1
|
Kosulin K, Brasel TL, Smith J, Torres M, Bitzer A, Dubischar K, Buerger V, Mader R, Weaver SC, Beasley DW, Hochreiter R. Cross-neutralizing activity of the chikungunya vaccine VLA1553 against three prevalent chikungunya lineages. Emerg Microbes Infect 2025; 14:2469653. [PMID: 39998495 PMCID: PMC11894744 DOI: 10.1080/22221751.2025.2469653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Cross-neutralization is generally a prerequisite for cross-protection of vaccines against diseases caused by heterologous viruses. Using sera obtained from a randomized clinical phase 3 trial in adults, we investigated the cross-neutralization activity of VLA1553, a vaccine recently approved to prevent chikungunya disease. Analysed in a plaque reduction neutralization test, the three major chikungunya virus (CHIKV) lineages, namely the East Central South African, the West African, and the Asian lineage, were inhibited by CHIKV-specific neutralizing antibodies present in the sera from vaccinated humans. This effect was independent of the time elapsed since vaccination. Moreover, the magnitude of the immune response was similar to the antibody levels detected in sera from convalescent chikungunya patients. Thus, VLA1553 has the potential to diminish the burden of chikungunya disease on a global scale.Trial registration: ClinicalTrials.gov identifier: NCT04546724.
Collapse
Affiliation(s)
| | - Trevor L. Brasel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeanon Smith
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
| | - Maricela Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - David W.C. Beasley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
- Institutional Office of Regulated Nonclinical Studies, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | | |
Collapse
|
2
|
de Souza WM, Lecuit M, Weaver SC. Chikungunya virus and other emerging arthritogenic alphaviruses. Nat Rev Microbiol 2025:10.1038/s41579-025-01177-8. [PMID: 40335675 DOI: 10.1038/s41579-025-01177-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 05/09/2025]
Abstract
Arthritogenic alphaviruses are arboviruses (arthropod-borne viruses) that are genetically and serologically related positive-strand RNA viruses and cause epidemics on a global scale. They are transmitted by mosquitoes and cause diseases in humans that are mainly characterized by fever and often debilitating, sometimes chronic polyarthralgia. At present, approved treatments or vaccines are not available for most arthritogenic alphaviruses, and recently licensed vaccines against chikungunya virus are awaiting implementation in endemic areas. Most arthritogenic alphaviruses are currently limited to specific geographic areas due to vector distributions and availability of amplifying hosts, but they pose a substantial risk of emergence in other regions. The exception is chikungunya virus, which has emerged repeatedly from Africa, established sustained and efficient transmission in urban areas (including in temperate climates) and has caused major epidemics across the world. In this Review, we highlight recent advances in our understanding of the transmission cycles of arthritogenic alphaviruses, their vectors, epidemiology, transmission dynamics, evolution, pathophysiology and immune responses. We also outline strategies and countermeasures to anticipate and mitigate the impact of arthritogenic alphaviruses on human health.
Collapse
Affiliation(s)
- William M de Souza
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Marc Lecuit
- Institut Pasteur, Université Paris Cité, Inserm U1117, Biology of Infection Unit, Paris, France
- Department of Infectious Diseases and Tropical Medicine, Assistance Publique-Hôpitaux de Paris, Institut Imagine, Necker-Enfants Malades University Hospital, Paris, France
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
3
|
Zhang J, Weng S, Fan Z, Hu D, Le J, Sheng K. Migrasomes: Critical players in intercellular nanovesicle communication. Cell Signal 2025; 132:111796. [PMID: 40209968 DOI: 10.1016/j.cellsig.2025.111796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
Migrasomes are vesicular structures that form on elongated tethers originating from the tips or junctions of cellular tails during migration. These organelles, named for their vesicle rich lumen and release during cell movement, have gained attention for their role in intercellular communication and signal transduction. Migrasome formation is closely associated with the dynamic and active movement of cells, as well as with the intrinsic properties of cells and the extracellular microenvironment under various pathophysiological conditions. This review provides a comprehensive overview of migrasome dynamics, examining the mechanisms and distinct features of nanoscale vesicle-mediated intercellular signaling. It also highlights the influence of microscopic secretory factors on migrasome generation and formation. By comparing migrasomes with other active extracellular vesicles, this review highlights the advantages of migrasomes and addresses future challenges.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of ECG, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, China
| | - Shoutao Weng
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zaiwei Fan
- Department of Orthopedics, The Second Affiliated Hospital, Jiangxi Medical College Nanchang University, Nanchang, Jiangxi 330006, China
| | - Dongyang Hu
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jiadi Le
- Department of Orthopaedics, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kongsheng Sheng
- Department of Pharmacy, Taizhou Municipal Hospital, Taizhou 318000, China.
| |
Collapse
|
4
|
Suzuki Y. Application of reverse genetics system to Chikungunya virus study. Virology 2025; 605:110465. [PMID: 40043635 DOI: 10.1016/j.virol.2025.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/16/2025]
Abstract
Chikungunya virus (CHIKV) is an enveloped RNA virus of the Togaviridae family that causes Chikungunya fever, characterized by fever, myalgia, and arthralgia. Although the mortality rate attributed to CHIKV infection is low, the risk of severe disease increases in young children, the elderly, and people with medical conditions. Given the significant impact of these clinical manifestations, an effective regimen for the treatment of CHIKV infection is needed. The reverse genetics system, an approach to generate a complete virus from cloned cDNA, has been widely used to characterize the replication and pathogenicity of medically important viruses. In particular, the implementation of reverse genetics allows researchers to manipulate the viral genome in vitro, contributing to the development of vaccines and antivirals. This review will present the status of the application of the reverse genetics system to advance knowledge of the biological aspects of CHIKV and summarize how this technology is being used to establish preventive and therapeutic measures against CHIKV infection.
Collapse
Affiliation(s)
- Youichi Suzuki
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan.
| |
Collapse
|
5
|
Bernal-Valle S, Monteiro de Mello Mares-Guia MA, Vieira Santos de Abreu F, Souza Campos F, de Oliveira CH, Veloso Ramos AV, Pereira Lordelo R, De Vleeschouwer K, de Carvalho Oliveira L, Ferraz Fehlberg H, Bispo Filippis AM, Morais Ribeiro B, Roehe PM, da Paixão Sevá A, Simonini-Teixeira D, Rego Albuquerque G. Natural exposure to Chikungunya virus in golden-headed lion tamarin (Leontopithecus chrysomelas, Kuhl, 1820) from non-protected areas in southern Bahia, Brazil: Implications and significance. PLoS Negl Trop Dis 2025; 19:e0012695. [PMID: 39854566 PMCID: PMC11761120 DOI: 10.1371/journal.pntd.0012695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/13/2024] [Indexed: 01/26/2025] Open
Abstract
Chikungunya virus (CHIKV) is primarily associated with non-human-primates (NHPs) in Africa, which also infect humans. Since its introduction to Brazil in 2014, CHIKV has predominantly thrived in urban cycles, involving Aedes aegypti mosquitoes. Limited knowledge exists regarding CHIKV occurrence and implications in rural and sylvatic cycles where neotropical NHPs are potential hosts, from which we highlight Leontopithecus chrysomelas (Kuhl, 1820), the golden-headed lion tamarin (GHLT), an endangered species endemic to the Atlantic Forest (AF) in Southern Bahia State, Brazil. The present study investigated wild GHLT groups across two municipalities, Ilhéus and Una, Bahia. Surveys were conducted in three groups within cocoa agroforests (cabrucas) in Ilhéus, and four groups in anthropized forest and agroforestry fragments in Una, between 2021 and 2022. Thirty-two GHLT specimens were captured and chemically immobilized, examined and submitted to blood sample collection; nine specimens were later recaptured in 2022, totaling 41 samples. CHIKV viremia was not detected in any specimens (as assayed by RT-qPCR). Plaque reduction neutralization test (PRNT90) detected CHIKV antibodies in two (6.3%) GHLTs, with 10-20 antibody titers. Seroprevalence in 2021 was 5.6% and in 2022 was 8.7% with an incidence of 4.5%, whereas, a male adult tested seropositive in both years, suggesting either natural re-exposure and antibody maintenance over time. All samples tested seronegative for Mayaro Virus. Eight mosquito species from the Culicidae family were collected, identified and assayed for CHIKV genomes, showing negative results. This study provides the first evidence of natural CHIKV exposure among free-living GHLTs in Brazil, emphasizing their susceptibility and potential role as reservoirs. These findings underscore the possible consequences of anthropic disturbances in the Brazilian AF, without a seroprevalence difference between non-protected forest formations, agroforest fragments and various mosaic farming landscapes in South Bahia, and highlight the importance of conservation efforts for this endemic and endangered primate species.
Collapse
Affiliation(s)
- Sofía Bernal-Valle
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Núcleo de Atendimento e Pesquisa de Animais Silvestres (NAPAS), Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- CENIBiot Laboratory, The National Center of High Technology (CeNAT-CONARE), San José, Costa Rica
| | | | | | - Fabrício Souza Campos
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cirilo Henrique de Oliveira
- Insect Behavior Laboratory (LACOI), Instituto Federal do Norte de Minas Gerais, Salinas, Minas Gerais, Brazil
| | - Antônio Victor Veloso Ramos
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Núcleo de Atendimento e Pesquisa de Animais Silvestres (NAPAS), Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Reizane Pereira Lordelo
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | | | - Leonardo de Carvalho Oliveira
- Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade—PPGECB, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Bicho do Mato Instituto de Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| | - Hllytchaikra Ferraz Fehlberg
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Ana Maria Bispo Filippis
- Laboratory of arboviroses and hemorrhagic viruses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bergmann Morais Ribeiro
- Baculovirus Laboratory, Department of Cell Biology, Institute of Biological Sciences, University of Brasilia, Brasília, Federal District, Brazil
| | - Paulo Michel Roehe
- Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Anaiá da Paixão Sevá
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Danilo Simonini-Teixeira
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- Núcleo de Atendimento e Pesquisa de Animais Silvestres (NAPAS), Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - George Rego Albuquerque
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| |
Collapse
|
6
|
Turner EA, Clark SD, Peña-García VH, Christofferson RC. Investigating the Effects of Microclimate on Arboviral Kinetics in Aedes aegypti. Pathogens 2024; 13:1105. [PMID: 39770364 PMCID: PMC11728849 DOI: 10.3390/pathogens13121105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Aedes aegypti are indoor-dwelling vectors of many arboviruses, including Zika (ZIKV) and chikungunya (CHIKV). The dynamics of these viruses within the mosquito are known to be temperature-dependent, and models that address risk and predictions of the transmission efficiency and patterns typically use meteorological temperature data. These data do not differentiate the temperatures experienced by mosquitoes in different microclimates, such as indoor vs. outdoor. Using temperature data collected from Neiva Colombia, we investigated the impact of two microclimate temperature profiles on ZIKV and CHIKV infection dynamics in Ae. aegypti. We found that the vector mortality was not significantly impacted by the difference in temperature profiles. Further, we found that the infection and dissemination rates were largely unaffected, with only ZIKV experiencing a significant increase in infection at outdoor temperatures at 21 days post-infection (dpi). Further, there was a significant increase in viral titers in the abdomens of ZIKV-infected mosquitoes at 21 dpi. With CHIKV, there was a significant titer difference in the abdomens of mosquitoes at both 7 and 14 dpi. While there were differences in vector infection kinetics that were not statistically significant, we developed a simple stochastic SEIR-SEI model to determine if the observed differences might translate to notable differences in simulated outbreaks. With ZIKV, while the probability of secondary transmission was high (>90%) under both microenvironmental scenarios, there was often only one secondary case. However, CHIKV differences between microenvironments were more prominent. With over 90% probability of secondary transmission, at indoor conditions, the peak of transmission was higher (over 850 cases) compared to the outdoor conditions (<350 cases). Further, the time-to-peak for indoor was 130 days compared to 217 days for outdoor scenarios. Further investigations into microenvironmental conditions, including temperature, may be key to increasing our understanding of the nuances of CHIKV and ZIKV vectorial capacity, epidemiology, and risk assessment, especially as it affects other aspects of transmission, such as biting rate. Overall, it is critical to understand the variability of how extrinsic factors affect transmission systems, and these data add to the growing catalog of knowledge of how temperature affects arboviral systems.
Collapse
Affiliation(s)
- Erik A Turner
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Samantha D Clark
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Víctor Hugo Peña-García
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- School of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
7
|
Resck MEB, Câmara DCP, dos Santos FB, dos Santos JPC, Alto BW, Honório NA. Spatial-temporal distribution of chikungunya virus in Brazil: a review on the circulating viral genotypes and Aedes ( Stegomyia) albopictus as a potential vector. Front Public Health 2024; 12:1496021. [PMID: 39722706 PMCID: PMC11668782 DOI: 10.3389/fpubh.2024.1496021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Chikungunya virus (CHIKV) is mainly transmitted by the invasive mosquito Aedes (Stegomyia) aegypti in tropical and subtropical regions worldwide. However, genetic adaptations of the virus to the peri domestic mosquito vector Aedes (Stegomyia) albopictus has resulted in enhanced vector competence and associated epidemics and may contribute to further geographic expansion of CHIKV. However, evidence-based data on the relative role of Ae. albopictus in CHIKV transmission dynamics are scarce, especially in regions where Ae. aegypti is the main vector, such as in Brazil. Here, we review the CHIKV genotypes circulating in Brazil, spatial and temporal distribution of Chikungunya cases in Brazil, and susceptibility to infection and transmission (i.e., vector competence) of Ae. albopictus for CHIKV to better understand its relative contribution to the virus transmission dynamics.
Collapse
Affiliation(s)
| | - Daniel Cardoso Portela Câmara
- Programa de Computação Científica, Fundação Oswaldo Cruz - PROCC, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brazil
| | - Flávia Barreto dos Santos
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | - Barry Wilmer Alto
- Florida Medical Entomology Laboratory-FMEL, University of Florida, Vero Beach, FL, United States
| | - Nildimar Alves Honório
- Laboratório das Interações Vírus-Hospedeiros - LIVH, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
- Núcleo Operacional Sentinela de Mosquitos Vetores-Nosmove/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Lühken R, Rauhöft L, Pluskota B, Lange U, Helms M, Becker N, Schmidt-Chanasit J, Kuhn C, Tannich E, Jansen S, Heitmann A. High vector competence for chikungunya virus but heavily reduced locomotor activity of Aedes albopictus from Germany at low temperatures. Parasit Vectors 2024; 17:502. [PMID: 39633401 PMCID: PMC11619113 DOI: 10.1186/s13071-024-06594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND The incidence of human infections caused by arthropod-borne viruses, such as the chikungunya virus (CHIKV), has increased globally due to a number of factors, such as climate change and globalization. The exotic mosquito species Aedes albopictus is a significant vector for CHIKV, raising concerns about its transmission potential in temperate regions, including Central Europe. We have therefore investigated the vector competence of Ae. albopictus for CHIKV at constant and fluctuating temperatures between 15 °C and 24 °C to assess the transmission risk in Europe. METHODS Aedes albopictus mosquitoes were reared and artificially infected with CHIKV. Infection rates and transmission efficiencies (TEs) were determined after 14 days of incubation at constant and fluctuating (± 5 °C) mean temperatures of 15 °C, 18 °C, 21 °C and 24 °C. In addition, mosquito locomotor activity was measured under the same fluctuating temperature conditions. A risk map for CHIKV transmission in Europe was generated combining temperature data and the current distribution of Ae. albopictus. RESULTS CHIKV transmission was observed at all tested temperatures. The highest TEs were recorded at fluctuating temperatures of 18 °C (54.3%) and 21 °C (58.6%), while the lowest TE was observed at a constant temperature of 15 °C (5.6%). TEs at fluctuating temperatures of 15 °C and 24 °C were the same (32.5%). Mosquito activity showed a nocturnal unimodal activity pattern with a peak during the start of the scotophase (hour 20). The proportion of active mosquitoes per hour increased with temperature and was nearly zero at 15 °C. The risk map indicated that regions in Southern and Central Europe, including recently invaded areas north of the Alps, have temperatures theoretically allowing CHIKV transmission for at least some days per year. CONCLUSIONS While CHIKV can be transmitted by Ae. albopictus at 15 °C, the activity of this mosquito is strongly decreased at this temperature, likely reducing the transmission risk. These findings emphasize the importance of considering both vector competence and mosquito activity when assessing the risk of arbovirus transmission in temperate regions. Further studies are needed to validate these laboratory findings under field conditions.
Collapse
Affiliation(s)
- Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany.
| | - Leif Rauhöft
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Björn Pluskota
- Kommunale Aktionsgemeinschaft zur Bekämpfung der Schnakenplage (KABS E.V.), Speyer, Germany
| | - Unchana Lange
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Michelle Helms
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Norbert Becker
- Institute for Dipterology (IfD), Speyer, Germany
- Center for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Carola Kuhn
- German Environment Agency (UBA), Berlin, Germany
| | - Egbert Tannich
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Jansen
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Anna Heitmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
9
|
Sharma KB, Subramani C, Ganesh K, Sharma A, Basu B, Balyan S, Sharma G, KA S, Deb A, Srivastava M, Chugh S, Sehrawat S, Bharadwaj K, Rout A, Sahoo PK, Saurav S, Motiani RK, Singh R, Jain D, Asthana S, Wadhwa R, Vrati S. Withaferin A inhibits Chikungunya virus nsP2 protease and shows antiviral activity in the cell culture and mouse model of virus infection. PLoS Pathog 2024; 20:e1012816. [PMID: 39775571 PMCID: PMC11723598 DOI: 10.1371/journal.ppat.1012816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 01/10/2025] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus causing fever, myalgia, and debilitating joint swelling and pain, which in many patients becomes chronic. The frequent epidemics of CHIKV across the world pose a significant public health burden necessitating the development of effective antiviral therapeutics. A cellular imaging-based high-content screening of natural compounds identified withaferin A (WFA), a steroidal lactone isolated from the plant Withania somnifera, as a potent antiviral against CHIKV. In the ERMS cells, WFA inhibited CHIKV replication early during the life cycle by binding the CHIKV non-structural protein nsP2 and inhibiting its protease activity. This inhibited the viral polyprotein processing and the minus-sense viral RNA synthesis. WFA mounted the nsP2 protease inhibitory activity through its oxidising property as the reducing agents N-acetylcysteine and Glutathione-monoethyl ester effectively reversed the WFA-mediated protease inhibition in vitro and abolished the WFA-mediated antiviral activity in cultured cells. WFA inhibited CHIKV replication in the C57BL/6 mouse model of chikungunya disease, resulting in significantly lower viremia. Importantly, CHIKV-infected mice showed significant joint swelling which was not seen in WFA-treated mice. These data demonstrate the potential of WFA as a novel CHIKV antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shouri KA
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Mitul Srivastava
- Translational Health Science and Technology Institute, Faridabad, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, Faridabad, India
| | | | | | - Archana Rout
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Suman Saurav
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Ramandeep Singh
- Translational Health Science and Technology Institute, Faridabad, India
| | - Deepti Jain
- Regional Centre for Biotechnology, Faridabad, India
| | | | - Renu Wadhwa
- National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | | |
Collapse
|
10
|
Yao Z, Ramachandran S, Huang S, Kim E, Jami-Alahmadi Y, Kaushal P, Bouhaddou M, Wohlschlegel JA, Li MM. Interaction of chikungunya virus glycoproteins with macrophage factors controls virion production. EMBO J 2024; 43:4625-4655. [PMID: 39261662 PMCID: PMC11480453 DOI: 10.1038/s44318-024-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/13/2024] Open
Abstract
Despite their role as innate sentinels, macrophages can serve as cellular reservoirs of chikungunya virus (CHIKV), a highly-pathogenic arthropod-borne alphavirus that has caused large outbreaks among human populations. Here, with the use of viral chimeras and evolutionary selection analysis, we define CHIKV glycoproteins E1 and E2 as critical for virion production in THP-1 derived human macrophages. Through proteomic analysis and functional validation, we further identify signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 subunit K (eIF3k) as E1-binding host proteins with anti-CHIKV activities. We find that E1 residue V220, which has undergone positive selection, is indispensable for CHIKV production in macrophages, as its mutation attenuates E1 interaction with the host restriction factors SPCS3 and eIF3k. Finally, we show that the antiviral activity of eIF3k is translation-independent, and that CHIKV infection promotes eIF3k translocation from the nucleus to the cytoplasm, where it associates with SPCS3. These functions of CHIKV glycoproteins late in the viral life cycle provide a new example of an intracellular evolutionary arms race with host restriction factors, as well as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erin Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Prashant Kaushal
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Mehdi Bouhaddou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody Mh Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Ramphal Y, Tegally H, San JE, Reichmuth ML, Hofstra M, Wilkinson E, Baxter C, de Oliveira T, Moir M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024; 13:605. [PMID: 39057831 PMCID: PMC11279734 DOI: 10.3390/pathogens13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.
Collapse
Affiliation(s)
- Yajna Ramphal
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Houriiyah Tegally
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | | | - Marije Hofstra
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Eduan Wilkinson
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Cheryl Baxter
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | - Tulio de Oliveira
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monika Moir
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| |
Collapse
|
12
|
de Souza WM, Gaye A, Ndiaye EH, Morgan AL, Sylla EHD, Sy FA, Diallo M, Weaver SC. Serosurvey of Chikungunya Virus in Old World Fruit Bats, Senegal, 2020-2022. Emerg Infect Dis 2024; 30:1490-1492. [PMID: 38916865 PMCID: PMC11210635 DOI: 10.3201/eid3007.240055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
We conducted a cross-sectional serosurvey for chikungunya virus (CHIKV) exposure in fruit bats in Senegal during 2020-2023. We found that 13.3% (89/671) of bats had CHIKV IgG; highest prevalence was in Eidolon helvum (18.3%, 15/82) and Epomophorus gambianus (13.7%, 63/461) bats. Our results suggest these bats are naturally exposed to CHIKV.
Collapse
|
13
|
Mehta D, Chaudhary S, Sunil S. Oxidative stress governs mosquito innate immune signalling to reduce chikungunya virus infection in Aedes-derived cells. J Gen Virol 2024; 105. [PMID: 38488850 DOI: 10.1099/jgv.0.001966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Arboviruses such as chikungunya, dengue and zika viruses cause debilitating diseases in humans. The principal vector species that transmits these viruses is the Aedes mosquito. Lack of substantial knowledge of the vector species hinders the advancement of strategies for controlling the spread of arboviruses. To supplement our information on mosquitoes' responses to virus infection, we utilized Aedes aegypti-derived Aag2 cells to study changes at the transcriptional level during infection with chikungunya virus (CHIKV). We observed that genes belonging to the redox pathway were significantly differentially regulated. Upon quantifying reactive oxygen species (ROS) in the cells during viral infection, we further discovered that ROS levels are considerably higher during the early hours of infection; however, as the infection progresses, an increase in antioxidant gene expression suppresses the oxidative stress in cells. Our study also suggests that ROS is a critical regulator of viral replication in cells and inhibits intracellular and extracellular viral replication by promoting the Rel2-mediated Imd immune signalling pathway. In conclusion, our study provides evidence for a regulatory role of oxidative stress in infected Aedes-derived cells.
Collapse
Affiliation(s)
- Divya Mehta
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sakshi Chaudhary
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sujatha Sunil
- Vector Borne Diseases Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
14
|
Silva LDC, Costa LHA, Dos Santos ICDO, de Curcio JS, Barbosa AMDF, Anunciação CE, Silveira-Lacerda EDP. Advancing Chikungunya Diagnosis: A Cost-Effective and Rapid Visual employing Loop-mediated isothermal reaction. Diagn Microbiol Infect Dis 2024; 108:116111. [PMID: 38016385 DOI: 10.1016/j.diagmicrobio.2023.116111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/24/2023] [Accepted: 10/14/2023] [Indexed: 11/30/2023]
Abstract
The diagnosis of Chikungunya (CHIKV), along with the simultaneous monitoring of virus circulation in the population or vectors, is essential for global health. Although effective diagnostic methods for CHIKV, such as RT-qPCR, exist, their utilization is constrained by high costs. With the aim of contributing to the field of diagnostics, we have developed a diagnostic assay using isothermal amplification technology with visually interpretable results. This test can detect the virus within a maximum timeframe of 30 minutes. The detection limit of RT-LAMP CHIKV was found to be 66 copies of RNA molecules (Ct ≅ 31.28), and no cross-reactivity with other arboviruses was observed. During test validation, our assay demonstrated a sensitivity of 80.43%, specificity of 100%, and an overall accuracy of 88.89%. By utilizing more cost-effective reagents and equipment compared to RT-qPCR, this test holds the potential for broader application and enhanced accessibility, particularly in point-of-care settings.
Collapse
Affiliation(s)
- Lívia do Carmo Silva
- Center for the Study and Research of (Re)Emerging Agents (NUPEREME), Sentinel Unit and International and Travel Medicine Reference Center (USCREMIVI)/, IPTSP/ICB, Federal University of Goiás, Brazil.
| | - Luiz Henrique Alves Costa
- Center for the Study and Research of (Re)Emerging Agents (NUPEREME), Sentinel Unit and International and Travel Medicine Reference Center (USCREMIVI)/, IPTSP/ICB, Federal University of Goiás, Brazil
| | - Isabela Cristina de Oliveira Dos Santos
- Center for the Study and Research of (Re)Emerging Agents (NUPEREME), Sentinel Unit and International and Travel Medicine Reference Center (USCREMIVI)/, IPTSP/ICB, Federal University of Goiás, Brazil
| | - Juliana Santana de Curcio
- Center for the Study and Research of (Re)Emerging Agents (NUPEREME), Sentinel Unit and International and Travel Medicine Reference Center (USCREMIVI)/, IPTSP/ICB, Federal University of Goiás, Brazil
| | - Amanda Munik de Freitas Barbosa
- Center for the Study and Research of (Re)Emerging Agents (NUPEREME), Sentinel Unit and International and Travel Medicine Reference Center (USCREMIVI)/, IPTSP/ICB, Federal University of Goiás, Brazil
| | - Carlos Eduardo Anunciação
- Center for the Study and Research of (Re)Emerging Agents (NUPEREME), Sentinel Unit and International and Travel Medicine Reference Center (USCREMIVI)/, IPTSP/ICB, Federal University of Goiás, Brazil
| | - Elisângela de Paula Silveira-Lacerda
- Center for the Study and Research of (Re)Emerging Agents (NUPEREME), Sentinel Unit and International and Travel Medicine Reference Center (USCREMIVI)/, IPTSP/ICB, Federal University of Goiás, Brazil.
| |
Collapse
|
15
|
Mhamadi M, Mencattelli G, Gaye A, Ndiaye EH, Sow AA, Faye M, Ndione MHD, Diagne MM, Mhamadi M, Faye O, Weidmann M, Faye O, Diallo M, Diagne CT. Rapid On-Site Detection of Arboviruses by a Direct RT-qPCR Assay. BIOSENSORS 2023; 13:1035. [PMID: 38131795 PMCID: PMC10741549 DOI: 10.3390/bios13121035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Arthropod-borne diseases currently constitute a source of major health concerns worldwide. They account for about 50% of global infectious diseases and cause nearly 700,000 deaths every year. Their rapid increase and spread constitute a huge challenge for public health, highlighting the need for early detection during epidemics, to curtail the virus spread, and to enhance outbreak management. Here, we compared a standard quantitative polymerase chain reaction (RT-qPCR) and a direct RT-qPCR assay for the detection of Zika (ZIKV), Chikungunya (CHIKV), and Rift Valley Fever (RVFV) viruses from experimentally infected-mosquitoes. The direct RT-qPCR could be completed within 1.5 h and required 1 µL of viral supernatant from homogenized mosquito body pools. Results showed that the direct RT-qPCR can detect 85.71%, 89%, and 100% of CHIKV, RVFV, and ZIKV samples by direct amplifications compared to the standard method. The use of 1:10 diluted supernatant is suggested for CHIKV and RVFV direct RT-qPCR. Despite a slight drop in sensitivity for direct PCR, our technique is more affordable, less time-consuming, and provides a better option for qualitative field diagnosis during outbreak management. It represents an alternative when extraction and purification steps are not possible because of insufficient sample volume or biosecurity issues.
Collapse
Affiliation(s)
- Moufid Mhamadi
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Giulia Mencattelli
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Alioune Gaye
- Department of Medical Zoology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (A.G.); (E.H.N.)
| | - El Hadji Ndiaye
- Department of Medical Zoology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (A.G.); (E.H.N.)
| | - Aïssatou Aïcha Sow
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Martin Faye
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Marie Henriette Dior Ndione
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Moussa Moïse Diagne
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Moundhir Mhamadi
- DIATROPIX, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (M.M.); (M.D.)
| | - Ousmane Faye
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Manfred Weidmann
- Institute of Microbiology and Virology, Brandenburg Medical School Theodor Fontane, 01968 Senftenberg, Germany;
| | - Oumar Faye
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
| | - Mawlouth Diallo
- DIATROPIX, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (M.M.); (M.D.)
| | - Cheikh Tidiane Diagne
- Department of Virology, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (G.M.); (A.A.S.); (M.F.); (M.H.D.N.); (M.M.D.); (O.F.); (O.F.)
- DIATROPIX, Fondation Institut Pasteur de Dakar 36, Avenue Pasteur, Dakar 220, Senegal; (M.M.); (M.D.)
| |
Collapse
|
16
|
Lehmann T, Kouam C, Woo J, Diallo M, Wilkerson R, Linton YM. The African mosquito-borne diseasosome: geographical patterns, range expansion and future disease emergence. Proc Biol Sci 2023; 290:20231581. [PMID: 38018102 PMCID: PMC10685135 DOI: 10.1098/rspb.2023.1581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/30/2023] Open
Abstract
Mosquito-borne diseases (MBDs) threaten public health and food security globally. We provide the first biogeographic description of the African mosquito fauna (677 species) and the 151 mosquito-borne pathogens (MBPs) they transmit. While mosquito species richness agrees with expectations based on Africa's land surface, African arboviruses and mammalian plasmodia are more speciose than expected. Species assemblages of mosquitoes and MBPs similarly separate sub-Saharan Africa from North Africa, and those in West and Central Africa from eastern and southern Africa. Similarities between mosquitoes and MBPs in diversity and range size suggest that mosquitoes are key in delimiting the range of MBPs. With approximately 25% endemicity, approximately 50% occupying one to three countries and less than 5% occupying greater than 25 countries, the ranges of mosquitoes and MBPs are surprisingly small, suggesting that most MBPs are transmitted by a single mosquito species. Exceptionally widespread mosquito species feed on people and livestock, and most are high-altitude-windborne migrants. Likewise, widespread MBPs are transmitted among people or livestock by widespread mosquitoes, suggesting that adapting to people or livestock and to widespread mosquito species promote range expansion in MBPs. Range size may predict range expansion and emergence risk. We highlight key knowledge gaps that impede prediction and mitigation of future emergence of local and global MBDs.
Collapse
Affiliation(s)
- Tovi Lehmann
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Cedric Kouam
- Laboratory of Malaria and Vector Research, NIAID, NIH, Rockville, MD, USA
| | - Joshua Woo
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mawlouth Diallo
- Pôle de Zoologie Médicale, Institut Pasteur de Dakar, Dakar, Senegal
| | - Richard Wilkerson
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History, Washington, DC, USA
| | - Yvonne-Marie Linton
- Walter Reed Biosystematics Unit (WRBU), Smithsonian Institution Museum Support Center, Suitland, MD, USA
- Department of Entomology, Smithsonian Institution–National Museum of Natural History, Washington, DC, USA
- One Health Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, MD, USA
| |
Collapse
|
17
|
Christofferson RC, Turner EA, Peña-García VH. Identifying Knowledge Gaps through the Systematic Review of Temperature-Driven Variability in the Competence of Aedes aegypti and Ae. albopictus for Chikungunya Virus. Pathogens 2023; 12:1368. [PMID: 38003832 PMCID: PMC10675276 DOI: 10.3390/pathogens12111368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Temperature is a well-known effector of several transmission factors of mosquito-borne viruses, including within mosquito dynamics. These dynamics are often characterized by vector competence and the extrinsic incubation period (EIP). Vector competence is the intrinsic ability of a mosquito population to become infected with and transmit a virus, while EIP is the time it takes for the virus to reach the salivary glands and be expectorated following an infectious bloodmeal. Temperatures outside the optimal range act on life traits, decreasing transmission potential, while increasing temperature within the optimal range correlates to increasing vector competence and a decreased EIP. These relatively well-studied effects of other Aedes borne viruses (dengue and Zika) are used to make predictions about transmission efficiency, including the challenges presented by urban heat islands and climate change. However, the knowledge of temperature and chikungunya (CHIKV) dynamics within its two primary vectors-Ae. aegypti and Ae. albopictus-remains less characterized, even though CHIKV remains a virus of public-health importance. Here, we review the literature and summarize the state of the literature on CHIKV and temperature dependence of vector competence and EIP and use these data to demonstrate how the remaining knowledge gap might confound the ability to adequately predict and, thus, prepare for future outbreaks.
Collapse
Affiliation(s)
| | - Erik A. Turner
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | | |
Collapse
|
18
|
Gregianini TS, Salvato RS, Barcellos RB, Godinho FM, Ruivo AP, de Melo VH, Schroder JA, Martiny FL, Möllmann EB, Favreto C, Baethgen LF, Ferreira VP, de Lima LE, Piazza CF, Machado TRM, Becker IM, Ramos RR, Frölich GC, Rossetti AF, Almeida LDC, Rodrigues TMA, Bragança IT, Campos AAS, Manzoni VB, Machado LC, da Silva LMI, de Oliveira ALS, Paiva MHS, Nunes ZMA, de Almeida PR, Demoliner M, Gularte JS, da Silva MS, Filippi M, Pereira VMDAG, Spilki FR, da Veiga ABG, Wallau GL. Chikungunya virus infection in the southernmost state of Brazil was characterised by self-limited transmission (2017-2019) and a larger 2021 outbreak. Mem Inst Oswaldo Cruz 2023; 118:e220259. [PMID: 37531506 PMCID: PMC10392894 DOI: 10.1590/0074-02760220259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/19/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Chikungunya is a mosquito-borne virus that has been causing large outbreaks in the Americas since 2014. In Brazil, Asian-Caribbean (AC) and East-Central-South-African (ECSA) genotypes have been detected and lead to large outbreaks in several Brazilian states. In Rio Grande do Sul (RS), the southernmost state of Brazil, the first cases were reported in 2016. OBJECTIVES AND METHODS We employed genome sequencing and epidemiological investigation to characterise the Chikungunya fever (CHIKF) burden in RS between 2017-2021. FINDINGS We detected an increasing CHIKF burden linked to travel associated introductions and communitary transmission of distinct lineages of the ECSA genotype during this period. MAIN CONCLUSIONS Until 2020, CHIKV introductions were most travel associated and transmission was limited. Then, in 2021, the largest outbreak occurred in the state associated with the introduction of a new ECSA lineage. CHIKV outbreaks are likely to occur in the near future due to abundant competent vectors and a susceptible population, exposing more than 11 million inhabitants to an increasing infection risk.
Collapse
Affiliation(s)
- Tatiana Schäffer Gregianini
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Richard Steiner Salvato
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Regina Bones Barcellos
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Fernanda Marques Godinho
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Amanda Pellenz Ruivo
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Viviane Horn de Melo
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Júlio Augusto Schroder
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Centro de Desenvolvimento Científico e Tecnológico, Porto Alegre, RS, Brasil
| | - Fernanda Letícia Martiny
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Erica Bortoli Möllmann
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Cátia Favreto
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Divisão de Vigilância Epidemiológica, Porto Alegre, RS, Brasil
| | - Ludmila Fiorenzano Baethgen
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Vithoria Pompermaier Ferreira
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Lívia Eidt de Lima
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Cláudia Fasolo Piazza
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Taís Raquel Marcon Machado
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Irina Marieta Becker
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Raquel Rocha Ramos
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Guilherme Carey Frölich
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Alana Fraga Rossetti
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Lucas da Cunha Almeida
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Tahiana Machado Antunes Rodrigues
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Isabella Tabelli Bragança
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | - Aline Alves Scarpellini Campos
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Divisão de Vigilância Ambiental, Porto Alegre, RS, Brasil
| | - Verônica Baú Manzoni
- Prefeitura de São Nicolau, Secretaria Municipal de Saúde, São Nicolau, RS, Brasil
| | - Lais Ceschini Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Departamento de Entomologia e Núcleo de Bioinformática, Recife, PE, Brasil
| | - Luisa Maria Inácio da Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Departamento de Entomologia e Núcleo de Bioinformática, Recife, PE, Brasil
| | - André Luiz Sá de Oliveira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Núcleo de Estatística e Geoprocessamento, Recife, PE, Brasil
| | - Marcelo Henrique Santos Paiva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Departamento de Entomologia e Núcleo de Bioinformática, Recife, PE, Brasil
| | - Zenaida Marion Alves Nunes
- Secretaria Estadual da Saúde do Rio Grande do Sul, Centro Estadual de Vigilância em Saúde, Laboratório Central de Saúde Pública, Porto Alegre, RS, Brasil
| | | | - Meriane Demoliner
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brasil
| | | | | | - Micheli Filippi
- Universidade Feevale, Laboratório de Microbiologia Molecular, Novo Hamburgo, RS, Brasil
| | | | | | | | - Gabriel Luz Wallau
- Fundação Oswaldo Cruz-Fiocruz, Instituto Aggeu Magalhães, Departamento de Entomologia e Núcleo de Bioinformática, Recife, PE, Brasil
- National Reference Centre for Tropical Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Department of Arbovirology, WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Hamburg, Germany
| |
Collapse
|
19
|
Lambrechts L. Does arbovirus emergence in humans require adaptation to domestic mosquitoes? Curr Opin Virol 2023; 60:101315. [PMID: 36996522 DOI: 10.1016/j.coviro.2023.101315] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
In the last few decades, several mosquito-borne arboviruses of zoonotic origin have established large-scale epidemic transmission cycles in the human population. It is often considered that arbovirus emergence is driven by adaptive evolution, such as virus adaptation for transmission by 'domestic' mosquito vector species that live in close association with humans. Here, I argue that although arbovirus adaptation to domestic mosquito vectors has been observed for several emerging arboviruses, it was generally not directly responsible for their initial emergence. Secondary adaptation to domestic mosquitoes often amplified epidemic transmission, however, this was more likely a consequence than a cause of arbovirus emergence. Considering that emerging arboviruses are generally 'preadapted' for transmission by domestic mosquito vectors may help to enhance preparedness toward future arbovirus emergence events.
Collapse
|
20
|
Yao Z, Ramachandran S, Huang S, Jami-Alahmadi Y, Wohlschlegel JA, Li MMH. Chikungunya virus glycoproteins transform macrophages into productive viral dissemination vessels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.29.542714. [PMID: 37398144 PMCID: PMC10312455 DOI: 10.1101/2023.05.29.542714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite their role as innate sentinels, macrophages are cellular reservoirs for chikungunya virus (CHIKV), a highly pathogenic arthropod-borne alphavirus that has caused unprecedented epidemics worldwide. Here, we took interdisciplinary approaches to elucidate the CHIKV determinants that subvert macrophages into virion dissemination vessels. Through comparative infection using chimeric alphaviruses and evolutionary selection analyses, we discovered for the first time that CHIKV glycoproteins E2 and E1 coordinate efficient virion production in macrophages with the domains involved under positive selection. We performed proteomics on CHIKV-infected macrophages to identify cellular proteins interacting with the precursor and/or mature forms of viral glycoproteins. We uncovered two E1-binding proteins, signal peptidase complex subunit 3 (SPCS3) and eukaryotic translation initiation factor 3 (eIF3k), with novel inhibitory activities against CHIKV production. These results highlight how CHIKV E2 and E1 have been evolutionarily selected for viral dissemination likely through counteracting host restriction factors, making them attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Zhenlan Yao
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sangeetha Ramachandran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Serina Huang
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Melody M H Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Bartholomeeusen K, Daniel M, LaBeaud DA, Gasque P, Peeling RW, Stephenson KE, Ng LFP, Ariën KK. Chikungunya fever. Nat Rev Dis Primers 2023; 9:17. [PMID: 37024497 PMCID: PMC11126297 DOI: 10.1038/s41572-023-00429-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Chikungunya virus is widespread throughout the tropics, where it causes recurrent outbreaks of chikungunya fever. In recent years, outbreaks have afflicted populations in East and Central Africa, South America and Southeast Asia. The virus is transmitted by Aedes aegypti and Aedes albopictus mosquitoes. Chikungunya fever is characterized by severe arthralgia and myalgia that can persist for years and have considerable detrimental effects on health, quality of life and economic productivity. The effects of climate change as well as increased globalization of commerce and travel have led to growth of the habitat of Aedes mosquitoes. As a result, increasing numbers of people will be at risk of chikungunya fever in the coming years. In the absence of specific antiviral treatments and with vaccines still in development, surveillance and vector control are essential to suppress re-emergence and epidemics.
Collapse
Affiliation(s)
- Koen Bartholomeeusen
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Service de Médecine d'Urgences-SAMU-SMUR, CHU de La Réunion, Saint-Denis, France
| | - Desiree A LaBeaud
- Department of Pediatrics, Division of Infectious Disease, Stanford University School of Medicine, Stanford, CA, USA
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, Saint-Denis, France
- Laboratoire d'Immunologie Clinique et Expérimentale Océan Indien LICE-OI, Université de La Réunion, Saint-Denis, France
| | - Rosanna W Peeling
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Kathryn E Stephenson
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Lisa F P Ng
- A*STAR Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- National Institute of Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium.
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
22
|
Lyu XY, Wang XL, Geng DQ, Jiang H, Zou Z. Juvenile hormone acts on male accessory gland function via regulating l-asparaginase expression and triacylglycerol mobilization in Aedes aegypti. INSECT SCIENCE 2023; 30:81-94. [PMID: 35633120 DOI: 10.1111/1744-7917.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/24/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Hormones control the reproductive development of Aedes aegypti mosquitoes. The adult male reproductive process and mating behavior require adequate nutrients and energy. Understanding the molecular mechanism linking hormones, energy metabolism, and reproduction in male mosquitoes is important. In this study, we found that the size of the male accessory gland, an essential part of the male reproductive system, gradually increased after eclosion. However, it was significantly reduced in male mosquitoes deficient in methoprene-tolerant (Met), the receptor of juvenile hormone. Likewise, egg hatchability of females that mated with Met-depleted males showed the same downward trend. The mRNA level of the gene encoding accessory gland protein, l-asparaginase (ASNase), was reduced in Met dsRNA-treated males. Electrophoretic mobility shift assay and quantitative reverse transcription-PCR results revealed that Met was capable of binding directly to the promoter of ASNase and activated its transcription. RNA interference of ASNase in males resulted in the reduction of egg hatchability of the females with which they mated. These results showed that Met influenced the fecundity of male mosquitoes by directly upregulating the expression of the ASNase gene. Moreover, the levels of triacylglycerol and the sizes of lipid droplets were decreased by 72-78 h after eclosion in the fat body cells, whereas both of them increased in Met-depleted male mosquitoes, indicating that Met knockdown reduced lipid catabolism. These data demonstrate that Met might influence the egg hatchability of females by regulating lipid metabolism and the development of the male accessory gland in male mosquitoes.
Collapse
Affiliation(s)
- Xiang-Yang Lyu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Qian Geng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hong Jiang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Ribeiro Dos Santos G, Durovni B, Saraceni V, Souza Riback TI, Pinto SB, Anders KL, Moreira LA, Salje H. Estimating the effect of the wMel release programme on the incidence of dengue and chikungunya in Rio de Janeiro, Brazil: a spatiotemporal modelling study. THE LANCET. INFECTIOUS DISEASES 2022; 22:1587-1595. [PMID: 36182679 PMCID: PMC9630156 DOI: 10.1016/s1473-3099(22)00436-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 05/14/2023]
Abstract
BACKGROUND Introgression of genetic material from species of the insect bacteria Wolbachia into populations of Aedes aegypti mosquitoes has been shown in randomised and non-randomised trials to reduce the incidence of dengue; however, evidence for the real-world effectiveness of large-scale deployments of Wolbachia-infected mosquitoes for arboviral disease control in endemic settings is still scarce. A large Wolbachia (wMel strain) release programme was implemented in 2017 in Rio de Janeiro, Brazil. We aimed to assess the effect of this programme on the incidence of dengue and chikungunya in the city. METHODS 67 million wMel-infected mosquitoes were released across 28 489 locations over an area of 86·8 km2 in Rio de Janeiro between Aug 29, 2017 and Dec 27, 2019. Following releases, mosquitoes were trapped and the presence of wMel was recorded. In this spatiotemporal modelling study, we assessed the effect of the release programme on the incidence of dengue and chikungunya. We used spatiotemporally explicit mathematical models applied to geocoded dengue cases (N=283 270) from 2010 to 2019 and chikungunya cases (N=57 705) from 2016 to 2019. FINDINGS On average, 32% of mosquitoes collected from the release zones between 1 month and 29 months after the initial release tested positive for wMel. Reduced wMel introgression occurred in locations and seasonal periods in which cases of dengue and chikungunya were historically high, with a decrease to 25% of mosquitoes testing positive for wMel during months in which disease incidence was at its highest. Despite incomplete introgression, we found that the releases were associated with a 38% (95% CI 32-44) reduction in the incidence of dengue and a 10% (4-16) reduction in the incidence of chikungunya. INTERPRETATION Stable establishment of wMel in the geographically diverse, urban setting of Rio de Janeiro seems to be more complicated than has been observed elsewhere. However, even intermediate levels of wMel seem to reduce the incidence of disease caused by two arboviruses. These findings will help to guide future release programmes. FUNDING Bill & Melinda Gates Foundation and the European Research Council.
Collapse
Affiliation(s)
| | - Betina Durovni
- Centre for Strategic Studies, Fiocruz, Rio de Janeiro, Brazil; World Mosquito Program, Fiocruz, Rio de Janeiro, Brazil
| | | | | | - Sofia B Pinto
- World Mosquito Program, Fiocruz, Rio de Janeiro, Brazil
| | - Katherine L Anders
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Melbourne, VIC, Australia
| | - Luciano A Moreira
- World Mosquito Program, Fiocruz, Rio de Janeiro, Brazil; Instituto Rene Rachou, Fiocruz, Belo Horizonte, Brazil
| | - Henrik Salje
- Pathogen Dynamics Group, Department of Genetics, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Lim JK, Ridde V, Agnandji ST, Lell B, Yaro S, Yang JS, Hoinard D, Weaver SC, Vanhomwegen J, Salje H, Yoon IK. Seroepidemiological Reconstruction of Long-term Chikungunya Virus Circulation in Burkina Faso and Gabon. J Infect Dis 2022; 227:261-267. [PMID: 35710849 PMCID: PMC9833428 DOI: 10.1093/infdis/jiac246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/14/2023] Open
Abstract
Chikungunya virus (CHIKV) is a major public health concern worldwide. However, infection levels are rarely known, especially in Africa. We recruited individuals from Ouagadougou, Burkina Faso and Lambaréné, Gabon (age range, 1-55 years), tested their blood for CHIKV antibodies, and used serocatalytic models to reconstruct epidemiological histories. In Ouagadougou, 291 of 999 (29.1%) individuals were seropositive, ranging from 2% among those aged <10 years to 66% in those aged 40-55 years. We estimated there were 7 outbreaks since the 1970s but none since 2001, resulting in 600 000 infections in the city, none of which were reported. However, we could not definitively conclude whether infections were due to CHIKV or o'nyong-nyong, another alphavirus. In Lambaréné, 117 of 427 (27%) participants were seropositive. Our model identified a single outbreak sometime since 2007, consistent with the only reported CHIKV outbreak in the country. These findings suggest sporadic outbreaks in these settings and that the burden remains undetected or incorrectly attributed.
Collapse
Affiliation(s)
| | - Valery Ridde
- Montreal School of Public Health, Montreal, Quebec, Canada
| | - Selidji Todagbe Agnandji
- Centre de Recherches Médicales de Lambaréné, CampusCentre de Recherches Médicales de Lambaréné, Lambaréné, Gabon,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany,German Centre for Infection Research, Partner Site Tübingen, Tübingen, Germany,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné, CampusCentre de Recherches Médicales de Lambaréné, Lambaréné, Gabon,Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Jae Seung Yang
- International Vaccine Institute, Seoul, Republic of Korea
| | | | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | - Henrik Salje
- Correspondence: Henrik Salje, MBioc, MSc, PhD, Department of Genetics, University of Cambridge, Downing Place, Cambridge CB2 3EH ()
| | | |
Collapse
|
25
|
Nyamwaya DK, Otiende M, Mwango L, Kariuki SM, Otieno B, Omuoyo DO, Githinji G, Kitsao BS, Karanja HK, Gitonga JN, de Laurent ZR, Davies A, Mwarumba S, Agoti CN, Thumbi SM, Hamaluba MM, Newton CR, Bejon P, Warimwe GM. Incidence of chikungunya virus infections among Kenyan children with neurological disease, 2014-2018: A cohort study. PLoS Med 2022; 19:e1003994. [PMID: 35550620 PMCID: PMC9135332 DOI: 10.1371/journal.pmed.1003994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2022] [Accepted: 04/19/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Neurological complications due to chikungunya virus (CHIKV) infection have been described in different parts of the world, with children being disproportionately affected. However, the burden of CHIKV-associated neurological disease in Africa is currently unknown and given the lack of diagnostic facilities in routine care it is possible that CHIKV is an unrecognized etiology among children with encephalitis or other neurological illness. METHODS AND FINDINGS We estimated the incidence of CHIKV infection among children hospitalized with neurological disease in Kilifi County, coastal Kenya. We used reverse transcriptase polymerase chain reaction (RT-PCR) to systematically test for CHIKV in cerebrospinal fluid (CSF) samples from children aged <16 years hospitalized with symptoms of neurological disease at Kilifi County Hospital between January 2014 and December 2018. Clinical records were linked to the Kilifi Health and Demographic Surveillance System and population incidence rates of CHIKV infection estimated. There were 18,341 pediatric admissions for any reason during the 5-year study period, of which 4,332 (24%) had CSF collected. The most common clinical reasons for CSF collection were impaired consciousness, seizures, and coma (47%, 22%, and 21% of all collections, respectively). After acute investigations done for immediate clinical care, CSF samples were available for 3,980 admissions, of which 367 (9.2%) were CHIKV RT-PCR positive. Case fatality among CHIKV-positive children was 1.4% (95% CI 0.4, 3.2). The annual incidence of CHIKV-associated neurological disease varied between 13 to 58 episodes per 100,000 person-years among all children <16 years old. Among children aged <5 years, the incidence of CHIKV-associated neurological disease was 77 per 100,000 person-years, compared with 20 per 100,000 for cerebral malaria and 7 per 100,000 for bacterial meningitis during the study period. Because of incomplete case ascertainment due to children not presenting to hospital, or not having CSF collected, these are likely minimum estimates. Study limitations include reliance on hospital-based surveillance and limited CSF sampling in children in coma or other contraindications to lumbar puncture, both of which lead to under-ascertainment of incidence and of case fatality. CONCLUSIONS In this study, we observed that CHIKV infections are relatively more common than cerebral malaria and bacterial meningitis among children hospitalized with neurological disease in coastal Kenya. Given the wide distribution of CHIKV mosquito vectors, studies to determine the geographic extent of CHIKV-associated neurological disease in Africa are essential.
Collapse
Affiliation(s)
| | - Mark Otiende
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Lilian Mwango
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
| | | | | | | | | | | | | | | | | | - Alun Davies
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
| | | | | | - Samuel M. Thumbi
- Paul G Allen School for Global Animal Health, Washington State University, Washington, United States of America
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Center for Epidemiological Modelling and Analysis, Institute of Tropical and Infectious Diseases, University of Nairobi, Nairobi, Kenya
| | | | | | - Philip Bejon
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
26
|
Zhang D, Yang Y, Li M, Lu Y, Liu Y, Jiang J, Liu R, Liu J, Huang X, Li G, Qu J. Ecological Barrier Deterioration Driven by Human Activities Poses Fatal Threats to Public Health due to Emerging Infectious Diseases. ENGINEERING (BEIJING, CHINA) 2022; 10:155-166. [PMID: 33903827 PMCID: PMC8060651 DOI: 10.1016/j.eng.2020.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/24/2023]
Abstract
The coronavirus disease 2019 (COVID-19) and concerns about several other pandemics in the 21st century have attracted extensive global attention. These emerging infectious diseases threaten global public health and raise urgent studies on unraveling the underlying mechanisms of their transmission from animals to humans. Although numerous works have intensively discussed the cross-species and endemic barriers to the occurrence and spread of emerging infectious diseases, both types of barriers play synergistic roles in wildlife habitats. Thus far, there is still a lack of a complete understanding of viral diffusion, migration, and transmission in ecosystems from a macro perspective. In this review, we conceptualize the ecological barrier that represents the combined effects of cross-species and endemic barriers for either the natural or intermediate hosts of viruses. We comprehensively discuss the key influential factors affecting the ecological barrier against viral transmission from virus hosts in their natural habitats into human society, including transmission routes, contact probability, contact frequency, and viral characteristics. Considering the significant impacts of human activities and global industrialization on the strength of the ecological barrier, ecological barrier deterioration driven by human activities is critically analyzed for potential mechanisms. Global climate change can trigger and expand the range of emerging infectious diseases, and human disturbances promote higher contact frequency and greater transmission possibility. In addition, globalization drives more transmission routes and produces new high-risk regions in city areas. This review aims to provide a new concept for and comprehensive evidence of the ecological barrier blocking the transmission and spread of emerging infectious diseases. It also offers new insights into potential strategies to protect the ecological barrier and reduce the wide-ranging risks of emerging infectious diseases to public health.
Collapse
Affiliation(s)
- Dayi Zhang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yunfeng Yang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yun Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingkun Jiang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruiping Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianguo Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xia Huang
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Guanghe Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- School of Environment, Tsinghua University, Beijing 100084, China
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
27
|
Phadungsombat J, Imad HA, Nakayama EE, Leaungwutiwong P, Ramasoota P, Nguitragool W, Matsee W, Piyaphanee W, Shioda T. Spread of a Novel Indian Ocean Lineage Carrying E1-K211E/E2-V264A of Chikungunya Virus East/Central/South African Genotype across the Indian Subcontinent, Southeast Asia, and Eastern Africa. Microorganisms 2022; 10:354. [PMID: 35208808 PMCID: PMC8878743 DOI: 10.3390/microorganisms10020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 01/27/2023] Open
Abstract
The Indian Ocean Lineage (IOL) of the chikungunya virus (CHIKV) East/Central/South African (ECSA) genotype, which originated in Kenya, spread to the Indian ocean and the Indian subcontinent, and then expanded through Southeast Asia in the previous decade. It carried an adaptive mutation E1-A226V, which enhances CHIKV replication in Aedes albopictus. However, the IOL CHIKV of the most recent outbreaks during 2016-2020 in India, Pakistan, Bangladesh, the Maldives, Myanmar, Thailand, and Kenya lacked E1-A226V but carried E1-K211E and E2-V264A. Recent CHIKV genome sequences of the Maldives and Thailand were determined, and their phylogenetic relationships were further investigated together with IOL sequences reported in 2004-2020 in the database. The results showed that the ancestral IOLs diverged to a sub-lineage E1-K211E/E2-V264A, probably in India around 2008, and caused sporadic outbreaks in India during 2010-2015 and in Kenya in 2016. The massive expansion of this new sub-lineage occurred after the acquisition of E1-I317V in other neighboring and remote regions in 2014-2020. Additionally, the phylogenetic tree indicated that independent clades formed according to the geographical regions and introduction timing. The present results using all available partial or full sequences of the recent CHIKVs emphasized the dynamics of the IOL sub-lineages in the Indian subcontinent, Southeast Asia, and Eastern Africa.
Collapse
Affiliation(s)
- Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
| | - Hisham A. Imad
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Emi E. Nakayama
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research (CEAR), Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wasin Matsee
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (W.P.)
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Watcharapong Piyaphanee
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (W.M.); (W.P.)
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Tatsuo Shioda
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Center for Infectious Disease Education and Research, Department of Viral Infections, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0871, Japan; (H.A.I.); (E.E.N.)
| |
Collapse
|
28
|
Lucas CJ, Morrison TE. Animal models of alphavirus infection and human disease. Adv Virus Res 2022; 113:25-88. [DOI: 10.1016/bs.aivir.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
29
|
Chikungunya Virus Exposure Partially Cross-Protects against Mayaro Virus Infection in Mice. J Virol 2021; 95:e0112221. [PMID: 34549980 DOI: 10.1128/jvi.01122-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chikungunya virus (CHIKV) and Mayaro virus (MAYV) are closely related members of the Semliki Forest virus antigenic complex classified as belonging to the genus Alphavirus of the family Togaviridae. These viruses cause human disease, with sudden fever and joint inflammation that can persist for long periods. CHIKV is the causative agent of large outbreaks worldwide, and MAYV infection represents a growing public health concern in Latin America, causing sporadic cases and geographically limited outbreaks. Considering the relationship between CHIKV and MAYV, the present study aimed to evaluate if preexisting CHIKV immunity protects against MAYV infection. Immunocompetent C57BL/6 mice were intraperitoneally infected with CHIKV and, 4 weeks later, they were infected with MAYV in their hind paw. We observed that the preexistence of CHIKV immunity conferred partial cross-protection against secondary MAYV infection, reducing disease severity, tissue viral load, and histopathological scores. Interestingly, CHIKV antibodies from humans and mice showed low cross-neutralization to MAYV, but neutralizing activity significantly increased after secondary infection. Furthermore, depletion of adaptive immune cells (CD4+ T, CD8+ T, and CD19+ B cells) did not alter the cross-protection phenotype, suggesting that distinct cell subsets or a combination of adaptive immune cells stimulated by CHIKV are responsible for the partial cross-protection against MAYV. The reduction of proinflammatory cytokines, such as interferon gamma (IFN-γ), in animals secondarily infected by MAYV, suggests a role for innate immunity in cross-protection. Our findings shed light on how preexisting immunity to arthritogenic alphaviruses may affect secondary infection, which may further develop relevant influence in disease outcome and viral transmission. IMPORTANCE Mosquito-borne viruses have a worldwide impact, especially in tropical climates. Chikungunya virus has been present mostly in developing countries, causing millions of infections, while Mayaro virus, a close relative, has been limited to the Caribbean and tropical regions of Latin America. The potential emergence and spread of Mayaro virus to other high-risk areas have increased the scientific community's attention to an imminent worldwide epidemic. Here, we designed an experimental protocol of chikungunya and Mayaro virus mouse infection, which develops a measurable and quantifiable disease that allows us to make inferences about potential immunological effects during secondary virus infection. Our results demonstrate that previous chikungunya virus infection is able to reduce the severity of clinical outcomes during secondary Mayaro infection. We provide scientific understanding of immunological features during secondary infection with the closely related virus, thus assisting in better comprehending viral transmission and the pathological outcome of these diseases.
Collapse
|
30
|
Kril V, Aïqui-Reboul-Paviet O, Briant L, Amara A. New Insights into Chikungunya Virus Infection and Pathogenesis. Annu Rev Virol 2021; 8:327-347. [PMID: 34255544 DOI: 10.1146/annurev-virology-091919-102021] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chikungunya virus (CHIKV) is a re-emerging mosquito-borne alphavirus responsible for major outbreaks of disease since 2004 in the Indian Ocean islands, South east Asia, and the Americas. CHIKV causes debilitating musculoskeletal disorders in humans that are characterized by fever, rash, polyarthralgia, and myalgia. The disease is often self-limiting and nonlethal; however, some patients experience atypical or severe clinical manifestations, as well as a chronic rheumatic syndrome. Unfortunately, no efficient antivirals against CHIKV infection are available so far, highlighting the importance of deepening our knowledge of CHIKV host cell interactions and viral replication strategies. In this review, we discuss recent breakthroughs in the molecular mechanisms that regulate CHIKV infection and lay down the foundations to understand viral pathogenesis. We describe the role of the recently identified host factors co-opted by the virus for infection and pathogenesis, and emphasize the importance of CHIKV nonstructural proteins in both replication complex assembly and host immune response evasion. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vasiliya Kril
- Biology of Emerging Virus Team, INSERM U944, CNRS UMR 7212, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, 75010 Paris, France;
| | - Olivier Aïqui-Reboul-Paviet
- RNA Viruses and Metabolism Team, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, 34293 Montpellier, France;
| | - Laurence Briant
- RNA Viruses and Metabolism Team, CNRS UMR 9004, Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, 34293 Montpellier, France;
| | - Ali Amara
- Biology of Emerging Virus Team, INSERM U944, CNRS UMR 7212, Institut de Recherche Saint-Louis, Université de Paris, Hôpital Saint-Louis, 75010 Paris, France;
| |
Collapse
|
31
|
Tjaden NB, Cheng Y, Beierkuhnlein C, Thomas SM. Chikungunya Beyond the Tropics: Where and When Do We Expect Disease Transmission in Europe? Viruses 2021; 13:v13061024. [PMID: 34072346 PMCID: PMC8226708 DOI: 10.3390/v13061024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 02/02/2023] Open
Abstract
Chikungunya virus disease (chikungunya) is a mosquito-borne infectious disease reported in at least 50 countries, mostly in the tropics. It has spread around the globe within the last two decades, with local outbreaks in Europe. The vector mosquito Aedes albopictus (Diptera, Culicidae) has already widely established itself in southern Europe and is spreading towards central parts of the continent. Public health authorities and policymakers need to be informed about where and when a chikungunya transmission is likely to take place. Here, we adapted a previously published global ecological niche model (ENM) by including only non-tropical chikungunya occurrence records and selecting bioclimatic variables that can reflect the temperate and sub-tropical conditions in Europe with greater accuracy. Additionally, we applied an epidemiological model to capture the temporal outbreak risk of chikungunya in six selected European cities. Overall, the non-tropical ENM captures all the previous outbreaks in Europe, whereas the global ENM had underestimated the risk. Highly suitable areas are more widespread than previously assumed. They are found in coastal areas of the Mediterranean Sea, in the western part of the Iberian Peninsula, and in Atlantic coastal areas of France. Under a worst-case scenario, even large areas of western Germany and the Benelux states are considered potential areas of transmission. For the six selected European cities, June–September (the 22th–38th week) is the most vulnerable time period, with the maximum continuous duration of a possible transmission period lasting up to 93 days (Ravenna, Italy).
Collapse
Affiliation(s)
- Nils Benjamin Tjaden
- Department of Biogeography, University of Bayreuth, D-95447 Bayreuth, Germany; (N.B.T.); (Y.C.); (C.B.)
| | - Yanchao Cheng
- Department of Biogeography, University of Bayreuth, D-95447 Bayreuth, Germany; (N.B.T.); (Y.C.); (C.B.)
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, D-95447 Bayreuth, Germany; (N.B.T.); (Y.C.); (C.B.)
- Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, D-95447 Bayreuth, Germany
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, D-95447 Bayreuth, Germany; (N.B.T.); (Y.C.); (C.B.)
- Bayreuth Center of Ecology and Environmental Research BayCEER, University of Bayreuth, D-95447 Bayreuth, Germany
- Correspondence: ; Tel.: +49-921-55-2307
| |
Collapse
|
32
|
de Mendonça SF, Rocha MN, Ferreira FV, Leite THJF, Amadou SCG, Sucupira PHF, Marques JT, Ferreira AGA, Moreira LA. Evaluation of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus Mosquitoes Competence to Oropouche virus Infection. Viruses 2021; 13:v13050755. [PMID: 33923055 PMCID: PMC8145018 DOI: 10.3390/v13050755] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence of new human viral pathogens and re-emergence of several diseases are of particular concern in the last decades. Oropouche orthobunyavirus (OROV) is an arbovirus endemic to South and Central America tropical regions, responsible to several epidemic events in the last decades. There is little information regarding the ability of OROV to be transmitted by urban/peri-urban mosquitoes, which has limited the predictability of the emergence of permanent urban transmission cycles. Here, we evaluated the ability of OROV to infect, replicate, and be transmitted by three anthropophilic and urban species of mosquitoes, Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus. We show that OROV is able to infect and efficiently replicate when systemically injected in all three species tested, but not when orally ingested. Moreover, we find that, once OROV replication has occurred in the mosquito body, all three species were able to transmit the virus to immunocompromised mice during blood feeding. These data provide evidence that OROV is restricted by the midgut barrier of three major urban mosquito species, but, if this restriction is overcome, could be efficiently transmitted to vertebrate hosts. This poses a great risk for the emergence of permanent urban cycles and geographic expansion of OROV to other continents.
Collapse
Affiliation(s)
- Silvana F. de Mendonça
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte 30190-002, MG, Brazil; (S.F.d.M.); (M.N.R.); (P.H.F.S.); (A.G.A.F.)
| | - Marcele N. Rocha
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte 30190-002, MG, Brazil; (S.F.d.M.); (M.N.R.); (P.H.F.S.); (A.G.A.F.)
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.V.F.); (T.H.J.F.L.); (S.C.G.A.); (J.T.M.)
| | - Flávia V. Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.V.F.); (T.H.J.F.L.); (S.C.G.A.); (J.T.M.)
| | - Thiago H. J. F Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.V.F.); (T.H.J.F.L.); (S.C.G.A.); (J.T.M.)
| | - Siad C. G. Amadou
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.V.F.); (T.H.J.F.L.); (S.C.G.A.); (J.T.M.)
| | - Pedro H. F. Sucupira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte 30190-002, MG, Brazil; (S.F.d.M.); (M.N.R.); (P.H.F.S.); (A.G.A.F.)
| | - João T. Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 6627-Pampulha, Belo Horizonte 31270-901, MG, Brazil; (F.V.F.); (T.H.J.F.L.); (S.C.G.A.); (J.T.M.)
- Faculté des Sciences de laVie, Université de Strasbourg, CNRS UPR9022, Inserm U1257, 67084 Strasbourg, France
| | - Alvaro G. A. Ferreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte 30190-002, MG, Brazil; (S.F.d.M.); (M.N.R.); (P.H.F.S.); (A.G.A.F.)
| | - Luciano A. Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou—Fiocruz, Belo Horizonte 30190-002, MG, Brazil; (S.F.d.M.); (M.N.R.); (P.H.F.S.); (A.G.A.F.)
- Correspondence:
| |
Collapse
|
33
|
Phosphorylation Sites in the Hypervariable Domain in Chikungunya Virus nsP3 Are Crucial for Viral Replication. J Virol 2021; 95:JVI.02276-20. [PMID: 33568506 DOI: 10.1128/jvi.02276-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/30/2021] [Indexed: 01/26/2023] Open
Abstract
Chikungunya virus (CHIKV, family Togaviridae) is a mosquito-transmitted alphavirus. The positive-sense RNA genome of CHIKV encodes four nonstructural proteins (nsP1 to nsP4) that are virus-specific subunits of the RNA replicase. Among nsP functions, those of nsP3 are the least understood. The C-terminal hypervariable domain (HVD) in nsP3 is disordered and serves as a platform for interactions with multiple host proteins. For Sindbis virus (SINV) and Semliki Forest virus (SFV), the nsP3 HVD has been shown to be phosphorylated. Deletion of phosphorylated regions has a mild effect on the growth of SFV and SINV in vertebrate cells. Using radiolabeling, we demonstrated that nsP3 in CHIKV and o'nyong-nyong virus is also phosphorylated. We showed that the phosphorylated residues in CHIKV nsP3 are not clustered at the beginning of the HVD. The substitution of 20 Ser/Thr residues located in the N-terminal half of the HVD or 26 Ser/Thr residues located in its C-terminal half with Ala residues reduced the activity of the CHIKV replicase and the infectivity of CHIKV in mammalian cells. Furthermore, the substitution of all 46 potentially phosphorylated residues resulted in the complete loss of viral RNA synthesis and infectivity. The mutations did not affect the interaction of the HVD in nsP3 with the host G3BP1 protein; interactions with CD2AP, BIN1, and FHL1 proteins were significantly reduced but not abolished. Thus, CHIKV differs from SFV and SINV both in the location of the phosphorylated residues in the HVD in nsP3 and, significantly, in their effect on replicase activity and virus infectivity.IMPORTANCE CHIKV outbreaks have affected millions of people, creating a need for the development of antiviral approaches. nsP3 is a component of the CHIKV RNA replicase and is involved in interactions with host proteins and signaling cascades. Phosphorylation of the HVD in nsP3 is important for the virulent alphavirus phenotype. Here, we demonstrate that nsP3 in CHIKV is phosphorylated and that the phosphorylation sites in the HVD are distributed in a unique pattern. Furthermore, the abrogation of some of the phosphorylation sites results in the attenuation of CHIKV, while abolishing all the phosphorylation sites completely blocked its replicase activity. Thus, the phosphorylation of nsP3 and/or the phosphorylation sites in nsP3 have a major impact on CHIKV infectivity. Therefore, they represent promising targets for antiviral compounds and CHIKV attenuation. In addition, this new information offers valuable insight into the vast network of virus-host interactions.
Collapse
|
34
|
Costa J, Ferreira EC, Santos C. COVID-19, Chikungunya, Dengue and Zika Diseases: An Analytical Platform Based on MALDI-TOF MS, IR Spectroscopy and RT-qPCR for Accurate Diagnosis and Accelerate Epidemics Control. Microorganisms 2021; 9:microorganisms9040708. [PMID: 33808104 PMCID: PMC8066533 DOI: 10.3390/microorganisms9040708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 and arboviruses (ARBOD) epidemics co-occurrence is a great concern. In tropical and subtropical regions, ARBOD diseases such as chikungunya, dengue, and Zika are frequent. In both COVID-19 and ARBOD cases, an accurate diagnosis of infected patients is crucial to promote adequate treatment and isolation measures in COVID-19 cases. Overlap of clinical symptoms and laboratory parameters between COVID-19 and ARBOD present themselves as an extra challenge during diagnosis. COVID-19 diagnosis is mainly performed by quantitative reverse polymerase chain reaction (RT-qPCR), while ARBOD diagnosis is performed by serology, detection of antigen or antibody, and molecular diagnosis. In this review, the epidemiologic profile of arboviruses and SARS-CoV-2 is analyzed, and potential risks of symptom overlap is addressed. The implementation of an analytical platform based on infrared (IR) spectroscopy, MALDI-TOF mass spectrometry, and RT-qPCR is discussed as an efficient strategy for a fast, robust, reliable, and cost-effective diagnosis system even during the co-occurrence of virus outbreaks. The spectral data of IR spectroscopy and MALDI-TOF MS obtained from COVID-19 infected and recovered patients can be used to build up an integrated spectral database. This approach can enable us to determine quickly the groups that have been exposed and have recovered from COVID-19 or ARBOD, avoiding misdiagnoses.
Collapse
Affiliation(s)
- Jéssica Costa
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4811-230, Chile;
| | - Eugénio C. Ferreira
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus of Gualtar, 4710-057 Braga, Portugal;
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, Universidad de La Frontera, Temuco 4811-230, Chile
- Correspondence: ; Tel.: +56-45-259-6726
| |
Collapse
|
35
|
Muñoz-Gamba AS, Laiton-Donato K, Perdomo-Balaguera E, Castro LR, Usme-Ciro JA, Parra-Henao G. Molecular characterization of mosquitoes (Diptera: Culicidae) from the Colombian rainforest. Rev Inst Med Trop Sao Paulo 2021; 63:e24. [PMID: 33787744 PMCID: PMC7997665 DOI: 10.1590/s1678-9946202163024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/19/2021] [Indexed: 11/30/2022] Open
Abstract
A few studies have carried out the taxonomic and molecular characterization of
sylvatic mosquito species in Latin America, where some species have been
incriminated as vectors for arboviruses and parasites transmission. The present
study reports the molecular characterization of mosquito species in the Sierra
Nevada de Santa Marta, a natural ecosystem in the Northern coast of Colombia.
Manual capture methods were used to collect mosquitoes, and the specimens were
identified via classical taxonomy. The COI marker was used for
species confirmation, and phylogenetic analysis was performed using the
neighbor-joining method, with the Kimura-2-Parameters model. Aedes
serratus , Psorophora ferox , Johnbelkinia
ulopus , Sabethes chloropterus , Sabethes
cyaneus , Wyeomyia aporonoma , Wyeomyia
pseudopecten , Wyeomyia ulocoma and
Wyeomyia luteoventralis were identified. We assessed the
genetic variability of mosquitoes in this area and phylogenetic reconstructions
allowed the identification at the species level. Classical and molecular
taxonomy demonstrated to be useful and complementary when morphological
characteristics are not well preserved, or the taxonomic group is not
represented in public molecular databases.
Collapse
Affiliation(s)
- Andrew S Muñoz-Gamba
- Universidad Cooperativa de Colombia, Centro de Investigación en Salud para el Trópico, Santa Marta, Colombia.,Universidad de La Salle, Departamento de Ciencias Básicas, Programa de Biología, Bogotá, Colombia
| | - Katherine Laiton-Donato
- Instituto Nacional de Salud, Dirección de Redes en Salud Pública, Grupo de Virología, Bogotá, Colombia
| | - Erick Perdomo-Balaguera
- Secretaría de Salud Distrital, Programa de Enfermedades Transmitidas por Vectores, Santa Marta, Colombia
| | - Lyda R Castro
- Universidad del Magdalena, Grupo de Investigación Evolución, Sistemática y Ecología Molecular, Santa Marta, Colombia
| | - José A Usme-Ciro
- Universidad Cooperativa de Colombia, Centro de Investigación en Salud para el Trópico, Santa Marta, Colombia
| | - Gabriel Parra-Henao
- Universidad Cooperativa de Colombia, Centro de Investigación en Salud para el Trópico, Santa Marta, Colombia.,Instituto Nacional de Salud, Subdirección de Innovación en Salud Publica, Bogotá, Colombia
| |
Collapse
|
36
|
Targeting the DEAD-Box RNA Helicase eIF4A with Rocaglates-A Pan-Antiviral Strategy for Minimizing the Impact of Future RNA Virus Pandemics. Microorganisms 2021; 9:microorganisms9030540. [PMID: 33807988 PMCID: PMC8001013 DOI: 10.3390/microorganisms9030540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
The increase in pandemics caused by RNA viruses of zoonotic origin highlights the urgent need for broad-spectrum antivirals against novel and re-emerging RNA viruses. Broad-spectrum antivirals could be deployed as first-line interventions during an outbreak while virus-specific drugs and vaccines are developed and rolled out. Viruses depend on the host’s protein synthesis machinery for replication. Several natural compounds that target the cellular DEAD-box RNA helicase eIF4A, a key component of the eukaryotic translation initiation complex eIF4F, have emerged as potential broad-spectrum antivirals. Rocaglates, a group of flavaglines of plant origin that clamp mRNAs with highly structured 5′ untranslated regions (5′UTRs) onto the surface of eIF4A through specific stacking interactions, exhibit the largest selectivity and potential therapeutic indices among all known eIF4A inhibitors. Their unique mechanism of action limits the inhibitory effect of rocaglates to the translation of eIF4A-dependent viral mRNAs and a minor fraction of host mRNAs exhibiting stable RNA secondary structures and/or polypurine sequence stretches in their 5′UTRs, resulting in minimal potential toxic side effects. Maintaining a favorable safety profile while inducing efficient inhibition of a broad spectrum of RNA viruses makes rocaglates into primary candidates for further development as pan-antiviral therapeutics.
Collapse
|
37
|
Weaver SC, Forrester NL, Liu J, Vasilakis N. Population bottlenecks and founder effects: implications for mosquito-borne arboviral emergence. Nat Rev Microbiol 2021; 19:184-195. [PMID: 33432235 PMCID: PMC7798019 DOI: 10.1038/s41579-020-00482-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
Transmission of arthropod-borne viruses (arboviruses) involves infection and replication in both arthropod vectors and vertebrate hosts. Nearly all arboviruses are RNA viruses with high mutation frequencies, which leaves them vulnerable to genetic drift and fitness losses owing to population bottlenecks during vector infection, dissemination from the midgut to the salivary glands and transmission to the vertebrate host. However, despite these bottlenecks, they seem to avoid fitness declines that can result from Muller's ratchet. In addition, founder effects that occur during the geographic introductions of human-amplified arboviruses, including chikungunya virus and Zika virus, can affect epidemic and endemic circulation, as well as virulence. In this Review, we discuss the role of genetic drift following population bottlenecks and founder effects in arboviral evolution and spread, and the emergence of human disease.
Collapse
Affiliation(s)
- Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | - Jianying Liu
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
38
|
Raksakoon C, Potiwat R. Current Arboviral Threats and Their Potential Vectors in Thailand. Pathogens 2021; 10:pathogens10010080. [PMID: 33477699 PMCID: PMC7831943 DOI: 10.3390/pathogens10010080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/26/2023] Open
Abstract
Arthropod-borne viral diseases (arboviruses) are a public-health concern in many regions of the world, including Thailand. This review describes the potential vectors and important human and/or veterinary arboviruses in Thailand. The medically important arboviruses affect humans, while veterinary arboviruses affect livestock and the economy. The main vectors described are mosquitoes, but other arthropods have been reported. Important mosquito-borne arboviruses are transmitted mainly by members of the genus Aedes (e.g., dengue, chikungunya, and Zika virus) and Culex (e.g., Japanese encephalitis, Tembusu and West Nile virus). While mosquitoes are important vectors, arboviruses are transmitted via other vectors, such as sand flies, ticks, cimicids (Family Cimicidae) and Culicoides. Veterinary arboviruses are reported in this review, e.g., duck Tembusu virus (DTMUV), Kaeng Khoi virus (KKV), and African horse sickness virus (AHSV). During arbovirus outbreaks, to target control interventions appropriately, it is critical to identify the vector(s) involved and their ecology. Knowledge of the prevalence of these viruses, and the potential for viral infections to co-circulate in mosquitoes, is also important for outbreak prediction.
Collapse
Affiliation(s)
- Chadchalerm Raksakoon
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Rutcharin Potiwat
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence:
| |
Collapse
|
39
|
A Novel Sub-Lineage of Chikungunya Virus East/Central/South African Genotype Indian Ocean Lineage Caused Sequential Outbreaks in Bangladesh and Thailand. Viruses 2020; 12:v12111319. [PMID: 33213040 PMCID: PMC7698486 DOI: 10.3390/v12111319] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/17/2022] Open
Abstract
In recent decades, chikungunya virus (CHIKV) has become geographically widespread. In 2004, the CHIKV East/Central/South African (ECSA) genotype moved from Africa to Indian ocean islands and India followed by a large epidemic in Southeast Asia. In 2013, the CHIKV Asian genotype drove an outbreak in the Americas. Since 2016, CHIKV has re-emerged in the Indian subcontinent and Southeast Asia. In the present study, CHIKVs were obtained from Bangladesh in 2017 and Thailand in 2019, and their nearly full genomes were sequenced. Phylogenetic analysis revealed that the recent CHIKVs were of Indian Ocean Lineage (IOL) of genotype ECSA, similar to the previous outbreak. However, these CHIKVs were all clustered into a new distinct sub-lineage apart from the past IOL CHIKVs, and they lacked an alanine-to-valine substitution at position 226 of the E1 envelope glycoprotein, which enhances CHIKV replication in Aedes albopictus. Instead, all the re-emerged CHIKVs possessed mutations of lysine-to-glutamic acid at position 211 of E1 and valine-to-alanine at position 264 of E2. Molecular clock analysis suggested that the new sub-lineage CHIKV was introduced to Bangladesh around late 2015 and Thailand in early 2017. These results suggest that re-emerged CHIKVs have acquired different adaptations than the previous CHIKVs.
Collapse
|
40
|
Ahearn YP, Saredy JJ, Bowers DF. The Alphavirus Sindbis Infects Enteroendocrine Cells in the Midgut of Aedes aegypti. Viruses 2020; 12:E848. [PMID: 32759668 PMCID: PMC7472040 DOI: 10.3390/v12080848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Transit of the arthropod-borne-virus (arbovirus) Sindbis (SINV) throughout adult female mosquitoes initiates with its attachment to the gut lumen, entry and amplification in midgut cells, followed by dissemination into the hemolymph. Free-mated adult females, aged day 5-7, were proffered a viremic blood suspension via sausage casings containing SINV-TaV-Green Fluorescent Protein (GFP) at a final titer of 106 PFU/mL. Midguts (MGs) from fully engorged mosquitoes were resected on days 5 and 7 post-bloodmeal, and immunolabeled using FMRFamide antibody against enteroendocrine cells (ECs) with a TX-Red secondary antibody. Following immunolabeling, the organs were investigated via laser confocal microscopy to identify the distribution of GFP and TX-Red. Infection using this reporter virus was observed as multiple GFP expression foci along the posterior midgut (PMG) epithelium and ECs were observed as TX-Red labeled cells scattered along the entire length of the MG. Our results demonstrated that SINVGFP did infect ECs, as indicated by the overlapping GFP and TX-Red channels shown as yellow in merged images. We propose that ECs may be involved in the SINV infection pathway in the mosquito MG. Due to the unique role that ECs have in the exocytosis of secretory granules from the MG and the apical-basolateral position of ECs in the PMG monolayer, we speculate that these cells may assist as a mechanism for arboviruses to cross the gut barriers. These findings suggest that MG ECs are involved in arbovirus infection of the invertebrate host.
Collapse
Affiliation(s)
- Yani P. Ahearn
- Department of Health, TB Lab, 1217 N Pearl St., Jacksonville, FL 32202, USA;
| | - Jason J. Saredy
- Department of Biology, Temple University, 1900 N 12th St., Philadelphia, PA 19122-6078, USA;
| | - Doria F. Bowers
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
41
|
Kojin BB, Biedler JK, Tu Z, Adelman ZN. Characterization of a female germline and early zygote promoter from the transcription factor bZip1 in the dengue mosquito Aedes aegypti. Parasit Vectors 2020; 13:353. [PMID: 32680549 PMCID: PMC7367395 DOI: 10.1186/s13071-020-04216-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background The wide distribution of Aedes aegypti, the main vector of dengue and yellow fever viruses, currently puts three billion people in the world at risk of infection with these viruses. Continuous transmission of these and other viruses despite aggressive efforts to prevent this emphasizes the need to develop new control strategies. Proposals to control disease transmission based on vector engineering, including both population suppression and population replacement, rely on the development of transgenes under the control of regulatory elements able to drive molecules in a specific tissue, time and strength. Methods Here we report the characterization of a promoter active in both the female germline and early zygote, derived from the transcription factor bZip1 in the mosquito Ae. aegypti, using transposon-based methods and RT-qPCR. Results We generated seven transgenic lines carrying AabZip1-reporter constructs and observed expression in both the ovary and early embryo. RT-qPCR analysis was performed to evaluate transcript expression patterns for each line, confirming that transgenic expression from the AabZip1 promoter largely recapitulated the endogenous expression pattern, albeit the strength of maternal expression appeared to be strongly influenced by chromosomal position. Conclusions This study provides a new regulatory sequence that can be useful for generating transgenic lines that can become a tool in vector control strategies.![]()
Collapse
Affiliation(s)
- Bianca B Kojin
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA
| | - James K Biedler
- Department of Biochemistry and the Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zhijian Tu
- Department of Biochemistry and the Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA, USA
| | - Zach N Adelman
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|