1
|
Muñoz Sandoval D, Bach FA, Ivens A, Harding AC, Smith NL, Mazurczyk M, Themistocleous Y, Edwards NJ, Silk SE, Barrett JR, Cowan GJ, Napolitani G, Savill NJ, Draper SJ, Minassian AM, Nahrendorf W, Spence PJ. Plasmodium falciparum infection induces T cell tolerance that is associated with decreased disease severity upon re-infection. J Exp Med 2025; 222:e20241667. [PMID: 40214640 PMCID: PMC11987708 DOI: 10.1084/jem.20241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 03/12/2025] [Indexed: 04/14/2025] Open
Abstract
Immunity to severe malaria is acquired quickly, operates independently of pathogen load, and represents a highly effective form of disease tolerance. The mechanism that underpins tolerance remains unknown. We used a human rechallenge model of falciparum malaria in which healthy adult volunteers were infected three times over a 12 mo period to track the development of disease tolerance in real-time. We found that parasitemia triggered a hardwired innate immune response that led to systemic inflammation, pyrexia, and hallmark symptoms of clinical malaria across the first three infections of life. In contrast, a single infection was sufficient to reprogram T cell activation and reduce the number and diversity of effector cells upon rechallenge. Crucially, this did not silence stem-like memory cells but instead prevented the generation of cytotoxic effectors associated with autoinflammatory disease. Tolerized hosts were thus able to prevent collateral tissue damage in the absence of antiparasite immunity.
Collapse
Affiliation(s)
- Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
- Instituto de Microbiologia, Universidad San Francisco de Quito, Quito, Ecuador
| | - Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Natasha L. Smith
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Michalina Mazurczyk
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Graeme J.M. Cowan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Giorgio Napolitani
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Nicholas J. Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, UK
- Department of Biochemistry and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Wiebke Nahrendorf
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Tan MH, Bangre O, Rios-Teran CA, Tiedje KE, Deed SL, Zhan Q, Rasyidi F, Pascual M, Ansah PO, Day KP. Metagenomic analysis reveals extreme complexity of Plasmodium spp. infections in high transmission in West Africa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.29.25326533. [PMID: 40343031 PMCID: PMC12060935 DOI: 10.1101/2025.04.29.25326533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Mixed-species, mixed-strain Plasmodia infections are known to occur in humans in malaria endemic areas. To date, the true extent of this complexity has not been explored in high-burden countries of sub-Saharan Africa. Here we take a metagenomic lens to infections obtained by sampling variable blood volumes from residents living in high, seasonal transmission in northern Ghana. We identified significantly higher prevalence of Plasmodium spp. and inter-/intra-species complexity in larger blood volumes. Overall, malaria infections displayed high levels of metagenomic complexity comprising single-, double-, and triple-species infections with varying levels of complexity for P. falciparum, P. malariae, P. ovale curtisi, and P. ovale wallikeri. We present evidence of individuals with greater susceptibility to highly-complex infections that cannot be explained by age or location. The implications of these findings to malaria epidemiology and control are illustrated by a geographic scaling exercise to district and region levels in Ghana.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Oscar Bangre
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Cecilia A. Rios-Teran
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Samantha L. Deed
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, USA
| | - Fathia Rasyidi
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| | | | - Patrick O. Ansah
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Australia
| |
Collapse
|
3
|
Chen S, Mondile Q, Du X, Wang C, Mukim M, Wrenger C, Dömling ASS, Tastan Bishop Ö, Groves MR. Exploring Aspartate Transcarbamoylase: A Promising Broad-Spectrum Target for Drug Development. Chembiochem 2025; 26:e202401009. [PMID: 39937588 PMCID: PMC12002100 DOI: 10.1002/cbic.202401009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 02/13/2025]
Abstract
Pyrimidine nucleotides are essential for a wide variety of cellular processes and are synthesized either via a salvage pathway or through de novo biosynthesis. The latter is particularly important in proliferating cells, such as infectious diseases and cancer cells. Aspartate transcarbamoylase (ATCase) catalyzes the first committed and rate-limiting step in the de novo pyrimidine biosynthesis pathway, making it an attractive therapeutic target for various diseases. This review summarizes the development of a series of allosteric ATCase inhibitors, advancing them as potential candidates for malarial, tuberculosis and cancer therapies. Furthermore, it explores the potential for these compounds to be expanded into drugs targeting neglected tropical diseases, antimicrobial-resistant infections caused by the ESKAPE pathogens, and their possible application as herbicides. We identify the likely equivalent allosteric pocket in these systems and perform a structure and sequence-based analysis of the residues comprising it, providing a rationale for continued exploration of this compound series as both specific and broad-range inhibitors. The review concludes by emphasizing the importance of continued research into ATCase inhibitors, given their potential broad applicability in treating diverse diseases to enhance both human health and agricultural practices.
Collapse
Affiliation(s)
- Siyao Chen
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusinglaan 19731AVGroningenThe Netherlands
| | - Queenie Mondile
- Research Unit in Bioinformatics (RUBi)Department of BiochemistryMicrobiology and BiochemistryRhodes University
| | - XiaoChen Du
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusinglaan 19731AVGroningenThe Netherlands
| | - Chao Wang
- NeurobiologyMRC-Laboratory of Molecular Biology Cambridge Biomedical CampusFrancis Crick Ave, TrumpingtonCambridgeCB2 0QH
| | - Mayur Mukim
- Czech Advanced Technology and Research Institute (CATRIN)and Institute of Molecular and Translational Medicine (IMTMFaculty of Medicine and DentistryPalacky UniversityŠlechtitelů 27779 00OlomoucCzech Republic
| | - Carsten Wrenger
- Unit for Drug DiscoveryDepartment of ParasitologyInstitute of Biomedical SciencesUniversity of São PauloAvenida Professor Lineu Prestes 137405508-000São Paulo-SPBrazil
| | - Alexander S. S. Dömling
- Czech Advanced Technology and Research Institute (CATRIN)and Institute of Molecular and Translational Medicine (IMTMFaculty of Medicine and DentistryPalacky UniversityŠlechtitelů 27779 00OlomoucCzech Republic
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi)Department of BiochemistryMicrobiology and BiochemistryRhodes University
- National Institute for Theoretical and Computational Sciences (NITheCS)South Africa
- Genomics for Health in Africa (GHA)Africa-Europe Cluster of Research Excellence (CoRE)
| | - Matthew R. Groves
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenAntonius Deusinglaan 19731AVGroningenThe Netherlands
- Genomics for Health in Africa (GHA)Africa-Europe Cluster of Research Excellence (CoRE)
| |
Collapse
|
4
|
Oberstaller J, Xu S, Naskar D, Zhang M, Wang C, Gibbons J, Pires CV, Mayho M, Otto TD, Rayner JC, Adams JH. Supersaturation mutagenesis reveals adaptive rewiring of essential genes among malaria parasites. Science 2025; 387:eadq7347. [PMID: 39913589 DOI: 10.1126/science.adq7347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 12/05/2024] [Indexed: 03/27/2025]
Abstract
Malaria parasites are highly divergent from model eukaryotes. Large-scale genome engineering methods effective in model organisms are frequently inapplicable, and systematic studies of gene function are few. We generated more than 175,000 transposon insertions in the Plasmodium knowlesi genome, averaging an insertion every 138 base pairs, and used this "supersaturation" mutagenesis to score essentiality for 98% of genes. The density of mutations allowed mapping of putative essential domains within genes, providing a completely new level of genome annotation for any Plasmodium species. Although gene essentiality was largely conserved across P. knowlesi, Plasmodium falciparum, and rodent malaria model Plasmodium berghei, a large number of shared genes are differentially essential, revealing species-specific adaptations. Our results indicated that Plasmodium essential gene evolution was conditionally linked to adaptive rewiring of metabolic networks for different hosts.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Shulin Xu
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Deboki Naskar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Min Zhang
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Chengqi Wang
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Justin Gibbons
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Camilla Valente Pires
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Matthew Mayho
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas D Otto
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Laboratory of Pathogens and Host Immunity, Centre National de la Recherche Scientifique, and Institut National de la Santé et de la Recherche Médicale, Université de Montpellier, Montpellier, France
| | - Julian C Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - John H Adams
- Center for Global Health and Interdisciplinary Research and USF Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
5
|
Sharp PM, Bibollet-Ruche F, Hahn BH. Plasmodium falciparum CyRPA Glycan Binding Does Not Explain Adaptation to Humans. Genome Biol Evol 2025; 17:evaf016. [PMID: 39865504 PMCID: PMC11797028 DOI: 10.1093/gbe/evaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
The human malaria parasite Plasmodium falciparum evolved from a parasite that infects gorillas, termed Plasmodium praefalciparum. The sialic acids on glycans on the surface of erythrocytes differ between humans and other apes. It has recently been shown that the P. falciparum cysteine-rich protective antigen (PfCyRPA) binds human sialoglycans as an essential step in the erythrocyte invasion pathway, while that of the chimpanzee parasite, Plasmodium reichenowi has affinities matching ape glycans. Two amino acid changes, at sites 154 and 209, were shown to be sufficient to switch glycan binding preferences and inferred to reflect adaptation of P. falciparum to humans. However, we show that sites 154 and 209 are identical in P. falciparum and P. praefalciparum, with no other differences located in or near the CyRPA glycan binding sites. Thus, the gorilla precursor appears to have already been preadapted to bind human sialoglycans.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Frederic Bibollet-Ruche
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. PLoS Pathog 2025; 21:e1012813. [PMID: 39903780 PMCID: PMC11793742 DOI: 10.1371/journal.ppat.1012813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025] Open
Abstract
The var multigene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), central to host-parasite interactions. Genome structure studies have identified three major groups of var genes by specific upstream sequences (upsA, B, or C). Var with these ups groups have different chromosomal locations, transcriptional directions, and associations with disease severity. Here we explore temporal and spatial diversity of a region of var genes encoding the DBLα domain of PfEMP1 in Africa. By applying a novel ups classification algorithm (cUps) to publicly-available DBLα sequence datasets, we categorised DBLα according to association with the three ups groups, thereby avoiding the need to sequence complete genes. Data from deep sequencing of DBLα types in a local population in northern Ghana surveyed seven times from 2012 to 2017 found variants with rare-to-moderate-to-extreme frequencies, and the common variants were temporally stable in this local endemic area. Furthermore, we observed that every isolate repertoire, whether mono- or multiclonal, comprised DBLα types occurring with these frequency ranges implying a common genome structure. When comparing African countries of Ghana, Gabon, Malawi, and Uganda, we report that some DBLα types were consistently found at high frequencies in multiple African countries while others were common only at the country level. The implication of these local and pan-Africa population patterns is discussed in terms of advantage to the parasite with regards to within-host adaptation and resilience to malaria control.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Mercedes Pascual
- Department of Biology, New York University, New York, New York, United States of America
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P. Day
- Department of Microbiology and Immunology, Bio21 Institute and The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
7
|
Abu-Elmakarem H, MacLean OA, Venter F, Plenderleith LJ, Culleton RL, Hahn BH, Sharp PM. Remarkable Evolutionary Rate Variations Among Lineages and Among Genome Compartments in Malaria Parasites of Mammals. Mol Biol Evol 2024; 41:msae243. [PMID: 39570730 PMCID: PMC11631195 DOI: 10.1093/molbev/msae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024] Open
Abstract
Genes encoded within organelle genomes often evolve at rates different from those in the nuclear genome. Here, we analyzed the relative rates of nucleotide substitution in the mitochondrial, apicoplast, and nuclear genomes in four different lineages of Plasmodium species (malaria parasites) infecting mammals. The rates of substitution in the three genomes exhibit substantial variation among lineages, with the relative rates of nuclear and mitochondrial DNA being particularly divergent between the Laverania (including Plasmodium falciparum) and Vivax lineages (including Plasmodium vivax). Consideration of synonymous and nonsynonymous substitution rates suggests that their variation is largely due to changes in mutation rates, with constraints on amino acid replacements remaining more similar among lineages. Mitochondrial DNA mutation rate variations among lineages may reflect differences in the long-term average lengths of the sexual and asexual stages of the life cycle. These rate variations have far-reaching implications for the use of molecular clocks to date Plasmodium evolution.
Collapse
Affiliation(s)
- Hend Abu-Elmakarem
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Oscar A MacLean
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Richard L Culleton
- Division of Molecular Parasitology, Proteo-Science Centre, Ehime University, Toon, Ehime, Japan
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Sharp
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Schwabl P, Camponovo F, Clementson C, Early AM, Laws M, Forero-Peña DA, Noya O, Grillet ME, Vanhove M, Anthony F, James K, Singh N, Cox H, Niles-Robin R, Buckee CO, Neafsey DE. Contrasting genomic epidemiology between sympatric Plasmodium falciparum and Plasmodium vivax populations. Nat Commun 2024; 15:8450. [PMID: 39349478 PMCID: PMC11442626 DOI: 10.1038/s41467-024-52545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024] Open
Abstract
The malaria parasites Plasmodium falciparum and Plasmodium vivax differ in key biological processes and associated clinical effects, but consequences on population-level transmission dynamics are difficult to predict. This co-endemic malaria study from Guyana details important epidemiological contrasts between the species by coupling population genomics (1396 spatiotemporally matched parasite genomes, primarily from 2020-21) with sociodemographic analysis (nationwide patient census from 2019). We describe how P. falciparum forms large, interrelated subpopulations that sporadically expand but generally exhibit restrained dispersal, whereby spatial distance and patient travel statistics predict parasite identity-by-descent (IBD). Case bias towards working-age adults is also strongly pronounced. P. vivax exhibits 46% higher average nucleotide diversity (π) and 6.5x lower average IBD. It occupies a wider geographic range, without evidence for outbreak-like expansions, only microgeographic patterns of isolation-by-distance, and weaker case bias towards adults. Possible latency-relapse effects also manifest in various analyses. For example, 11.0% of patients diagnosed with P. vivax in Greater Georgetown report no recent travel to endemic zones, and P. vivax clones recur in 11 of 46 patients incidentally sampled twice during the study. Polyclonality rate is also 2.1x higher than in P. falciparum, does not trend positively with estimated incidence, and correlates uniquely to selected demographics. We discuss possible underlying mechanisms and implications for malaria control.
Collapse
Affiliation(s)
- Philipp Schwabl
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Flavia Camponovo
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Margaret Laws
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David A Forero-Peña
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela
| | - Oscar Noya
- Institute of Tropical Medicine, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
- Center for Malaria Research, Institute of Higher Studies 'Dr. Arnoldo Gabaldón', Ministry of Popular Power for Health, Caracas, Venezuela
| | - María Eugenia Grillet
- Institute of Zoology and Tropical Ecology, Central University of Venezuela, Caracas, Venezuela
| | - Mathieu Vanhove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Frank Anthony
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Kashana James
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Narine Singh
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Horace Cox
- National Malaria Program, Ministry of Health, Georgetown, Guyana
- Caribbean Public Health Agency, Port of Spain, Trinidad and Tobago
| | - Reza Niles-Robin
- National Malaria Program, Ministry of Health, Georgetown, Guyana
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel E Neafsey
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
9
|
Ostridge HJ, Fontsere C, Lizano E, Soto DC, Schmidt JM, Saxena V, Alvarez-Estape M, Barratt CD, Gratton P, Bocksberger G, Lester JD, Dieguez P, Agbor A, Angedakin S, Assumang AK, Bailey E, Barubiyo D, Bessone M, Brazzola G, Chancellor R, Cohen H, Coupland C, Danquah E, Deschner T, Dotras L, Dupain J, Egbe VE, Granjon AC, Head J, Hedwig D, Hermans V, Hernandez-Aguilar RA, Jeffery KJ, Jones S, Junker J, Kadam P, Kaiser M, Kalan AK, Kambere M, Kienast I, Kujirakwinja D, Langergraber KE, Lapuente J, Larson B, Laudisoit A, Lee KC, Llana M, Maretti G, Martín R, Meier A, Morgan D, Neil E, Nicholl S, Nixon S, Normand E, Orbell C, Ormsby LJ, Orume R, Pacheco L, Preece J, Regnaut S, Robbins MM, Rundus A, Sanz C, Sciaky L, Sommer V, Stewart FA, Tagg N, Tédonzong LR, van Schijndel J, Vendras E, Wessling EG, Willie J, Wittig RM, Yuh YG, Yurkiw K, Vigilant L, Piel A, Boesch C, Kühl HS, Dennis MY, Marques-Bonet T, Arandjelovic M, Andrés AM. Local genetic adaptation to habitat in wild chimpanzees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.601734. [PMID: 39026872 PMCID: PMC11257515 DOI: 10.1101/2024.07.09.601734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
How populations adapt to their environment is a fundamental question in biology. Yet we know surprisingly little about this process, especially for endangered species such as non-human great apes. Chimpanzees, our closest living relatives, are particularly interesting because they inhabit diverse habitats, from rainforest to woodland-savannah. Whether genetic adaptation facilitates such habitat diversity remains unknown, despite having wide implications for evolutionary biology and conservation. Using 828 newly generated exomes from wild chimpanzees, we find evidence of fine-scale genetic adaptation to habitat. Notably, adaptation to malaria in forest chimpanzees is mediated by the same genes underlying adaptation to malaria in humans. This work demonstrates the power of non-invasive samples to reveal genetic adaptations in endangered populations and highlights the importance of adaptive genetic diversity for chimpanzees.
Collapse
Affiliation(s)
- Harrison J Ostridge
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Claudia Fontsere
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Esther Lizano
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Daniela C Soto
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Joshua M Schmidt
- Flinders Health and Medical Research Institute (FHMRI), Department of Ophthalmology, Flinders University Sturt Rd, Bedford Park South Australia 5042 Australia
| | - Vrishti Saxena
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Marina Alvarez-Estape
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Christopher D Barratt
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Paolo Gratton
- University of Rome "Tor Vergata" Department of Biology Via Cracovia, 1, Roma, Italia
| | - Gaëlle Bocksberger
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage, 60325 Frankfurt am Main, Germany
| | - Jack D Lester
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Paula Dieguez
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Anthony Agbor
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Samuel Angedakin
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alfred Kwabena Assumang
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Emma Bailey
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Donatienne Barubiyo
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Mattia Bessone
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- University of Konstanz, Centre for the Advanced Study of Collective Behaviour, Universitätsstraße 10, 78464, Konstanz, Germany
| | - Gregory Brazzola
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rebecca Chancellor
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Heather Cohen
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Charlotte Coupland
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Emmanuel Danquah
- Department of Wildlife and Range Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Tobias Deschner
- Institute of Cognitive Science, University of Osnabrück, Artilleriestrasse 34, 49076 Osnabrück, Germany
| | - Laia Dotras
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Jef Dupain
- Antwerp Zoo Foundation, RZSA, Kon.Astridplein 26, 2018 Antwerp, Belgium
| | - Villard Ebot Egbe
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Anne-Céline Granjon
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Josephine Head
- The Biodiversity Consultancy, 3E Kings Parade, Cambridge, CB2 1SJ, UK
| | - Daniela Hedwig
- Elephant Listening Project, K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, 159 Sapsucker Woods Road, Ithaca, NY 14850, USA
| | - Veerle Hermans
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - R Adriana Hernandez-Aguilar
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
- Department of Social Psychology and Quantitative Psychology, Serra Hunter Programme, University of Barcelona, Barcelona, Spain
| | - Kathryn J Jeffery
- School of Natural Sciences, University of Stirling, UK
- Agence National des Parcs Nationaux (ANPN) Batterie 4, BP20379, Libreville, Gabon
| | - Sorrel Jones
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Jessica Junker
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Leipzig-Jena, Puschstrasse 4, 04103 Leipzig, Germany
| | - Parag Kadam
- Greater Mahale Ecosystem Research and Conservation Project
| | - Michael Kaiser
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ammie K Kalan
- Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
| | - Mbangi Kambere
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Ivonne Kienast
- Department of Natural Resources and the Environment, Cornell University, Ithaca, NY 14850, USA
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Deo Kujirakwinja
- Wildlife Conservation Society (WCS), 2300 Southern Boulevard. Bronx, New York 10460, USA
| | - Kevin E Langergraber
- School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, 777 East University Drive, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
- Institute of Human Origins, Arizona State University, 900 Cady Mall, Tempe, AZ 85287 Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA
| | - Juan Lapuente
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | | | - Kevin C Lee
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Manuel Llana
- Jane Goodall Institute Spain and Senegal, Dindefelo Biological Station, Dindefelo, Kedougou, Senegal
| | - Giovanna Maretti
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Rumen Martín
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Amelia Meier
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
- Hawai'i Insititute of Marine Biology, University of Hawai'i at Manoa, 46-007 Lilipuna Place, Kaneohe, HI, 96744, USA
| | - David Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, 2001 North Clark Street, Chicago, Illinois 60614 USA
| | - Emily Neil
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Sonia Nicholl
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Stuart Nixon
- North of England Zoological Society, Chester Zoo, Upton by Chester, CH2 1LH, United Kingdom
| | | | - Christopher Orbell
- Panthera, 8 W 40TH ST, New York, NY 10018, USA
- School of Natural Sciences, University of Stirling, UK
| | - Lucy Jayne Ormsby
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Robinson Orume
- Korup Rainforest Conservation Society, c/o Korup National Park, P.O. Box 36 Mundemba, South West Region, Cameroon
| | - Liliana Pacheco
- Save the Dogs and Other Animals, DJ 223 Km 3, 905200 Cernavoda CT, Romania
| | - Jodie Preece
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | | | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
| | - Aaron Rundus
- West Chester University, Depts of Anthropology & Sociology and Psychology, West Chester, PA, 19382 USA
| | - Crickette Sanz
- Washington University in Saint Louis, Department of Anthropology, One Brookings Drive, St. Louis, MO 63130, USA
- Congo Program, Wildlife Conservation Society, 151 Avenue Charles de Gaulle, Brazzaville, Republic of Congo
| | - Lilah Sciaky
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Volker Sommer
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | - Fiona A Stewart
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Nikki Tagg
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Born Free Foundation, Floor 2 Frazer House, 14 Carfax, Horsham, RH12 1ER, UK
| | - Luc Roscelin Tédonzong
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
| | - Joost van Schijndel
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Elleni Vendras
- Frankfurt Zoological Society, Bernhard-Grzimek-Allee 1, 60316 Frankfurt, Germany
| | - Erin G Wessling
- Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen,Göttingen, Germany
- German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jacob Willie
- KMDA, Centre for Research and Conservation, Royal Zoological Society of Antwerp, Koningin Astridplein 20-26, B-2018 Antwerp, Belgium
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University (UGent), K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Roman M Wittig
- Ape Social Mind Lab, Institute for Cognitive Sciences Marc Jeannerod, CNRS UMR 5229 CNRS, 67 bd Pinel, 69675 Bron CEDEX, France
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, BP 1301, Abidjan 01, CI
| | - Yisa Ginath Yuh
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Kyle Yurkiw
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig
| | - Alex Piel
- University College London, Department of Anthropology, 14 Taviton Street, London WC1H 0BW, UK
| | | | - Hjalmar S Kühl
- Senckenberg Museum for Natural History Görlitz, Senckenberg - Member of the Leibniz Association Am Museum 1, 02826 Görlitz, Germany
- International Institute Zittau, Technische Universität Dresden, Markt 23, 02763 Zittau, Germany
| | - Megan Y Dennis
- University of California, Davis, Genome Center, MIND Institute, Department of Biochemistry & Molecular Medicine, One Shields Drive, Davis, CA, 95616, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010, Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Mimi Arandjelovic
- Max Planck Institute for Evolutionary Anthropology, Department of Primate Behavior and Evolution, Deutscher Platz 6, 04103 Leipzig
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103
| | - Aida M Andrés
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
10
|
Dai Y, Liang Y, Liu C, Liu T, Chen L, Li Y. Can artemisinin and its derivatives treat malaria in a host-directed manner? Biochem Pharmacol 2024; 225:116260. [PMID: 38705539 DOI: 10.1016/j.bcp.2024.116260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Malaria is caused by an apicomplexan protozoan parasite, Plasmodium, and is transmitted through vectors. It remains a substantial health burden, especially in developing countries, leading to significant socioeconomic losses. Although the World Health Organization (WHO) has approved various antimalarial medications in the past two decades, the increasing resistance to these medications has worsened the situation. The development of drug resistance stems from genetic diversity among Plasmodium strains, impeding eradication efforts. Consequently, exploring innovative technologies and strategies for developing effective medications based on the host is crucial. Artemisinin and its derivatives (artemisinins) have been recommended by the WHO for treating malaria owing to their known effectiveness in killing the parasite. However, their potential to target the host for malaria treatment has not been investigated. This article concisely reviews the application of host-directed therapeutics, potential drug candidates targeting the host for treating malaria, and usage of artemisinins in numerous diseases. It underscores the importance of host-directed interventions for individuals susceptible to malaria, suggests the potential utility of artemisinins in host-directed malaria treatments, and posits that the modulation of host proteins with artemisinins may offer a means of intervening in host-parasite interactions. Further studies focusing on the host-targeting perspective of artemisinins can provide new insights into the mechanisms of artemisinin resistance and offer a unique opportunity for new antimalarial drug discovery.
Collapse
Affiliation(s)
- Yue Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chengcheng Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tuo Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yujie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
11
|
Sharp PM, Plenderleith LJ, Culleton RL, Hahn BH. Origin of the human malaria parasite Plasmodium vivax. Trends Parasitol 2024; 40:562-572. [PMID: 38806300 PMCID: PMC11588016 DOI: 10.1016/j.pt.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024]
Abstract
The geographic origin of Plasmodium vivax, a leading cause of human malaria, has been the subject of much speculation. Here we review the evolutionary history of P. vivax and P. vivax-like parasites in humans and non-human primates on three continents, providing overwhelming evidence for an African origin. This conclusion is consistent with recent reports showing that Duffy-negative humans in Africa are, in fact, susceptible to P. vivax, with parasites invading Duffy-antigen-expressing erythroid precursors. Thus, the African origin of P. vivax not only explains the distribution of the Duffy-negative genotype but also provides new insight into the history and status of P. vivax malaria in Africa and efforts geared toward its eradication.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK; Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK.
| | | | - Richard L Culleton
- Division of Parasitology, Proteo-Science Centre, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Hviid L, Jensen AR, Deitsch KW. PfEMP1 and var genes - Still of key importance in Plasmodium falciparum malaria pathogenesis and immunity. ADVANCES IN PARASITOLOGY 2024; 125:53-103. [PMID: 39095112 DOI: 10.1016/bs.apar.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The most severe form of malaria, caused by infection with Plasmodium falciparum parasites, continues to be an important cause of human suffering and poverty. The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of clonally variant antigens, which mediates the adhesion of infected erythrocytes to the vascular endothelium in various tissues and organs, is a central component of the pathogenesis of the disease and a key target of the acquired immune response to malaria. Much new knowledge has accumulated since we published a systematic overview of the PfEMP1 family almost ten years ago. In this chapter, we therefore aim to summarize research progress since 2015 on the structure, function, regulation etc. of this key protein family of arguably the most important human parasite. Recent insights regarding PfEMP1-specific immune responses and PfEMP1-specific vaccination against malaria, as well as an outlook for the coming years are also covered.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark.
| | - Anja R Jensen
- Centre for translational Medicine and Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
13
|
Letcher B, Maciuca S, Iqbal Z. Role for gene conversion in the evolution of cell-surface antigens of the malaria parasite Plasmodium falciparum. PLoS Biol 2024; 22:e3002507. [PMID: 38451924 PMCID: PMC10919680 DOI: 10.1371/journal.pbio.3002507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
While the malaria parasite Plasmodium falciparum has low average genome-wide diversity levels, likely due to its recent introduction from a gorilla-infecting ancestor (approximately 10,000 to 50,000 years ago), some genes display extremely high diversity levels. In particular, certain proteins expressed on the surface of human red blood cell-infecting merozoites (merozoite surface proteins (MSPs)) possess exactly 2 deeply diverged lineages that have seemingly not recombined. While of considerable interest, the evolutionary origin of this phenomenon remains unknown. In this study, we analysed the genetic diversity of 2 of the most variable MSPs, DBLMSP and DBLMSP2, which are paralogs (descended from an ancestral duplication). Despite thousands of available Illumina WGS datasets from malaria-endemic countries, diversity in these genes has been hard to characterise as reads containing highly diverged alleles completely fail to align to the reference genome. To solve this, we developed a pipeline leveraging genome graphs, enabling us to genotype them at high accuracy and completeness. Using our newly- resolved sequences, we found that both genes exhibit 2 deeply diverged lineages in a specific protein domain (DBL) and that one of the 2 lineages is shared across the genes. We identified clear evidence of nonallelic gene conversion between the 2 genes as the likely mechanism behind sharing, leading us to propose that gene conversion between diverged paralogs, and not recombination suppression, can generate this surprising genealogy; a model that is furthermore consistent with high diversity levels in these 2 genes despite the strong historical P. falciparum transmission bottleneck.
Collapse
Affiliation(s)
- Brice Letcher
- EMBL-EBI, Hinxton, United Kingdom
- Laboratory of Biology and Modelling of the Cell, CNRS UMR 5239, Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | |
Collapse
|
14
|
Cepeda AS, Mello B, Pacheco MA, Luo Z, Sullivan SA, Carlton JM, Escalante AA. The Genome of Plasmodium gonderi: Insights into the Evolution of Human Malaria Parasites. Genome Biol Evol 2024; 16:evae027. [PMID: 38376987 PMCID: PMC10901558 DOI: 10.1093/gbe/evae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Plasmodium species causing malaria in humans are not monophyletic, sharing common ancestors with nonhuman primate parasites. Plasmodium gonderi is one of the few known Plasmodium species infecting African old-world monkeys that are not found in apes. This study reports a de novo assembled P. gonderi genome with complete chromosomes. The P. gonderi genome shares codon usage, syntenic blocks, and other characteristics with the human parasites Plasmodium ovale s.l. and Plasmodium malariae, also of African origin, and the human parasite Plasmodium vivax and species found in nonhuman primates from Southeast Asia. Using phylogenetically aware methods, newly identified syntenic blocks were found enriched with conserved metabolic genes. Regions outside those blocks harbored genes encoding proteins involved in the vertebrate host-Plasmodium relationship undergoing faster evolution. Such genome architecture may have facilitated colonizing vertebrate hosts. Phylogenomic analyses estimated the common ancestor between P. vivax and an African ape parasite P. vivax-like, within the Asian nonhuman primates parasites clade. Time estimates incorporating P. gonderi placed the P. vivax and P. vivax-like common ancestor in the late Pleistocene, a time of active migration of hominids between Africa and Asia. Thus, phylogenomic and time-tree analyses are consistent with an Asian origin for P. vivax and an introduction of P. vivax-like into Africa. Unlike other studies, time estimates for the clade with Plasmodium falciparum, the most lethal human malaria parasite, coincide with their host species radiation, African hominids. Overall, the newly assembled genome presented here has the quality to support comparative genomic investigations in Plasmodium.
Collapse
Affiliation(s)
- Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Beatriz Mello
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| | - Zunping Luo
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Steven A Sullivan
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Jane M Carlton
- Center for Genomics & Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA 19122-1801, USA
| |
Collapse
|
15
|
Snounou G, Sharp PM, Culleton R. The two parasite species formerly known as Plasmodium ovale. Trends Parasitol 2024; 40:21-27. [PMID: 38040603 DOI: 10.1016/j.pt.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 12/03/2023]
Abstract
Plasmodium ovale was the last of the exclusively human malaria parasites to be described, in 1922, and has remained the least well studied. Beginning in 1995, two divergent forms of the parasite, later termed 'classic' and 'variant', were described. By 2010, it was realised that these forms are two closely related, but genetically distinct and non-recombining species; they were given the names Plasmodium ovale curtisi and Plasmodium ovale wallikeri. Since then, substantial additional data have confirmed that the two parasites are indeed separate species, but the trinomial nomenclature has often led to confusion about their status, with many authors describing them as subspecies. We hereby formally name them Plasmodium ovalecurtisi and Plasmodium ovalewallikeri.
Collapse
Affiliation(s)
- Georges Snounou
- Université Paris-Saclay, Inserm, CEA, Immunologie des maladies virales, auto-immunes, hématologiques et bactériennes (IMVA-HB/IDMIT/UMR1184), 92265, Fontenay-aux-Roses & Kremlin-Bicêtre, France.
| | - Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Richard Culleton
- Department of Molecular Parasitology, Proteo-Science Centre, Ehime University, 454 Shitsukawa, Toon, Ehime 791-0295, Japan.
| |
Collapse
|
16
|
Boualam MA, Corbara AG, Aboudharam G, Istria D, Signoli M, Costedoat C, Drancourt M, Pradines B. The millennial dynamics of malaria in the mediterranean basin: documenting Plasmodium spp. on the medieval island of Corsica. Front Med (Lausanne) 2023; 10:1265964. [PMID: 38143446 PMCID: PMC10739463 DOI: 10.3389/fmed.2023.1265964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction The lack of well-preserved material upon which to base the paleo-microbiological detection of Plasmodium parasites has prevented extensive documentation of past outbreaks of malaria in Europe. By trapping intact erythrocytes at the time of death, dental pulp has been shown to be a suitable tissue for documenting ancient intraerythrocytic pathogens such as Plasmodium parasites. Methods Total DNA and proteins extracted from 23 dental pulp specimens collected from individuals exhumed from the 9th to 13th century archaeological site in Mariana, Corsica, were analyzed using open-mind paleo-auto-immunohistochemistry and direct metagenomics, Plasmodium-targeting immunochromatography assays. All experiments incorporated appropriate negative controls. Results Paleo-auto-immunohistochemistry revealed the presence of parasites Plasmodium spp. in the dental pulp of nine teeth. A further immunochromatography assay identified the presence of at least one Plasmodium antigen in nine individuals. The nine teeth, for which the PfHRP-2 antigen specific of P. falciparum was detected, were also positive using paleo-autoimmunohistochemistry and metagenomics. Conclusion Dental pulp erythrocytes proved to be suitable for the direct paleomicrobiology documentation of malaria in nine individuals buried in medieval Corsica, in agreement with historical data. This provides additional information on the millennial dynamics of Plasmodium spp. in the Mediterranean basin.
Collapse
Affiliation(s)
- Mahmoud Abdelwadoud Boualam
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement , Microbes, Evolution, Phylogénie et Infection, IHU Méditerranée Infection, Marseille, France
| | - Anne-Gaëlle Corbara
- Aix-Marseille Univ, Centre national de la recherche scientifique, LA3M, Aix-en-Provence, France
| | - Gérard Aboudharam
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement , Microbes, Evolution, Phylogénie et Infection, IHU Méditerranée Infection, Marseille, France
| | - Daniel Istria
- Aix-Marseille Univ, Centre national de la recherche scientifique, LA3M, Aix-en-Provence, France
| | - Michel Signoli
- Aix-Marseille Université, Centre national de la recherche scientifique, Établissement français du sang, Anthropologie bio-culturelle, droit, éthique et santé, Marseille, France
| | - Caroline Costedoat
- Aix-Marseille Université, Centre national de la recherche scientifique, Établissement français du sang, Anthropologie bio-culturelle, droit, éthique et santé, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement , Microbes, Evolution, Phylogénie et Infection, IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- IHU Méditerranée Infection, Marseille, France
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
- Aix-Marseille Univ, Institut de recherche pour le développement, Service de Santé des Armées, Assistance publique - Hôpitaux de Marseille, VITROME, Marseille, France
- Centre National de Référence du Paludisme, Marseille, France
| |
Collapse
|
17
|
Fornace KM, Zorello Laporta G, Vythilingham I, Chua TH, Ahmed K, Jeyaprakasam NK, de Castro Duarte AMR, Amir A, Phang WK, Drakeley C, Sallum MAM, Lau YL. Simian malaria: a narrative review on emergence, epidemiology and threat to global malaria elimination. THE LANCET. INFECTIOUS DISEASES 2023; 23:e520-e532. [PMID: 37454671 DOI: 10.1016/s1473-3099(23)00298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023]
Abstract
Simian malaria from wild non-human primate populations is increasingly recognised as a public health threat and is now the main cause of human malaria in Malaysia and some regions of Brazil. In 2022, Malaysia became the first country not to achieve malaria elimination due to zoonotic simian malaria. We review the global distribution and drivers of simian malaria and identify priorities for diagnosis, treatment, surveillance, and control. Environmental change is driving closer interactions between humans and wildlife, with malaria parasites from non-human primates spilling over into human populations and human malaria parasites spilling back into wild non-human primate populations. These complex transmission cycles require new molecular and epidemiological approaches to track parasite spread. Current methods of malaria control are ineffective, with wildlife reservoirs and primarily outdoor-biting mosquito vectors urgently requiring the development of novel control strategies. Without these, simian malaria has the potential to undermine malaria elimination globally.
Collapse
Affiliation(s)
- Kimberly M Fornace
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore; Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Gabriel Zorello Laporta
- Graduate Research and Innovation Program, Centro Universitario FMABC, Santo André, São Paulo, Brazil
| | | | | | - Kamruddin Ahmed
- Department of Pathology and Microbiology, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia; Borneo Medical and Health Research Centre, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nantha K Jeyaprakasam
- Biomedical Science Programme, Center for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ana Maria Ribeiro de Castro Duarte
- Laboratory of Protozoology, Institute of Tropical Medicine of São Paulo, Universidade de São Paulo, São Paulo, Brazil; Instituto Pasteur, Secretaria de Estado da Saude de São Paulo, São Paulo, Brazil
| | - Amirah Amir
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Maria Anice M Sallum
- Departamento de Epidemiologia, Faculdade de Saude Publica, Universidade de São Paulo, São Paulo, Brazil
| | - Yee Ling Lau
- Department of Parasitology, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Palmateer NC, Munro JB, Nagaraj S, Crabtree J, Pelle R, Tallon L, Nene V, Bishop R, Silva JC. The Hypervariable Tpr Multigene Family of Theileria Parasites, Defined by a Conserved, Membrane-Associated, C-Terminal Domain, Includes Several Copies with Defined Orthology Between Species. J Mol Evol 2023; 91:897-911. [PMID: 38017120 PMCID: PMC10730637 DOI: 10.1007/s00239-023-10142-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/07/2023] [Indexed: 11/30/2023]
Abstract
Multigene families often play an important role in host-parasite interactions. One of the largest multigene families in Theileria parva, the causative agent of East Coast fever, is the T. parva repeat (Tpr) gene family. The function of the putative Tpr proteins remains unknown. The initial publication of the T. parva reference genome identified 39 Tpr family open reading frames (ORFs) sharing a conserved C-terminal domain. Twenty-eight of these are clustered in a central region of chromosome 3, termed the "Tpr locus", while others are dispersed throughout all four nuclear chromosomes. The Tpr locus contains three of the four assembly gaps remaining in the genome, suggesting the presence of additional, as yet uncharacterized, Tpr gene copies. Here, we describe the use of long-read sequencing to attempt to close the gaps in the reference assembly of T. parva (located among multigene families clusters), characterize the full complement of Tpr family ORFs in the T. parva reference genome, and evaluate their evolutionary relationship with Tpr homologs in other Theileria species. We identify three new Tpr family genes in the T. parva reference genome and show that sequence similarity among paralogs in the Tpr locus is significantly higher than between genes outside the Tpr locus. We also identify sequences homologous to the conserved C-terminal domain in five additional Theileria species. Using these sequences, we show that the evolution of this gene family involves conservation of a few orthologs across species, combined with gene gains/losses, and species-specific expansions.
Collapse
Affiliation(s)
- Nicholas C Palmateer
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roger Pelle
- International Livestock Research Institute, Nairobi, Kenya
| | - Luke Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vish Nene
- International Livestock Research Institute, Nairobi, Kenya
| | - Richard Bishop
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene E Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Lisbon, Portugal.
| |
Collapse
|
19
|
Tan MH, Tiedje KE, Feng Q, Zhan Q, Pascual M, Shim H, Chan YB, Day KP. A paradoxical population structure of var DBLα types in Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.05.565723. [PMID: 37986738 PMCID: PMC10659346 DOI: 10.1101/2023.11.05.565723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The var multigene family encodes the P. falciparum erythrocyte membrane protein 1 (PfEMP1), which is important in host-parasite interaction as a virulence factor and major surface antigen of the blood stages of the parasite, responsible for maintaining chronic infection. Whilst important in the biology of P. falciparum, these genes (50 to 60 genes per parasite genome) are routinely excluded from whole genome analyses due to their hyper-diversity, achieved primarily through recombination. The PfEMP1 head structure almost always consists of a DBLα-CIDR tandem. Categorised into different groups (upsA, upsB, upsC), different head structures have been associated with different ligand-binding affinities and disease severities. We study how conserved individual DBLα types are at the country, regional, and local scales in Sub-Saharan Africa. Using publicly-available sequence datasets and a novel ups classification algorithm, cUps, we performed an in silico exploration of DBLα conservation through time and space in Africa. In all three ups groups, the population structure of DBLα types in Africa consists of variants occurring at rare, low, moderate, and high frequencies. Non-rare variants were found to be temporally stable in a local area in endemic Ghana. When inspected across different geographical scales, we report different levels of conservation; while some DBLα types were consistently found in high frequencies in multiple African countries, others were conserved only locally, signifying local preservation of specific types. Underlying this population pattern is the composition of DBLα types within each isolate DBLα repertoire, revealed to also consist of a mix of types found at rare, low, moderate, and high frequencies in the population. We further discuss the adaptive forces and balancing selection, including host genetic factors, potentially shaping the evolution and diversity of DBLα types in Africa.
Collapse
Affiliation(s)
- Mun Hua Tan
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Kathryn E Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| | - Qian Feng
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Qi Zhan
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago; Chicago, Illinois, USA
| | - Heejung Shim
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Yao-Ban Chan
- School of Mathematics and Statistics / Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Australia
| | - Karen P Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, AU
| |
Collapse
|
20
|
Chaturvedi R, Biswas S, Bisht K, Sharma A. The threat of increased transmission of non- knowlesi zoonotic malaria in humans: a systematic review. Parasitology 2023; 150:1167-1177. [PMID: 37929579 PMCID: PMC10801384 DOI: 10.1017/s003118202300077x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 11/07/2023]
Abstract
Of the 5 human malarial parasites, Plasmodium falciparum and Plasmodium vivax are the most prevalent species globally, while Plasmodium malariae, Plasmodium ovale curtisi and Plasmodium ovale wallikeri are less prevalent and typically occur as mixed-infections. Plasmodium knowlesi, previously considered a non-human primate (NHP) infecting species, is now a cause of human malaria in Malaysia. The other NHP Plasmodium species, Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium inui, Plasmodium simium, Plasmodium coatneyi and Plasmodium fieldi cause malaria in primates, which are mainly reported in southeast Asia and South America. The non-knowlesi NHP Plasmodium species also emerged and were found to cross-transmit from their natural hosts (NHP) – to human hosts in natural settings. Here we have reviewed and collated data from the literature on the NHPs-to-human-transmitting non-knowlesi Plasmodium species. It was observed that the natural transmission of these NHP parasites to humans had been reported from 2010 onwards. This study shows that: (1) the majority of the non-knowlesi NHP Plasmodium mixed species infecting human cases were from Yala province of Thailand; (2) mono/mixed P. cynomolgi infections with other human-infecting Plasmodium species were prevalent in Malaysia and Thailand and (3) P. brasilianum and P. simium were found in Central and South America.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
| | - Shibani Biswas
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- Host–Parasite Biology, ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanika Bisht
- Host–Parasite Biology, ICMR-National Institute of Malaria Research, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Bach FA, Muñoz Sandoval D, Mazurczyk M, Themistocleous Y, Rawlinson TA, Harding AC, Kemp A, Silk SE, Barrett JR, Edwards NJ, Ivens A, Rayner JC, Minassian AM, Napolitani G, Draper SJ, Spence PJ. A systematic analysis of the human immune response to Plasmodium vivax. J Clin Invest 2023; 133:e152463. [PMID: 37616070 PMCID: PMC10575735 DOI: 10.1172/jci152463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/22/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUNDThe biology of Plasmodium vivax is markedly different from that of P. falciparum; how this shapes the immune response to infection remains unclear. To address this shortfall, we inoculated human volunteers with a clonal field isolate of P. vivax and tracked their response through infection and convalescence.METHODSParticipants were injected intravenously with blood-stage parasites and infection dynamics were tracked in real time by quantitative PCR. Whole blood samples were used for high dimensional protein analysis, RNA sequencing, and cytometry by time of flight, and temporal changes in the host response to P. vivax were quantified by linear regression. Comparative analyses with P. falciparum were then undertaken using analogous data sets derived from prior controlled human malaria infection studies.RESULTSP. vivax rapidly induced a type I inflammatory response that coincided with hallmark features of clinical malaria. This acute-phase response shared remarkable overlap with that induced by P. falciparum but was significantly elevated (at RNA and protein levels), leading to an increased incidence of pyrexia. In contrast, T cell activation and terminal differentiation were significantly increased in volunteers infected with P. falciparum. Heterogeneous CD4+ T cells were found to dominate this adaptive response and phenotypic analysis revealed unexpected features normally associated with cytotoxicity and autoinflammatory disease.CONCLUSIONP. vivax triggers increased systemic interferon signaling (cf P. falciparum), which likely explains its reduced pyrogenic threshold. In contrast, P. falciparum drives T cell activation far in excess of P. vivax, which may partially explain why falciparum malaria more frequently causes severe disease.TRIAL REGISTRATIONClinicalTrials.gov NCT03797989.FUNDINGThe European Union's Horizon 2020 Research and Innovation programme, the Wellcome Trust, and the Royal Society.
Collapse
Affiliation(s)
- Florian A. Bach
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Diana Muñoz Sandoval
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
- Insitute of Microbiology, Universidad San Francisco de Quito, Quito, Ecuador
| | | | | | | | - Adam C. Harding
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Kemp
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sarah E. Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jordan R. Barrett
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alasdair Ivens
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Julian C. Rayner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Angela M. Minassian
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Giorgio Napolitani
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, and
| | - Simon J. Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Chen Y, Zhang H, Chen H, Fan L, Xu C, Xu J, Chen S, Chen K, Wei Y. Malaria epidemiological characteristics and control in Guangzhou, China, 1950-2022. Malar J 2023; 22:265. [PMID: 37691114 PMCID: PMC10494454 DOI: 10.1186/s12936-023-04696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Malaria was once widespread in Guangzhou, China. However, a series of control measures have succeeded in eliminating local malaria infections. Based on the analysis of the characteristics of malaria epidemics in Guangzhou, China, from 1950 to 2022, the changes and effectiveness of malaria control strategies and surveillance management in Guangzhou from 1950 to 2022 are described. METHODS Data on malaria prevention and treatment in Guangzhou from 1950 to 2022 were collected, and descriptive epidemiological methods were used to analyse the prevalence of malaria, preventive and control measures taken, and the effectiveness of prevention and treatment in different periods. Data on malaria cases were obtained from the Guangzhou Centre for Disease Control and Prevention (CDC) and the China Communicable Disease Reporting System. RESULTS The development of the malaria control system in Guangzhou has gone through four periods: 1. High malaria prevalence (1950-1979), 2. Intensive prevention and control stage (1980-2000), 3. Consolidating gains in malaria control (2001-2008), and 4. Preventing reestablishment of transmission (2009-2022). During Period 1, only medical institutions at all levels and the local CDCs, the Guangzhou CDC participated in the malaria prevention and control system, establishing a three-tier health system on malaria prevention and control. During Period 2, other types of organizations, including the agricultural sector, schools and village committees, the construction department and street committee, are involved in the malaria control system. During Period 3, more and more organizations are joining forces to prevent and control malaria. A well-established multisectoral malaria control mechanism and an improved post-elimination surveillance management system are in place. Between 1950 and 2022, a total of 420,670 cases of malaria were reported. During Period 1, there was an epidemic of malaria in the early 1950s, with an annual incidence rate of more than 10,000/100,000, including a high rate of 2887.98/100,000 in 1954. In Period 2 malaria was gradually brought under control, with the average annual malaria incidence rate dropping to 3.14/100,000. During Period 3, the incidence rate was kept below 1/100,000, and by 2009 local malaria infections were eliminated. CONCLUSION For decades, Guangzhou has adopted different malaria control strategies and measures at different epidemic stages. Increased collaboration among civil organizations in Guangzhou in malaria control has led to a significant decline in the number of malaria cases and the elimination of indigenous malaria infections by 2009.The experience of Guangzhou can guide the development of malaria control strategies in other cities experiencing similar malaria epidemics.
Collapse
Affiliation(s)
- Yuehua Chen
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Hao Zhang
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Haiyan Chen
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Lirui Fan
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Conghui Xu
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Jianmin Xu
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Shouyi Chen
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Kuncai Chen
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Yuehong Wei
- Institute of Public Health, Guangzhou Medical University, Guangzhou, China.
- Department of Parasite and Endemic Disease Prevention and Control, Guangzhou Center for Disease Control and Prevention, Guangzhou, China.
| |
Collapse
|
23
|
Picón-Jaimes YA, Lozada-Martinez ID, Forero Buelvas MC, Ardila Sarmiento AF, Serrano Baez GA, Nazareno Erazo DY, Cuastumal Martínez JD, Ruiz-Gutierrez FK, Carreño Barrera VD. Evolution of Plasmodium vivax and resistance patterns for infection based on Duffy genotype and phenotype. LE INFEZIONI IN MEDICINA 2023; 31:350-358. [PMID: 37701383 PMCID: PMC10495050 DOI: 10.53854/liim-3103-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 09/14/2023]
Abstract
The Duffy protein, a transmembrane molecule, acts as a receptor for various chemokines and facilitates binding between reticulocytes and the Plasmodium Duffy antigen binding protein. Duffy expression is associated with the Duffy chemokine receptor antigen genotype on chromosome 1 and exhibits variation across different geographic regions. Traditionally, the Duffy negative genotype and phenotype have been described to confer a certain level of protection against infection and symptom development. However, recent data suggest a shift in this behavior, with significantly higher prevalence observed in individuals with Duffy negative genotype or phenotype. Given that malaria is an endemic vector-borne disease in regions of Asia, Africa, and Latin America, posing a substantial global burden of disease and prioritizing public and global health, identifying evolutionary changes in infection and resistance patterns holds great importance for the design of strategies and reevaluation of conventional interventions. Hence, the aim of this review was to analyze the evolution of Plasmodium vivax and infection resistance patterns based on Duffy genotype and phenotype. The distribution of genotypes, phenotypes, and polymorphisms of P. vivax ligands and erythrocyte receptors varies geographically, notably resistance patterns of this microorganism in individuals with Duffy negative genotype and phenotype have significantly changed compared to studies conducted 30 years ago. The prevalence of vivax malaria in individuals with a Duffy negative status can reach up to 100%. Consequently, prioritizing research on this topic is essential for public health.
Collapse
Affiliation(s)
| | - Ivan David Lozada-Martinez
- Epidemiology Program, Department of Graduate Studies in Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dalhuisen T, Plenderleith LJ, Ursani I, Philip N, Hahn BH, Sharp PM. Unusually Divergent Ubiquitin Genes and Proteins in Plasmodium Species. Genome Biol Evol 2023; 15:evad137. [PMID: 37481258 PMCID: PMC10457151 DOI: 10.1093/gbe/evad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023] Open
Abstract
Ubiquitin is an extraordinarily highly conserved 76 amino acid protein encoded by three different types of gene, where the primary translation products are fusions either of ubiquitin with one of two ribosomal proteins (RPs) or of multiple ubiquitin monomers from head to tail. Here, we investigate the evolution of ubiquitin genes in mammalian malaria parasites (Plasmodium species). The ubiquitin encoded by the RPS27a fusion gene is highly divergent, as previously found in a variety of protists. However, we also find that two other forms of divergent ubiquitin sequence, each previously thought to be extremely rare, have arisen recently during the divergence of Plasmodium subgenera. On two occasions, in two distinct lineages, the ubiquitin encoded by the RPL40 fusion gene has rapidly diverged. In addition, in one of these lineages, the polyubiquitin genes have undergone a single codon insertion, previously considered a unique feature of Rhizaria. There has been disagreement whether the multiple ubiquitin coding repeats within a genome exhibit concerted evolution or undergo a birth-and-death process; the Plasmodium ubiquitin genes show clear signs of concerted evolution, including the spread of this codon insertion to multiple repeats within the polyubiquitin gene.
Collapse
Affiliation(s)
- Thomas Dalhuisen
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Ismail Ursani
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Nisha Philip
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
25
|
Wroblewski EE, Guethlein LA, Anderson AG, Liu W, Li Y, Heisel SE, Connell AJ, Ndjango JBN, Bertolani P, Hart JA, Hart TB, Sanz CM, Morgan DB, Peeters M, Sharp PM, Hahn BH, Parham P. Malaria-driven adaptation of MHC class I in wild bonobo populations. Nat Commun 2023; 14:1033. [PMID: 36823144 PMCID: PMC9950436 DOI: 10.1038/s41467-023-36623-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
The malaria parasite Plasmodium falciparum causes substantial human mortality, primarily in equatorial Africa. Enriched in affected African populations, the B*53 variant of HLA-B, a cell surface protein that presents peptide antigens to cytotoxic lymphocytes, confers protection against severe malaria. Gorilla, chimpanzee, and bonobo are humans' closest living relatives. These African apes have HLA-B orthologs and are infected by parasites in the same subgenus (Laverania) as P. falciparum, but the consequences of these infections are unclear. Laverania parasites infect bonobos (Pan paniscus) at only one (TL2) of many sites sampled across their range. TL2 spans the Lomami River and has genetically divergent subpopulations of bonobos on each side. Papa-B, the bonobo ortholog of HLA-B, includes variants having a B*53-like (B07) peptide-binding supertype profile. Here we show that B07 Papa-B occur at high frequency in TL2 bonobos and that malaria appears to have independently selected for different B07 alleles in the two subpopulations.
Collapse
Affiliation(s)
- Emily E Wroblewski
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA.
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aaron G Anderson
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sara E Heisel
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
| | - Andrew Jesse Connell
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Paco Bertolani
- Institute of Human Sciences, School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - John A Hart
- Frankfurt Zoological Society, Lomami National Park Project, Kinshasa, Democratic Republic of the Congo
| | - Terese B Hart
- Frankfurt Zoological Society, Lomami National Park Project, Kinshasa, Democratic Republic of the Congo
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, Saint Louis, 63130, MO, USA
- Congo Program, Wildlife Conservation Society, Brazzaville, Republic of the Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Paul M Sharp
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
- Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
26
|
Plasmodium cynomolgi in humans: current knowledge and future directions of an emerging zoonotic malaria parasite. Infection 2022; 51:623-640. [PMID: 36401673 PMCID: PMC9676733 DOI: 10.1007/s15010-022-01952-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022]
Abstract
Plasmodium cynomolgi (Pcy), a simian malaria parasite, is a recent perfect example of emerging zoonotic transfer in human. This review summarizes the current knowledge on the epidemiology of natural Pcy infections in humans, mosquitoes and monkeys, along with its biological, clinical and drug sensitivity patterns. Knowledge gaps and further studies on Pcy in humans are also discussed. This parasite currently seems to be geographically limited in South-East Asia (SEA) with a global prevalence in human ranging from 0 to 1.4%. The Pcy infections were reported in local SEA populations and European travelers, and range from asymptomatic carriage to mild/moderate attacks with no evidence of pathognomonic clinical and laboratory patterns but with Pcy strain-shaped clinical differences. Geographical distribution and competence of suitable mosquito vectors and non-primate hosts, globalization, climate change, and increased intrusion of humans into the habitat of monkeys are key determinants to emergence of Pcy parasites in humans, along with its expansion outside SEA. Sensitization/information campaigns coupled with training and assessment sessions of microscopists and clinicians on Pcy are greatly needed to improve data on the epidemiology and management of human Pcy infection. There is a need for development of sensitive and specific molecular tools for individual diagnosis and epidemiological studies. The development of safe and efficient anti-hypnozoite drugs is the main therapeutic challenge for controlling human relapsing malaria parasites. Experience gained from P. knowlesi malaria, development of integrated measures and strategies—ideally with components related to human, monkeys, mosquito vectors, and environment—could be very helpful to prevent emergence of Pcy malaria in humans through disruption of transmission chain from monkeys to humans and ultimately contain its expansion in SEA and potential outbreaks in a context of malaria elimination.
Collapse
|
27
|
Scully EJ, Liu W, Li Y, Ndjango JBN, Peeters M, Kamenya S, Pusey AE, Lonsdorf EV, Sanz CM, Morgan DB, Piel AK, Stewart FA, Gonder MK, Simmons N, Asiimwe C, Zuberbühler K, Koops K, Chapman CA, Chancellor R, Rundus A, Huffman MA, Wolfe ND, Duraisingh MT, Hahn BH, Wrangham RW. The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs. Commun Biol 2022; 5:1020. [PMID: 36167977 PMCID: PMC9515101 DOI: 10.1038/s42003-022-03962-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
Chimpanzees (Pan troglodytes) harbor rich assemblages of malaria parasites, including three species closely related to P. falciparum (sub-genus Laverania), the most malignant human malaria parasite. Here, we characterize the ecology and epidemiology of malaria infection in wild chimpanzee reservoirs. We used molecular assays to screen chimpanzee fecal samples, collected longitudinally and cross-sectionally from wild populations, for malaria parasite mitochondrial DNA. We found that chimpanzee malaria parasitism has an early age of onset and varies seasonally in prevalence. A subset of samples revealed Hepatocystis mitochondrial DNA, with phylogenetic analyses suggesting that Hepatocystis appears to cross species barriers more easily than Laverania. Longitudinal and cross-sectional sampling independently support the hypothesis that mean ambient temperature drives spatiotemporal variation in chimpanzee Laverania infection. Infection probability peaked at ~24.5 °C, consistent with the empirical transmission optimum of P. falciparum in humans. Forest cover was also positively correlated with spatial variation in Laverania prevalence, consistent with the observation that forest-dwelling Anophelines are the primary vectors. Extrapolating these relationships across equatorial Africa, we map spatiotemporal variation in the suitability of chimpanzee habitat for Laverania transmission, offering a hypothetical baseline indicator of human exposure risk.
Collapse
Affiliation(s)
- Erik J Scully
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Immunology & Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Weimin Liu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jean-Bosco N Ndjango
- Department of Ecology and Management of Plant and Animal Resources, Faculty of Sciences, University of Kisangani, BP 2012, Kisangani, Democratic Republic of the Congo
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Shadrack Kamenya
- Gombe Stream Research Centre, The Jane Goodall Institute, Tanzania, Kigoma, Tanzania
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| | - Elizabeth V Lonsdorf
- Department of Psychology, Franklin and Marshall College, Lancaster, PA, 17604, USA
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St Louis, MO, 63130, USA
- Congo Program, Wildlife Conservation Society, BP 14537, Brazzaville, Republic of the Congo
| | - David B Morgan
- Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, 60614, USA
| | - Alex K Piel
- Department of Anthropology, University College London, 14 Taviton St, Bloomsbury, WC1H OBW, London, UK
| | - Fiona A Stewart
- Department of Anthropology, University College London, 14 Taviton St, Bloomsbury, WC1H OBW, London, UK
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mary K Gonder
- Department of Biology, Drexel University, Philadelphia, PA, 19104, USA
| | - Nicole Simmons
- Zoology Department, Makerere University, P.O. Box 7062, Kampala, Uganda
| | | | - Klaus Zuberbühler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
- Department of Comparative Cognition, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Kathelijne Koops
- Department of Ape Behaviour & Ecology Group, University of Zurich, Zurich, Switzerland
| | - Colin A Chapman
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, DC, USA
- School of Life Sciences, University of KwaZulu-Natal, Scottsville, Pietermaritzburg, South Africa
| | - Rebecca Chancellor
- Department of Anthropology & Sociology, West Chester University, West Chester, PA, USA
- Department of Psychology, West Chester University, West Chester, PA, USA
| | - Aaron Rundus
- Department of Psychology, West Chester University, West Chester, PA, USA
| | - Michael A Huffman
- Center for International Collaboration and Advanced Studies in Primatology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | | | - Manoj T Duraisingh
- Department of Immunology & Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
28
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
29
|
Fuehrer HP, Campino S, Sutherland CJ. The primate malaria parasites Plasmodium malariae, Plasmodium brasilianum and Plasmodium ovale spp.: genomic insights into distribution, dispersal and host transitions. Malar J 2022; 21:138. [PMID: 35505317 PMCID: PMC9066925 DOI: 10.1186/s12936-022-04151-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 01/04/2023] Open
Abstract
During the twentieth century, there was an explosion in understanding of the malaria parasites infecting humans and wild primates. This was built on three main data sources: from detailed descriptive morphology, from observational histories of induced infections in captive primates, syphilis patients, prison inmates and volunteers, and from clinical and epidemiological studies in the field. All three were wholly dependent on parasitological information from blood-film microscopy, and The Primate Malarias” by Coatney and colleagues (1971) provides an overview of this knowledge available at that time. Here, 50 years on, a perspective from the third decade of the twenty-first century is presented on two pairs of primate malaria parasite species. Included is a near-exhaustive summary of the recent and current geographical distribution for each of these four species, and of the underlying molecular and genomic evidence for each. The important role of host transitions in the radiation of Plasmodium spp. is discussed, as are any implications for the desired elimination of all malaria species in human populations. Two important questions are posed, requiring further work on these often ignored taxa. Is Plasmodium brasilianum, circulating among wild simian hosts in the Americas, a distinct species from Plasmodium malariae? Can new insights into the genomic differences between Plasmodium ovale curtisi and Plasmodium ovale wallikeri be linked to any important differences in parasite morphology, cell biology or clinical and epidemiological features?
Collapse
Affiliation(s)
- Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Susana Campino
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Colin J Sutherland
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| |
Collapse
|
30
|
Escalante AA, Cepeda AS, Pacheco MA. Why Plasmodium vivax and Plasmodium falciparum are so different? A tale of two clades and their species diversities. Malar J 2022; 21:139. [PMID: 35505356 PMCID: PMC9066883 DOI: 10.1186/s12936-022-04130-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
The global malaria burden sometimes obscures that the genus Plasmodium comprises diverse clades with lineages that independently gave origin to the extant human parasites. Indeed, the differences between the human malaria parasites were highlighted in the classical taxonomy by dividing them into two subgenera, the subgenus Plasmodium, which included all the human parasites but Plasmodium falciparum that was placed in its separate subgenus, Laverania. Here, the evolution of Plasmodium in primates will be discussed in terms of their species diversity and some of their distinct phenotypes, putative molecular adaptations, and host–parasite biocenosis. Thus, in addition to a current phylogeny using genome-level data, some specific molecular features will be discussed as examples of how these parasites have diverged. The two subgenera of malaria parasites found in primates, Plasmodium and Laverania, reflect extant monophyletic groups that originated in Africa. However, the subgenus Plasmodium involves species in Southeast Asia that were likely the result of adaptive radiation. Such events led to the Plasmodium vivax lineage. Although the Laverania species, including P. falciparum, has been considered to share “avian characteristics,” molecular traits that were likely in the common ancestor of primate and avian parasites are sometimes kept in the Plasmodium subgenus while being lost in Laverania. Assessing how molecular traits in the primate malaria clades originated is a fundamental science problem that will likely provide new targets for interventions. However, given that the genus Plasmodium is paraphyletic (some descendant groups are in other genera), understanding the evolution of malaria parasites will benefit from studying “non-Plasmodium” Haemosporida.
Collapse
Affiliation(s)
- Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA.
| | - Axl S Cepeda
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine [iGEM], Temple University, Philadelphia, PA, 19122-1801, USA
| |
Collapse
|
31
|
Wegner GI, Murray KA, Springmann M, Muller A, Sokolow SH, Saylors K, Morens DM. Averting wildlife-borne infectious disease epidemics requires a focus on socio-ecological drivers and a redesign of the global food system. EClinicalMedicine 2022; 47:101386. [PMID: 35465645 PMCID: PMC9014132 DOI: 10.1016/j.eclinm.2022.101386] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 12/20/2022] Open
Abstract
A debate has emerged over the potential socio-ecological drivers of wildlife-origin zoonotic disease outbreaks and emerging infectious disease (EID) events. This Review explores the extent to which the incidence of wildlife-origin infectious disease outbreaks, which are likely to include devastating pandemics like HIV/AIDS and COVID-19, may be linked to excessive and increasing rates of tropical deforestation for agricultural food production and wild meat hunting and trade, which are further related to contemporary ecological crises such as global warming and mass species extinction. Here we explore a set of precautionary responses to wildlife-origin zoonosis threat, including: (a) limiting human encroachment into tropical wildlands by promoting a global transition to diets low in livestock source foods; (b) containing tropical wild meat hunting and trade by curbing urban wild meat demand, while securing access for indigenous people and local communities in remote subsistence areas; and (c) improving biosecurity and other strategies to break zoonosis transmission pathways at the wildlife-human interface and along animal source food supply chains.
Collapse
Affiliation(s)
- Giulia I. Wegner
- Wildlife Conservation Research Unit (WildCRU), Department of Zoology, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon OX13 5QL, UK
| | - Kris A. Murray
- MRC Unit the Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, UK
| | - Marco Springmann
- Oxford Martin Programme on the Future of Food and Nuffield Department of Population Health, University of Oxford, 34 Broad Street, Oxford OX1 3BD, UK
| | - Adrian Muller
- Department of Environmental Systems Science, ETH, Sonneggstrasse 33, Zürich 8092, Switzerland
- Research Institute of Organic Agriculture FiBL, Ackerstrasse 113, Frick 5070, Switzerland
| | - Susanne H. Sokolow
- Stanford Woods Institute for the Environment, Jerry Yang & Akiko Yamazaki Environment & Energy Building, MC 4205, 473 Via Ortega, Stanford, CA 94305, USA
- Marine Science Institute, University of California, Santa Barbara, CA 93106-6150, USA
| | - Karen Saylors
- Labyrinth Global Health, 15th Ave NE, St Petersburg, FL 33704, USA
| | - David M. Morens
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Plenderleith LJ, Liu W, Li Y, Loy DE, Mollison E, Connell J, Ayouba A, Esteban A, Peeters M, Sanz CM, Morgan DB, Wolfe ND, Ulrich M, Sachse A, Calvignac-Spencer S, Leendertz FH, Shaw GM, Hahn BH, Sharp PM. Zoonotic origin of the human malaria parasite Plasmodium malariae from African apes. Nat Commun 2022; 13:1868. [PMID: 35387986 PMCID: PMC8987028 DOI: 10.1038/s41467-022-29306-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
The human parasite Plasmodium malariae has relatives infecting African apes (Plasmodium rodhaini) and New World monkeys (Plasmodium brasilianum), but its origins remain unknown. Using a novel approach to characterise P. malariae-related sequences in wild and captive African apes, we found that this group comprises three distinct lineages, one of which represents a previously unknown, highly divergent species infecting chimpanzees, bonobos and gorillas across central Africa. A second ape-derived lineage is much more closely related to the third, human-infective lineage P. malariae, but exhibits little evidence of genetic exchange with it, and so likely represents a separate species. Moreover, the levels and nature of genetic polymorphisms in P. malariae indicate that it resulted from the zoonotic transmission of an African ape parasite, reminiscent of the origin of P. falciparum. In contrast, P. brasilianum falls within the radiation of human P. malariae, and thus reflects a recent anthroponosis. Plasmodium malariae is a cause of malaria in humans and related species have been identified in non-human primates. Here, the authors use genomic analyses to establish that human P. malariae arose from a host switch of an ape parasite whilst a species infecting New World monkeys can be traced to a reverse zoonosis.
Collapse
Affiliation(s)
- Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ewan Mollison
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Jesse Connell
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Amandine Esteban
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090, Montpellier, France
| | - Crickette M Sanz
- Department of Anthropology, Washington University in St. Louis, St Louis, MO, 63130, USA.,Wildlife Conservation Society, Congo Program, BP, 14537, Brazzaville, Republic of the Congo
| | - David B Morgan
- Wildlife Conservation Society, Congo Program, BP, 14537, Brazzaville, Republic of the Congo.,Lester E. Fisher Center for the Study and Conservation of Apes, Lincoln Park Zoo, Chicago, IL, USA
| | | | | | | | | | - Fabian H Leendertz
- Robert Koch Institute, 13353, Berlin, Germany.,Helmholtz Institute for One Health, Greifswald, Germany
| | - George M Shaw
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
33
|
Voinson M, Nunn CL, Goldberg A. Primate malarias as a model for cross-species parasite transmission. eLife 2022; 11:e69628. [PMID: 35086643 PMCID: PMC8798051 DOI: 10.7554/elife.69628] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Parasites regularly switch into new host species, representing a disease burden and conservation risk to the hosts. The distribution of these parasites also gives insight into characteristics of ecological networks and genetic mechanisms of host-parasite interactions. Some parasites are shared across many species, whereas others tend to be restricted to hosts from a single species. Understanding the mechanisms producing this distribution of host specificity can enable more effective interventions and potentially identify genetic targets for vaccines or therapies. As ecological connections between human and local animal populations increase, the risk to human and wildlife health from novel parasites also increases. Which of these parasites will fizzle out and which have the potential to become widespread in humans? We consider the case of primate malarias, caused by Plasmodium parasites, to investigate the interacting ecological and evolutionary mechanisms that put human and nonhuman primates at risk for infection. Plasmodium host switching from nonhuman primates to humans led to ancient introductions of the most common malaria-causing agents in humans today, and new parasite switching is a growing threat, especially in Asia and South America. Based on a wild host-Plasmodium occurrence database, we highlight geographic areas of concern and potential areas to target further sampling. We also discuss methodological developments that will facilitate clinical and field-based interventions to improve human and wildlife health based on this eco-evolutionary perspective.
Collapse
Affiliation(s)
- Marina Voinson
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| | - Charles L Nunn
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
- Duke Global Health, Duke UniversityDurhamUnited States
| | - Amy Goldberg
- Department of Evolutionary Anthropology, Duke UniversityDurhamUnited States
| |
Collapse
|
34
|
Abstract
Infectious diseases emerge via many routes and may need to overcome stepwise bottlenecks to burgeon into epidemics and pandemics. About 60% of human infections have animal origins, whereas 40% either co-evolved with humans or emerged from non-zoonotic environmental sources. Although the dynamic interaction between wildlife, domestic animals, and humans is important for the surveillance of zoonotic potential, exotic origins tend to be overemphasized since many zoonoses come from anthropophilic wild species (for example, rats and bats). We examine the equivocal evidence of whether the appearance of novel infections is accelerating and relate technological developments to the risk of novel disease outbreaks. Then we briefly compare selected epidemics, ancient and modern, from the Plague of Athens to COVID-19.
Collapse
Affiliation(s)
- Robin A Weiss
- Division of Infection & Immunity, University College London, London, UK
| | - Neeraja Sankaran
- The Descartes Centre for the History and Philosophy of the Sciences and the Humanities, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
35
|
Watson JA, White NJ, Dondorp AM. Falciparum malaria mortality in sub-Saharan Africa in the pretreatment era. Trends Parasitol 2022; 38:11-14. [PMID: 34862145 DOI: 10.1016/j.pt.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022]
Abstract
Driven by the malaria-protective effect of sickle-cell trait, balancing selection results in hemoglobin S equilibrium allele frequencies of between 15% and 20% in areas of high Plasmodium falciparum transmission in sub-Saharan Africa. From this we estimate that the malaria-attributable childhood mortality in the pretreatment era was between 15% and 24%.
Collapse
Affiliation(s)
- James A Watson
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6620861. [PMID: 35767876 DOI: 10.1093/femsre/fuac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
|
37
|
OUP accepted manuscript. FEMS Microbiol Rev 2022; 46:6620862. [DOI: 10.1093/femsre/fuac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
|
38
|
Progress in understanding the phylogeny of the Plasmodium vivax lineage. Parasitol Int 2021; 87:102507. [PMID: 34781012 DOI: 10.1016/j.parint.2021.102507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/23/2022]
Abstract
There has been some controversy about the evolutionary origin of Plasmodium vivax, particularly whether it is of Asian or African origin. Recently, a new malaria species which closely related to ape P. vivax was found in chimpanzees, in addition, the host switches of P. vivax from ape to human was confirmed. These findings support the African origin of P. vivax. Previous phylogenetic analyses have shown the position of P. vivax within the Asian primate malaria parasite clade. This suggested an Asian origin of P. vivax. Recent analyses using massive gene data, however, positioned P. vivax after the branching of the African Old World monkey parasite P. gonderi, and before the branching of the common ancestor of Asian primate malaria parasites. This position is consistent with an African origin of P. vivax. We here review the history of phylogenetic analyses on P. vivax, validate previous analyses, and finally present a definitive analysis using currently available data that indicate a tree in which P. vivax is positioned at the base of the Asian primate malaria parasite clade, and thus that is consistent with an African origin of P. vivax.
Collapse
|
39
|
Morrison RE, Mushimiyimana Y, Stoinski TS, Eckardt W. Rapid transmission of respiratory infections within but not between mountain gorilla groups. Sci Rep 2021; 11:19622. [PMID: 34620899 PMCID: PMC8497490 DOI: 10.1038/s41598-021-98969-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Minimizing disease transmission between humans and wild apes and controlling outbreaks in ape populations is vital to both ape conservation and human health, but information on the transmission of real infections in wild populations is rare. We analyzed respiratory outbreaks in a subpopulation of wild mountain gorillas (Gorilla beringei beringei) between 2004 and 2020. We investigated transmission within groups during 7 outbreaks using social networks based on contact and proximity, and transmission between groups during 15 outbreaks using inter-group encounters, transfers and home range overlap. Patterns of contact and proximity within groups were highly predictable based on gorillas' age and sex. Disease transmission within groups was rapid with a median estimated basic reproductive number (R0) of 4.18 (min = 1.74, max = 9.42), and transmission was not predicted by the social network. Between groups, encounters and transfers did not appear to have enabled disease transmission and the overlap of groups' ranges did not predict concurrent outbreaks. Our findings suggest that gorilla social structure, with many strong connections within groups and weak ties between groups, may enable rapid transmission within a group once an infection is present, but limit the transmission of infections between groups.
Collapse
Affiliation(s)
- Robin E Morrison
- Dian Fossey Gorilla Fund, Musanze, Rwanda.
- Centre for Research in Animal Behavior, University of Exeter, Exeter, UK.
| | | | | | | |
Collapse
|
40
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
41
|
Hollox EJ, Zuccherato LW, Tucci S. Genome structural variation in human evolution. Trends Genet 2021; 38:45-58. [PMID: 34284881 DOI: 10.1016/j.tig.2021.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV.
Collapse
Affiliation(s)
- Edward J Hollox
- Department of Genetics and Genome Biology, University of Leicester, UK.
| | - Luciana W Zuccherato
- Núcleo de Ensino e Pesquisa, Instituto Mário Penna, Belo Horizonte, Brazil; Departmento de Bioquímica e Imunologia, Universidade de Minas Gerais, Belo Horizonte, Brazil
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA
| |
Collapse
|
42
|
Gross MR, Hsu R, Deitsch KW. Evolution of transcriptional control of antigenic variation and virulence in human and ape malaria parasites. BMC Ecol Evol 2021; 21:139. [PMID: 34238209 PMCID: PMC8265125 DOI: 10.1186/s12862-021-01872-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/13/2022] Open
Abstract
Background The most severe form of human malaria is caused by the protozoan parasite Plasmodium falciparum. This unicellular organism is a member of a subgenus of Plasmodium called the Laverania that infects apes, with P. falciparum being the only member that infects humans. The exceptional virulence of this species to humans can be largely attributed to a family of variant surface antigens placed by the parasites onto the surface of infected red blood cells that mediate adherence to the vascular endothelium. These proteins are encoded by a large, multicopy gene family called var, with each var gene encoding a different form of the protein. By changing which var gene is expressed, parasites avoid immune recognition, a process called antigenic variation that underlies the chronic nature of malaria infections. Results Here we show that the common ancestor of the branch of the Laverania lineage that includes the human parasite underwent a remarkable change in the organization and structure of elements linked to the complex transcriptional regulation displayed by the var gene family. Unlike the other members of the Laverania, the clade that gave rise to P. falciparum evolved distinct subsets of var genes distinguishable by different upstream transcriptional regulatory regions that have been associated with different expression profiles and virulence properties. In addition, two uniquely conserved var genes that have been proposed to play a role in coordinating transcriptional switching similarly arose uniquely within this clade. We hypothesize that these changes originated at a time of dramatic climatic change on the African continent that is predicted to have led to significant changes in transmission dynamics, thus selecting for patterns of antigenic variation that enabled lengthier, more chronic infections. Conclusions These observations suggest that changes in transmission dynamics selected for significant alterations in the transcriptional regulatory mechanisms that mediate antigenic variation in the parasite lineage that includes P. falciparum. These changes likely underlie the chronic nature of these infections as well as their exceptional virulence. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01872-z.
Collapse
Affiliation(s)
- Mackensie R Gross
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Rosie Hsu
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| | - Kirk W Deitsch
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
43
|
Clark NF, Taylor-Robinson AW. An Ecologically Framed Comparison of The Potential for Zoonotic Transmission of Non-Human and Human-Infecting Species of Malaria Parasite. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2021; 94:361-373. [PMID: 34211355 PMCID: PMC8223545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The threats, both real and perceived, surrounding the development of new and emerging infectious diseases of humans are of critical concern to public health and well-being. Among these risks is the potential for zoonotic transmission to humans of species of the malaria parasite, Plasmodium, that have been considered historically to infect exclusively non-human hosts. Recently observed shifts in the mode, transmission, and presentation of malaria among several species studied are evidenced by shared vectors, atypical symptoms, and novel host-seeking behavior. Collectively, these changes indicate the presence of environmental and ecological pressures that are likely to influence the dynamics of these parasite life cycles and physiological make-up. These may be further affected and amplified by such factors as increased urban development and accelerated rate of climate change. In particular, the extended host-seeking behavior of what were once considered non-human malaria species indicates the specialist niche of human malaria parasites is not a limiting factor that drives the success of blood-borne parasites. While zoonotic transmission of non-human malaria parasites is generally considered to not be possible for the vast majority of Plasmodium species, failure to consider the feasibility of its occurrence may lead to the emergence of a potentially life-threatening blood-borne disease of humans. Here, we argue that recent trends in behavior among what were hitherto considered to be non-human malaria parasites to infect humans call for a cross-disciplinary, ecologically-focused approach to understanding the complexities of the vertebrate host/mosquito vector/malaria parasite triangular relationship. This highlights a pressing need to conduct a multi-species investigation for which we recommend the construction of a database to determine ecological differences among all known Plasmodium species, vectors, and hosts. Closing this knowledge gap may help to inform alternative means of malaria prevention and control.
Collapse
Affiliation(s)
- Nicole F. Clark
- Institute for Applied Ecology, University of Canberra,
Bruce, Australia,College of Medicine and Public Health, Flinders
University, Australia
| | - Andrew W. Taylor-Robinson
- Infectious Diseases Research Group, School of Health,
Medical & Applied Sciences, Central Queensland University, Brisbane,
Australia,College of Health & Human Sciences, Charles Darwin
University, Casuarina, Australia,To whom all correspondence should be addressed:
Prof Andrew W. Taylor-Robinson, Infectious Diseases Research Group, School of
Health, Medical & Applied Sciences, Central Queensland University, 160 Ann
Street, Brisbane, QLD 4000, Australia; Tel: +61 7 3295 1185;
; ORCID iD: https://orcid.org/0000-0001-7342-8348
| |
Collapse
|
44
|
Boualam MA, Pradines B, Drancourt M, Barbieri R. Malaria in Europe: A Historical Perspective. Front Med (Lausanne) 2021; 8:691095. [PMID: 34277665 PMCID: PMC8277918 DOI: 10.3389/fmed.2021.691095] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Endemic malaria, which claimed 229 million new cases and 409,000 deaths in 2019 mainly in Africa, was eradicated from Europe by the mid-20th century. Historical descriptions of intermittent tertian and quartan fever reported in texts of Hippocrates in Greece and Celsus in Italy suggest malaria. A few paleomicrobiology investigations have confirmed the presence of malarial parasite Plasmodium falciparum in 1st, 2nd, and 5th century infected individuals in diverse regions of Italy, and Plasmodium sp. later in Bavaria. The causative Plasmodium pathogens, discovered in the 19th century in Algeria, were controversially used as therapeutic agents in the European pharmacopeia more than two centuries after effective quinine-based treatments had been introduced in Europe. How Europe managed to eradicate malaria and what the history of malaria was in Europe are of medical interest, and this review traces research pathways for a renewed understanding of malaria eradication in Europe through combined historical and paleomicrobiological investigations.
Collapse
Affiliation(s)
- Mahmoud A. Boualam
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Bruno Pradines
- IHU Méditerranée Infection, Marseille, France
- Unité parasitologie et entomologie, Département microbiologie et maladies infectieuses, Institut de recherche biomédicale des armées, Marseille, France
- Aix-Marseille University, IRD, SSA, AP-HM, VITROME, Marseille, France
- Centre national de référence du paludisme, Marseille, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - Rémi Barbieri
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Aix-Marseille University, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
45
|
Pegoraro M, Weedall GD. Malaria in the 'Omics Era'. Genes (Basel) 2021; 12:843. [PMID: 34070769 PMCID: PMC8228830 DOI: 10.3390/genes12060843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
Genomics has revolutionised the study of the biology of parasitic diseases. The first Eukaryotic parasite to have its genome sequenced was the malaria parasite Plasmodium falciparum. Since then, Plasmodium genomics has continued to lead the way in the study of the genome biology of parasites, both in breadth-the number of Plasmodium species' genomes sequenced-and in depth-massive-scale genome re-sequencing of several key species. Here, we review some of the insights into the biology, evolution and population genetics of Plasmodium gained from genome sequencing, and look at potential new avenues in the future genome-scale study of its biology.
Collapse
Affiliation(s)
| | - Gareth D. Weedall
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
46
|
Zhou M, Varol A, Efferth T. Multi-omics approaches to improve malaria therapy. Pharmacol Res 2021; 167:105570. [PMID: 33766628 DOI: 10.1016/j.phrs.2021.105570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/02/2021] [Accepted: 03/16/2021] [Indexed: 01/07/2023]
Abstract
Malaria contributes to the most widespread infectious diseases worldwide. Even though current drugs are commercially available, the ever-increasing drug resistance problem by malaria parasites poses new challenges in malaria therapy. Hence, searching for efficient therapeutic strategies is of high priority in malaria control. In recent years, multi-omics technologies have been extensively applied to provide a more holistic view of functional principles and dynamics of biological mechanisms. We briefly review multi-omics technologies and focus on recent malaria progress conducted with the help of various omics methods. Then, we present up-to-date advances for multi-omics approaches in malaria. Next, we describe resistance phenomena to established antimalarial drugs and underlying mechanisms. Finally, we provide insight into novel multi-omics approaches, new drugs and vaccine developments and analyze current gaps in multi-omics research. Although multi-omics approaches have been successfully used in malaria studies, they are still limited. Many gaps need to be filled to bridge the gap between basic research and treatment of malaria patients. Multi-omics approaches will foster a better understanding of the molecular mechanisms of Plasmodium that are essential for the development of novel drugs and vaccines to fight this disastrous disease.
Collapse
Affiliation(s)
- Min Zhou
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Ayşegül Varol
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany.
| |
Collapse
|
47
|
Dembitsky VM, Ermolenko E, Savidov N, Gloriozova TA, Poroikov VV. Antiprotozoal and Antitumor Activity of Natural Polycyclic Endoperoxides: Origin, Structures and Biological Activity. Molecules 2021; 26:686. [PMID: 33525706 PMCID: PMC7865715 DOI: 10.3390/molecules26030686] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Polycyclic endoperoxides are rare natural metabolites found and isolated in plants, fungi, and marine invertebrates. The purpose of this review is a comparative analysis of the pharmacological potential of these natural products. According to PASS (Prediction of Activity Spectra for Substances) estimates, they are more likely to exhibit antiprotozoal and antitumor properties. Some of them are now widely used in clinical medicine. All polycyclic endoperoxides presented in this article demonstrate antiprotozoal activity and can be divided into three groups. The third group includes endoperoxides, which show weak antiprotozoal activity with a reliability of up to 70%, and this group includes only 1.1% of metabolites. The second group includes the largest number of endoperoxides, which are 65% and show average antiprotozoal activity with a confidence level of 70 to 90%. Lastly, the third group includes endoperoxides, which are 33.9% and show strong antiprotozoal activity with a confidence level of 90 to 99.6%. Interestingly, artemisinin and its analogs show strong antiprotozoal activity with 79 to 99.6% confidence against obligate intracellular parasites which belong to the genera Plasmodium, Toxoplasma, Leishmania, and Coccidia. In addition to antiprotozoal activities, polycyclic endoperoxides show antitumor activity in the proportion: 4.6% show weak activity with a reliability of up to 70%, 65.6% show an average activity with a reliability of 70 to 90%, and 29.8% show strong activity with a reliability of 90 to 98.3%. It should also be noted that some polycyclic endoperoxides, in addition to antiprotozoal and antitumor properties, show other strong activities with a confidence level of 90 to 97%. These include antifungal activity against the genera Aspergillus, Candida, and Cryptococcus, as well as anti-inflammatory activity. This review provides insights on further utilization of polycyclic endoperoxides by medicinal chemists, pharmacologists, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M. Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Ekaterina Ermolenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, 17 Palchevsky Str., 690041 Vladivostok, Russia;
| | - Nick Savidov
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada;
| | - Tatyana A. Gloriozova
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| | - Vladimir V. Poroikov
- Institute of Biomedical Chemistry, 10 Pogodinskaya Str., 119121 Moscow, Russia; (T.A.G.); (V.V.P.)
| |
Collapse
|
48
|
Buery JC, de Alencar FEC, Duarte AMRDC, Loss AC, Vicente CR, Ferreira LM, Fux B, Medeiros MM, Cravo P, Arez AP, Cerutti Junior C. Atlantic Forest Malaria: A Review of More than 20 Years of Epidemiological Investigation. Microorganisms 2021; 9:132. [PMID: 33430150 PMCID: PMC7826787 DOI: 10.3390/microorganisms9010132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/25/2020] [Accepted: 01/06/2021] [Indexed: 01/17/2023] Open
Abstract
In the south and southeast regions of Brazil, cases of malaria occur outside the endemic Amazon region near the Atlantic Forest in some coastal states, where Plasmodium vivax is the recognized parasite. Characteristics of cases and vectors, especially Anopheles (Kerteszia) cruzii, raise the hypothesis of a zoonosis with simians as reservoirs. The present review aims to report on investigations of the disease over a 23-year period. Two main sources have provided epidemiological data: the behavior of Anopheles vectors and the genetic and immunological aspects of Plasmodium spp. obtained from humans, Alouatta simians, and Anopheles spp. mosquitoes. Anopheles (K.) cruzii is the most captured species in the forest canopy and is the recognized vector. The similarity between P. vivax and Plasmodium simium and that between Plasmodium malariae and Plasmodium brasilianum shared between simian and human hosts and the involvement of the same vector in the transmission to both hosts suggest interspecies transfer of the parasites. Finally, recent evidence points to the presence of Plasmodium falciparum in a silent cycle, detected only by molecular methods in asymptomatic individuals and An. (K.) cruzii. In the context of malaria elimination, it is paramount to assemble data about transmission in such non-endemic low-incidence areas.
Collapse
Affiliation(s)
- Julyana Cerqueira Buery
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | | | - Ana Maria Ribeiro de Castro Duarte
- Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo 05403-000, Brazil;
- Superintendência de Controle de Endemias do Estado de São Paulo, São Paulo 01027-000, Brazil
| | - Ana Carolina Loss
- Instituto Nacional da Mata Atlântica, Santa Teresa 29650-000, Brazil;
| | - Creuza Rachel Vicente
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Lucas Mendes Ferreira
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Blima Fux
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| | - Márcia Melo Medeiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Pedro Cravo
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Ana Paula Arez
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, 1349-008 Lisboa, Portugal; (M.M.M.); (P.C.); (A.P.A.)
| | - Crispim Cerutti Junior
- Unidade de Medicina Tropical, Universidade Federal do Espírito Santo, Vitória 29047-105, Brazil; (F.E.C.d.A.); (C.R.V.); (L.M.F.); (B.F.); (C.C.J.)
| |
Collapse
|
49
|
Su XZ, Wu J. Zoonotic Transmissions and Host Switches of Malaria Parasites. ZOONOSES (BURLINGTON, MASS.) 2021; 1. [PMID: 35282332 DOI: 10.15212/zoonoses-2021-0015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Malaria is a deadly disease that affects the health of hundreds of millions of people annually. There are five Plasmodium parasite species that can naturally infect humans, including Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale and Plasmodium knowlesi. Some of the parasites can also infect various non-human primates. Parasites mainly infecting monkeys such as Plasmodium cynomolgi (in fact P. knowlesi was considered as a parasite of monkeys for years) can also be transmitted to human hosts. Recently, many new Plasmodium species were discovered in African apes, and it is possible that some of the parasites can be transmitted to humans in the future. Here, we searched PubMed and the internet via Google and selected articles concerning zoonotic transmission and evolution of selected malaria parasite species. We reviewed the current advances in the relevant topics emphasizing on transmissions of malaria parasites between humans and non-human primates. We also briefly discuss the transmissions of some avian malaria parasites between wild birds and domestic fowls. Zoonotic malaria transmissions are widespread, which poses a threat to public health. More studies on parasite species identification in non-human primates, transmission, and evolution are needed to reduce or prevent transmission of malaria parasites from non-human primates to humans.
Collapse
Affiliation(s)
- Xin-Zhuan Su
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Jian Wu
- Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892-8132, USA
| |
Collapse
|
50
|
Morens DM, Breman JG, Calisher CH, Doherty PC, Hahn BH, Keusch GT, Kramer LD, LeDuc JW, Monath TP, Taubenberger JK. The Origin of COVID-19 and Why It Matters. Am J Trop Med Hyg 2020; 103:955-959. [PMID: 32700664 PMCID: PMC7470595 DOI: 10.4269/ajtmh.20-0849] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic is among the deadliest infectious diseases to have emerged in recent history. As with all past pandemics, the specific mechanism of its emergence in humans remains unknown. Nevertheless, a large body of virologic, epidemiologic, veterinary, and ecologic data establishes that the new virus, SARS-CoV-2, evolved directly or indirectly from a β-coronavirus in the sarbecovirus (SARS-like virus) group that naturally infect bats and pangolins in Asia and Southeast Asia. Scientists have warned for decades that such sarbecoviruses are poised to emerge again and again, identified risk factors, and argued for enhanced pandemic prevention and control efforts. Unfortunately, few such preventive actions were taken resulting in the latest coronavirus emergence detected in late 2019 which quickly spread pandemically. The risk of similar coronavirus outbreaks in the future remains high. In addition to controlling the COVID-19 pandemic, we must undertake vigorous scientific, public health, and societal actions, including significantly increased funding for basic and applied research addressing disease emergence, to prevent this tragic history from repeating itself.
Collapse
Affiliation(s)
- David M. Morens
- American Committee on Arthropod-Borne Viruses, American Society of Tropical Medicine and Hygiene, Arlington, Virginia
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Joel G. Breman
- American Society of Tropical Medicine and Hygiene, Arlington, Virginia
| | - Charles H. Calisher
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology & Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Peter C. Doherty
- Department of Microbiology and Immunology, University of Melbourne at the Doherty Institute, Melbourne, Australia
| | | | - Gerald T. Keusch
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts
- National Emerging Infectious Diseases Laboratory at Boston University, Boston, Massachusetts
| | - Laura D. Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Albany, New York
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York
| | - James W. LeDuc
- Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas
| | - Thomas P. Monath
- American Society of Tropical Medicine and Hygiene, Arlington, Virginia
- Crozet BioPharma LLC, Devens, Massachusetts
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|