1
|
Leo S, Leonard MM, Valitutti F, Fasano A. Gut dysbiosis: cause or consequence of intestinal inflammation in celiac disease? Expert Rev Gastroenterol Hepatol 2025:1-9. [PMID: 40133841 DOI: 10.1080/17474124.2025.2483406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION Celiac disease (CeD) is an immune-mediated condition that occurs in genetically predisposed individuals ingesting gluten. It is characterized by enteropathy leading to both gastrointestinal and extra-intestinal symptoms. The prevalence of CeD has increased world-wide. Evidence suggests that genetic predisposition and exposure to gluten are necessary but not sufficient for CeD onset, implying that other unknown factors are at play in its pathogenesis. AREAS COVERED This review summarizes the current knowledge on the contribution of the gut microbiota to CeD pathogenesis, aiming to address the question of whether it is the cause or consequence of the celiac enteropathy. We reviewed the current literature (studies published in PubMed database between 2007 and 2023), linking gut microbiota dysbiosis and CeD, focusing specifically on prospective birth cohorts' studies and discussing how multi-omics and artificial intelligence (AI) could transform the diagnosis of CeD in a personalized medicine approach. EXPERT OPINION A multi-omic approach will allow for better clarification of the pivotal role of the microbiome in epigenetically triggering CeD pathogenesis. Further, the combination of multi-omics results with AI would pave the way to an improved CeD diagnosis and to the identification of new personalized therapeutic interventions.
Collapse
Affiliation(s)
- Stefano Leo
- European Biomedical Research Institute of Salerno, Salerno, Italy
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA, USA
- Celiac Research Program, Harvard Medical School, Boston, MA, USA
| | - Francesco Valitutti
- Pediatrics Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessio Fasano
- European Biomedical Research Institute of Salerno, Salerno, Italy
- Division of Pediatric Gastroenterology and Nutrition, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, MassGeneral Hospital for Children, Harvard Medical School, Boston, MA, USA
- Celiac Research Program, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Lernmark Å, Agardh D, Akolkar B, Gesualdo P, Hagopian WA, Haller MJ, Hyöty H, Johnson SB, Elding Larsson H, Liu E, Lynch KF, McKinney EF, McIndoe R, Melin J, Norris JM, Rewers M, Rich SS, Toppari J, Triplett E, Vehik K, Virtanen SM, Ziegler AG, Schatz DA, Krischer J. Looking back at the TEDDY study: lessons and future directions. Nat Rev Endocrinol 2025; 21:154-165. [PMID: 39496810 PMCID: PMC11825287 DOI: 10.1038/s41574-024-01045-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
The goal of the TEDDY (The Environmental Determinants of Diabetes in the Young) study is to elucidate factors leading to the initiation of islet autoimmunity (first primary outcome) and those related to progression to type 1 diabetes mellitus (T1DM; second primary outcome). This Review outlines the key findings so far, particularly related to the first primary outcome. The background, history and organization of the study are discussed. Recruitment and follow-up (from age 4 months to 15 years) of 8,667 children showed high retention and compliance. End points of the presence of autoantibodies against insulin, GAD65, IA-2 and ZnT8 revealed the HLA-associated early appearance of insulin autoantibodies (1-3 years of age) and the later appearance of GAD65 autoantibodies. Competing autoantibodies against tissue transglutaminase (marking coeliac disease autoimmunity) also appeared early (2-4 years). Genetic and environmental factors, including enterovirus infection and gastroenteritis, support mechanistic differences underlying one phenotype of autoimmunity against insulin and another against GAD65. Infant growth and both probiotics and high protein intake affect the two phenotypes differently, as do serious life events during pregnancy. As the end of the TEDDY sampling phase is approaching, major omics approaches are in progress to further dissect the mechanisms that might explain the two possible endotypes of T1DM.
Collapse
Affiliation(s)
- Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden.
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Gesualdo
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - William A Hagopian
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Suzanne Bennett Johnson
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Edwin Liu
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristian F Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eoin F McKinney
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Jessica Melin
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marian Rewers
- Barbara Davis Center for Diabetes, University of Colorado, Aurora, CO, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jorma Toppari
- Department of Paediatrics, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Research Centre for Integrated Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Eric Triplett
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Suvi M Virtanen
- Center for Child Health Research, Tampere University and University Hospital and Research, Tampere, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt, Munich, Germany
- Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München and e.V., Munich, Germany
| | - Desmond A Schatz
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
3
|
Mpakosi A, Sokou R, Theodoraki M, Iacovidou N, Cholevas V, Tsantes AG, Liakou AI, Drogari-Apiranthitou M, Kaliouli-Antonopoulou C. The Role of Infant and Early Childhood Gut Virome in Immunity and the Triggering of Autoimmunity-A Narrative Review. Diagnostics (Basel) 2025; 15:413. [PMID: 40002565 PMCID: PMC11854275 DOI: 10.3390/diagnostics15040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The bacterial gut microbiome has been the subject of many studies that have provided valuable scientific conclusions. However, many different populations of microorganisms that interact with each other to maintain homeostasis coexist inside the gut. The gut virome, especially, appears to play a key role in this interactive microenvironment. Intestinal viral communities, including bacteriophages, appear to influence health and disease, although their role has not yet been fully elucidated. In addition, bacteriophages or viruses that infect bacteria regulate bacterial growth, thus shaping the composition of the gut microbiome and affecting the immune system. Infant Gut Virome: The shaping of the gut microbiome during the first years of life has a significant role in the maturation of the infant's immune system. In contrast, early dysbiosis has been associated with chronic, including metabolic and autoimmune, disorders later in life. Purpose: Although viruses have been shown to be potential triggers of autoimmune diseases, there is a gap in the literature regarding the infant gut virome in autoimmunity development. Despite the lack of evidence, this review attempts to summarize and clarify what is known so far about this timely and important topic in the hope that its findings will contribute to future research.
Collapse
Affiliation(s)
- Alexandra Mpakosi
- Department of Microbiology, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece
| | - Rozeta Sokou
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | - Martha Theodoraki
- Neonatal Intensive Care Unit, General Hospital of Nikaia “Agios Panteleimon”, 18454 Piraeus, Greece;
| | - Nicoletta Iacovidou
- Neonatal Department, National and Kapodistrian University of Athens, Aretaieio Hospital, 11528 Athens, Greece;
| | | | - Andreas G. Tsantes
- Department of Microbiology, Saint Savvas Oncology Hospital, 11522 Athens, Greece;
| | - Aikaterini I. Liakou
- 1st Department of Dermatology-Venereology, “Andreas Sygros” Hospital, Medical School, National and Kapodistrian University of Athens, 16121 Athens, Greece;
| | - Maria Drogari-Apiranthitou
- Infectious Diseases Research Laboratory, 4th Department of Internal Medicine, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Rimini 1, 12462 Athens, Greece;
| | | |
Collapse
|
4
|
Cerovic V, Pabst O, Mowat AM. The renaissance of oral tolerance: merging tradition and new insights. Nat Rev Immunol 2025; 25:42-56. [PMID: 39242920 DOI: 10.1038/s41577-024-01077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Oral tolerance is the process by which feeding of soluble proteins induces antigen-specific systemic immune unresponsiveness. Oral tolerance is thought to have a central role in suppressing immune responses to 'harmless' food antigens, and its failure can lead to development of pathologies such as food allergies or coeliac disease. However, on the basis of long-standing experimental observations, the relevance of oral tolerance in human health has achieved new prominence recently following the discovery that oral administration of peanut proteins prevents the development of peanut allergy in at-risk human infants. In this Review, we summarize the new mechanistic insights into three key processes necessary for the induction of tolerance to oral antigens: antigen uptake and transport across the small intestinal epithelial barrier to the underlying immune cells; the processing, transport and presentation of fed antigen by different populations of antigen-presenting cells; and the development of immunosuppressive T cell populations that mediate antigen-specific tolerance. In addition, we consider how related but distinct processes maintain tolerance to bacterial antigens in the large intestine. Finally, we outline the molecular mechanisms and functional consequences of failure of oral tolerance and how these may be modulated to enhance clinical outcomes and prevent disease.
Collapse
Affiliation(s)
- Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Allan McI Mowat
- School of Infection and Immunity, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
5
|
Asri N, Mohammadi S, Jahdkaran M, Rostami-Nejad M, Rezaei-Tavirani M, Mohebbi SR. Viral infections in celiac disease: what should be considered for better management. Clin Exp Med 2024; 25:25. [PMID: 39731690 DOI: 10.1007/s10238-024-01542-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
Following a gluten-free diet (GFD) is known as the main effective therapy available for celiac disease (CD) patients, which in some cases is not enough to heal all patients presentations completely. Accordingly, emerging researchers have focused on finding novel therapeutic/preventive strategies for this disorder. Moreover, previous studies have shown that celiac patients, especially untreated subjects, are at increased risk of developing viral and bacterial infections, which can become a challenge for the clinician. Viruses, such as Rotavirus, Reovirus, Adenovirus, Enterovirus, Rhinovirus, Astrovirus, Hepatitis virus, COVID-19, Norovirus, and Herpesvirus, have been related to CD pathogenesis. Therefore, clinicians need to pay more attention to evaluate CD patients' viral infection history (especially nonresponders to the GFD), to look for effective preventive strategies and educate patients about important risk factors. In addition, there are still viruses whose role in CD pathogenesis has not been fully studied. In this review, current information on the association between CD and various viral infections was gathered to improve knowledge in this subject area and draw researchers'/clinicians' attention to unstudied/less studied viruses in CD pathogenesis, which might guide future prevention approaches.
Collapse
Affiliation(s)
- Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahnaz Mohammadi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahtab Jahdkaran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Reza Mohebbi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Farrier CE, Wanat M, Harnden A, Paterson A, Roberts N, Saatci D, Hirst J. Predictive factors for the diagnosis of coeliac disease in children and young people in primary care: A systematic review and meta-analysis. PLoS One 2024; 19:e0306844. [PMID: 39705224 DOI: 10.1371/journal.pone.0306844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/23/2024] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND Coeliac Disease (CD) often has its onset in childhood and affects 1% of the population. This review aimed to identify important predictive factors for coeliac disease in children and young people which could help GPs decide when to offer testing. METHODS We searched MEDLINE, Embase and Cochrane Library to April 2024. Included studies were observational or randomized trials reporting the risk of CD when exposed to predictive factor(s) in people ≤25 years of age. Genetic factors were excluded. Risk of Bias was assessed using the Newcastle-Ottawa Scale. Random effects meta-analysis was performed for factors reported in ≥5 studies to calculate pooled odds ratios (OR) or standardized mean differences (SMD). RESULTS Of 11,623 unique abstracts, 183 were included reporting on 140+ potentially associated factors. Meta-analyses of 28 factors found 14 significant associations with CD diagnosis: having type 1 diabetes (OR 8.70), having a first degree relative with coeliac disease (OR 5.19), being of white ethnicity (OR 2.56), having thyroid disease (OR 2.16), being female (OR 1.53), more frequent gastroenteritis in early childhood (OR 1.48), having frequent respiratory infections in early childhood (OR 1.47), more gluten ingestion in early life (OR 1.25), having more infections in early life (OR 1.22), antibiotic use in early childhood (OR 1.21), being born in the summer (OR 1.09), breastfeeding (OR 0.79) older age at diagnosis of type 1 diabetes (OR 0.64), and heavier weight (SMD -0.21). The final three were associated with lower risk of CD diagnosis. DISCUSSION This is the first systematic review and meta-analysis of predictive factors for CD in children. Amongst the 14 factors we identified that were significant, three were potentially modifiable: breast feeding, antibiotic use and amount of gluten ingestion in early childhood. This work could inform the development of clinical support tools to facilitate the early diagnosis of CD.
Collapse
Affiliation(s)
- Christian E Farrier
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
- Department of Paediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Marta Wanat
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Anthony Harnden
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Amy Paterson
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nia Roberts
- Bodleian Healthcare Libraries, Knowledge Centre, University of Oxford, Oxford, United Kingdom
| | - Defne Saatci
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| | - Jennifer Hirst
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Yavuz S, Çil M, Turgut M. Examination of the relationship between ABO/Rh blood groups and dietary compliance in children with coeliac disease: A single-centre experience. J Paediatr Child Health 2024; 60:737-740. [PMID: 39300689 DOI: 10.1111/jpc.16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
AIM Coeliac disease (CD) is an autoimmune enteropathy that develops upon ingestion of food containing gluten. The established link between ABO blood groups and numerous infectious and non-infectious illnesses prompted this investigation into blood group distribution and its relationship with dietary compliance among children diagnosed with CD. METHODS In this retrospective study, patients with CD who were followed for ≥1 year at the paediatric gastroenterology outpatient clinic of our hospital were evaluated. History, physical examination and coeliac serology results were reviewed for each patient. Patients were divided into two groups based on self-reported compliance to a gluten-free diet: diet-adherent and non-diet-adherent. Patient and control groups were examined in terms of ABO blood groups. RESULTS A total of 177 patients with CD were included in the study. A control group of 211 age- and sex-matched children without any chronic disease who had undergone blood group testing for various reasons was included for comparison. A total of 65% (n = 115) of the patients were girls, and 35% (n = 62) were boys. No significant relationship was found between CD diagnosis and ABO blood groups among patients (P = 0.559). Furthermore, the dietary compliance status of the patients was not associated with any specific blood group (P = 0.951). CONCLUSION No notable difference was found between patients with CD with or without gluten-free diet compliance in terms of the distribution of ABO blood groups and Rhesus (Rh) factor. Therefore, it can be inferred that all blood groups and subgroups carry an equal risk for CD.
Collapse
Affiliation(s)
- Sibel Yavuz
- Department of Pediatric Gastroenterology, Adana City Training and Research Hospital, Adana, Turkey
| | - Metin Çil
- Department of Pediatric Hematology, Adana City Training and Research Hospital, Adana, Turkey
| | - Mehmet Turgut
- Department of Pediatric Infectious Disease, Adana City Training and Research Hospital, Adana, Turkey
| |
Collapse
|
8
|
Eurén A, Lynch K, Lindfors K, Parikh H, Koletzko S, Liu E, Akolkar B, Hagopian W, Krischer J, Rewers M, Toppari J, Ziegler A, Agardh D, Kurppa K. Risk of celiac disease autoimmunity is modified by interactions between CD247 and environmental exposures. Sci Rep 2024; 14:25463. [PMID: 39462122 PMCID: PMC11567144 DOI: 10.1038/s41598-024-75496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Season of birth, viral infections, HLA haplogenotypes and non-HLA variants are implicated in the development of celiac disease and celiac disease autoimmunity, suggesting a combined role of genes and environmental exposures. The aim of the study was to further decipher the biological pathways conveying the season of birth effect in celiac disease autoimmunity to gain novel insights into the early pathogenesis of celiac disease. Interactions between season of birth, genetics, and early-life environmental factors on the risk of celiac autoimmunity were investigated in the multicenter TEDDY birth cohort study. Altogether 6523 genetically predisposed children were enrolled to long-term follow-up with prospective sampling and data collection at six research centers in the USA, Germany, Sweden and Finland. Celiac disease autoimmunity was defined as positive tissue transglutaminase antibodies in two consecutive serum samples. There was a significant season of birth effect on the risk of celiac autoimmunity. The effect was dependent on polymorphisms in CD247 gene encoding for CD3ζ chain of TCR-CD3 complex. In particular, children with major alleles for SNP rs864537A > G, in CD247 (AA genotype) had an excess risk of celiac autoimmunity when born March-August as compared to other months. The interaction of CD247 with season of birth on autoimmunity risk was accompanied by interactions with febrile infections between the ages of 3-6 months. Considering the important role of TCR-CD3 complex in the adaptive immune response and our findings here, CD247 variants and their possible effect of subgroups in autoimmunity development could be of interest in the design of future gene-environment studies of celiac disease. ClinicalTrials.gov Identifier: NCT00279318.
Collapse
Affiliation(s)
- Anna Eurén
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kristian Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hemang Parikh
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sibylle Koletzko
- Dr. von Hauner Children's Hospital, Department of Pediatrics, University Hospital, LMU Munich, Munich, Germany
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Edwin Liu
- Digestive Health Institute, Children's Hospital, Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - William Hagopian
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Denver, CO, USA
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, 20520, Turku, Finland
| | - Anette Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
- Forschergruppe Diabetes e.V., Neuherberg -Munich, Germany
| | | | - Kalle Kurppa
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent, and Maternal Health Research, Tampere University and Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Seinäjoen yliopistokeskus, Seinäjoki, Finland.
| |
Collapse
|
9
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
10
|
Bernardi F, Ungaro F, D’Amico F, Zilli A, Parigi TL, Massimino L, Allocca M, Danese S, Furfaro F. The Role of Viruses in the Pathogenesis of Immune-Mediated Gastro-Intestinal Diseases. Int J Mol Sci 2024; 25:8301. [PMID: 39125870 PMCID: PMC11313478 DOI: 10.3390/ijms25158301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Immune-mediated gastrointestinal (GI) diseases, including achalasia, celiac disease, and inflammatory bowel diseases, pose significant challenges in diagnosis and management due to their complex etiology and diverse clinical manifestations. While genetic predispositions and environmental factors have been extensively studied in the context of these conditions, the role of viral infections and virome dysbiosis remains a subject of growing interest. This review aims to elucidate the involvement of viral infections in the pathogenesis of immune-mediated GI diseases, focusing on achalasia and celiac disease, as well as the virome dysbiosis in IBD. Recent evidence suggests that viral pathogens, ranging from common respiratory viruses to enteroviruses and herpesviruses, may trigger or exacerbate achalasia and celiac disease by disrupting immune homeostasis in the GI tract. Furthermore, alterations in the microbiota and, specifically, in the virome composition and viral-host interactions have been implicated in perpetuating chronic intestinal inflammation in IBD. By synthesizing current knowledge on viral contributions to immune-mediated GI diseases, this review aims to provide insights into the complex interplay between viral infections, host genetics, and virome dysbiosis, shedding light on novel therapeutic strategies aimed at mitigating the burden of these debilitating conditions on patients' health and quality of life.
Collapse
Affiliation(s)
- Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy
| | - Federica Ungaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Tommaso Lorenzo Parigi
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Luca Massimino
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Via Olgettina, 58, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (F.B.); (F.U.); (F.D.); (A.Z.); (T.L.P.); (L.M.); (M.A.); (S.D.)
| |
Collapse
|
11
|
Matera M, Guandalini S. How the Microbiota May Affect Celiac Disease and What We Can Do. Nutrients 2024; 16:1882. [PMID: 38931237 PMCID: PMC11206804 DOI: 10.3390/nu16121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Celiac disease (CeD) is an autoimmune disease with a strong association with human leukocyte antigen (HLA), characterized by the production of specific autoantibodies and immune-mediated enterocyte killing. CeD is a unique autoimmune condition, as it is the only one in which the environmental trigger is known: gluten, a storage protein present in wheat, barley, and rye. How and when the loss of tolerance of the intestinal mucosa to gluten occurs is still unknown. This event, through the activation of adaptive immune responses, enhances epithelial cell death, increases the permeability of the epithelial barrier, and induces secretion of pro-inflammatory cytokines, resulting in the transition from genetic predisposition to the actual onset of the disease. While the role of gastrointestinal infections as a possible trigger has been considered on the basis of a possible mechanism of antigen mimicry, a more likely alternative mechanism appears to involve a complex disruption of the gastrointestinal microbiota ecosystem triggered by infections, rather than the specific effect of a single pathogen on intestinal mucosal homeostasis. Several lines of evidence show the existence of intestinal dysbiosis that precedes the onset of CeD in genetically at-risk subjects, characterized by the loss of protective bacterial elements that both epigenetically and functionally can influence the response of the intestinal epithelium leading to the loss of gluten tolerance. We have conducted a literature review in order to summarize the current knowledge about the complex and in part still unraveled dysbiosis that precedes and accompanies CeD and present some exciting new data on how this dysbiosis might be prevented and/or counteracted. The literature search was conducted on PubMed.gov in the time frame 2010 to March 2024 utilizing the terms "celiac disease and microbiota", "celiac disease and microbiome", and "celiac disease and probiotics" and restricting the search to the following article types: Clinical Trials, Meta-Analysis, Review, and Systematic Review. A total of 364 papers were identified and reviewed. The main conclusions of this review can be outlined as follows: (1) quantitative and qualitative changes in gut microbiota have been clearly documented in CeD patients; (2) intestinal microbiota's extensive and variable interactions with enterocytes, viral and bacterial pathogens and even gluten combine to impact the inflammatory immune response to gluten and the loss of gluten tolerance, ultimately affecting the pathogenesis, progression, and clinical expression of CeD; (3) gluten-free diet fails to restore the eubiosis of the digestive tract in CeD patients, and also negatively affects microbial homeostasis; (4) new tools allowing targeted microbiota therapy, such as the use of probiotics (a good example being precision probiotics like the novel strain of B. vulgatus (20220303-A2) begin to show exciting potential applications.
Collapse
Affiliation(s)
- Mariarosaria Matera
- Pediatric Clinical Microbiomics Service, Misericordia Hospital, Via Senese 161, 58100 Grosseto, Italy;
| | - Stefano Guandalini
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Celiac Disease Center, University of Chicago Medicine, 5841 S. Maryland Ave. MC 4065, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Galipeau HJ, Hinterleitner R, Leonard MM, Caminero A. Non-Host Factors Influencing Onset and Severity of Celiac Disease. Gastroenterology 2024; 167:34-50. [PMID: 38286392 PMCID: PMC11653303 DOI: 10.1053/j.gastro.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
Celiac disease (CeD) is a chronic autoimmune condition driven by gluten ingestion in genetically predisposed individuals, resulting in inflammatory lesions in the proximal small intestine. Although the presence of specific HLA-linked haplotypes and gluten consumption are necessary for disease development, they alone do not account for the variable onset of CeD in susceptible individuals. This review explores the multifaceted role of non-host factors in CeD development, including dietary and microbial influences. We discuss clinical associations and observations highlighting the impact of these factors on disease onset and severity. Furthermore, we discuss studies in CeD-relevant animal models that offer mechanistic insights into how diet, the microbiome, and enteric infections modulate CeD pathogenesis. Finally, we address the clinical implications and therapeutic potential of understanding these cofactors offering a promising avenue for preventive and therapeutic interventions in CeD management.
Collapse
Affiliation(s)
- Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Maureen M Leonard
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts; Center for Celiac Research and Treatment, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alberto Caminero
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
13
|
Hyöty H, Kääriäinen S, Laiho JE, Comer GM, Tian W, Härkönen T, Lehtonen JP, Oikarinen S, Puustinen L, Snyder M, León F, Scheinin M, Knip M, Sanjuan M. Safety, tolerability and immunogenicity of PRV-101, a multivalent vaccine targeting coxsackie B viruses (CVBs) associated with type 1 diabetes: a double-blind randomised placebo-controlled Phase I trial. Diabetologia 2024; 67:811-821. [PMID: 38369573 PMCID: PMC10954874 DOI: 10.1007/s00125-024-06092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/21/2023] [Indexed: 02/20/2024]
Abstract
AIMS/HYPOTHESIS Infection with coxsackie B viruses (CVBs) can cause diseases ranging from mild common cold-type symptoms to severe life-threatening conditions. CVB infections are considered to be prime candidates for environmental triggers of type 1 diabetes. This, together with the significant disease burden of acute CVB infections and their association with chronic diseases other than diabetes, has prompted the development of human CVB vaccines. The current study evaluated the safety and immunogenicity of the first human vaccine designed against CVBs associated with type 1 diabetes in a double-blind randomised placebo-controlled Phase I trial. METHODS The main eligibility criteria for participants were good general health, age between 18 and 45 years, provision of written informed consent and willingness to comply with all trial procedures. Treatment allocation (PRV-101 or placebo) was based on a computer-generated randomisation schedule and people assessing the outcomes were masked to group assignment. In total, 32 participants (17 men, 15 women) aged 18-44 years were randomised to receive a low (n=12) or high (n=12) dose of a multivalent, formalin-inactivated vaccine including CVB serotypes 1-5 (PRV-101), or placebo (n=8), given by intramuscular injections at weeks 0, 4 and 8 at a single study site in Finland. The participants were followed for another 24 weeks. Safety and tolerability were the primary endpoints. Anti-CVB IgG and virus-neutralising titres were analysed using an ELISA and neutralising plaque reduction assays, respectively. RESULTS Among the 32 participants (low dose, n=12; high dose, n=12; placebo, n=8) no serious adverse events or adverse events leading to study treatment discontinuation were observed. Treatment-emergent adverse events considered to be related to the study drug occurred in 37.5% of the participants in the placebo group and 62.5% in the PRV-101 group (injection site pain, headache, injection site discomfort and injection site pruritus being most common). PRV-101 induced dose-dependent neutralising antibody responses against all five CVB serotypes included in the vaccine in both the high- and low-dose groups. Protective titres ≥8 against all five serotypes were seen in >90% of participants over the entire follow-up period. CONCLUSIONS/INTERPRETATION The results indicate that the tested multivalent CVB vaccine is well tolerated and immunogenic, supporting its further clinical development. TRIAL REGISTRATION ClinicalTrials.gov NCT04690426. FUNDING This trial was funded by Provention Bio, a Sanofi company.
Collapse
Affiliation(s)
- Heikki Hyöty
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland.
| | | | - Jutta E Laiho
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Gail M Comer
- Provention Bio, Inc., a Sanofi Company, Bridgewater, NJ, USA
| | - Wei Tian
- Provention Bio, Inc., a Sanofi Company, Bridgewater, NJ, USA
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jussi P Lehtonen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Sami Oikarinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Leena Puustinen
- Department of Virology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Michele Snyder
- Provention Bio, Inc., a Sanofi Company, Bridgewater, NJ, USA
| | - Francisco León
- Provention Bio, Inc., a Sanofi Company, Bridgewater, NJ, USA
| | - Mika Scheinin
- Clinical Research Services Turku - CRST Oy, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Mikael Knip
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Miguel Sanjuan
- Provention Bio, Inc., a Sanofi Company, Bridgewater, NJ, USA
| |
Collapse
|
14
|
Skoracka K, Hryhorowicz S, Tovoli F, Raiteri A, Rychter AM, Słomski R, Dobrowolska A, Granito A, Krela-Kaźmierczak I. From an understanding of etiopathogenesis to novel therapies-what is new in the treatment of celiac disease? Front Pharmacol 2024; 15:1378172. [PMID: 38698821 PMCID: PMC11063403 DOI: 10.3389/fphar.2024.1378172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Celiac disease, a chronic autoimmune disorder caused by genetic factors and exposure to gluten, is increasingly being recognized and diagnosed in both children and adults. Scientists have been searching for a cure for this disease for many years, but despite the impressive development of knowledge in this field, a gluten-free diet remains the only recommended therapy for all patients. At the same time, the increasing diagnosis of celiac disease in adults, which was considered a childhood disease in the 20th century, has opened a discussion on the etiopathology of the disease, which is proven to be very complex and involves genetic, immunological, nutritional, environmental and gut microbiota-related factors. In this review, we extensively discuss these factors and summarize the knowledge of the proposed state-of-the-art treatments for celiac disease to address the question of whether a better understanding of the etiopathogenesis of celiac disease has opened new directions for therapy.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alberto Raiteri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
- Laboratory of Nutrigenetics, Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
15
|
Pachisia AV, Kumari A, Mehta S, Ahmed A, Chauhan A, Agarwal A, Dwarkanathan V, Rajpoot S, Prasad S, Kumar S, Sinha SK, Sharma D, Rajput M, Das P, Falodia S, Kochhar R, Ramakrishna BS, Ahuja V, Makharia G. Validation of no-biopsy pathway for the diagnosis of celiac disease in Asian adults: a multicenter retrospective study. J Gastroenterol Hepatol 2024; 39:489-495. [PMID: 38095156 DOI: 10.1111/jgh.16436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 03/05/2024]
Abstract
BACKGROUND AND AIM While European Society of Pediatric Gastroenterology Hepatology and Nutrition advocates a no-biopsy pathway for the diagnosis of celiac disease (CeD) in children if IgA anti-tissue transglutaminase antibody (anti-tTG ab) titer is ≥10-fold upper limit of normal (ULN) and have a positive IgA anti-endomysial antibody (EMA); the data for anti-tTG Ab titer-based diagnosis of CeD in adults is still emerging. We planned to validate if IgA anti-tTG Ab titer ≥10-fold predicts villous abnormalities of modified Marsh grade ≥2 in Asian adult patients with CeD. METHODS We recruited 937 adult patients with positive anti-tTG Ab from two databases, including AIIMS Celiac Clinic and Indian National Biorepository. The diagnosis of definite CeD was made on the basis of a positive anti-tTG Ab and the presence of villous abnormalities of modified Marsh grade ≥2. RESULTS Of 937 adult patients with positive anti-tTG Ab, 889 (91.2%) showed villous abnormalities of modified Marsh grade ≥2. Only 47.6% of 889 adults with CeD had anti- tTG Ab titers of ≥10-fold. The positive predictive value (PPV) and specificity of anti tTG Ab titer ≥10-fold for predicting modified Marsh grade ≥2 were 99.8% and 98%, respectively. At anti-tTG Ab titer ≥11-fold, specificity and PPV were 100% for predicting villous abnormalities of modified Marsh grade ≥2. CONCLUSIONS Approximately 50% of adults with CeD may benefit from the no biopsy pathway, reducing the health burden and risks of gastroscopy/anesthesia.
Collapse
Affiliation(s)
- Aditya Vikram Pachisia
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Alka Kumari
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Shubham Mehta
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Anam Ahmed
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Chauhan
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Ankit Agarwal
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Vignesh Dwarkanathan
- Department of Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sachin Rajpoot
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Shubham Prasad
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Kumar
- Department of Gastroenterology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Saroj Kant Sinha
- Department of Gastroenterology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - Divya Sharma
- Department of Medicine, Sardar Patel Medical College, Bikaner
| | - Mahender Rajput
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sushil Falodia
- Department of Medicine, Sardar Patel Medical College, Bikaner
| | - Rakesh Kochhar
- Department of Gastroenterology, Post graduate Institute of Medical Education and Research, Chandigarh, India
| | - B S Ramakrishna
- Department of Gastroenterology, SRM Institute of Medical Sciences, Chennai, India
| | - Vineet Ahuja
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| | - Govind Makharia
- Department of Gastroenterology and Human Nutrition Unit, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
16
|
Størdal K, Tapia G, Lund-Blix NA, Stene LC. Genotypes predisposing for celiac disease and autoimmune diabetes and risk of infections in early childhood. J Pediatr Gastroenterol Nutr 2024; 78:295-303. [PMID: 38374560 DOI: 10.1002/jpn3.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/28/2023] [Accepted: 11/28/2023] [Indexed: 02/21/2024]
Abstract
OBJECTIVES Infections in early childhood have been associated with risk of celiac disease (CD) and type 1 diabetes (T1D). We investigated whether this is driven by susceptibility genes for autoimmune disease by comparing infection frequency by genetic susceptibility variants for CD or T1D. METHODS We genotyped 373 controls and 384 children who developed CD or T1D in the population-based Norwegian Mother, Father and Child Cohort study (MoBa) study for human leukocyte antigen (HLA)-DQ, FUT2, SH2B3, and PTPN22, and calculated a weighted non-HLA genetic risk score (GRS) for CD and T1D based on over 40 SNPs. Parents reported infections in questionnaires when children were 6 and 18 months old. We used negative binomial regression to estimate incidence rate ratio (IRR) for infections by genotype. RESULTS HLA genotypes for CD and T1D or non-HLA GRS for T1D were not associated with infections. The non-HLA GRS for CD was associated with a nonsignificantly lower frequency of infections (aIRR: 0.95, 95% CI: 0.87-1.03 per weighted allele score), and significantly so when restricting to healthy controls (aIRR: 0.89, 0.81-0.99). Participants homozygous for rs601338(A;A) at FUT2, often referred to as nonsecretors, had a nonsignificantly lower risk of infections (aIRR: 0.91, 95% CI: 0.83-1.01). SH2B3 and PTPN22 genotypes were not associated with infections. The association between infections and risk of CD (OR: 1.15 per five infections) was strengthened after adjustment for HLA genotype and non-HLA GRS (OR: 1.24). CONCLUSIONS HLA variants and non-HLA GRS conferring susceptibility for CD were not associated with increased risk of infections in early childhood and is unlikely to drive the observed association between infections and risk of CD or T1D in many studies.
Collapse
Affiliation(s)
- Ketil Størdal
- Department of Pediatric Research, Faculty of Medicine, University of Oslo, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - German Tapia
- Norwegian Institute of Public Health, Oslo, Norway
| | | | - Lars C Stene
- Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
17
|
Stahl M, Koletzko S, Andrén Aronsson C, Lindfors K, Liu E, Agardh D. Coeliac disease: what can we learn from prospective studies about disease risk? THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:63-74. [PMID: 37972632 PMCID: PMC10965251 DOI: 10.1016/s2352-4642(23)00232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 11/19/2023]
Abstract
Paediatric prospective studies of coeliac disease with longitudinal collection of biological samples and clinical data offer a unique perspective on disease risk. This Review highlights the information now available from international paediatric prospective studies on genetic and environmental risk factors for coeliac disease. In addition, recent omics studies have made it possible to study complex interactions between genetic and environmental factors and thereby further our insight into the causes of the disease. In the future, paediatric prospective studies will be able to provide more detailed risk prediction models combining genes, the environment, and biological corroboration from multiomics. Such studies could also contribute to biomarker development and an improved understanding of disease pathogenesis.
Collapse
Affiliation(s)
- Marisa Stahl
- Pediatric Gastroenterology, Hepatology, and Nutrition, Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Sibylle Koletzko
- Department of Pediatrics, Dr von Hauner Kinderspital, LMU University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Carin Andrén Aronsson
- Unit of Celiac Disease and Diabetes, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Katri Lindfors
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Edwin Liu
- Pediatric Gastroenterology, Hepatology, and Nutrition, Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Agardh
- Unit of Celiac Disease and Diabetes, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
18
|
Shao T, Hsu R, Rafizadeh DL, Wang L, Bowlus CL, Kumar N, Mishra J, Timilsina S, Ridgway WM, Gershwin ME, Ansari AA, Shuai Z, Leung PSC. The gut ecosystem and immune tolerance. J Autoimmun 2023; 141:103114. [PMID: 37748979 DOI: 10.1016/j.jaut.2023.103114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023]
Abstract
The gastrointestinal tract is home to the largest microbial population in the human body. The gut microbiota plays significant roles in the development of the gut immune system and has a substantial impact on the maintenance of immune tolerance beginning in early life. These microbes interact with the immune system in a dynamic and interdependent manner. They generate immune signals by presenting a vast repertoire of antigenic determinants and microbial metabolites that influence the development, maturation and maintenance of immunological function and homeostasis. At the same time, both the innate and adaptive immune systems are involved in modulating a stable microbial ecosystem between the commensal and pathogenic microorganisms. Hence, the gut microbial population and the host immune system work together to maintain immune homeostasis synergistically. In susceptible hosts, disruption of such a harmonious state can greatly affect human health and lead to various auto-inflammatory and autoimmune disorders. In this review, we discuss our current understanding of the interactions between the gut microbiota and immunity with an emphasis on: a) important players of gut innate and adaptive immunity; b) the contribution of gut microbial metabolites; and c) the effect of disruption of innate and adaptive immunity as well as alteration of gut microbiome on the molecular mechanisms driving autoimmunity in various autoimmune diseases.
Collapse
Affiliation(s)
- Tihong Shao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China; Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Ronald Hsu
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Desiree L Rafizadeh
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Li Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Beijing, China
| | - Christopher L Bowlus
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Narendra Kumar
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Jayshree Mishra
- Department of Pharmaceutical Science, ILR-College of Pharmacy, Texas A&M University, 1010 W. Ave B. MSC 131, Kingsville, TX, 78363, USA
| | - Suraj Timilsina
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - William M Ridgway
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Aftab A Ansari
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Patrick S C Leung
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
19
|
Mouslih A, El Rhazi K, Bahra N, Lakhdar Idrissi M, Hida M. Gluten-Free Diet Compliance in Children With Celiac Disease and Its Effect on Clinical Symptoms: A Retrospective Cohort Study. Cureus 2023; 15:e50217. [PMID: 38077661 PMCID: PMC10710191 DOI: 10.7759/cureus.50217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 09/29/2024] Open
Abstract
UNLABELLED A gluten-free diet (GFD) is the only scientifically proven treatment for celiac disease (CD). Strict adherence to this diet in children yields excellent results in terms of the clinical symptoms present at the time of diagnosis. Despite the constraints associated with following this diet, it remains the only hope for children with CD to have a better quality of life and life expectancy. METHODS A retrospective descriptive cohort study was carried out on children diagnosed with CD in the pediatrics department of the Hassan II University Hospital in Fez, Morocco. The children were followed up for 18 months, during which time they were seen as outpatients at different frequencies depending on their clinical condition and degree of compliance with the diet. RESULTS Only half of the diagnosed children continued to follow our structure. Compliance with the gluten-free diet varied from 58.7% (n = 84) of children who strictly followed the GFD to 3.5% (n = 5) of children who never followed the diet. Compliance was significantly correlated with the child's age, with adolescents being the least compliant (p = 0.03). Similarly, a correlation was observed between compliance with the diet and the disappearance of symptoms (p <0.01), the persistence of certain symptoms (p = 0.02), and the occurrence of complications (p = 0.01). The majority of children (87.3%) had their clinical symptoms resolved within a mean delay of 6.4±3.6 months, with a mode of three months. The speed of symptom resolution differed from one symptom to another but remained statistically correlated with the degree of GFD compliance (p = 0.03). CONCLUSION Despite the excellent results of a GFD on clinical symptoms in children, the discrepancies observed between compliance and non-compliance call for close follow-up of children with CD to avoid complications and repercussions on the vital prognosis in adulthood.
Collapse
Affiliation(s)
- Assia Mouslih
- Laboratory of Epidemiology, Clinical Research, and Community Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Karima El Rhazi
- Laboratory of Epidemiology, Clinical Research, and Community Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Nassiba Bahra
- Laboratory of Epidemiology, Clinical Research, and Community Health, Faculty of Medicine and Pharmacy, Sidi Mohamed Ben Abdellah University, Fez, MAR
| | - Mounia Lakhdar Idrissi
- Department of Pediatric Diseases, Faculty of Medicine and Pharmacy, Hassan II Hospital, Fez, MAR
- Laboratory of Epidemiology and Health Science Research, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| | - Moustapha Hida
- Department of Pediatric Diseases, Faculty of Medicine and Pharmacy, Hassan II Hospital, Fez, MAR
- Laboratory of Epidemiology and Health Science Research, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Fez, MAR
| |
Collapse
|
20
|
Crawley C, Sander SD, Nohr EA, Nybo Andersen AM, Husby S. Early environmental risk factors and coeliac disease in adolescents: a population-based cohort study in Denmark. BMJ Open 2023; 13:e061006. [PMID: 38011980 PMCID: PMC10685961 DOI: 10.1136/bmjopen-2022-061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/19/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES Our aim was to investigate the association between early environmental factors and the development of coeliac disease (CeD) in adolescents, recruited from a cohort nested in the Danish National Birth Cohort (DNBC). DESIGN The study was designed as a prospective cohort study, nested in DNBC PARTICIPANTS: The Glutenfunen cohort comprises 1266 participants, nested in DNBC. All participants were screened for CeD, and in total, 28 cases of biopsy proven CeD were identified. Data about breastfeeding, timing of introduction to solid food in infancy, use of antibiotics, infections and symptoms were parentally reported prospectively at 6 months and 18 months, respectively. We estimated ORs and 95% CIs of CeD in adolescents using logistic regression analysis. RESULTS Viral croup reported at 18 months of age was associated with CeD in adolescents with an OR of 3.2 (95% CI: 1.2 to 8.7). Furthermore, otitis media also reported at 18 months of age was linked with CeD with an OR of 3.2 (95% CI: 1.5 to 7.3). We were not able to find any statistical associations between CeD and breastfeeding, frequency of infections, parentally reported use of antibiotic and timing of solid foods. CONCLUSION In this study, we present an overview of the relationship between early environmental factors and occurrence of CeD in adolescents. Our findings, despite limitations due to a limited number of cases of CeD, suggest a role of viral infections in the pathogenesis of CeD.
Collapse
Affiliation(s)
- Cæcilie Crawley
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Hans Christian Anderson Children's Hospital, Odense University Hospital, Odense, Denmark
| | | | - Ellen Aagaard Nohr
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit of Gynecology and Obstetrics, Odense University Hospital, Odense, Denmark
| | | | - Steffen Husby
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Hans Christian Anderson Children's Hospital, Odense University Hospital, Odense, Denmark
| |
Collapse
|
21
|
Krogvold L, Mynarek IM, Ponzi E, Mørk FB, Hessel TW, Roald T, Lindblom N, Westman J, Barker P, Hyöty H, Ludvigsson J, Hanssen KF, Johannesen J, Dahl-Jørgensen K. Pleconaril and ribavirin in new-onset type 1 diabetes: a phase 2 randomized trial. Nat Med 2023; 29:2902-2908. [PMID: 37789144 PMCID: PMC10667091 DOI: 10.1038/s41591-023-02576-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023]
Abstract
Previous studies showed a low-grade enterovirus infection in the pancreatic islets of patients with newly diagnosed type 1 diabetes (T1D). In the Diabetes Virus Detection (DiViD) Intervention, a phase 2, placebo-controlled, randomized, parallel group, double-blind trial, 96 children and adolescents (aged 6-15 years) with new-onset T1D received antiviral treatment with pleconaril and ribavirin (n = 47) or placebo (n = 49) for 6 months, with the aim of preserving β cell function. The primary endpoint was the mean stimulated C-peptide area under the curve (AUC) 12 months after the initiation of treatment (less than 3 weeks after diagnosis) using a mixed linear model. The model used longitudinal log-transformed serum C-peptide AUCs at baseline, at 3 months, 6 months and 1 year. The primary endpoint was met with the serum C-peptide AUC being higher in the pleconaril and ribavirin treatment group compared to the placebo group at 12 months (average marginal effect = 0.057 in the linear mixed model; 95% confidence interval = 0.004-0.11, P = 0.037). The treatment was well tolerated. The results show that antiviral treatment may preserve residual insulin production in children and adolescent with new-onset T1D. This provides a rationale for further evaluating antiviral strategies in the prevention and treatment of T1D. European Union Drug Regulating Authorities Clinical Trials identifier: 2015-003350-41 .
Collapse
Affiliation(s)
- Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Maria Mynarek
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Erica Ponzi
- Clinical Trial Unit, Oslo University Hospital, Oslo, Norway
| | - Freja Barrett Mørk
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Witzner Hessel
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
| | - Trine Roald
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Peter Barker
- National Institute for Health and Care Research Cambridge Biomedical Research Centre, Core Biochemistry Assay Laboratory, Cambridge, UK
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | | | | | - Jesper Johannesen
- Steno Diabetes Center Copenhagen, Herlev University Hospital, Copenhagen, Denmark
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
22
|
Cohen R, Mahlab-Guri K, Atali M, Elbirt D. Viruses and celiac disease: what do we know ? Clin Exp Med 2023; 23:2931-2939. [PMID: 37103650 PMCID: PMC10134706 DOI: 10.1007/s10238-023-01070-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023]
Abstract
The aim of this review is to provide a comprehensive overview about the link between viruses and celiac disease. A systematic search on PubMed, Embase, and Scopus was conducted on March 07, 2023. The reviewers independently selected the articles and chose which articles to include. The review is a textual systemic review, and all relevant articles were included based on title and abstract. If there was a disagreement between the reviewers, they came to a consensus during deliberation sessions. A total of 178 articles were selected for the review and read in full; only part of them was retained. We found studies between celiac disease and 12 different viruses. Some of the studies were done only on small groups. Most studies were on pediatric population. Evidence for an association was found with several viruses (trigger or protective). It seems that only a part of the viruses could induce the disease. Several points are important to keep in mind: firstly, simple mimicry or that the virus induces a high level of TGA is not sufficient to promote the disease. Secondly, inflammatory background is necessary to induce CD with virus. Thirdly, IFN type 1 seems to have an important role. Some of the viruses are potential or known triggers like enteroviruses, rotaviruses, reoviruses, and influenza. Further studies are needed to better understand the role of viruses in celiac disease to better treat and prevent the disease.
Collapse
Affiliation(s)
- Ramon Cohen
- Internal Department B, Kaplan Medical Center, Rehovot, Israel.
- Department of Clinical Immunology Allergy and AIDS, Kaplan Medical Center, Rehovot, Israel.
| | - Keren Mahlab-Guri
- Department of Clinical Immunology Allergy and AIDS, Kaplan Medical Center, Rehovot, Israel
| | - Malka Atali
- Internal Department B, Kaplan Medical Center, Rehovot, Israel
| | - Daniel Elbirt
- Department of Clinical Immunology Allergy and AIDS, Kaplan Medical Center, Rehovot, Israel
| |
Collapse
|
23
|
Lexner J, Lindroth Y, Sjöberg K. The risk for celiac disease after Covid-19 infection. BMC Gastroenterol 2023; 23:174. [PMID: 37217874 DOI: 10.1186/s12876-023-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Celiac disease (CD) is an autoimmune disease leading to gastrointestinal symptoms and mineral deficiencies. The pathogenetic mechanisms, besides the clear HLA association, are elusive. Among environmental factors infections have been proposed. Covid-19 infection results in a systemic inflammatory response that often also involves the gastrointestinal tract. The aim of the present study was to investigate whether Covid-19 infection could increase the risk for CD. PATIENTS AND METHODS All patients, both children and adults, in the county Skåne (1.4 million citizens) in southern Sweden with newly diagnosed biopsy- or serology-verified CD or a positive tissue transglutaminase antibody test (tTG-ab) during 2016-2021 were identified from registries at the Departments of Pathology and Immunology, respectively. Patients with a positive Covid-19 PCR or antigen test in 2020 and 2021 were identified from the Public Health Agency of Sweden. RESULTS During the Covid-19 pandemic (March 2020 - December 2021), there were 201 050 cases of Covid-19 and 568 patients with biopsy- or serology-verified CD or a first-time positive tTG-ab tests, of which 35 patients had been infected with Covid-19 before CD. The incidence of verified CD and tTG-ab positivity was lower in comparison to before the pandemic (May 2018 - February 2020; 22.5 vs. 25.5 cases per 100 000 person-years, respectively, incidence rate difference (IRD) -3.0, 95% CI -5.7 - -0.3, p = 0.028). The incidence of verified CD and tTG-ab positivity in patients with and without prior Covid-19 infection was 21.1 and 22.4 cases per 100 000 person-years, respectively (IRD - 1.3, 95% CI -8.5-5.9, p = 0.75). CONCLUSIONS Our results indicate that Covid-19 is not a risk factor for CD development. While gastrointestinal infections seem to be an important part of the CD pathogenesis, respiratory infections probably are of less relevance.
Collapse
Affiliation(s)
- Jesper Lexner
- Department of Gastroenterology and Nutrition, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Ylva Lindroth
- Division of Medical Microbiology, Department of Laboratory Medicine, Skåne University Hospital, Lund University, Lund, Sweden
| | - Klas Sjöberg
- Department of Gastroenterology and Nutrition, Department of Clinical Sciences, Skåne University Hospital, Lund University, Malmö, Sweden.
| |
Collapse
|
24
|
Di Fusco D, Segreto MT, Iannucci A, Maresca C, Franzè E, Di Maggio G, Di Grazia A, Boccanera S, Laudisi F, Marafini I, Paoluzi OA, Michenzi A, Monteleone G, Monteleone I. An essential role of adenosine deaminase acting on RNA 1 in coeliac disease mucosa. Front Immunol 2023; 14:1175348. [PMID: 37223095 PMCID: PMC10200931 DOI: 10.3389/fimmu.2023.1175348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Background and aim Type I interferons (IFNs) are highly expressed in the gut mucosa of celiac disease (CD) gut mucosa and stimulates immune response prompted by gluten ingestion, but the processes that maintain the production of these inflammatory molecules are not well understood. Adenosine deaminase acting on RNA 1 (ADAR1), an RNA-editing enzyme, plays a crucial role in inhibiting self or viral RNAs from activating auto-immune mediated responses, most notably within the type-I IFN production pathway. The aim of this study was to assess whether ADAR1 could contribute to the induction and/or progression of gut inflammation in patients with celiac disease. Material and methods ADAR1 expression was assessed by Real time PCR and Western blotting in duodenal biopsy taken from inactive and active celiac disease (CD) patients and normal controls (CTR). To analyze the role of ADAR1 in inflamed CD mucosa, lamina propria mononuclear cells (LPMC) were isolated from inactive CD and ADAR1 was silenced in with a specific antisense oligonucleotide (AS) and then incubated with a synthetic analogue of viral dsRNA (poly I:C). IFN-inducing pathways (IRF3, IRF7) in these cells were evaluated with Western blotting and inflammatory cytokines were evaluated with flow cytometry. Lastly, the role of ADAR1 was investigated in a mouse model of poly I:C-driven small intestine atrophy. Results Reduced ADAR1 expression was seen in duodenal biopsies compared to inactive CD and normal controls. Ex vivo organ cultures of duodenal mucosal biopsies, taken from inactive CD patients, stimulated with a peptic-tryptic digest of gliadin displayed a decreased expression of ADAR1. ADAR1 silencing in LPMC stimulated with a synthetic analogue of viral dsRNA strongly boosted the activation of IRF3 and IRF7 and the production of type-I IFN, TNF-α and IFN-γ. Administration of ADAR1 antisense but not sense oligonucleotide to mice with poly I:C-induced intestinal atrophy, significantly increased gut damage and inflammatory cytokines production. Conclusions These data show that ADAR1 is an important regulator of intestinal immune homeostasis and demonstrate that defective ADAR1 expression could provide to amplifying pathogenic responses in CD intestinal mucosa.
Collapse
Affiliation(s)
- Davide Di Fusco
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Andrea Iannucci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Claudia Maresca
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Eleonora Franzè
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Giulia Di Maggio
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonio Di Grazia
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Siro Boccanera
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Federica Laudisi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Irene Marafini
- Unità Operativa Complessa (UOC) Gastroenterologia, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Omero Alessandro Paoluzi
- Unità Operativa Complessa (UOC) Gastroenterologia, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandro Michenzi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Unità Operativa Complessa (UOC) Gastroenterologia, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
25
|
Rossi RE, Dispinzieri G, Elvevi A, Massironi S. Interaction between Gut Microbiota and Celiac Disease: From Pathogenesis to Treatment. Cells 2023; 12:823. [PMID: 36980164 PMCID: PMC10047417 DOI: 10.3390/cells12060823] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Accepted: 01/01/2023] [Indexed: 03/09/2023] Open
Abstract
Celiac disease (CD) is a common systemic disorder that results from an abnormal response of human immunity to gluten intake, affecting the small intestine. In individuals who carry a genetic susceptibility, CD is triggered by environmental factors, including viral infections and dysbiosis of the gut microbiota. The gut microbiome is essential in controlling the immune system, and recent findings indicate that changes in the gut microbiome may contribute to various chronic immune disorders, such as CD through mechanisms that still require further exploration. Some bacteria exhibit epitopes that mimic gliadin and may enhance an immune response in the host. Other bacteria, including Pseudomonas aeruginosa, may work in conjunction with gluten to trigger and escalate intestinal inflammation. The microbiota may also directly influence antigen development through the production of immunogenic or tolerogenic gluten peptides or directly influence intestinal permeability through the release of zonulin. Finally, the gut microbiome can impact intestinal inflammation by generating proinflammatory or anti-inflammatory cytokines and metabolites. It is crucial to consider the impact of genetic factors (specifically, HLA-DQ haplotypes), perinatal elements such as birth mode, type of infant feeding, and antibiotic and infection exposure on the composition of the early intestinal microbiome. According to the available studies, the gut microbiome alterations associated with CD tend to exhibit a decreased presence of beneficial bacteria, including some anti-inflammatory Bifidobacterium species. However, some controversy remains as some reports have found no significant differences between the gut microbiomes of individuals with and without CD. A better understanding of the gut microbiome's role in the development of CD would greatly benefit both prevention and treatment efforts, especially in complicated or treatment-resistant cases. Here, we have attempted to summarize the available evidence on the relationship between the gut microbiota and CD, with a particular focus on potential therapeutic targets.
Collapse
Affiliation(s)
- Roberta Elisa Rossi
- Gastroenterology and Endoscopy Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Giulia Dispinzieri
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Alessandra Elvevi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Sara Massironi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milano-Bicocca and European Reference Network on Hepatological Diseases (ERN RARE-LIVER), San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| |
Collapse
|
26
|
Stahl M, Li Q, Lynch K, Koletzko S, Mehta P, Gragert L, Norris JM, Andrén Aronsson C, Lindfors K, Kurppa K, Ilonen J, Krischer J, Alkolkar B, Ziegler AG, Toppari J, Rewers M, Agardh D, Hagopian W, Liu E. Incidence of Pediatric Celiac Disease Varies by Region. Am J Gastroenterol 2023; 118:539-545. [PMID: 36219178 PMCID: PMC9991947 DOI: 10.14309/ajg.0000000000002056] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The Environmental Determinants of Diabetes in the Young study follows an HLA risk selected birth cohort for celiac disease (CD) development using a uniform protocol. Children under investigation come from 6 different regions within Europe and the United States. Our aim was to identify regional differences in CD autoimmunity and CD cumulative incidence for children born between 2004 and 2010. METHODS Children (n = 6,628) with DQ2.5 and/or DQ8.1 were enrolled prospectively from birth in Georgia, Washington, Colorado, Finland, Germany, and Sweden. Children underwent periodic study screening for tissue transglutaminase antibodies and then CD evaluation per clinical care. Population-specific estimates were calculated by weighting the study-specific cumulative incidence with the population-specific haplogenotype frequencies obtained from large stem cell registries from each site. RESULTS Individual haplogenotype risks for CD autoimmunity and CD varied by region and affected the cumulative incidence within that region. The CD incidence by age 10 years was highest in Swedish children at 3%. Within the United States, the incidence by age 10 years in Colorado was 2.4%. In the model adjusted for HLA, sex, and family history, Colorado children had a 2.5-fold higher risk of CD compared to Washington. Likewise, Swedish children had a 1.4-fold and 1.8-fold higher risk of CD compared with those in Finland and Germany, respectively. DISCUSSION There is high regional variability in cumulative incidence of CD, which suggests differential environmental, genetic, and epigenetic influences even within the United States. The overall high incidence warrants a low threshold for screening and further research on region-specific CD triggers.
Collapse
Affiliation(s)
- Marisa Stahl
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Qian Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Kristian Lynch
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sibylle Koletzko
- Department of Pediatrics, Dr von Hauner Kinderspital, LMU Klinikum, Munich, Germany
- Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Pooja Mehta
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Loren Gragert
- Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jill M. Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Katri Lindfors
- Celiac Disease Research Center, Tampere University and Tampere University Hospital
| | - Kalle Kurppa
- Celiac Disease Research Center, Tampere University and Tampere University Hospital
- Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and Tampere University Hospital
- University of Consortium of Seinäjoki
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jeffrey Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Beena Alkolkar
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Anette-G Ziegler
- Forschergruppe Diabetes e.V. and Institute of Diabetes Research, Helmholtz Zentrum, Munich, Germany
| | - Jorma Toppari
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, Univeristy of Turku, Turku, Finland
| | - Marian Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel Agardh
- Diabetes and Celiac Disease, Lund University, Malmo, Sweden
| | - William Hagopian
- Department of Diabetes, Pacific Northwest Research Institute, Seattle, WA, United States
| | - Edwin Liu
- Digestive Health Institute, Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | |
Collapse
|
27
|
Dotsenko V, Sioofy-Khojine AB, Hyöty H, Viiri K. Human intestinal organoid models for celiac disease research. Methods Cell Biol 2023; 179:173-193. [PMID: 37625874 DOI: 10.1016/bs.mcb.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Celiac disease pathogenesis, in addition to immune cell component, encompasses pathogenic events also in the duodenal epithelium. In celiac disease patients, exposure to dietary gluten induces drastic changes in epithelial differentiation and elicit cellular response to inflammatory cytokines. The autoantigen in celiac disease, transglutaminase 2 (TG2) enzyme, has been also suggested to play its pathogenic gliadin deamidation event in the intestinal epithelium. Therefore in vitro epithelial cell-line models have been exploited in the past to study these pathogenic mechanisms, but they are hampered by their simplistic nature lacking proper cell-type composition and intestinal environ. Moreover, these cell models harbor many cancer-related mutations in tumor suppressor genes making them unsuitable for studying cell differentiation. Intestinal organoids provide a near-native epithelial cell model to study pathogenic agents and mechanisms related to celiac disease. Here we describe protocols to initiate and maintain celiac patient-derived organoid cultures and how to grow them in alternative ways allowing their exploitation in different kind of experiments.
Collapse
Affiliation(s)
- Valeriia Dotsenko
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland
| | | | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Fimlab Laboratories, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere University Hospital, Tampere, Finland.
| |
Collapse
|
28
|
Chen ZE, Lee HE, Wu TT. Histologic evaluation in the diagnosis and management of celiac disease: practical challenges, current best practice recommendations and beyond. Hum Pathol 2023; 132:20-30. [PMID: 35932826 DOI: 10.1016/j.humpath.2022.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Celiac disease (CD) is an immunoallergic enteropathy affecting genetically susceptible individuals upon dietary exposure to gluten. In current clinical practice, the diagnosis of CD is based on a combination of clinical, serologic, and histologic factors with the possible exception of pediatric patients. Histopathologic evaluation of small intestinal tissue plays a critical role in the disease diagnosis and management, despite many practical challenges. Recently published best practice guidelines help to standardize biopsy sample procurement, tissue preparation, histology interpretation, and reporting, to optimize patient care. In addition, an increasing demand for monitoring the disease course, particularly demonstrating the efficacy of dietary and nondietary interventions for disease management, calls for the use of quantitative histology. With the advent of a gradual transition toward digital pathology in routine diagnostic practice, quantitative histopathologic evaluation in CD shows a promising future.
Collapse
Affiliation(s)
- Zongming Eric Chen
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hee Eun Lee
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tsung-Teh Wu
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
29
|
Skoracka K, Hryhorowicz S, Rychter AM, Ratajczak AE, Szymczak-Tomczak A, Zawada A, Słomski R, Dobrowolska A, Krela-Kaźmierczak I. Why are western diet and western lifestyle pro-inflammatory risk factors of celiac disease? Front Nutr 2023; 9:1054089. [PMID: 36742009 PMCID: PMC9895111 DOI: 10.3389/fnut.2022.1054089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/31/2022] [Indexed: 01/21/2023] Open
Abstract
The prevalence of celiac disease increased in recent years. In addition to the genetic and immunological factors, it appears that environmental determinants are also involved in the pathophysiology of celiac disease. Gastrointestinal infections impact the development of celiac disease. Current research does not directly confirm the protective effect of natural childbirth and breastfeeding on celiac disease. However, it seems that in genetically predisposed children, the amount of gluten introduced into the diet may have an impact on celiac disease development. Also western lifestyle, including western dietary patterns high in fat, sugar, and gliadin, potentially may increase the risk of celiac disease due to changes in intestinal microbiota, intestinal permeability, or mucosal inflammation. Further research is needed to expand the knowledge of the relationship between environmental factors and the development of celiac disease to define evidence-based preventive interventions against the development of celiac disease. The manuscript summarizes current knowledge on factors predisposing to the development of celiac disease including factors associated with the western lifestyle.
Collapse
Affiliation(s)
- Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland,*Correspondence: Kinga Skoracka ✉
| | | | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland,Doctoral School, Poznan University of Medical Sciences, Poznań, Poland
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
30
|
Rivera-Gutiérrez X, Morán P, Taboada B, Serrano-Vázquez A, Isa P, Rojas-Velázquez L, Pérez-Juárez H, López S, Torres J, Ximénez C, Arias CF. The fecal and oropharyngeal eukaryotic viromes of healthy infants during the first year of life are personal. Sci Rep 2023; 13:938. [PMID: 36650178 PMCID: PMC9845211 DOI: 10.1038/s41598-022-26707-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/19/2022] [Indexed: 01/19/2023] Open
Abstract
Using a metagenomic sequencing approach, we described and compared the diversity and dynamics of the oropharyngeal and fecal eukaryotic virome of nine asymptomatic children in a semi-rural community setting located in the State of Morelos, Mexico. Ninety oropharyngeal swabs and 97 fecal samples were collected starting 2 weeks after birth and monthly thereafter until 12 months of age. In both niches, more than 95% of the total sequence reads were represented by viruses that replicate either in humans or in plants. Regarding human viruses, three families were most abundant and frequent in the oropharynx: Herpesviridae, Picornaviridae, and Reoviridae; in fecal samples, four virus families predominated: Caliciviridae, Picornaviridae, Reoviridae, and Anelloviridae. Both niches showed a high abundance of plant viruses of the family Virgaviridae. Differences in the frequency and abundance of sequence reads and diversity of virus species were observed in both niches and throughout the year of study, with some viruses already present in the first months of life. Our results suggest that the children's virome is dynamic and likely shaped by the environment, feeding, and age. Moreover, composition analysis suggests that the virome composition is mostly individual. Whether this constant exposition to different viruses has a long-term impact on children's health or development remains to be studied.
Collapse
Affiliation(s)
- Xaira Rivera-Gutiérrez
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Patricia Morán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Blanca Taboada
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Angélica Serrano-Vázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Pavel Isa
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Liliana Rojas-Velázquez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Horacio Pérez-Juárez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Susana López
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Cecilia Ximénez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| | - Carlos F Arias
- Instituto de Biotecnologıía, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
31
|
Andrén Aronsson C, Agardh D. Intervention strategies in early childhood to prevent celiac disease-a mini-review. Front Immunol 2023; 14:1106564. [PMID: 36911718 PMCID: PMC9992640 DOI: 10.3389/fimmu.2023.1106564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
A higher intake of gluten during childhood is associated with increased risk of celiac disease, and the incidence of celiac disease peaks shortly after the time point when associations with higher gluten intake during the second and third year of life occur. Additional environmental factors are most likely necessary for celiac disease to develop. It is hypothesized that gastrointestinal infections increase gut permeability and exposure to gluten. Alternatively, infections may lead to gut dysbiosis and chronic inflammation, with leakage of self-antigens that mimic gluten peptides that leads to an autoimmune-like response. Different gluten interventions to prevent celiac disease have been proposed. Early clinical studies suggested an optimal time point introducing gluten between 4 and 6 months of age while the infant is being breastfed. However, later clinical trials on reduced gluten intake given to infants have shown no protection from celiac disease if gluten introduction was delayed or if gluten was introduced in small amounts during the child's first year of life. Still, more randomized clinical trials (RCTs) are warranted to answer the question if a reduced amount of gluten, not only at the time of introduction during infancy but also in a longer time frame, will prevent children at genetic risk from having lifelong celiac disease. It needs to be clarified whether dietary interventions are effective strategies to be proposed as future prevention of celiac disease in the general population. The present mini-review provides an overview of ongoing or completed RCTs that have focused on interventions during early childhood with the aim of preventing celiac disease.
Collapse
Affiliation(s)
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
32
|
Analysis of viral nucleic acids in duodenal biopsies from adult patients with celiac disease. Eur J Gastroenterol Hepatol 2022; 34:1107-1110. [PMID: 35830367 DOI: 10.1097/meg.0000000000002404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the presence of Adenovirus, Epstein-Barr virus (EBV), HHV-6 and cytomegalovirus (CMV) nucleic acids in the gastrointestinal biopsies from active CD patients. METHODS Gastrointestinal biopsies of 40 active CD patients and 40 non-CD patients were collected during the endoscopic investigation of gastrointestinal symptoms. RESULTS HHV-6B was found in 62.5% of CD patients and in 65% of non-CD individuals, whereas the prevalence of EBV-positive samples was 20 and 10%, respectively. Nucleic acids from HHV-6A, CMV and adenovirus were not detected in any group. CONCLUSION These data suggest that these viruses may not play a role in the pathogenesis of acute CD, but they do not exclude the possibility that viruses can act as a trigger for the onset of celiac disease.
Collapse
|
33
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022; 23:ijms231911748. [PMID: 36233048 PMCID: PMC9569549 DOI: 10.3390/ijms231911748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/24/2022] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients’ quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of “biotics” strategies, from probiotics to the less explored “viromebiotics” as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K. Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V. Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I. Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Correspondence:
| |
Collapse
|
34
|
Wagh SK, Lammers KM, Padul MV, Rodriguez-Herrera A, Dodero VI. Celiac Disease and Possible Dietary Interventions: From Enzymes and Probiotics to Postbiotics and Viruses. Int J Mol Sci 2022. [PMID: 36233048 DOI: 10.3390/ijms231911748.pmid:36233048;pmcid:pmc9569549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Celiac Disease (CeD) is a chronic small intestinal immune-mediated enteropathy caused by the ingestion of dietary gluten proteins in genetically susceptible individuals. CeD is one of the most common autoimmune diseases, affecting around 1.4% of the population globally. To date, the only acceptable treatment for CeD is strict, lifelong adherence to a gluten-free diet (GFD). However, in some cases, GFD does not alter gluten-induced symptoms. In addition, strict adherence to a GFD reduces patients' quality of life and is often a socio-economic burden. This narrative review offers an interdisciplinary overview of CeD pathomechanism and the limitations of GFD, focusing on current research on possible dietary interventions. It concentrates on the recent research on the degradation of gluten through enzymes, the modulation of the microbiome, and the different types of "biotics" strategies, from probiotics to the less explored "viromebiotics" as possible beneficial complementary interventions for CeD management. The final aim is to set the context for future research that may consider the role of gluten proteins and the microbiome in nutritional and non-pharmacological interventions for CeD beyond the sole use of the GFD.
Collapse
Affiliation(s)
- Sandip K Wagh
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
- Department of Biochemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India
| | | | - Manohar V Padul
- Department of Biochemistry, The Institute of Science, Dr. Homi Bhabha State University, Mumbai 400032, India
| | | | - Veronica I Dodero
- Department of Organic and Bioorganic Chemistry, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
35
|
Clinton NA, Hameed SA, Agyei EK, Jacob JC, Oyebanji VO, Jabea CE. Crosstalk between the Intestinal Virome and Other Components of the Microbiota, and Its Effect on Intestinal Mucosal Response and Diseases. J Immunol Res 2022; 2022:7883945. [PMID: 36203793 PMCID: PMC9532165 DOI: 10.1155/2022/7883945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, there has been ample evidence illustrating the effect of microbiota on gut immunity, homeostasis, and disease. Most of these studies have engaged more efforts in understanding the role of the bacteriome in gut mucosal immunity and disease. However, studies on the virome and its influence on gut mucosal immunity and pathology are still at infancy owing to limited metagenomic tools. Nonetheless, the existing studies on the virome have largely been focused on the bacteriophages as these represent the main component of the virome with little information on endogenous retroviruses (ERVs) and eukaryotic viruses. In this review, we describe the gut virome, and its role in gut mucosal response and disease progression. We also explore the crosstalk between the virome and other microorganisms in the gut mucosa and elaborate on how these interactions shape the gut mucosal immunity going from bacteriophages through ERVs to eukaryotic viruses. Finally, we elucidate the potential contribution of this crosstalk in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
Affiliation(s)
- Njinju Asaba Clinton
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| | | | - Eugene Kusi Agyei
- Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Ghana
| | | | | | - Cyril Ekabe Jabea
- Health and Empowerment Foundation, Cameroon
- Mbonge District Hospital, Cameroon
- University of Buea, Cameroon
| |
Collapse
|
36
|
Esposito AM, Esposito MM, Ptashnik A. Phylogenetic Diversity of Animal Oral and Gastrointestinal Viromes Useful in Surveillance of Zoonoses. Microorganisms 2022; 10:microorganisms10091815. [PMID: 36144417 PMCID: PMC9506515 DOI: 10.3390/microorganisms10091815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Great emphasis has been placed on bacterial microbiomes in human and animal systems. In recent years, advances in metagenomics have allowed for the detection and characterization of more and more native viral particles also residing in these organisms. The digestive tracts of animals and humans—from the oral cavity, to the gut, to fecal excretions—have become one such area of interest. Next-generation sequencing and bioinformatic analyses have uncovered vast phylogenetic virome diversity in companion animals, such as dogs and cats, as well as farm animals and wildlife such as bats. Zoonotic and arthropod-borne illnesses remain major causes of worldwide outbreaks, as demonstrated by the devastating COVID-19 pandemic. This highlights the increasing need to identify and study animal viromes to prevent such disastrous cross-species transmission outbreaks in the coming years. Novel viruses have been uncovered in the viromes of multiple organisms, including birds, bats, cats, and dogs. Although the exact consequences for public health have not yet become clear, many analyses have revealed viromes dominated by RNA viruses, which can be the most problematic to human health, as these genomes are known for their high mutation rates and immune system evasion capabilities. Furthermore, in the wake of worldwide disruption from the COVID-19 pandemic, it is evident that proper surveillance of viral biodiversity is crucial. For instance, gut viral metagenomic analysis in dogs has shown close relationships between the highly abundant canine coronavirus and human coronavirus strains 229E and NL63. Future studies and vigilance could potentially save many lives.
Collapse
Affiliation(s)
| | - Michelle Marie Esposito
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- Correspondence:
| | - Albert Ptashnik
- Department of Biology, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
- PhD Program in Biology, The Graduate Center, City University of New York, New York, NY 10016, USA
- DDS Program, NYU College of Dentistry, New York, NY 10010, USA
| |
Collapse
|
37
|
Wang J, Xiao L, Xiao B, Zhang B, Zuo Z, Ji P, Zheng J, Li X, Zhao F. Maternal and neonatal viromes indicate the risk of offspring's gastrointestinal tract exposure to pathogenic viruses of vaginal origin during delivery. MLIFE 2022; 1:303-310. [PMID: 38818221 PMCID: PMC10989755 DOI: 10.1002/mlf2.12034] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/09/2022] [Indexed: 06/01/2024]
Abstract
A cumulative effect of enterovirus and gluten intake on the risk of celiac disease autoimmunity in infants highlights the significance of viral exposure in early life on the health of children. However, pathogenic viruses may be transmitted to the offspring in an earlier period, raising the possibility that women whose vaginas are inhabited by such viruses may have had their babies infected as early as the time of delivery. A high-resolution intergenerational virome atlas was obtained by metagenomic sequencing and virome analysis on 486 samples from six body sites of 99 mother-neonate pairs. We found that neonates had less diverse oral and enteric viruses than mothers. Vaginally delivered newborns seconds after birth had a more similar oral virome and more viruses of vaginal origin than cesarean-section (C-section) newborns (56.9% vs. 5.8%). Such viruses include both Lactobacillus phage and potentially pathogenic viruses, such as herpesvirus, vaccinia virus, and hepacivirus, illustrating a relatively high variety of the pioneer viral taxa at the time of delivery and a delivery-dependent mother-to-neonate transmission along the vaginal-oral-intestinal route. Neonates are exposed to vaginal viruses as they pass through the reproductive tract, and viruses of vaginal origin may threaten their health. These findings challenge the conventional notion that vaginal delivery is definitely better than cesarean delivery from the perspective of microbial transmission. Screening for vaginal virome before delivery is a worthwhile step to advocate in normal labor to eliminate the risk of intergenerational transmission of pathogenic viruses to offspring.
Collapse
Affiliation(s)
- Jinfeng Wang
- College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| | - Liwen Xiao
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Baichuan Xiao
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bing Zhang
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhenqiang Zuo
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| | - Peifeng Ji
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
| | - Jiayong Zheng
- Department of Gynecology and ObstetricsWenzhou People's HospitalWenzhouChina
| | - Xiaoqing Li
- Department of Gynecology and ObstetricsWenzhou People's HospitalWenzhouChina
| | - Fangqing Zhao
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
38
|
Brigleb PH, Kouame E, Fiske KL, Taylor GM, Urbanek K, Medina Sanchez L, Hinterleitner R, Jabri B, Dermody TS. NK cells contribute to reovirus-induced IFN responses and loss of tolerance to dietary antigen. JCI Insight 2022; 7:159823. [PMID: 35993365 PMCID: PMC9462493 DOI: 10.1172/jci.insight.159823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Celiac disease is an immune-mediated intestinal disorder that results from loss of oral tolerance (LOT) to dietary gluten. Reovirus elicits inflammatory Th1 cells and suppresses Treg responses to dietary antigen in a strain-dependent manner. Strain type 1 Lang (T1L) breaks oral tolerance, while strain type 3 Dearing reassortant virus (T3D-RV) does not. We discovered that intestinal infection by T1L in mice leads to the recruitment and activation of NK cells in mesenteric lymph nodes (MLNs) in a type I IFN-dependent manner. Once activated following infection, NK cells produce type II IFN and contribute to IFN-stimulated gene expression in the MLNs, which in turn induces inflammatory DC and T cell responses. Immune depletion of NK cells impairs T1L-induced LOT to newly introduced food antigen. These studies indicate that NK cells modulate the response to dietary antigen in the presence of a viral infection.
Collapse
Affiliation(s)
- Pamela H. Brigleb
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elaine Kouame
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA
| | - Kay L. Fiske
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Gwen M. Taylor
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Kelly Urbanek
- Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| | - Luzmariel Medina Sanchez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bana Jabri
- Committee on Immunology, University of Chicago, Chicago, Illinois, USA.,Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Terence S. Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Institute of Infection, Inflammation, and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Pediatrics and
| |
Collapse
|
39
|
Kennedy EA, Holtz LR. Gut virome in early life: origins and implications. Curr Opin Virol 2022; 55:101233. [PMID: 35690009 PMCID: PMC9575407 DOI: 10.1016/j.coviro.2022.101233] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 12/15/2022]
Abstract
The human body is colonized by a multitude of bacteria, fungi, and viruses, which play important roles in health and disease. Microbial colonization during early life is thought to be a particularly important period with lasting consequences for health. Viral populations in the gut are particularly dynamic in early life before they stabilize in adulthood. The composition of the early-life virome is increasingly recognized as a determinant of disease later in life. Here, we review the development of the virome in healthy infants, as well as the role of the early-life virome in the development of disease states including diarrhea, malnutrition, and autoimmune diseases.
Collapse
Affiliation(s)
- Elizabeth A Kennedy
- Washington University School of Medicine, Division of Infectious Diseases, Department of Medicine, Edison Family Center for Genome Sciences & Systems Biology, St. Louis, MO 63110, USA
| | - Lori R Holtz
- Washington University School of Medicine, Department of Pediatrics, St. Louis, MO 63110, USA.
| |
Collapse
|
40
|
Rotavirus vaccination is not associated with incident celiac disease or autoimmune thyroid disease in a national cohort of privately insured children. Sci Rep 2022; 12:12941. [PMID: 35902684 PMCID: PMC9334581 DOI: 10.1038/s41598-022-17187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Rotavirus infection is a potential trigger for autoimmune diseases, and previous reports note associations between rotavirus vaccination and type 1 diabetes. In this report, we examine the association between rotavirus vaccination and autoimmune diseases associated with type 1 diabetes: celiac disease and autoimmune thyroiditis. We conducted a retrospective cohort study using de-identified claims data (Optum Clinformatics® Data Mart). Eligible infants were born between 2001 and 2018 and continuously enrolled from birth for at least 365 days (n = 2,109,225). Twenty-nine percent (n = 613,295) of infants were born prior to the introduction of rotavirus vaccine in 2006; 32% (n = 684,214) were eligible for the vaccine but were not vaccinated; 9.6% (n = 202,016) received partial vaccination, and 28.9% received full vaccination (n = 609,700). There were 1379 cases of celiac disease and 1000 cases of autoimmune thyroiditis. Children who were born prior to the introduction of rotavirus vaccine in 2006 had lower risk of celiac disease compared to unvaccinated children born after 2006 (hazard ratio [HR] 0.71, 95% confidence interval [CI] 0.59, 0.85). However, children who were partially vaccinated (HR 0.90, 95% CI 0.73, 1.11) or fully vaccinated (HR 1.03, 95% CI 0.88, 1.21) had similar risk to eligible, unvaccinated children. Risk of autoimmune thyroiditis was similar by vaccination status. We conclude that rotavirus vaccination is not associated with increased or decreased risk for celiac disease or autoimmune thyroiditis.
Collapse
|
41
|
Levescot A, Malamut G, Cerf-Bensussan N. Immunopathogenesis and environmental triggers in coeliac disease. Gut 2022; 71:gutjnl-2021-326257. [PMID: 35879049 PMCID: PMC9554150 DOI: 10.1136/gutjnl-2021-326257] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/07/2022] [Indexed: 12/21/2022]
Abstract
Coeliac disease (CD) is a frequent immune enteropathy induced by gluten in genetically predisposed individuals. Its pathogenesis has been extensively studied and CD has emerged as a model disease to decipher how the interplay between environmental and genetic factors can predispose to autoimmunity and promote lymphomagenesis. The keystone event is the activation of a gluten-specific immune response that is driven by molecular interactions between gluten, the indispensable environmental factor, HLA-DQ2/8, the main predisposing genetic factor and transglutaminase 2, the CD-specific autoantigen. The antigluten response is however not sufficient to induce epithelial damage which requires the activation of cytotoxic CD8+ intraepithelial lymphocytes (IEL). In a plausible scenario, cooperation between cytokines released by gluten-specific CD4+ T cells and interleukin-15 produced in excess in the coeliac gut, licenses the autoimmune-like attack of the gut epithelium, likely via sustained activation of the Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway in IEL. Demonstration that lymphomas complicating CD arise from IEL that have acquired gain-of-function JAK1 or STAT3 mutations stresses the key role of this pathway and explains how gluten-driven chronic inflammation may promote this rare but most severe complication. If our understanding of CD pathogenesis has considerably progressed, several questions and challenges remain. One unsolved question concerns the considerable variability in disease penetrance, severity and presentation, pointing to the role of additional genetic and environmental factors that remain however uneasy to untangle and hierarchize. A current challenge is to transfer the considerable mechanistic insight gained into CD pathogenesis into benefits for the patients, notably to alleviate the gluten-free diet, a burden for many patients.
Collapse
Affiliation(s)
- Anais Levescot
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| | - Georgia Malamut
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
- Université Paris Cité, APHP Centre, Gastroenterology Department, Hôpital Cochin, Paris, France
| | - Nadine Cerf-Bensussan
- Université Paris Cité, Institut Imagine, INSERM UMR1163, Laboratory Intestinal Immunity, Paris, France
| |
Collapse
|
42
|
Chang D, O’Shea D, Therrien A, Silvester JA. Review article: Becoming and being coeliac-special considerations for childhood, adolescence and beyond. Aliment Pharmacol Ther 2022; 56 Suppl 1:S73-S85. [PMID: 35815825 PMCID: PMC9441244 DOI: 10.1111/apt.16851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 12/09/2022]
Abstract
Classically considered a disease of early childhood characterised by malabsorption and failure to thrive, coeliac disease is now recognised to arise in genetically susceptible individuals at any age. Although permissive HLA genotypes are the strongest predictor of coeliac disease, they are not sufficient. Several prospective cohort studies enrolling genetically at-risk infants have investigated the role of potential triggers of coeliac disease autoimmunity, such as timing of gluten introduction, viral infections and dietary patterns. Much less is known about triggers of coeliac disease in adulthood. Better understanding of factors leading to coeliac disease may be helpful in the management of those with potential coeliac disease (elevated serum celiac antibodies without villous atrophy in the small intestine), many of whom initiate a gluten-free diet without demonstration of villous atrophy. There are a range of clinical presentations of celiac disease in childhood and patterns of coeliac serology, including fluctuation and spontaneous reversion on a gluten-containing diet, vary. There is a current debate over best strategies to manage adults and children with potential coeliac disease to avoid over-treatment and under-treatment. Childhood and adolescence carry unique issues pertaining to the diagnosis and management of coeliac disease, and include nutrition and growth, rescreening, repeat biopsy, dietary adherence concerns and transition to adult care. In conclusion, while coeliac disease has similar pathogenesis and general clinical manifestations in paediatric and adult populations, diagnostic and management approaches need to adapt to the developmental stages.
Collapse
Affiliation(s)
- Denis Chang
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Delia O’Shea
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA
| | - Amelie Therrien
- 2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| | - Jocelyn A Silvester
- 1. Boston Children’s Hospital, Boston, MA,2. Harvard Celiac Research Program, Harvard Medical School, Boston, MA,3. Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
43
|
Barone MV, Auricchio R, Nanayakkara M, Greco L, Troncone R, Auricchio S. Pivotal Role of Inflammation in Celiac Disease. Int J Mol Sci 2022; 23:ijms23137177. [PMID: 35806180 PMCID: PMC9266393 DOI: 10.3390/ijms23137177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 01/27/2023] Open
Abstract
Celiac disease (CD) is an immune-mediated enteropathy triggered in genetically susceptible individuals by gluten-containing cereals. A central role in the pathogenesis of CD is played by the HLA-restricted gliadin-specific intestinal T cell response generated in a pro-inflammatory environment. The mechanisms that generate this pro-inflammatory environment in CD is now starting to be addressed. In vitro study on CD cells and organoids, shows that constant low-grade inflammation is present also in the absence of gluten. In vivo studies on a population at risk, show before the onset of the disease and before the introduction of gluten in the diet, cellular and metabolic alterations in the absence of a T cell-mediated response. Gluten exacerbates these constitutive alterations in vitro and in vivo. Inflammation, may have a main role in CD, adding this disease tout court to the big family of chronic inflammatory diseases. Nutrients can have pro-inflammatory or anti-inflammatory effects, also mediated by intestinal microbiota. The intestine function as a crossroad for the control of inflammation both locally and at distance. The aim of this review is to discuss the recent literature on the main role of inflammation in the natural history of CD, supported by cellular fragility with increased sensitivity to gluten and other pro-inflammatory agents.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
- Correspondence:
| | - Renata Auricchio
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Merlin Nanayakkara
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Luigi Greco
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Riccardo Troncone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (R.A.); (M.N.); (L.G.); (R.T.)
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Disease (ELFID), University Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
44
|
Catassi C, Verdu EF, Bai JC, Lionetti E. Coeliac disease. Lancet 2022; 399:2413-2426. [PMID: 35691302 DOI: 10.1016/s0140-6736(22)00794-2] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Coeliac disease is an autoimmune disorder that primarily affects the small intestine, and is caused by the ingestion of gluten in genetically susceptible individuals. Prevalence in the general population ranges from 0·5% to 2%, with an average of about 1%. The development of the coeliac enteropathy depends on a complex immune response to gluten proteins, including both adaptive and innate mechanisms. Clinical presentation of coeliac disease is highly variable and includes classical and non-classical gastrointestinal symptoms, extraintestinal manifestations, and subclinical cases. The disease is associated with a risk of complications, such as osteoporosis and intestinal lymphoma. Diagnosis of coeliac disease requires a positive serology (IgA anti-transglutaminase 2 and anti-endomysial antibodies) and villous atrophy on small-intestinal biopsy. Treatment involves a gluten-free diet; however, owing to the high psychosocial burden of such a diet, research into alternative pharmacological treatments is currently very active.
Collapse
Affiliation(s)
- Carlo Catassi
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy; Celiac Center and Mucosal Immunology and Biology Research, MassGeneral Hospital for Children-Harvard Medical School, Boston, MA, USA.
| | - Elena F Verdu
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Julio Cesar Bai
- Department of Medicine, Dr C Bonorino Udaondo Gastroenterology Hospital, Buenos Aires, Argentina; Research Institutes, Universidad del Salvador, Buenos Aires, Argentina
| | - Elena Lionetti
- Department of Specialized Clinical Sciences and Odontostomatology, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
45
|
Auchtung TA, Stewart CJ, Smith DP, Triplett EW, Agardh D, Hagopian WA, Ziegler AG, Rewers MJ, She JX, Toppari J, Lernmark Å, Akolkar B, Krischer JP, Vehik K, Auchtung JM, Ajami NJ, Petrosino JF. Temporal changes in gastrointestinal fungi and the risk of autoimmunity during early childhood: the TEDDY study. Nat Commun 2022; 13:3151. [PMID: 35672407 PMCID: PMC9174155 DOI: 10.1038/s41467-022-30686-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
Fungal infections are a major health problem that often begin in the gastrointestinal tract. Gut microbe interactions in early childhood are critical for proper immune responses, yet there is little known about the development of the fungal population from infancy into childhood. Here, as part of the TEDDY (The Environmental Determinants of Diabetes in the Young) study, we examine stool samples of 888 children from 3 to 48 months and find considerable differences between fungi and bacteria. The metagenomic relative abundance of fungi was extremely low but increased while weaning from milk and formula. Overall fungal diversity remained constant over time, in contrast with the increase in bacterial diversity. Fungal profiles had high temporal variation, but there was less variation from month-to-month in an individual than among different children of the same age. Fungal composition varied with geography, diet, and the use of probiotics. Multiple Candida spp. were at higher relative abundance in children than adults, while Malassezia and certain food-associated fungi were lower in children. There were only subtle fungal differences associated with the subset of children that developed islet autoimmunity or type 1 diabetes. Having proper fungal exposures may be crucial for children to establish appropriate responses to fungi and limit the risk of infection: the data here suggests those gastrointestinal exposures are limited and variable.
Collapse
Grants
- U01 DK063821 NIDDK NIH HHS
- UC4 DK063863 NIDDK NIH HHS
- UL1 TR002535 NCATS NIH HHS
- U01 DK063790 NIDDK NIH HHS
- UL1 TR000064 NCATS NIH HHS
- HHSN267200700014C NLM NIH HHS
- U01 DK063836 NIDDK NIH HHS
- U01 DK063829 NIDDK NIH HHS
- U01 DK063865 NIDDK NIH HHS
- UC4 DK095300 NIDDK NIH HHS
- UC4 DK063861 NIDDK NIH HHS
- UC4 DK063829 NIDDK NIH HHS
- UC4 DK063821 NIDDK NIH HHS
- UC4 DK117483 NIDDK NIH HHS
- UC4 DK063836 NIDDK NIH HHS
- UC4 DK112243 NIDDK NIH HHS
- U01 DK124166 NIDDK NIH HHS
- U01 DK063861 NIDDK NIH HHS
- P30 ES030285 NIEHS NIH HHS
- U01 DK128847 NIDDK NIH HHS
- UC4 DK063865 NIDDK NIH HHS
- U01 DK063863 NIDDK NIH HHS
- UC4 DK106955 NIDDK NIH HHS
- UC4 DK100238 NIDDK NIH HHS
- This research was performed on behalf of the TEDDY Study Group, which is funded by U01 DK63829, U01 DK63861, U01 DK63821, U01 DK63865, U01 DK63863, U01 DK63836, U01 DK63790, UC4 DK63829, UC4 DK63861, UC4 DK63821, UC4 DK63865, UC4 DK63863, UC4 DK63836, UC4 DK95300, UC4 DK100238, UC4 DK106955, UC4 DK112243, UC4 DK117483, U01 DK124166, U01 DK128847, and Contract No. HHSN267200700014C from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institute of Allergy and Infectious Diseases (NIAID), Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institute of Environmental Health Sciences (NIEHS), Centers for Disease Control and Prevention (CDC), and JDRF. This work is supported in part by the NIH/NCATS Clinical and Translational Science Awards to the University of Florida (UL1 TR000064) and the University of Colorado (UL1 TR002535).
Collapse
Affiliation(s)
- Thomas A Auchtung
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Christopher J Stewart
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel P Smith
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Eric W Triplett
- Microbiology and Cell Science Department, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Daniel Agardh
- Department of Clinical Sciences, Lund University Clinical Research Center, Skåne University Hospital, Malmö, Sweden
| | | | - Anette G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, Munich, Germany
- Forschergruppe Diabetes, Technische Universität München, Klinikum Rechts der Isar, Munich, Germany
- Forschergruppe Diabetes e.V. at Helmholtz Zentrum München, Munich, Germany
| | - Marian J Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO, USA
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Jinfiniti Precision Medicine, Inc, Augusta, GA, USA
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD, USA
| | - Jeffrey P Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jennifer M Auchtung
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Program for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
46
|
Liang G, Gao H, Bushman FD. The pediatric virome in health and disease. Cell Host Microbe 2022; 30:639-649. [PMID: 35550667 DOI: 10.1016/j.chom.2022.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
Abstract
Associations between the global microbiome and diseases of children have been studied extensively; however, research on the viral component of the microbiome, the "virome," is less advanced. The analysis of disease associations with the virome is often technically challenging, requiring a close examination of the "virome dark matter." The gut is a particularly rich source of viral particles, and now multiple studies have reported intriguing associations of the virome with childhood diseases. For example, virome studies have elucidated new lineages of gut viruses that appear to be tightly associated with childhood diarrhea, and consistent patterns are starting to emerge from virome studies in pediatric IBD. In this review, we summarize the methods for studying the virome and recent research on the nature of the virome during childhood, focusing on specific studies of the intestinal virome in pediatric diseases.
Collapse
Affiliation(s)
- Guanxiang Liang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| | - Hongyan Gao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6076, USA.
| |
Collapse
|
47
|
Wessels M, Auricchio R, Dolinsek J, Donat E, Gillett P, Mårild K, Meijer C, Popp A, Mearin ML. Review on pediatric coeliac disease from a clinical perspective. Eur J Pediatr 2022; 181:1785-1795. [PMID: 35034201 DOI: 10.1007/s00431-022-04379-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
Abstract
Coeliac disease is an immune-mediated condition characterized by chronic inflammation of the small bowel with villous atrophy driven by gluten ingestion in genetically predisposed individuals. It occurs frequently in both children and adults, affecting 1-4% of the population. The disease is associated with both gastrointestinal and extra-intestinal symptoms related to malabsorption and/or immune activation, and autoantibodies to tissue transglutaminase. Removal of gluten from the diet results in resolution of symptoms and enteropathy in the majority of patients. A good diagnostic work-up is important to avoid unnecessary restrictive diets in children. In this review on pediatric coeliac disease, we address epidemiology including predisposing environmental factors and possible preventive strategies, as well as the clinical presentation, diagnosis and follow-up. What is Known: •Primary prevention of coeliac disease is not possible; however, secondary prevention by targeting high-risk groups is recommended. •The diagnosis is safe without duodenal biopsies if specific conditions are met, also in asymptomatic children. What is New: •HLA-DQ typing is not routinely required for the diagnosis, whereas it can rule out coeliac disease if HLA-DQ2 and HLA-DQ8 are absent. •Follow-up could be improved by a more rational use of (laboratory) tests, increased intention to dietary compliance and quality of life.
Collapse
Affiliation(s)
- Margreet Wessels
- Department of Pediatrics, Rijnstate Hospital, Arnhem, the Netherlands.
| | - Renata Auricchio
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Jernej Dolinsek
- Department of Pediatrics, Hepatology and Nutrition Unit and Medical Faculty, Dept. of Pediatrics, University Medical Centre Maribor, GastroenterologyMaribor, Slovenia
| | - Ester Donat
- Pediatric Gastroenterology and Hepatology Unit, Celiac Disease and Digestive Immunopathology Unit, Hospital Universitari I Politècnic La Fe, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Peter Gillett
- Department of Pediatric Gastroenterology, Royal Hospital for Children and Young People, Scotland, Edinburgh, UK
| | - Karl Mårild
- Department of Pediatrics, Institute of Clinical Sciences, Department of Pediatric Gastroenterology, Sahlgrenska Academy, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Caroline Meijer
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alina Popp
- University of Medicine and Pharmacy ''Carol Davila'', National Institute for Mother and Child Health, Bucharest, Romania
| | - M Luisa Mearin
- Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
48
|
The global burden of coeliac disease: opportunities and challenges. Nat Rev Gastroenterol Hepatol 2022; 19:313-327. [PMID: 34980921 DOI: 10.1038/s41575-021-00552-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
Abstract
Coeliac disease is a systemic disorder characterized by immune-mediated enteropathy, which is caused by gluten ingestion in genetically susceptible individuals. The clinical presentation of coeliac disease is highly variable and ranges from malabsorption through solely extra-intestinal manifestations to asymptomatic. As a result, the majority of patients with coeliac disease remain undiagnosed, misdiagnosed or experience a substantial delay in diagnosis. Coeliac disease is diagnosed by a combination of serological findings of disease-related antibodies and histological evidence of villous abnormalities in duodenal biopsy samples. However, variability in histological grading and in the diagnostic performance of some commercially available serological tests remains unacceptably high and confirmatory assays are not readily available in many parts of the world. Currently, the only effective treatment for coeliac disease is a lifelong, strict, gluten-free diet. However, many barriers impede patients' adherence to this diet, including lack of widespread availability, high cost, cross-contamination and its overall restrictive nature. Routine follow-up is necessary to ensure adherence to a gluten-free diet but considerable variation is evident in follow-up protocols and the optimal disease management strategy is not clear. However, these challenges in the diagnosis and management of coeliac disease suggest opportunities for future research.
Collapse
|
49
|
Auricchio R, Calabrese I, Galatola M, Cielo D, Carbone F, Mancuso M, Matarese G, Troncone R, Auricchio S, Greco L. Gluten consumption and inflammation affect the development of celiac disease in at-risk children. Sci Rep 2022; 12:5396. [PMID: 35354862 PMCID: PMC8968719 DOI: 10.1038/s41598-022-09232-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022] Open
Abstract
Gene expression, lipidomic and growth impairment findings suggest that the natural history of celiac disease (CD) starts before the gluten-induced immune response. Gluten intake in the first years of life is a controversial risk factor. We aimed to estimate the risk of developing CD associated with the amount of gluten intake and the serum inflammatory profile in genetically predisposed infants. From an Italian cohort of children at risk for CD, we enrolled 27 children who developed CD (cases) and 56 controls matched by sex and age. A dietary interview at 9, 12, 18, 24 and 36 months was performed. Serum cytokines (INFγ, IL1β, IL2, IL4, IL6, IL10 IL12p70, IL17, and TNFα) were analysed at 4 and 36 months. Infants who developed CD by 6 years showed an increase in serum cytokines (INFγ, IL1β, IL2, IL6, IL10, IL12p70 and TNFα) at 4 months of age before gluten introduction. CD cases ate significantly more gluten in the second year of life than controls, and gluten intake in the second year of life was strongly correlated with serum cytokines (INFγ, IL2, IL4, IL12p70, IL17) at 36 months only in CD cases. The dietary pattern of infants who developed CD was characterized by high consumption of biscuits and fruit juices and low intake of milk products, legumes, vegetables and fruits. Genetically predisposed infants who developed CD showed a unique serum cytokine profile at 4 months before gluten consumption. The amount of gluten was strongly correlated with an inflammatory profile in serum cytokines at 36 months only in infants who developed CD.
Collapse
Affiliation(s)
- Renata Auricchio
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131, Naples, Italy. .,European Laboratory for Food Induced Diseases, University Federico II, Via S. Pansini 5, 80131, Naples, Italy.
| | - Ilaria Calabrese
- Department of Clinical Medicine and Surgery, University Federico II, Naples, Italy
| | - Martina Galatola
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Donatella Cielo
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Fortunata Carbone
- Laboratory of Immunology, Institute for Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), Naples, Italy.,Neuroimmunology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Marianna Mancuso
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Giuseppe Matarese
- Laboratory of Immunology, Institute for Experimental Endocrinology and Oncology, National Research Council (IEOS-CNR), Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University Federico II, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University Federico II, Via S. Pansini 5, 80131, Naples, Italy.,European Laboratory for Food Induced Diseases, University Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Salvatore Auricchio
- European Laboratory for Food Induced Diseases, University Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Luigi Greco
- European Laboratory for Food Induced Diseases, University Federico II, Via S. Pansini 5, 80131, Naples, Italy
| |
Collapse
|
50
|
El Mouzan M, Assiri A, Al Sarkhy A, Alasmi M, Saeed A, Al-Hussaini A, AlSaleem B, Al Mofarreh M. Viral dysbiosis in children with new-onset celiac disease. PLoS One 2022; 17:e0262108. [PMID: 35030192 PMCID: PMC8759644 DOI: 10.1371/journal.pone.0262108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023] Open
Abstract
Viruses are common components of the intestinal microbiome, modulating host bacterial metabolism and interacting with the immune system, with a possible role in the pathogenesis of immune-mediated diseases such as celiac disease (CeD). The objective of this study was to characterize the virome profile in children with new-onset CeD. We used metagenomic analysis of viral DNA in mucosal and fecal samples from children with CeD and controls and performed sequencing using the Nextera XT library preparation kit. Abundance log2 fold changes were calculated using differential expression and linear discriminant effect size. Shannon alpha and Bray–Curtis beta diversity were determined. A total of 40 children with CeD and 39 controls were included. We found viral dysbiosis in both fecal and mucosal samples. Examples of significantly more abundant species in fecal samples of children with CeD included Human polyomavirus 2, Enterobacteria phage mEpX1, and Enterobacteria phage mEpX2; whereas less abundant species included Lactococcus phages ul36 and Streptococcus phage Abc2. In mucosal samples however, no species were significantly associated with CeD. Shannon alpha diversity was not significantly different between CeD and non-CeD groups and Bray–Curtis beta diversity showed no significant separation between CeD and non-CeD samples in either mucosal or stool samples, whereas separation was clear in all samples. We identified significant viral dysbiosis in children with CeD, suggesting a potential role in the pathogenesis of CeD indicating the need for further studies.
Collapse
Affiliation(s)
- Mohammad El Mouzan
- Department of Pediatrics (Gastroenterology), King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Kingdom of Saudi Arabia
- * E-mail: ,
| | - Asaad Assiri
- Department of Pediatrics (Gastroenterology), King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, Prince Abdullah Bin Khalid Celiac Disease Research Chair, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Ahmed Al Sarkhy
- Department of Pediatrics (Gastroenterology), King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Mona Alasmi
- Department of Pediatrics (Gastroenterology), King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Anjum Saeed
- Department of Pediatrics (Gastroenterology), King Saud University, Riyadh, Kingdom of Saudi Arabia
- Department of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman Al-Hussaini
- Division of Pediatric Gastroenterology, Children’s Specialist Hospital, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia
- Faculty of Medicine, AlFaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Badr AlSaleem
- Division of Gastroenterology, The Children Hospital, King Fahad Medical City, Pediatric Intestinal Failure and Parenteral Nutrition Program, Riyadh, Kingdom of Saudi Arabia
| | - Mohammad Al Mofarreh
- Department of Gastroenterology, Al Mofarreh PolyClinic, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|