of zoonotic diseases may be achieved through greater consideration of these relationships, potentially leading to better health outcomes across species. In this review, special emphasis is given on the emerging and outbreak pathogen Crimean-Congo Haemorrhagic Fever virus (CCHFV) that can cause severe disease in humans. We discuss the efforts undertaken to better understand CCHF and the importance of integrating veterinary and human research for this pathogen. Furthermore, we consider the use of closely related nairoviruses to model human disease caused by CCHFV. We discuss intervention approaches with potential application for managing CCHFV spread, and how this concept may benefit both animal and human health.
Collapse
Affiliation(s)
- Ciaran Gilbride
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jack Saunders
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hannah Sharpe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | | | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
31
|
Gülce-İz S, Elaldı N, Can H, Şahar EA, Karakavuk M, Gül A, Kumoğlu GÖ, Döşkaya AD, Gürüz AY, Özdarendeli A, Felgner PL, Davies H, Döşkaya M. Development of a novel recombinant ELISA for the detection of Crimean-Congo hemorrhagic fever virus IgG antibodies. Sci Rep 2021; 11:5936. [PMID: 33723328 PMCID: PMC7961021 DOI: 10.1038/s41598-021-85323-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne viral infection caused by Crimean-Congo hemorrhagic fever virus (CCHFV). Serological screening of CCHF is important and current ELISA use antigens prepared from virus which is expensive due to requirement of high bio-containment facilities. In this study, we aimed to develop a new recombinant ELISA. For this purpose, CCHFV genome were expressed as 13 proteins in E. coli and among them abundantly purified recombinant Nucleocapsid protein (rNP) and Mucin-like variable domain (rMLD) were used as antigen in ELISA (Rec-ELISA). Rec-ELISA using rNP, rMLD and a combination of both (rNP/rMLD) were probed with acute (n = 64; collected between days 1 and 7 after onset of symptoms), convalescent (n = 35; collected 8 days after onset of symptoms), consecutive sera (n = 25) of confirmed CCHF cases and control sera (n = 43). The sensitivity and specificity of Rec-ELISA using rNP/rMLD were 73% and 98% in acute cases and 97% and 98% in convalescent cases. The median interquartile absorbance value to discriminate the acute and convalescent phases of CCHF was significantly higher with ELISA using rNP/rMLD (P < 0.0001) compared to rNP (P > 0.05) and rMLD (P = 0.001). These results indicate that the Rec-ELISA using rNP/rMLD may be very useful to diagnose convalescent CCHF cases especially in field studies.
Collapse
Affiliation(s)
- Sultan Gülce-İz
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey.,Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, CA, USA
| | - Nazif Elaldı
- Department of Infectious Diseases and Clinical Microbiology, Sivas Cumhuriyet University, Faculty of Medicine, Sivas, Turkey.
| | - Hüseyin Can
- Department of Biology, Section of Molecular Biology, Ege University, Faculty of Science, Izmir, Turkey
| | - Esra Atalay Şahar
- Department of Biotechnology, Ege University, Faculty of Engineering, Izmir, Turkey
| | - Muhammet Karakavuk
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Aytül Gül
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Gizem Örs Kumoğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| | - Aysu Değirmenci Döşkaya
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey.,Blood Bank of Ege University, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Adnan Yüksel Gürüz
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey
| | - Aykut Özdarendeli
- Department of Medical Microbiology, Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | - Philip Louis Felgner
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, CA, USA
| | - Huw Davies
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California, Irvine, CA, USA
| | - Mert Döşkaya
- Department of Parasitology, Ege University, Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
32
|
Comparison of diagnostic performances of ten different immunoassays detecting anti-CCHFV IgM and IgG antibodies from acute to subsided phases of Crimean-Congo hemorrhagic fever. PLoS Negl Trop Dis 2021; 15:e0009280. [PMID: 33720942 PMCID: PMC7993781 DOI: 10.1371/journal.pntd.0009280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/25/2021] [Accepted: 02/28/2021] [Indexed: 11/19/2022] Open
Abstract
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is a geographically widespread tick-borne arbovirus that has been recognized by the WHO as an emerging pathogen needing urgent attention to ensure preparedness for potential outbreaks. Therefore, availability of accurate diagnostic tools for identification of acute cases is necessary. A panel comprising 121 sequential serum samples collected during acute, convalescent and subsided phase of PCR-proven CCHFV infection from 16 Kosovar patients was used to assess sensitivity. Serum samples from 60 healthy Kosovar blood donors were used to assess specificity. All samples were tested with two IgM/IgG immunofluorescence assays (IFA) from BNITM, the CCHFV Mosaic 2 IgG and IgM indirect immunofluorescence tests (IIFT) from EUROIMMUN, two BlackBox ELISAs for the detection of CCHFV-specific IgM and IgG antibodies (BNITM), two Anti-CCHFV ELISAs IgM and IgG from EUROIMMUN using recombinant structural proteins of CCHFV antigens, and two ELISAs from Vector-Best (IgM: μ-capture ELISA, IgG: indirect ELISA using immobilized CCHFV antigen). Diagnostic performances were compared between methods using sensitivity, specificity, concordance and degree of agreement with particular focus on the phase of the infection. In early and convalescent phases of infection, the sensitivities for detecting specific IgG antibodies differed for the ELISA test. The BlackBox IgG ELISA yielded the highest, followed by the EUROIMMUN IgG ELISA and finally the VectorBest IgG ELISA with the lowest sensitivities. In the subsided phase, the VectorBest IgM ELISA detected a high rate of samples that were positive for anti-CCHFV IgM antibodies. Both test systems based on immunofluorescence showed an identical sensitivity for detection of anti-CCHFV IgM antibodies in acute and convalescent phases of infection. Available serological test systems detect anti-CCHFV IgM and IgG antibodies accurately, but their diagnostic performances vary with respect to the phase of the infection.
Collapse
|
33
|
MacLeod IJ, Rowley CF, Essex M. PANDAA intentionally violates conventional qPCR design to enable durable, mismatch-agnostic detection of highly polymorphic pathogens. Commun Biol 2021; 4:227. [PMID: 33603155 PMCID: PMC7892852 DOI: 10.1038/s42003-021-01751-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Sensitive and reproducible diagnostics are fundamental to containing the spread of existing and emerging pathogens. Despite the reliance of clinical virology on qPCR, technical challenges persist that compromise their reliability for sustainable epidemic containment as sequence instability in probe-binding regions produces false-negative results. We systematically violated canonical qPCR design principles to develop a Pan-Degenerate Amplification and Adaptation (PANDAA), a point mutation assay that mitigates the impact of sequence variation on probe-based qPCR performance. Using HIV-1 as a model system, we optimized and validated PANDAA to detect HIV drug resistance mutations (DRMs). Ultra-degenerate primers with 3' termini overlapping the probe-binding site adapt the target through site-directed mutagenesis during qPCR to replace DRM-proximal sequence variation. PANDAA-quantified DRMs present at frequency ≥5% (2 h from nucleic acid to result) with a sensitivity and specificity of 96.9% and 97.5%, respectively. PANDAA is an innovative advancement with applicability to any pathogen where target-proximal genetic variability hinders diagnostic development.
Collapse
Affiliation(s)
- Iain J MacLeod
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Botswana-Harvard AIDS Institute Partnership, Private Bag, Gaborone, Botswana.
| | - Christopher F Rowley
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Botswana-Harvard AIDS Institute Partnership, Private Bag, Gaborone, Botswana
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - M Essex
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Botswana-Harvard AIDS Institute Partnership, Private Bag, Gaborone, Botswana
| |
Collapse
|
34
|
Purification of Crimean-Congo hemorrhagic fever virus nucleoprotein and its utility for serological diagnosis. Sci Rep 2021; 11:2324. [PMID: 33504869 PMCID: PMC7840982 DOI: 10.1038/s41598-021-81752-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 01/12/2021] [Indexed: 01/03/2023] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes a zoonotic disease, Crimean-Congo hemorrhagic fever (CCHF) endemic in Africa, Asia, the Middle East, and Southeastern Europe. However, the prevalence of CCHF is not monitored in most of the endemic countries due to limited availability of diagnostic assays and biosafety regulations required for handling infectious CCHFV. In this study, we established a protocol to purify the recombinant CCHFV nucleoprotein (NP), which is antigenically highly conserved among multiple lineages/clades of CCHFVs and investigated its utility in an enzyme-linked immunosorbent assay (ELISA) to detect CCHFV-specific antibodies. The NP gene was cloned into the pCAGGS mammalian expression plasmid and human embryonic kidney 293 T cells were transfected with the plasmid. The expressed NP molecule was purified from the cell lysate using cesium-chloride gradient centrifugation. Purified NP was used as the antigen for the ELISA to detect anti-CCHFV IgG. Using the CCHFV NP-based ELISA, we efficiently detected CCHFV-specific IgG in anti-NP rabbit antiserum and CCHFV-infected monkey serum. When compared to the commercially available Blackbox CCHFV IgG ELISA kit, our assay showed equivalent performance in detecting CCHFV-specific IgG in human sera. These results demonstrate the usefulness of our CCHFV NP-based ELISA for seroepidemiological studies.
Collapse
|
35
|
Nili S, Khanjani N, Jahani Y, Bakhtiari B. The effect of climate variables on the incidence of Crimean Congo Hemorrhagic Fever (CCHF) in Zahedan, Iran. BMC Public Health 2020; 20:1893. [PMID: 33298021 PMCID: PMC7726875 DOI: 10.1186/s12889-020-09989-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/30/2020] [Indexed: 12/02/2022] Open
Abstract
Background The Crimean-Congo Hemorrhagic fever (CCHF) is endemic in Iran and has a high fatality rate. The aim of this study was to investigate the association between CCHF incidence and meteorological variables in Zahedan district, which has a high incidence of this disease. Methods Data about meteorological variables and CCHF incidence was inquired from 2010 to 2017 for Zahedan district. The analysis was performed using univariate and multivariate Seasonal Autoregressive Integrated Moving Average (SARIMA) models and Generalized Additive Models (GAM) using R software. AIC, BIC and residual tests were used to test the goodness of fit of SARIMA models, and R2 was used to select the best model in GAM/GAMM. Results During the years under study, 190 confirmed cases of CCHF were identified in Zahedan district. The fatality rate of the disease was 8.42%. The disease trend followed a seasonal pattern. The results of multivariate SARIMA showed the (0,1,1) (0,1,1)12 model with maximum monthly temperature lagged 5 months, forecasted the disease better than other models. In the GAM, monthly average temperature lagged 5 months, and the monthly minimum of relative humidity and total monthly rainfall without lag, had a nonlinear relation with the incidence of CCHF. Conclusions Meteorological variables can affect CCHF occurrence.
Collapse
Affiliation(s)
- Sairan Nili
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Yunes Jahani
- Modelling in Health Research Center, Institute for Future Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahram Bakhtiari
- Water Engineering Department, College of Agriculture, Shahid Bahonar University, Kerman, Iran
| |
Collapse
|
36
|
Dieng I, Barry MA, Diagne MM, Diop B, Ndiaye M, Faye M, Ndione MHD, Dieng MM, Bousso A, Fall G, Loucoubar C, Sall AA, Faye O, Faye O. Detection of Crimean Congo haemorrhagic fever virus in North-eastern Senegal, Bokidiawé 2019. Emerg Microbes Infect 2020; 9:2485-2487. [PMID: 33161829 PMCID: PMC7717587 DOI: 10.1080/22221751.2020.1847605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We diagnosed a human case of Crimean Congo hemorrhagic fever (CCHF) in Bokidiawe (North-eastern Senegal), 2019. The phylogenetic analysis revealed that the isolate belongs to genotype III and is closely related to a strain reported in Mauritania in 1984 and Spain in 2016. Distribution area of CCHF in Senegal is progressively increasing.
Collapse
Affiliation(s)
- Idrissa Dieng
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | | | - Boly Diop
- Prevention Department Ministry of Health, Dakar, Senegal
| | - Mamadou Ndiaye
- Prevention Department Ministry of Health, Dakar, Senegal
| | - Martin Faye
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | | | | | - Gamou Fall
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Cheikh Loucoubar
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | | | - Oumar Faye
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| | - Ousmane Faye
- Département de Virologie, Institut Pasteur de Dakar, Dakar, Senegal
| |
Collapse
|
37
|
Latasa P, de Ory F, Arribas JR, Sánchez-Uriz MÁ, Sanchez-Arcilla I, Ordobás M, Negredo A, Trigo E, Delgado P, Marzola M, Lopaz MÁ, Sánchez-Seco MP, de la Calle-Prieto F, Ferrera P, Rodriguez E, Martín A, Del Cerro MF, Córdoba E, Mora-Rillo M, Esteban MJ. Absence of IgG antibodies among high-risk contacts of two confirmed cases of Crimean-Congo haemorrhagic fever in the autonomous region of Madrid (Spain). J Infect Public Health 2020; 13:1595-1598. [PMID: 32828715 DOI: 10.1016/j.jiph.2020.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a widely distributed tick-borne disease. In Spain, the disease has emerged as outbreak associated with high-risk exposures. Our goal was to evaluate the prevalence of antibodies against the CCHF virus (CCHFV) in high-risk contacts. A cross-sectional study was conducted. Three hundred eighty-six high-risk contacts were identified comprising family contacts and hospital workers who had attended the cases. Fifty-seven cases with closer exposure were selected. However, forty-nine cases participated in the study. IgG antibodies were detected by immunoenzymatic techniques. All determinations tested negative for anti-CCHFV IgG antibodies. Most of the responders were women (73.5%), and belong to the intensive care department (53.1%). In relation to other possible sources of exposures, 18.4% travelled to countries with CCHF transmission risk. No CCHF positivity was recorded among selected high-risk contacts. This highlights the importance of standard precautions which might have protected healthcare workers and care providers from CCHF infection.
Collapse
Affiliation(s)
- Pello Latasa
- Health Department of the Community of Madrid, Subdirectorate of Epidemiology, Madrid, Comunidad de Madrid, Spain.
| | - Fernando de Ory
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Comunidad de Madrid, Spain
| | - José Ramón Arribas
- La Paz - Carlos III Universitary Hospital, High Level Isolation Unit, Madrid, Comunidad de Madrid, Spain
| | - Maria Ángeles Sánchez-Uriz
- Infanta Leonor Universitary Hospital, Occupational Risk Prevention Department, Madrid, Comunidad de Madrid, Spain
| | - Ignacio Sanchez-Arcilla
- Gregorio Marañón Universitary Hospital, Occupational Risk Prevention Department, Madrid, Comunidad de Madrid, Spain
| | - María Ordobás
- Health Department of the Community of Madrid, Subdirectorate of Epidemiology, Madrid, Comunidad de Madrid, Spain
| | - Anabel Negredo
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Comunidad de Madrid, Spain
| | - Elena Trigo
- La Paz - Carlos III Universitary Hospital, High Level Isolation Unit, Madrid, Comunidad de Madrid, Spain
| | - Pilar Delgado
- Infanta Leonor Universitary Hospital, Occupational Risk Prevention Department, Madrid, Comunidad de Madrid, Spain
| | - Marco Marzola
- Gregorio Marañón Universitary Hospital, Occupational Risk Prevention Department, Madrid, Comunidad de Madrid, Spain
| | - Maria Ángeles Lopaz
- Health Department of the Community of Madrid, Subdirectorate of Epidemiology, Madrid, Comunidad de Madrid, Spain
| | - María Paz Sánchez-Seco
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Comunidad de Madrid, Spain
| | | | - Pilar Ferrera
- Infanta Leonor Universitary Hospital, Occupational Risk Prevention Department, Madrid, Comunidad de Madrid, Spain
| | - Elena Rodriguez
- Health Department of the Community of Madrid, Subdirectorate of Epidemiology, Madrid, Comunidad de Madrid, Spain
| | - Alejandro Martín
- La Paz - Carlos III Universitary Hospital, High Level Isolation Unit, Madrid, Comunidad de Madrid, Spain
| | - Maria Felipa Del Cerro
- Infanta Leonor Universitary Hospital, Occupational Risk Prevention Department, Madrid, Comunidad de Madrid, Spain
| | - Esther Córdoba
- Health Department of the Community of Madrid, Subdirectorate of Epidemiology, Madrid, Comunidad de Madrid, Spain
| | - Marta Mora-Rillo
- La Paz - Carlos III Universitary Hospital, High Level Isolation Unit, Madrid, Comunidad de Madrid, Spain
| | - Maria José Esteban
- Health Department of the Community of Madrid, Subdirectorate of Epidemiology, Madrid, Comunidad de Madrid, Spain
| |
Collapse
|
38
|
Differential Growth Characteristics of Crimean-Congo Hemorrhagic Fever Virus in Kidney Cells of Human and Bovine Origin. Viruses 2020; 12:v12060685. [PMID: 32630501 PMCID: PMC7354505 DOI: 10.3390/v12060685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/29/2022] Open
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) causes a lethal tick-borne zoonotic disease with severe clinical manifestation in humans but does not produce symptomatic disease in wild or domestic animals. The factors contributing to differential outcomes of infection between species are not yet understood. Since CCHFV is known to have tropism to kidney tissue and cattle play an important role as an amplifying host for CCHFV, in this study, we assessed in vitro cell susceptibility to CCHFV infection in immortalized and primary kidney and adrenal gland cell lines of human and bovine origin. Based on our indirect fluorescent focus assay (IFFA), we suggest a cell-to-cell CCHF viral spread process in bovine kidney cells but not in human cells. Over the course of seven days post-infection (dpi), infected bovine kidney cells are found in restricted islet-like areas. In contrast, three dpi infected human kidney or adrenal cells were noted in areas distant from one another yet progressed to up to 100% infection of the monolayer. Pronounced CCHFV replication, measured by quantitative real-time RT-PCR (qRT-PCR) of both intra- and extracellular viral RNA, was documented only in human kidney cells, supporting restrictive infection in cells of bovine origin. To further investigate the differences, lactate dehydrogenase activity and cytopathic effects were measured at different time points in all mentioned cells. In vitro assays indicated that CCHFV infection affects human and bovine kidney cells differently, where human cell lines seem to be markedly permissive. This is the initial reporting of CCHFV susceptibility and replication patterns in bovine cells and the first report to compare human and animal cell permissiveness in vitro. Further investigations will help to understand the impact of different cell types of various origins on the virus–host interaction.
Collapse
|
39
|
Vasmehjani AA, Salehi-Vaziri M, Azadmanesh K, Nejati A, Pouriayevali MH, Gouya MM, Parsaeian M, Shahmahmoodi S. Efficient production of a lentiviral system for displaying Crimean-Congo hemorrhagic fever virus glycoproteins reveals a broad range of cellular susceptibility and neutralization ability. Arch Virol 2020; 165:1109-1120. [PMID: 32189084 DOI: 10.1007/s00705-020-04576-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/02/2020] [Indexed: 11/28/2022]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease with a mortality rate of up to 50% in humans. To avoid safety concerns associated with the use of live virus in virus neutralization assays and to detect human serum neutralizing antibodies, we prepared lentiviral particles containing the CCHF glycoprotein (lenti-CCHFV-GP). Incorporation of the GP into the lentiviral particle was confirmed by electron microscopy and Western blotting. Lenti-CCHFV-GP was found to be able to infect a wide range of cell lines, including BHK-21, HeLa, HepG2, and AsPC-1 cells. In addition, lenti-CCHFV-GP was successfully used as an alternative to CCHFV for the detection of neutralizing antibodies. Sera collected from CCHF survivors neutralized lenti-CCHFV-GP particles in a dose-dependent manner. Our results suggest that the lenti-CCHFV-GP pseudovirus can be used as a safe tool for neutralization assays in low-containment laboratories.
Collapse
Affiliation(s)
- Abbas Ahmadi Vasmehjani
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Mostafa Salehi-Vaziri
- Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran.,Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | | | - Ahmad Nejati
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran
| | - Mohammad Hassan Pouriayevali
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Mahdi Gouya
- National Communicable Disease Control Centre, Ministry of Health and Medical Education, Tehran, Iran
| | - Mahboubeh Parsaeian
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shohreh Shahmahmoodi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151, Iran. .,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
40
|
Nasirian H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: A global systematic review and meta-analysis. Comp Immunol Microbiol Infect Dis 2020; 69:101429. [PMID: 32062190 DOI: 10.1016/j.cimid.2020.101429] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 02/05/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is the most popular tick-borne disease causing by Crimean-Congo hemorrhagic fever virus (CCHFV). There are several valuable reviews considering some fields of the CCHF aspects. While there is no a systematic review about means and trends of CCHF cases and fatality rate, means and trends of CCHF cases and fatality rates of human occupations involved in CCHF. Therefore, this meta-analysis review performed to highlight and provide a global detailed of the above CCHF aspects. Among 398 collected papers, 173 papers were become this meta-analysis review. The study results confirm that an apparent increasing CCHF cases occurred through the past decades. The trends of annually and periodically CCHF cases and fatality rates were also increased. The means of annually and periodically CCHF cases and fatality rates were 57 and 432 cases, and 10 cases and 32.2 % and 49 cases and 28.8 %, respectively. The means of annually and periodically CCHF fatality rates are about one-tenth of CCHF human cases. The mean of CCHF fatality rates in Africa (22.0 %) is lower than Asia (33.5 %) and Europe (33.8 %). Among occupations involved in CCHF, agricultural (28.9 %), health-care (19.2 %) and slaughterhouse (16.7 %) workers, and farmers (13.9 %) had the maximum CCHF fatality rates in order. Based on literature review of CCHFV S-segment aspects, several clades and genotypes are reported to distribute in Africa, Asia and Europe regions. There are very wide fields to investigate the epidemiology characteristics of CCHFV clades, genotypes and their distribution in the future.
Collapse
Affiliation(s)
- Hassan Nasirian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
41
|
Mattiuzzo G, Bentley EM, Page M. The Role of Reference Materials in the Research and Development of Diagnostic Tools and Treatments for Haemorrhagic Fever Viruses. Viruses 2019; 11:E781. [PMID: 31450611 PMCID: PMC6783900 DOI: 10.3390/v11090781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Following the Ebola outbreak in Western Africa in 2013-16, a global effort has taken place for preparedness for future outbreaks. As part of this response, the development of vaccines, treatments and diagnostic tools has been accelerated, especially towards pathogens listed as likely to cause an epidemic and for which there are no current treatments. Several of the priority pathogens identified by the World Health Organisation are haemorrhagic fever viruses. This review provides information on the role of reference materials as an enabling tool for the development and evaluation of assays, and ultimately vaccines and treatments. The types of standards available are described, along with how they can be applied for assay harmonisation through calibration as a relative potency to a common arbitrary unitage system (WHO International Unit). This assures that assay metrology is accurate and robust. We describe reference materials that have been or are being developed for haemorrhagic fever viruses and consider the issues surrounding their production, particularly that of biosafety where the viruses require specialised containment facilities. Finally, we advocate the use of reference materials at early stages, including research and development, as this helps produce reliable assays and can smooth the path to regulatory approval.
Collapse
MESH Headings
- Africa, Western/epidemiology
- Animals
- Antigens, Viral/blood
- Dengue Virus/immunology
- Dengue Virus/isolation & purification
- Dengue Virus/pathogenicity
- Diagnostic Techniques and Procedures
- Disease Outbreaks/prevention & control
- Ebolavirus/immunology
- Ebolavirus/isolation & purification
- Ebolavirus/pathogenicity
- Epidemics/prevention & control
- Hemorrhagic Fever Virus, Crimean-Congo/immunology
- Hemorrhagic Fever Virus, Crimean-Congo/isolation & purification
- Hemorrhagic Fever Virus, Crimean-Congo/pathogenicity
- Hemorrhagic Fever, Crimean/diagnosis
- Hemorrhagic Fever, Crimean/immunology
- Hemorrhagic Fever, Crimean/prevention & control
- Hemorrhagic Fever, Ebola/diagnosis
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/prevention & control
- Humans
- Information Services
- Lassa Fever/diagnosis
- Lassa Fever/immunology
- Lassa Fever/prevention & control
- Lassa virus/immunology
- Lassa virus/isolation & purification
- Lassa virus/pathogenicity
- Marburg Virus Disease/diagnosis
- Marburg Virus Disease/immunology
- Marburg Virus Disease/prevention & control
- Marburgvirus/immunology
- Marburgvirus/isolation & purification
- Marburgvirus/pathogenicity
- RNA Virus Infections/diagnosis
- RNA Virus Infections/immunology
- RNA Virus Infections/prevention & control
- RNA Viruses/immunology
- RNA Viruses/isolation & purification
- RNA Viruses/pathogenicity
- RNA, Viral/isolation & purification
- Rift Valley Fever/diagnosis
- Rift Valley Fever/immunology
- Rift Valley Fever/prevention & control
- Rift Valley fever virus/immunology
- Rift Valley fever virus/isolation & purification
- Rift Valley fever virus/pathogenicity
- Severe Dengue/diagnosis
- Severe Dengue/immunology
- Severe Dengue/prevention & control
- Vaccines/standards
- World Health Organization
Collapse
Affiliation(s)
- Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| | - Emma M Bentley
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| | - Mark Page
- Division of Virology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK.
| |
Collapse
|
42
|
Aydin H, Uyanik MH, Karamese M, Sozdutmaz I, Timurkan MO, Gulen A, Ozmen E, Aktas O. Serological Investigation of Occupational Exposure to Zoonotic Crimean-Congo Hemorrhagic Fever Infection. Eurasian J Med 2019; 52:132-135. [PMID: 32612419 DOI: 10.5152/eurasianjmed.2020.19176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/24/2019] [Indexed: 11/22/2022] Open
Abstract
Objective Crimean-Congo hemorrhagic fever (CCHF) is an acute and highly fatal disease. In this study, our aim was to compare and evaluate the prevalence of CCHF virus (CCHFV) antibody among occupational high-risk groups by using the enzyme-linked immunosorbent assay and draw attention to the occupational groups that are at high risk for CCHF infection in an endemic region for this zoonotic infection in Erzurum, Turkey. Materials and Methods The antibody levels against CCHFV were surveyed among slaughterhouse workers, animal breeders, and veterinarians. The study population was composed of 72 participants having direct contact with animals and 19 blood donors who were not in direct contact with animals. Results The overall rate of CCHF immunoglobulin G positivity in risk groups was found to be 6.94% (5/72). CCHFV antibodies were found in 4 (12.5%) individuals of the animal breeder group. This ratio was considered significantly higher compared with the healthy control group. CCHFV antibodies were found in only one person (4.0%) who was an abattoir worker. In the veterinarian group, all people were found negative. Conclusion In our study, the variables showing important associations with the prevalence of anti-CCHFV antibodies were livestock breeding, rural areas, and age. It was concluded that our region is endemic with regard to CCHF infection and persons who had direct contact with animals are at high risk. Thus, these participants must take necessary measures to protect themselves from CCHF and should be trained by health authorities.
Collapse
Affiliation(s)
- Hakan Aydin
- Department of Virology, Ataturk University School of Veterinary Medicine, Erzurum, Turkey
| | | | - Murat Karamese
- Department of Microbiology, Kafkas University School of Medicine, Kars, Turkey
| | - Ibrahim Sozdutmaz
- Department of Virology, Erciyes University School of Veterinary Medicine, Kayseri, Turkey
| | - Mehmet Ozkan Timurkan
- Department of Virology, Ataturk University School of Veterinary Medicine, Erzurum, Turkey
| | - Abdulkadir Gulen
- Department of Microbiology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Erkan Ozmen
- Department of Microbiology, Ataturk University School of Medicine, Erzurum, Turkey
| | - Osman Aktas
- Department of Microbiology, Ataturk University School of Medicine, Erzurum, Turkey
| |
Collapse
|
43
|
Kelly-Cirino CD, Nkengasong J, Kettler H, Tongio I, Gay-Andrieu F, Escadafal C, Piot P, Peeling RW, Gadde R, Boehme C. Importance of diagnostics in epidemic and pandemic preparedness. BMJ Glob Health 2019; 4:e001179. [PMID: 30815287 PMCID: PMC6362765 DOI: 10.1136/bmjgh-2018-001179] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 11/26/2022] Open
Abstract
Diagnostics are fundamental for successful outbreak containment. In this supplement, ‘Diagnostic preparedness for WHO Blueprint pathogens’, we describe specific diagnostic challenges presented by selected priority pathogens most likely to cause future epidemics. Some challenges to diagnostic preparedness are common to all outbreak situations, as highlighted by recent outbreaks of Ebola, Zika and yellow fever. In this article, we review these overarching challenges and explore potential solutions. Challenges include fragmented and unreliable funding pathways, limited access to specimens and reagents, inadequate diagnostic testing capacity at both national and community levels of healthcare and lack of incentives for companies to develop and manufacture diagnostics for priority pathogens during non-outbreak periods. Addressing these challenges in an efficient and effective way will require multiple stakeholders—public and private—coordinated in implementing a holistic approach to diagnostics preparedness. All require strengthening of healthcare system diagnostic capacity (including surveillance and education of healthcare workers), establishment of sustainable financing and market strategies and integration of diagnostics with existing mechanisms. Identifying overlaps in diagnostic development needs across different priority pathogens would allow more timely and cost-effective use of resources than a pathogen by pathogen approach; target product profiles for diagnostics should be refined accordingly. We recommend the establishment of a global forum to bring together representatives from all key stakeholders required for the response to develop a coordinated implementation plan. In addition, we should explore if and how existing mechanisms to address challenges to the vaccines sector, such as Coalition for Epidemic Preparedness Innovations and Gavi, could be expanded to cover diagnostics.
Collapse
Affiliation(s)
| | - John Nkengasong
- Africa Centres for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Hannah Kettler
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | | | | | - Peter Piot
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - Renuka Gadde
- Becton Dickinson (BD), Franklin Lakes, New Jersey, USA
| | | |
Collapse
|