1
|
Bao L, Cui X, Zeng T, Liu G, Lai W, Zhao H, Gao F, Wu J, Leong KW, Chen C. Incorporation of polylactic acid microplastics into the carbon cycle as a carbon source to remodel the endogenous metabolism of the gut. Proc Natl Acad Sci U S A 2025; 122:e2417104122. [PMID: 40324088 DOI: 10.1073/pnas.2417104122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 04/02/2025] [Indexed: 05/07/2025] Open
Abstract
Biodegradable polylactic acid (PLA) plastics have been praised as an effective solution to the global pollution caused by petroleum-based plastics, and their widespread use in food packaging and disposable tableware has resulted in increased oral exposure to PLA microplastics (PLA-MPs). Despite their eco-friendly and biodegradable reputation, the in vivo behaviors of PLA-MPs concerning fermentation, carbon cycle, and adverse effects remain unknown. Here, we showed that gut microbiota from the colon can effectively degrade the PLA-MPs by secreting esterase FrsA, whereas esterase FrsA-producing bacteria were identified to dominate this behavior in male C57BL/6 mice. Using isotope tracing and multiomics techniques, we uncovered that 13C-labeled PLA-MPs were incorporated into the carbon cycle of gut microbiota as a carbon source. Meanwhile, these degraded PLA-MPs fragments entered the succinate pathway of the tricarboxylic acid cycle within gut epithelial cells. These processes altered the metabolic phenotype of the gut, resulting in the decreased linear short-chain fatty acids that are primary energy sources of the gut epithelium. Furthermore, we found that exposure of PLA-MPs significantly reduced the appetite and body weight of mice. Our findings present an overall process of biodegradable plastics within hosts, with the focus on the entire double carbon cycle of PLA-MPs in the gut, which offers indispensable insights into the potential impact of exposure to PLA-MPs.
Collapse
Affiliation(s)
- Lin Bao
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejing Cui
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Guanyu Liu
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjia Lai
- Division of Nanotechnology Development, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Hao Zhao
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Fene Gao
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Junguang Wu
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027
| | - Chunying Chen
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
2
|
Chen W, Huang Y, Li W, Fan G, Tang Y, Zhao W, Chen K, Chen Z, Zhou K, Li Z, Zhang H. The potential of pomegranate peel supplementation in Yellow-feathered broilers: effects on growth performance, serum biochemistry, antioxidant capacity, intestinal health, intestinal microbiota, and duodenal mucosal metabolites. Poult Sci 2025; 104:104983. [PMID: 40058007 PMCID: PMC11930591 DOI: 10.1016/j.psj.2025.104983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
This study aimed to investigate the effects of dietary supplementation with pomegranate peel powder (PP) on the growth performance, serum biochemistry, antioxidant capacity, intestinal microbiota, and duodenal mucosal metabolites of yellow-feathered broilers. A total of 360 yellow-feathered broilers were randomly divided into three groups, with their diets supplemented with different levels of PP (0, 1, and 4 g/kg) for 42 days. Dietary supplementation with PP significantly increased the average body weight and average daily gain of yellow-feathered broilers during the periods of 1-21 and 22-42 days, while reducing the feed conversion ratio (p < 0.05). It also decreased the serum levels of aspartate aminotransferase, alanine aminotransferase, creatinine, and uric acid, increased the activities of glutathione peroxidase and superoxide dismutase, and reduced malondialdehyde content in the serum, liver, and intestinal mucosa (p < 0.05). Furthermore, PP supplementation promoted the mRNA expression of farnesoid X receptor, peroxisome proliferator-activated receptor alpha, fatty acid-binding protein 4, epidermal growth factor/epidermal growth factor receptor, and B-cell lymphoma 2, while decreasing the mRNA expression of caspase-1 and interleukin-1 beta (p < 0.05). Regarding mucosal metabolites, PP supplementation increased the contents of polyunsaturated fatty acids (cis-11-eicosenoic acid, cis-13,16-docosadienoic acid, and cis-11,14-eicosadienoic acid), prostaglandin E2/G2, and secondary bile acids (apocholic, hyodeoxycholic, 7-ketodeoxycholic, and omega-muricholic acids) in the mucosa (p < 0.05). In terms of cecal microbiota, PP supplementation increased the β-diversity index (p < 0.05), elevated the relative abundances of Bacteroidota, Alistipes, Bacilli, and Actinobacteriota, and reduced the relative abundances of Clostridia and Gammaproteobacteria (p < 0.05). In conclusion, dietary supplementation of PP can improve intestinal health and growth performance of yellow-feathered broilers by regulating the composition of the gut microbiota.
Collapse
Affiliation(s)
- Wang Chen
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| | - Yurong Huang
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| | - Wenlong Li
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| | - Gao Fan
- Wen's Food Group, No. 9, North Dongdi Road, Xincheng Town, Yunfu, Guangdong 527400, China.
| | - Yanfang Tang
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| | - Weiru Zhao
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| | - Kexin Chen
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| | - Zifan Chen
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| | - Keyue Zhou
- Wen's Food Group, No. 9, North Dongdi Road, Xincheng Town, Yunfu, Guangdong 527400, China.
| | - Zhaoyao Li
- Wen's Food Group, No. 9, North Dongdi Road, Xincheng Town, Yunfu, Guangdong 527400, China; College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Tianhe District, Guangzhou, Guangdong, 510642, China.
| | - Huihua Zhang
- School of Animal Science and Technology, Foshan University, No. 33 Guangyun Road, Shishan Town, Nanhai District, Foshan, Guangdong 528000, China.
| |
Collapse
|
3
|
Lin X, Lin C, Li X, Yao F, Guo X, Wang M, Zeng M, Yuan Y, Xie Q, Huang X, Jiao X. Gut Microbiota Dysbiosis Facilitates Susceptibility to Bloodstream Infection. J Microbiol 2024; 62:1113-1124. [PMID: 39621250 DOI: 10.1007/s12275-024-00190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/10/2024] [Accepted: 10/29/2024] [Indexed: 12/18/2024]
Abstract
To study the role of intestinal flora in the development of bloodstream infections (BSIs). 42 patients and 19 healthy controls (HCs) were screened into the study and their intestinal flora was measured by 16S rRNA gene sequencing. The bacterial diversity was significantly lower in the BSI group compared with that in the HCs (P < 0.001), and beta diversity was significantly differentiated between the two groups (PERMANOVA, P = 0.001). The four keystone species [Roseburia, Faecalibacterium, Prevotella, and Enterococcus (LDA > 4)] differed significantly between the two groups. Dysbiosis of fecal microbial ecology is a common condition present in patients with BSI. The proliferation of certain pathogens or reduction of SCFA-producing bacteria would cause susceptibility to BSI.
Collapse
Affiliation(s)
- Xiaomin Lin
- Department of Clinical Laboratory, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Chun Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, People's Republic of China
| | - Xin Li
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Fen Yao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiaoling Guo
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Meimei Wang
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Mi Zeng
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yumeng Yuan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qingdong Xie
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xudong Huang
- Department of Clinical Laboratory, Jieyang People's Hospital, Jieyang, 522000, Guangdong, People's Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Wang R, Ren Y, Javad HU, Zhou Z, Jiang W, Shu X. Dietary Dihydromyricetin Zinc Chelate Supplementation Improves the Intestinal Health of Magang Geese. Biol Trace Elem Res 2024; 202:5219-5234. [PMID: 38263355 DOI: 10.1007/s12011-024-04065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
To fulfill the nutritional requirements of poultry, effective Zn supplementation is required due to Zn deficiency in basic feed. In this study, we investigated the effects of DMY-Zn (dihydromyricetin zinc chelate) on the growth performance, morphology, and biochemical indices; the expression of intestinal barrier-related genes; the intestinal microflora; and the cecum metabolome of Magang geese. A total of 300 14-day-old Magang geese (equal number of males and females) with an average body weight of 0.82 ± 0.08 kg were randomly divided into five groups and fed a basal diet; these groups were given DMY-Zn (low, medium, or high level of DMY-Zn with 30, 55, or 80 mg/kg Zn added to the basal diet) or ZnSO4 (80 mg/kg Zn added) for 4 weeks. Our results revealed that DMY-Zn significantly impacts growth and biochemical indices and plays a significant role in regulating the intestinal barrier and microflora. DMY-Zn is involved in the upregulation of intestinal barrier gene (ZO1 and MUC2) expression, as well as upregulated Zn-related gene expression (ZIP5). On the other hand, a low concentration of DMY-Zn increased the ɑ diversity index and the abundance of Lactobacillus and Faecalibacterium. Additionally, a cecal metabolomics study showed that the main metabolic pathways affected by DMY-Zn were the pentose phosphate pathway, the biosynthesis of different alkaloids, and the metabolism of sphingolipids. In conclusion, DMY-Zn can reduce feed intake, increase the expression of intestinal barrier-related genes, help maintain the intestinal microflora balance, and increase the abundance of beneficial bacteria in the intestine to improve intestinal immunity.
Collapse
Affiliation(s)
- Renkai Wang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yanli Ren
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hafiz Umer Javad
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, 24 East Sand Street, Guangzhou, 510225, China
- Guangxi College and University Key Laboratory of High-Value Utilization of Seafood and Prepared Food in Beibu Gulf, College of Food Engineering, Beibu Gulf University, Qinzhou, China
| | - Zhiqing Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weiyin Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xugang Shu
- College of Chemistry and Chemical Engineering, Zhongkai University of Agricultural Engineering, 24 East Sand Street, Guangzhou, 510225, China.
| |
Collapse
|
5
|
Xie K, Qi J, Deng L, Yu B, Luo Y, Huang Z, Mao X, Yu J, Zheng P, Yan H, Li Y, Li H, He J. Protective effect of dihydromyricetin on intestinal epithelium in weaned pigs upon enterotoxigenic Escherichia coli challenge. Int Immunopharmacol 2024; 140:112806. [PMID: 39098232 DOI: 10.1016/j.intimp.2024.112806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Dihydromyricetin (DMY), a natural flavonoid compound, are believed to prevent inflammatory response, dealing with pathogens and repairing the intestinal barrier. The objective of this study was to investigate whether DMY supplementation could attenuate intestinal damage in the context of enterotoxigenic Escherichia coli K88 (ETEC F4+) infection. After weaning, different litters of pigs were randomly assigned to one of the following treatments: (1) non-challenged control (CON, fed with basal diet); (2) ETEC-challenged control (ECON, fed with basal diet); and (3) ETEC challenge + DMY treatment (EDMY, fed with basal diet plus 300 mg kg-1 DMY). We observed a significant reduction in fecal Escherichia coli shedding and diarrhea incidence, but an increase in ADG in pigs of EDMY group compared to the pigs of ECON group. Relative to the pigs of ECON group, dietary DMY treatment decreased (P < 0.05) concentrations of the serum D-xylose, D-lactate and diamine oxidase (DAO), but increased the abundance of zonula occludens-1 (ZO-1) in the jejunum of pigs. In addition, DMY also decreased (P < 0.05) the number of S-phase cells and the percentage of total apoptotic epithelial cells of jejunal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Furthermore, DMY decreased the mRNA expression levels of critical immune-associated genes TLR4, NFκB, Caspase3, Caspase9, IL-1β, IL-6, TNF-α and the protein p-NFκB and p-IκBα expressions of intestinal epithelium in pigs of the EDMY group compared to the pigs of the ECON group. Compared to the ECON group, DMY elevated (P < 0.05) the expression levels of β-defensins PBD1, PBD2, PBD3, PBD129, as well as the abundance of secreted IgA in intestinal mucosae of the EDMY group. Thus, our results indicate that DMY may relieve intestinal integrity damage due to Escherichia coli F4.
Collapse
Affiliation(s)
- Kunhong Xie
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Jiawen Qi
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Lili Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Yan Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, PR China.
| |
Collapse
|
6
|
Sampah MES, Moore H, Ahmad R, Duess J, Lu P, Lopez C, Steinway S, Scheese D, Raouf Z, Tsuboi K, Ding J, Caputo C, McFarland M, Fulton WB, Wang S, Wang M, Prindle T, Gazit V, Rubin DC, Alaish S, Sodhi CP, Hackam DJ. Xenotransplanted human organoids identify transepithelial zinc transport as a key mediator of intestinal adaptation. Nat Commun 2024; 15:8613. [PMID: 39375337 PMCID: PMC11458589 DOI: 10.1038/s41467-024-52216-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Short bowel syndrome (SBS) leads to severe morbidity and mortality. Intestinal adaptation is crucial in improving outcomes. To understand the human gene pathways associated with adaptation, we perform single-cell transcriptomic analysis of human small intestinal organoids explanted from mice with experimental SBS. We show that transmembrane ion pathways, specifically the transepithelial zinc transport pathway genes SLC39A4 and SLC39A5, are upregulated in SBS. This discovery is corroborated by an external dataset, bulk RT-qPCR, and Western blots. Oral zinc supplementation is shown to improve survival and weight gain of SBS mice and increase the proliferation of intestinal crypt cells in vitro. Finally, we identify the upregulation of SLC39A5 and associated transcription factor KLF5 in biopsied intestinal tissue specimens from patients with SBS. Thus, we identify zinc supplementation as a potential therapy for SBS and describe a xenotransplantation model that provides a platform for discovery in other intestinal diseases.
Collapse
Affiliation(s)
- Maame Efua S Sampah
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Hannah Moore
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Raheel Ahmad
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Johannes Duess
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Peng Lu
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carla Lopez
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Steve Steinway
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Scheese
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Zachariah Raouf
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Koichi Tsuboi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jeffrey Ding
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Connor Caputo
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madison McFarland
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Fulton
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanxia Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meghan Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas Prindle
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vered Gazit
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Deborah C Rubin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Alaish
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Chhinder P Sodhi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - David J Hackam
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- The Johns Hopkins Children's Center, Johns Hopkins Hospital, Baltimore, MD, USA.
| |
Collapse
|
7
|
Hu X, He Z, Zhao C, He Y, Qiu M, Xiang K, Zhang N, Fu Y. Gut/rumen-mammary gland axis in mastitis: Gut/rumen microbiota-mediated "gastroenterogenic mastitis". J Adv Res 2024; 55:159-171. [PMID: 36822391 PMCID: PMC10770137 DOI: 10.1016/j.jare.2023.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Mastitis is an inflammatory response in the mammary gland that results in huge economic losses in the breeding industry. The aetiology of mastitis is complex, and the pathogenesis has not been fully elucidated. It is commonly believed that mastitis is induced by pathogen infection of the mammary gland and induces a local inflammatory response. However, in the clinic, mastitis is often comorbid or secondary to gastric disease, and local control effects targeting the mammary gland are limited. In addition, recent studies have found that the gut/rumen microbiota contributes to the development of mastitis and proposed the gut/rumen-mammary gland axis. Combined with studies indicating that gut/rumen microbiota disturbance can damage the gut mucosa barrier, gut/rumen bacteria and their metabolites can migrate to distal extraintestinal organs. It is believed that the occurrence of mastitis is related not only to the infection of the mammary gland by external pathogenic microorganisms but also to a gastroenterogennic pathogenic pathway. AIM OF REVIEW We propose the pathological concept of "gastroenterogennic mastitis" and believe that the gut/rumen-mammary gland axis-mediated pathway is the pathological mechanism of "gastroenterogennic mastitis". KEY SCIENTIFIC CONCEPTS OF REVIEW To clarify the concept of "gastroenterogennic mastitis" by summarizing reports on the effect of the gut/rumen microbiota on mastitis and the gut/rumen-mammary gland axis-mediated pathway to provide a research basis and direction for further understanding and solving the pathogenesis and difficulties encountered in the prevention of mastitis.
Collapse
Affiliation(s)
- Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Zhaoqi He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Kaihe Xiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, Jilin Province 130062, China.
| |
Collapse
|
8
|
Zheng X, Xie Y, Chen Z, He J, Chen J. Effects of Glycine Supplementation in Drinking Water on the Growth Performance, Intestinal Development, and Genes Expression in the Jejunum of Chicks. Animals (Basel) 2023; 13:3109. [PMID: 37835714 PMCID: PMC10571574 DOI: 10.3390/ani13193109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Glycine, the most basic amino acid found in nature, is considered an essential amino acid for chicks. However, the precise understanding of high concentrations of glycine's significance in promoting the growth performance of chicks, as well as its impact on intestinal development, re-mains limited. Consequently, the objective of this study was to investigate the effects of glycine supplementation in drinking water on growth performance, intestine morphology, and development in newly hatched chicks. In this study, 200 newly born chicks were selected and pro-vided with a supplementation of 0.5%, 1%, and 2% glycine in their drinking water during their first week of life. The results revealed that glycine supplementation in drinking water could significantly increase the average daily gain of chicks from days 7 to 14. Furthermore, a significant difference was observed between the group supplemented with 1% glycine and the control group. Concurrently, this glycine supplementation increased the villus height and the ratio of the villus height to crypt depth in jejunum on both day 7 and day 14. Glycine supplementation in drinking water significantly affected the mRNA expression level of the ZO-1, GCLM, and rBAT genes in jejunum, which may have certain effects on the mucosal immune defense, cellular antioxidant stress capacity, and amino acid absorption. Overall, the findings of this study indicate that glycine supplementation in drinking water can enhance the growth performance of chicks and promote their intestine development.
Collapse
Affiliation(s)
- Xiaotong Zheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yinku Xie
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Ziwei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Jiaheng He
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
| | - Jianfei Chen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (X.Z.); (Y.X.); (Z.C.); (J.H.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
9
|
Huang R, Yao Y, Tong X, Wang L, Qian W, Lu J, Zhang W, Liu Y, Wang S, Xian S, Zhu Y, Huang J, Guo X, Gu M, Lv H, Bi W, Meng C, Chang Z, Zhang J, Xu D, Ji S. Tracing the evolving dynamics and research hotspots of microbiota and immune microenvironment from the past to the new era. Microbiol Spectr 2023; 11:e0013523. [PMID: 37768071 PMCID: PMC10581186 DOI: 10.1128/spectrum.00135-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/31/2023] [Indexed: 09/29/2023] Open
Abstract
Gut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like the inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. This article aims to review the documents in this field and summarize the research hotspots as well as developing processes. Gut microbiota and immune microenvironment-related documents from 1976 to 2022 were obtained from the Web of Science Core Collection database. Bibliometrics was used to assess the core authors and journals, most contributive countries and affiliations together with hotspots in this field and keyword co-occurrence analysis. Data were visualized to help comprehension. Nine hundred and twelve documents about gut microbiota and immune microenvironment were retrieved, and the annual publications increased gradually. The most productive author, country, and affiliation were "Zitvogel L," USA and "UNIV TEXAS MD ANDERSON CANC CTR," respectively. FRONTIERS IN IMMUNOLOGY, CANCERS, and INTERNATIONAL JOURNAL OF MOLECULAR SCIENCE were the periodicals with most publications. Keyword co-occurrence analysis identified three clusters, including gut microbiota, inflammation, and IBD. Combined with the visualized analysis of documents and keyword co-occurrence as well as literature reading, we recognized three key topics of gut microbiota: cancer and therapy; immunity, inflammation and IBD; acute injuries and metabolic diseases. This article revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.IMPORTANCEGut microbiota can regulate many physiological processes within gastrointestinal tract and other distal sites. Dysbiosis may not only influence chronic diseases like inflammatory bowel disease (IBD), metabolic disease, tumor and its therapeutic efficacy, but also deteriorate acute injuries. While the application of bibliometrics in the field of gut microbiota and immune microenvironment still remains blank, which focused more on the regulation of the gut microbiota on the immune microenvironment of different kinds of diseases. Here, we intended to review and summarize the presented documents in gut microbiota and immune microenvironment field by bibliometrics. And we revealed researches on gut microbiota and immune microenvironment were growing. More attention should be given to the latest hotspots like gut microbiota, inflammation, IBD, cancer and immunotherapy, acute traumas, and metabolic diseases.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Lei Wang
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jie Huang
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Lv
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Wenshuai Bi
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Chenwei Meng
- Beijing Genomics Institute (BGI), Shenzhen, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, First Affiliated Hospital of Naval Medical University, and Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
10
|
Yang XJ, Wang XH, Yang MY, Ren HY, Chen H, Zhang XY, Liu QF, Yang G, Yang Y, Yang XJ. Exploring choices of early nutritional support for patients with sepsis based on changes in intestinal microecology. World J Gastroenterol 2023; 29:2034-2049. [PMID: 37155528 PMCID: PMC10122787 DOI: 10.3748/wjg.v29.i13.2034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/21/2023] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Sepsis exacerbates intestinal microecological disorders leading to poor prognosis. Proper modalities of nutritional support can improve nutrition, immunity, and intestinal microecology. AIM To identify the optimal modality of early nutritional support for patients with sepsis from the perspective of intestinal microecology. METHODS Thirty patients with sepsis admitted to the intensive care unit of the General Hospital of Ningxia Medical University, China, between 2019 and 2021 with indications for nutritional support, were randomly assigned to one of three different modalities of nutritional support for a total of 5 d: Total enteral nutrition (TEN group), total parenteral nutrition (TPN group), and supplemental parenteral nutrition (SPN group). Blood and stool specimens were collected before and after nutritional support, and changes in gut microbiota, short-chain fatty acids (SCFAs), and immune and nutritional indicators were detected and compared among the three groups. RESULTS In comparison with before nutritional support, the three groups after nutritional support presented: (1) Differences in the gut bacteria (Enterococcus increased in the TEN group, Campylobacter decreased in the TPN group, and Dialister decreased in the SPN group; all P < 0.05); (2) different trends in SCFAs (the TEN group showed improvement except for Caproic acid, the TPN group showed improvement only for acetic and propionic acid, and the SPN group showed a decreasing trend); (3) significant improvement of the nutritional and immunological indicators in the TEN and SPN groups, while only immunoglobulin G improved in the TPN group (all P < 0.05); and (4) a significant correlation was found between the gut bacteria, SCFAs, and nutritional and immunological indicators (all P < 0.05). CONCLUSION TEN is recommended as the preferred mode of early nutritional support in sepsis based on clinical nutritional and immunological indicators, as well as changes in intestinal microecology.
Collapse
Affiliation(s)
- Xiao-Juan Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Hong Wang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ming-Yue Yang
- Department of Emergency Medicine, Affiliated Hospital of Jining Medical University, Jining 272030, Shandong Province, China
| | - Hong-Yan Ren
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Hui Chen
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201318, China
| | - Xiao-Ya Zhang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Qin-Fu Liu
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Ge Yang
- School of Clinical Medicine, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| | - Yi Yang
- Department of Critical Care Medicine, Southeast University School of Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiao-Jun Yang
- Department of Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
11
|
He Z, Li Y, Xiong T, Nie X, Zhang H, Zhu C. Effect of dietary resveratrol supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged with lipopolysaccharide. Front Microbiol 2022; 13:977087. [PMID: 36090096 PMCID: PMC9453244 DOI: 10.3389/fmicb.2022.977087] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Resveratrol (RES) displays strong antioxidant and anti-inflammatory properties in protecting the animals from various stressors and inflammatory injuries, but its interrelationship with the gut microbiota remained largely unclear. This study was carried out to investigate the effects of dietary RES supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged by lipopolysaccharide (LPS). A total of 240 yellow-feathered broilers were randomly assigned to four treatment groups in a 2 × 2 factorial design. The broilers were fed with the control diet or control diet supplemented with 400 mg/kg RES, followed by challenge with LPS or the same amount of saline. Dietary RES supplementation significantly alleviated the decreases in the final body weight (BW), average daily gain (ADG), and ADFI induced by LPS (P < 0.05). LPS challenge significantly increased plasma concentrations of triglyceride, high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and cortisol levels, but decreased triiodothyronine (T3) and insulin levels (P < 0.05). Dietary supplementation with RES significantly reversed the elevated creatinine concentrations and the decreased concentrations of T3 and insulin caused by LPS (P < 0.05). Moreover, dietary RES supplementation significantly increased plasma total antioxidant capacity (T-AOC) and catalase (CAT) activities and superoxide dismutase (SOD) and T-AOC activities in jejunal mucosa and reduced malondialdehyde (MDA) concentration in the plasma (P < 0.05). The reduction in the villus height to crypt depth ratio in duodenum, jejunum and ileum and the shortening of villus height in jejunum and ileum caused by LPS were also alleviated by RES treatment (P < 0.05). Furthermore, the increased concentrations of intestinal tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β caused by LPS were significantly decreased by RES treatment (P < 0.05). Dietary RES treatment increased the mRNA expression of claudin-1, claudin-5, occludin, and zonula occludens-1 (ZO-1), and decreased mRNA expression of IL-1β, IL-8, IL-17, and TNF-α after LPS challenge (P < 0.05). Dietary RES treatments significantly decreased the dominance of cecal microbiota, and increased the Pieiou-e and Simpson index. Moreover, dietary RES supplementation increased relative abundance of UCG_ 009, Erysipelotrichaceae, Christensenellaceae_R-7_group, Anaerotruncus, RF39, and Ruminococcus while decreasing the abundance of Alistipes at genus level. Spearman correlation analysis revealed that the microbes at the order and genus levels significantly correlated with indicators of growth performance, antioxidant capacity, and intestinal health. Collectively, dietary supplementation with 400 mg/kg RES could improve growth performance and antioxidant capacity, and modulate intestinal immunity in yellow-feathered broilers challenged by LPS at early stage, which might be closely associated with the regulation of gut microbiota community composition.
Collapse
|
12
|
Preventive and Regenerative Effect of Glutamine and Probiotics on Gastric Mucosa in an Experimental Model of Alcohol-Induced Injury in Male Holtzman Rats. Processes (Basel) 2022. [DOI: 10.3390/pr10030504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The purpose of this study was to measure the preventive and regenerative effect of glutamine and probiotics induced by alcohol injury in Holtzman rats. Methods: Analytical, experimental and prospective study. The population consisted of 56 male rats between 300 and 350 g, distributed in three experimental phases: Pre-pilot phase PPP (6 rats), Pilot phase PP (10 rats), and Experimental phase EP (40 rats). In the pilot phase, 10 rats were subjected to damage with 8.5% ethanol, which was given intragastrically. The dosage was calculated for 10 rats in two groups: the first with 7.5 mL/kg in 5 rats and the second with 8.5 mL/kg in 5 rats. The experimental phase was performed in 40 rats divided into 6 groups, the negative control group (healthy), positive control group (injured), preventive experimental group (glutamine and glutamine with probiotic) and regenerative experimental group (glutamine and glutamine with probiotic). At the end of each phase, the rats were sacrificed with sodium pentobarbital (Halathal) and a portion of their stomachs was stored in formol. Results: The evaluation of stomach tissue samples (desquamation, erythema, hyperemia) showed that in the preventive phase, glutamine shows effectiveness in comparison to glutamine with probiotic. In the regenerative phase, glutamine and glutamine with probiotic did not show significant differences. Conclusions: Glutamine and probiotics can potentially serve as a therapy for the treatment for gastritis.
Collapse
|
13
|
Sahoyama Y, Hamazato F, Shiozawa M, Nakagawa T, Suda W, Ogata Y, Hachiya T, Kawakami E, Hattori M. Multiple nutritional and gut microbial factors associated with allergic rhinitis: the Hitachi Health Study. Sci Rep 2022; 12:3359. [PMID: 35233003 PMCID: PMC8888718 DOI: 10.1038/s41598-022-07398-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/15/2022] [Indexed: 11/28/2022] Open
Abstract
Several studies suggest the involvement of dietary habits and gut microbiome in allergic diseases. However, little is known about the nutritional and gut microbial factors associated with the risk of allergic rhinitis (AR). We recruited 186 participants with symptoms of AR and 106 control subjects without symptoms of AR at the Hitachi Health Care Center, Japan. The habitual consumption of 42 selected nutrients were examined using the brief-type self-administered diet history questionnaire. Faecal samples were collected and subjected to amplicon sequencing of the 16S ribosomal RNA gene hypervariable regions. Association analysis revealed that four nutrients (retinol, vitamin A, cryptoxanthin, and copper) were negatively associated with AR. Among 40 genera examined, relative abundance of Prevotella and Escherichia were associated with AR. Furthermore, significant statistical interactions were observed between retinol and Prevotella. The age- and sex-adjusted odds of AR were 25-fold lower in subjects with high retinol intake and high Prevotella abundance compared to subjects with low retinol intake and low Prevotella abundance. Our data provide insights into complex interplay between dietary nutrients, gut microbiome, and the development of AR.
Collapse
Affiliation(s)
- Yukari Sahoyama
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan.
| | - Fumiaki Hamazato
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan
| | - Manabu Shiozawa
- Technology Innovation Div., Hitachi High-Tech Corporation, Business Tower, Toranomon Hills, 1-17-1 Minato-ku, Toranomon, Tokyo, 105-6409, Japan
| | - Tohru Nakagawa
- Hitachi Health Care Center, Hitachi Ltd., Ibaraki, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yusuke Ogata
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | | | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Yokohama, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahira Hattori
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
14
|
Liu G, Xu X, Wu C, Jia G, Zhao H, Chen X, Tian G, Cai J, Wang J. Spermine protects intestinal barrier integrity through ras-related C3 botulinum toxin substrate 1/phospholipase C-γ1 signaling pathway in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 8:135-143. [PMID: 34977383 PMCID: PMC8683656 DOI: 10.1016/j.aninu.2021.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Weaning stress can cause tight junctions damage and intestinal permeability enhancement, which leads to intestinal imbalance and growth retardation, thereby causing damage to piglet growth and development. Spermine can reduce stress. However, the mechanism of spermine modulating the intestinal integrity in pigs remains largely unknown. This study aims to examine whether spermine protects the intestinal barrier integrity of piglets through ras-related C3 botulinum toxin substrate 1 (Rac1)/phospholipase C-γ1 (PLC-γ1) signaling pathway. In vivo, 80 piglets were categorised into 4 control groups and 4 spermine groups (10 piglets per group). The piglets were fed with normal saline or spermine at 0.4 mmol/kg BW for 7 h and 3, 6 and 9 d. In vitro, we investigated whether spermine protects the intestinal barrier after a tumor necrosis factor α (TNF-α) challenge through Rac1/PLC-γ1 signaling pathway. The in vivo study found that spermine supplementation increased tight junction protein mRNA levels and Rac1/PLC-γ1 signaling pathway gene expression in the jejunum of piglets. The serum D-lactate content was significantly decreased after spermine supplementation (P < 0.05). The in vitro study found that 0.1 μmol/L spermine increased the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability (P < 0.05). Further experiments demonstrated that spermine supplementation enhanced the levels of tight junction protein expression, Rac1/PLC-γ1 signaling pathway and transepithelial electrical resistance, and decreased paracellular permeability compared with the NSC-23766 and U73122 treatment with spermine after TNF-α challenge (P < 0.05). Collectively, spermine protects intestinal barrier integrity through Rac1/PLC-γ1 signaling pathway in piglets.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Xiaomei Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
15
|
Toni T, Alverdy J, Gershuni V. Re-examining chemically defined liquid diets through the lens of the microbiome. Nat Rev Gastroenterol Hepatol 2021; 18:903-911. [PMID: 34594028 PMCID: PMC8815794 DOI: 10.1038/s41575-021-00519-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Trends in nutritional science are rapidly shifting as information regarding the value of eating unprocessed foods and its salutary effect on the human microbiome emerge. Unravelling the evolution and ecology by which humans have harboured a microbiome that participates in every facet of health and disease is daunting. Most strikingly, the host habitat has sought out naturally occurring foodstuff that can fulfil its own metabolic needs and also the needs of its microbiota, each of which remain inexorably connected to one another. With the introduction of modern medicine and complexities of critical care, came the assumption that the best way to feed a critically ill patient is by delivering fibre-free chemically defined sterile liquid foods (that is, total enteral nutrition). In this Perspective, we uncover the potential flaws in this assumption and discuss how emerging technology in microbiome sciences might inform the best method of feeding malnourished and critically ill patients.
Collapse
Affiliation(s)
- Tiffany Toni
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - John Alverdy
- University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Victoria Gershuni
- University of Pennsylvania, Department of Surgery, Philadelphia, PA, USA and Washington University in St Louis, Department of Surgery, St Louis, MO, USA,Corresponding author
| |
Collapse
|
16
|
Telomere Length, Apoptotic, and Inflammatory Genes: Novel Biomarkers of Gastrointestinal Tract Pathology and Meat Quality Traits in Chickens under Chronic Stress ( Gallus gallus domesticus). Animals (Basel) 2021; 11:ani11113276. [PMID: 34828008 PMCID: PMC8614256 DOI: 10.3390/ani11113276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/16/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The assessment of poultry’s gastrointestinal (GI) tract and meat quality traits are crucial for sustainable poultry production in the tropics. The search for well-conserved and more reliable biomarkers for the GI tract and meat traits has faced many challenges. In this study, we observed the effect of corticosterone (CORT) and age on body weight, buffy coat telomere length, GI tract, and meat quality traits. The critical evaluation of the GI tract and meat traits in this study revealed that telomere length, mitochondria, and acute phase protein genes were altered by chronic stress and were associated with the traits. This study informed us of the potential of telomere length, mitochondria, and acute phase protein genes in the assessment of GI tract pathological conditions and meat quality in the poultry sector for sustainable production. Abstract This study was designed to examine the potentials of telomere length, mitochondria, and acute phase protein genes as novel biomarkers of gastrointestinal (GI) tract pathologies and meat quality traits. Chickens were fed a diet containing corticosterone (CORT) for 4 weeks and records on body weight, telomere length, GI tract and muscle histopathological test, meat quality traits, mitochondria, and acute phase protein genes were obtained at weeks 4 and 6 of age. The body weight of CORT-fed chickens was significantly suppressed (p < 0.05). CORT significantly altered the GI tract and meat quality traits. The interaction effect of CORT and age on body weight, duodenum and ileum crypt depth, pH, and meat color was significant (p < 0.05). CORT significantly (p < 0.05) shortened buffy coat telomere length. UCP3 and COX6A1 were diversely and significantly expressed in the muscle, liver, and heart of the CORT-fed chicken. Significant expression of SAAL1 and CRP in the liver and hypothalamus of the CORT-fed chickens was observed at week 4 and 6. Therefore, telomere lengths, mitochondria, and acute phase protein genes could be used as novel biomarkers for GI tract pathologies and meat quality traits.
Collapse
|
17
|
Lin Y, Chen M, Peng Y, Chen Q, Li S, Chen L. Feeding intolerance and risk of poor outcome in patients undergoing cardiopulmonary bypass surgery. Br J Nutr 2021; 126:1340-1346. [PMID: 33468265 PMCID: PMC8505710 DOI: 10.1017/s0007114521000167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/19/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
We conducted a prospective, observational study to determine the incidence of feeding intolerance (FI) within 7 d of initiating enteral nutrition (EN) in patients undergoing cardiopulmonary bypass (CPB) and to evaluate the association between FI and a poor prognosis. Patients who underwent CPB surgery at Fujian Medical University Union Hospital between March 2020 and June 2020 were enrolled. According to the presence or absence of FI within 7 d after EN, patients were divided into FI and non-FI groups. According to the occurrence of a poor prognosis (death, gastrointestinal haemorrhage, acute kidney injury, liver insufficiency, neurological events (cerebral infarction, cerebral haemorrhage and epilepsy) and prolonged mechanical ventilation (> 48 h)), patients were divided into poor prognosis and good prognosis groups. The mean age of the 237 CPB patients, including 139 men and ninety-eight women, was 53·80 (sd 12·25) years. The incidence of FI was 64·14 %. Multivariate logistic regression analysis showed factors independently associated with poor prognosis after CPB included FI (OR 2·138; 95 % CI 1·058, 4·320), age (OR 1·033; 95 % CI 1·004, 1·063), New York Heart Association (NYHA) class III/IV cardiac function (OR 2·410; 95 % CI 1·079, 5·383), macrovascular surgery (OR 5·434; 95 % CI 1·704, 17·333) and initial sequential organ failure assessment score (OR 1·243; 95 % CI 1·010, 1·530). Thus, the incidence of FI within 7 d of EN after CPB was high, which was associated with a poor prognosis.
Collapse
Affiliation(s)
- Yanjuan Lin
- Department of Nursing, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou City, Fujian Province, People’s Republic of China
| | - Meihua Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou City, Fujian Province, People’s Republic of China
| | - Yanchun Peng
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou City, Fujian Province, People’s Republic of China
| | - Qiong Chen
- Fujian Medical University, 88 Jiaotong Road, Fuzhou City, Fujian Province, People’s Republic of China
| | - Sailan Li
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou City, Fujian Province, People’s Republic of China
| | - Liangwan Chen
- Department of Cardiac Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou City, Fujian Province, People’s Republic of China
| |
Collapse
|
18
|
Hong W, Xu D, Song X, Niu B, Zhuang Z, Lu Y, Lei X, Ma R, Lu C, Sun N, Mao Y, Li X. Vitamin A and retinoic acid accelerate the attenuation of intestinal adaptability upon feeding induced by high-fat diet in mice. J Nutr Biochem 2021; 97:108803. [PMID: 34147602 DOI: 10.1016/j.jnutbio.2021.108803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 02/07/2023]
Abstract
With its unique cellular plasticity, the small intestinal mucosa exhibits efficient adaptability upon feeding. However, little is known about the effect of high-fat diet (HFD) feeding on this adaption and its underlying mechanism. Herein, we demonstrated that the cell proliferation ability, mitochondrial morphology, and global transcriptomic profile of the small intestine exhibited a prominent discrepancy between the fasted and refed state in mice, which were markedly attenuated by long-term HFD feeding. The retinol (Vitamin A, VA) metabolism pathway was dramatically affected by HFD feeding in the small intestine. Both VA and its active metabolite retinoic acid (RA), with the administration of lipid micelles, promoted the expression of genes involved in lipid absorption and suppressed the expression of genes involved in the cell proliferation of intestinal organoids. Via chip-qPCR and RT-qPCR, genes involved in lipid metabolism and cell proliferation were target genes of RARα/RXRα in small intestinal organoids treated with RA and lipid micelles. The role of VA in the in vivo attenuation of intestinal adaptability, in response to HFD, was evaluated. Mice were fed a normal chow diet, HFD, or HFD diet supplemented with additional 1.5-fold VA for 12 weeks. VA supplementation in HFD accelerated the attenuation of intestinal adaptability upon feeding induced by HFD, promoted lipid absorption gene expression, and increased body weight and serum cholesterol levels. In conclusion, the discrepancy of the small intestine between the fasted and refed state was dramatically attenuated by HFD feeding, in which VA and RA might play important roles.
Collapse
Affiliation(s)
- Wenting Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dongke Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaowei Song
- Department of Chemistry, Fudan University, Shanghai, China
| | - Baolin Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziyan Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiteng Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaohong Lei
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Runjun Ma
- Center for Gastrointestinal Endoscopy, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yimin Mao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China;.
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Badmus KA, Idrus Z, Meng GY, Sazili AQ, Mamat-Hamidi K. Telomere Length and Regulatory Genes as Novel Stress Biomarkers and Their Diversities in Broiler Chickens ( Gallus gallus domesticus) Subjected to Corticosterone Feeding. Animals (Basel) 2021; 11:ani11102759. [PMID: 34679783 PMCID: PMC8532957 DOI: 10.3390/ani11102759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Assessment of poultry welfare is very crucial for sustainable production in the tropics. There is a demand for alternatives to plasma corticosterone levels as they have received much criticism as an unsuitable predictor of animal welfare due to inconsistency. In this study, we noticed no effect of age on plasma corticosterone (CORT) although it was altered by CORT treatment. However, growth performances and organ weight were affected by CORT treatment and age. The broad sense evaluation of telomere length in this study revealed that telomere length in the blood, muscle, liver and heart was shortened by chronic stress induced by corticosterone administration. The expression profile of the telomere regulatory genes was altered by chronic stress. This study informed us of the potential of telomere length and its regulatory genes in the assessment of animal welfare in the poultry sector for sustainable production. Abstract This study was designed to characterize telomere length and its regulatory genes and to evaluate their potential as well-being biomarkers. Chickens were fed a diet containing corticosterone (CORT) for 4 weeks and performances, organ weight, plasma CORT levels, telomere lengths and regulatory genes were measured and recorded. Body weights of CORT-fed chickens were significantly suppressed (p < 0.05), and organ weights and circulating CORT plasma levels (p < 0.05) were altered. Interaction effect of CORT and duration was significant (p < 0.05) on heart and liver telomere length. CORT significantly (p < 0.05) shortened the telomere length of the whole blood, muscle, liver and heart. The TRF1, chTERT, TELO2 and HSF1 were significantly (p < 0.05) upregulated in the liver and heart at week 4 although these genes and TERRA were downregulated in the muscles at weeks 2 and 4. Therefore, telomere lengths and their regulators are associated and diverse, so they can be used as novel biomarkers of stress in broiler chickens fed with CORT.
Collapse
Affiliation(s)
- Kazeem Ajasa Badmus
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Zulkifli Idrus
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Goh Yong Meng
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
- Department of Veterinary Pre-Clinical Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
| | - Kamalludin Mamat-Hamidi
- Department of Animal Science, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia; (K.A.B.); (Z.I.); (A.Q.S.)
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Seri Kembangan 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
20
|
Riederer M, Schweighofer N, Trajanoski S, Stelzer C, Zehentner M, Fuchs-Neuhold B, Kashofer K, Mayr JA, Hörmann-Wallner M, Holasek S, van der Kleyn M. Free threonine in human breast milk is related to infant intestinal microbiota composition. Amino Acids 2021; 54:365-383. [PMID: 34477981 PMCID: PMC8948153 DOI: 10.1007/s00726-021-03057-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Accumulating evidence indicates that free amino acids (FAA) might be bioactive compounds with potential immunomodulatory capabilities. However, the FAA composition in human milk is still poorly characterized with respect to its correlation to maternal serum levels and its physiological significance for the infant. Studies addressing the relation of human milk FAA to the infants' intestinal microbiota are still missing. METHODS As part of a pilot study, maternal serum and breast milk FAA concentrations as well as infant intestinal microbiota (16S rRNA) were determined 2 months after birth. The study cohort consisted of 41 healthy mothers and their term delivered, healthy infants with normal birthweight. The relationship between maternal serum and milk FAA was determined by correlation analyses. Associations between (highly correlated) milk FAA and infant intestinal beta diversity were tested using PERMANOVA, LefSe and multivariate regression models adjusted for common confounders. RESULTS Seven breast milk FAA correlated significantly with serum concentrations. One of these, threonine showed a negative association with abundance of members of the class Gammaproteobacteria (R2adj = 17.1%, p = 0.006; β= - 0.441). In addition, on the level of families and genera, threonine explained 23.2% of variation of the relative abundance of Enterobacteriaceae (R2adj; p = 0.001; β = - 0.504) and 11.1% of variability in the abundance of Escherichia/Shigella (R2adj, p = 0.025; β = - 0.368), when adjusted for confounders. CONCLUSION Our study is the first to suggest potential interactions between breast milk FAA and infant gut microbiota composition during early lactation. The results might be indicative of a potential protective role of threonine against members of the Enterobacteriaceae family in breast-fed infants. Still, results are based on correlation analyses and larger cohorts are needed to support the findings and elucidate possible underlying mechanisms to assess the complex interplay between breast milk FAA and infant intestinal microbiota in detail.
Collapse
Affiliation(s)
- Monika Riederer
- Institute of Biomedical Science, University of Applied Sciences JOANNEUM, Graz, Austria.
| | | | - Slave Trajanoski
- Core Facility Computational Bioanalytics, Center for Medical Research (ZMF), Medical University of Graz, Graz, Austria
| | - Claudia Stelzer
- Institute of Biomedical Science, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Miriam Zehentner
- Institute of Biomedical Science, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Bianca Fuchs-Neuhold
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Karl Kashofer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Auenbruggerpl. 2, 8036, Graz, Austria
| | - Johannes A Mayr
- Department of Pediatrics, Salzburger Landeskliniken and Paracelsus Medical University, Salzburg, Austria
| | - Marlies Hörmann-Wallner
- Institute of Dietetics and Nutrition, Health Perception Lab, University of Applied Sciences JOANNEUM, Graz, Austria
| | - Sandra Holasek
- Department of Pathophysiology, Medical University Graz, Graz, Austria
| | | |
Collapse
|
21
|
Anti-Inflammatory Properties of Plasma from Children with Short Bowel Syndrome. Pathogens 2021; 10:pathogens10081021. [PMID: 34451485 PMCID: PMC8400962 DOI: 10.3390/pathogens10081021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
Sepsis, resulting from a dysregulated host immune response to invading pathogens, is the leading cause of mortality in critically ill patients worldwide. Immunomodulatory treatment for sepsis is currently lacking. Children with short bowel syndrome (SBS) may present with less severe symptoms during gram-negative bacteremia. We, therefore, tested the hypothesis that plasma from children with SBS could confer protection against Escherichia coli sepsis. We showed that SBS plasma at 5% and 10% concentrations significantly (p < 0.05) inhibited the production of both TNF-α and IL-6 induced by either E. coli- or LPS-stimulated host cells when compared to plasma from healthy controls. Furthermore, mice treated intravenously with select plasma samples from SBS or healthy subjects had reduced proinflammatory cytokine levels in plasma and a significant survival advantage after E. coli infection. However, SBS plasma was not more protective than the plasma of healthy subjects, suggesting that children with SBS have other immunomodulatory mechanisms, in addition to neutralizing antibodies, to alleviate their symptoms during gram-negative sepsis.
Collapse
|
22
|
The clinical impacts of early using glutamine/arginine enriched high protein density formula at trophic dose in intolerant enteral nutrition cachectic hypoalbuminemic hospitalized patients. ACTA ACUST UNITED AC 2021; 58:153-160. [PMID: 32449700 DOI: 10.2478/rjim-2020-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND We sought to evaluate the clinical impacts of the early administration of trophic doses of a glutamine/arginine enriched enteral nutrition formula (ENF) with a high protein density to cachectic hypoalbuminemic hospitalized patients intolerant to enteral nutrition. METHODS A retrospective analysis was conducted using the nutritional and non-nutritional data of patients admitted to our institution from April 2017 through August 2019. Patients who died or were discharged before completing ≥1 weeks of hospital admission, or those whose data could not be obtained were excluded. Among other variables, percent changes in serum albumin levels (%∆ALB), C - reactive protein (CRP) and their ratios were expressed as Mean ± SD using the Independent Samples T-test, while categorical variables were expressed as numbers with percentages by using χ2 test. Two tested groups were determined based on the use of ENF: Group I received trophic doses of ENF, while Group II received no enteral nutrition. RESULTS The overall hospital length of stay (LOS) and overall 28-day hospital mortality were significantly lower in Group I when compared with Group II with Means ± SDs of (11.32 ± 2.19 days vs 23.49 ± 4.33 days) and (13.13% vs. 28.16%), respectively. Also, significantly higher (%∆ALB) for Group I compared with group II (43.48% ± 7.89% vs. 33.45% ± 6.18%), respectively was observed. CONCLUSION In malnourished hypoalbuminemic patients suffering from feeding intolerance, early trophic administration of glutamine/arginine enriched high protein density ENF was well tolerated and may be associated with increased plasma albumin levels, reduced LOS, and overall 28-day mortality, and hence may be considered in such patients.
Collapse
|
23
|
Cui Y, Qu Y, Yin K, Zhang X, Lin H. Selenomethionine ameliorates LPS-induced intestinal immune dysfunction in chicken jejunum. Metallomics 2021; 13:6127319. [PMID: 33693770 DOI: 10.1093/mtomcs/mfab003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/14/2022]
Abstract
Selenomethionine (SeMet) is a widely used food supplement. However, the research on the effect of SeMet on intestinal immune function is not enough. Therefore, in this experiment, SeMet was added to the diet of chickens, and lipopolysaccharide (LPS) was used as harmful stimulation to study the effect of SeMet on intestinal immune function in chickens. We chose chicken jejunum as the research object. The results showed that LPS treatment decreased the expressions of selenoproteins and induced inflammatory reaction, cytokine disorder, decreases of immunoglobulin levels, heat shock protein expression disorder, and decreases of defensin expression levels in jejunum. However, dietary SeMet can effectively alleviate the above injury caused by LPS. Our results showed that SeMet could improve the intestinal immunity in chickens, and feeding SeMet could alleviate the intestinal immune dysfunction caused by LPS. The application range of SeMet in feed can be roughly given through our experiment; i.e. 0.35-0.5 mg/kg SeMet was effective. We speculated that dietary SeMet could effectively alleviate the intestinal immune dysfunction caused by harmful stimulation and help to resist the further damage caused by harmful stimulation.
Collapse
Affiliation(s)
- Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yingying Qu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Kai Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Xintong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China.,Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
24
|
Zheng YW, Zhang JY, Zhou HB, Guo YP, Ma QG, Ji C, Zhao LH. Effects of dietary pyrroloquinoline quinone disodium supplementation on inflammatory responses, oxidative stress, and intestinal morphology in broiler chickens challenged with lipopolysaccharide. Poult Sci 2020; 99:5389-5398. [PMID: 33142455 PMCID: PMC7647834 DOI: 10.1016/j.psj.2020.08.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 08/03/2020] [Accepted: 08/15/2020] [Indexed: 01/03/2023] Open
Abstract
This study was conducted to investigate the effects of pyrroloquinoline quinone disodium (PQQ·Na2) on inflammatory responses, oxidative stress, and intestinal morphology of broiler chickens challenged with lipopolysaccharide (LPS). A 2 × 2 factorial arrangement in a complete randomized design experiment was used to study the effect of dietary PQQ·Na2 (0 or 1 mg/kg) on broiler chickens with or without a challenge with LPS. A total of two hundred eighty-eight 1-day-old Arbor Acre broiler chickens were randomly assigned to 4 treatments with 6 replicate cages of 12 birds per cage. All experimental broilers were injected intraperitoneally with 0.5 mg/kg body weight of either Escherichia coli LPS or sterile saline at 16, 18, and 20 d of age. Results showed that injecting LPS significantly increased the concentrations of interleukin-1beta (IL-1β) in serum of birds on day 20 and day 21. Meanwhile, LPS injection increased (P < 0.05) the relative mRNA expression of interleukin-6 (IL-6) in the duodenal mucosa of broilers on day 21. However, dietary supplementation with PQQ·Na2 decreased (P < 0.05) the concentration of IL-6 in serum of birds on day 20 and the levels of IL-1β, IL-6, and interleukin-10 (IL-10) in serum of broiler chickens on day 21. Besides, supplementation of PQQ·Na2 within diet decreased (P < 0.05) the mRNA expressions of IL-1β and IL-10 in the duodenal mucosa of birds on day 20. Relative to saline injection, the activity of glutathione peroxidase (GSH-Px) in serum and the activities of total superoxide dismutase (T-SOD) and catalase (CAT) in liver were found to be lower (P < 0.05) in broilers after LPS challenge on day 21. However, birds fed with PQQ·Na2 showed higher (P < 0.05) GSH-Px activity in serum and higher (P < 0.05) T-SOD activities in liver on day 21 and day 42. Pyrroloquinoline quinone disodium also significantly attenuated the LPS-induced decreases in villus height to crypt depth ratio in the duodenum of broilers. In conclusion, dietary PQQ·Na2 supplementation significantly exerted protective effects on inflammation damage and oxidant stress of broilers under LPS challenge by regulating the expression of inflammatory cytokines (IL-1β, IL-6, and IL-10) and activities of antioxidant enzymes (GSH-Px, T-SOD, and CAT). Moreover, dietary PQQ·Na2 supplementation significantly ameliorated the LPS-impaired intestinal morphology in broilers. Therefore, it has been considered that PQQ·Na2 can be used as a potential feed additive in broiler production.
Collapse
Affiliation(s)
- Y W Zheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - J Y Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - H B Zhou
- Dalian Chengsan Husbandry Co., Ltd., Dalian 116308, PR China
| | - Y P Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Q G Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - C Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - L H Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
25
|
Plasma amino acid status is useful for understanding intestinal mucosal damage in calves with cryptosporidiosis. Amino Acids 2020; 52:1459-1464. [PMID: 33090265 DOI: 10.1007/s00726-020-02904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 10/14/2020] [Indexed: 10/23/2022]
Abstract
We hypothesize that some amino acid abnormalities in diarrheic calves are useful for understanding intestinal mucosal damage, as in humans. However, few reports have revealed the relationship between intestinal mucosal damage and plasma amino acids in diarrheic calves. Therefore, the aim of present study was to investigate whether there is a relationship between the amino acid status and plasma diamine oxidase (DAO) activity, which is known to be a biomarker for intestinal mucosal damage in diarrheic calves. Twenty Holstein calves aged 12.6 ± 4.2 days old were enrolled in this study. In the diarrhea group (n = 10), there were yellow loose feces within the rectum and Cryptosporidium parvum (C. parvum) was detected in all fecal samples. These calves were clinically normal except for diarrhea. All calves in the control group (n = 10) appeared to be healthy based on clinical findings with normal feces production and the absence of C. parvum. Plasma amino acid concentrations and DAO activity were measured. The relationships between plasma DAO activity and the concentration of each plasma amino acid were investigated using Spearman's rank test. The plasma DAO activity was significantly lower in the diarrhea group (176.1 ± 60.1 IU mL-1) than in the control group (309.3 ± 74.8 IU mL-1) (p < 0.001). Furthermore, positive correlations were observed when comparing plasma DAO activity with histidine, proline, cystine, arginine, and glutamine concentrations. As a result of relationship between plasma DAO activity and amino acid status, it was concluded that plasma amino acid status is useful for understanding intestinal mucosal damage in calves with cryptosporidiosis.
Collapse
|
26
|
Bechek S, Garcia M, Chiou H. Severe Gastrointestinal Involvement in Pediatric Stevens-Johnson Syndrome: A Case Report and Review of the Literature. Clin Exp Gastroenterol 2020; 13:377-383. [PMID: 33061516 PMCID: PMC7533238 DOI: 10.2147/ceg.s269349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Stevens-Johnson syndrome and toxic epidermal necrolysis form a rare but severe disease spectrum characterized by widespread epidermal detachment. Gastrointestinal manifestations of the disease, however, are rarely described in the pediatric literature and have a high mortality among adults. There are limited data on the treatment of these cases, with conflicting evidence regarding the benefit of steroids, IVIG, or other immunosuppressive agents. We review previous instances of gastrointestinal involvement in children and report the case of a previously healthy 13-year-old who presented with the typical ocular and skin findings of Stevens-Johnson syndrome, subsequently developed severe life-threatening diarrhea, and was found to have severe esophagitis, duodenitis, and colitis on endoscopic evaluation. Treatment was initiated with an immediate, short course of steroids along with early introduction of an enteral diet via nasogastric tube, and resulted in full gastrointestinal recovery. This case highlights successful medical treatment of the first reported pediatric case of SJS/TEN with both upper and lower gastrointestinal tract involvement.
Collapse
Affiliation(s)
- Sophia Bechek
- Stanford University School of Medicine, Stanford, CA, USA
| | - Manuel Garcia
- Division of Pediatric Gastroenterology, Stanford University School of Medicine, Stanford, CA, USA
| | - Howard Chiou
- Department of Medicine, Santa Clara Valley Medical Center, San Jose, CA, USA
| |
Collapse
|
27
|
|
28
|
The Role of Arginine in Disease Prevention, Gut Microbiota Modulation, Growth Performance and the Immune System of Broiler Chicken – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2019-0081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The effect of dietary arginine on disease prevention, immune system modulation, the gut micro-biota composition and growth of broiler chicken was reviewed. The main aim of poultry production is the maximization of profit at the least possible cost. This objective can mainly be achieved by ensuring that there is no interference in growth or disease outbreak and by feeding chicken with the best possible level of nutrients. With the ban on antibiotic growth promoters, attention is shifted towards other nutrition methods to prevent diseases and promote growth. More attention is therefore given to protein diets in animal nutrition due to their importance as essential part of active biological compounds in the body, assisting in the breakdown of body tissue and helping in the physiological processes of the animal. Arginine plays important function in serving as building blocks of proteins and polypeptides. It performs other roles during the regulation of important biochemical functions such as maintenance, growth, reproduction and immunity. Arginine cannot be synthesized by the body so it has to be supplemented in the diet. When arginine is supplemented above the recommended level, the gut mucosa is protected, immunosuppression is alleviated, diseases like necrotic enteritis, infectious bursal disease and coccidiosis in broiler chickens are prevented. There is an improvement in growth resulting from the increase in intestinal absorption, barrier function and microbiota composition.
Collapse
|
29
|
Dietary supplementation of micro-encapsulated sodium butyrate in healthy horses: effect on gut histology and immunohistochemistry parameters. BMC Vet Res 2020; 16:121. [PMID: 32345290 PMCID: PMC7189644 DOI: 10.1186/s12917-020-02332-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/05/2020] [Indexed: 01/29/2023] Open
Abstract
Background As colic and intestinal disorders are a major concern in horses, the aim of the present study was to investigate the effect of dietary supplementation of butyrate, known to have a diverse array of beneficial effects on intestinal health. The effect of micro-encapsulated sodium butyrate supplementation on gut histology and immunohistochemistry parameters was studied in 14 healthy warmblood horses destined for slaughter in two separate periods. Horses were fed a low fiber - high starch diet, designed to induce subsequent starch overflow in the large intestine, aiming to create a mild challenge for large intestinal health. Treatment included supplementation with either micro-encapsulated sodium butyrate (Excential Butycoat®, Orffa, Werkendam, the Netherlands) or placebo (containing only coating material). The horses were fed for 20 consecutive days at a dosage of 0.4 g/kg BW (body weight). At day 21, the horses were slaughtered and intestinal samples were collected for determination of gut pH, villus length, crypt depth and area % of CD3+ and CD20+ cells. Results Horses on the butyrate supplemented diet had significantly reduced crypt depths in the right dorsal colon compared to placebo-fed horses (P < 0.001). However, a treatment x period interaction (P = 0.002) was discovered regarding this parameter, which could not be explained by the authors. Further investigation into the number of KI67+ cells in the RDC crypts did not reveal any significant differences between treatments (P = 0.650), indicating that the reduction in crypt depth in butyrate-fed horses could not be explained by a significant difference in cellular proliferation. Intestinal pH, villus length and expression of intestinal CD3+ and CD20+ cells were not significantly affected by treatment at any intestinal level. Conclusions Our data indicate that supplementation of micro-encapsulated sodium butyrate to the equine diet did not influence gut histology (with the exception of a decrease found in the crypts of the RDC) or immunohistochemistry parameters in healthy horses. Further research is warranted to investigate the impact of butyrate supplementation in horses with intestinal disease.
Collapse
|
30
|
Choi J, Li W, Schindell B, Ni L, Liu S, Zhao X, Gong J, Nyachoti M, Yang C. Molecular cloning, tissue distribution and the expression of cystine/glutamate exchanger (xCT, SLC7A11) in different tissues during development in broiler chickens. ACTA ACUST UNITED AC 2020; 6:107-114. [PMID: 32211536 PMCID: PMC7082690 DOI: 10.1016/j.aninu.2019.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 01/29/2023]
Abstract
The cystine/glutamate exchanger (xCT, SLC7A11) is a component of the system Xc amino-acid antiporter that is able to export glutamate and import cysteine into cells. The xCT amino acid exchanger has received a lot of attention, due to the fact that cysteine is an essential substrate for the synthesis of glutathione (GSH), an endogenous antioxidant in cells. The objective of this research was to clone the full-length cDNA of chicken xCT, and to investigate the gene expression of xCT in different tissues, including intestinal segments of broiler chickens during development. The full-length cDNA of chicken xCT (2,703 bp) was obtained from the jejunum by reverse transcription-PCR and sequenced. Homology tests showed that chicken xCT had 80.4%, 80.2%, and 71.2% homology at the nucleotide level with humans, cattle, and rats, respectively. Likewise, amino acid sequence analysis showed that chicken xCT protein is 86.4%, 79.3%, and 75.6% homologous with humans, cattle, and rats, respectively. Additionally, phylogenetic analysis indicated that chicken xCT genes share a closer genetic relationship with humans and cattle, than with rats. The chicken xCT protein has 12 transmembrane helixes, 6 extracellular loops, and 5 intracellular loops. The mRNA of xCT was detected in all tissues, including intestinal segments, in which the mRNA expression of xCT was significantly higher (P < 0.05) within the colon, compared to the jejunum and ileum. During development, a linear pattern of changes regarding the levels of the xCT mRNA was found, indicating that there was an abundance of xCT within the duodenum (P < 0.05). Furthermore, there were changes of the xCT mRNA abundance in the colon during development, which displayed linear and cubic patterns (P < 0.05). These results indicated that xCT is widely expressed both in intestinal segments, as well as other organs that are not associated with nutrient absorption. Further investigation is needed to characterize the functional relevance of xCT activity in oxidative stress and inflammation in the small intestine of broiler chickens.
Collapse
Affiliation(s)
- Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Weiqi Li
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Brayden Schindell
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Liju Ni
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.,Shanghai Lab-Animal Research Center, Shanghai, 201203, China
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada, Guelph, ON, N1G 5C9, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
31
|
Filippone A, Lanza M, Campolo M, Casili G, Paterniti I, Cuzzocrea S, Esposito E. Protective effect of sodium propionate in Aβ 1-42 -induced neurotoxicity and spinal cord trauma. Neuropharmacology 2020; 166:107977. [PMID: 32004548 DOI: 10.1016/j.neuropharm.2020.107977] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/13/2020] [Accepted: 01/23/2020] [Indexed: 12/23/2022]
Abstract
Sodium propionate (SP) is one of the main short chain fatty acids (SCFA) that can be produced naturally through host metabolic pathways. SP have been documented and include the reduction of pro-inflammatory mediators in an in vivo model of colitis. The aim of this study is to evaluate the neuroprotective effects of SP in reducing inflammatory process associated to neurological disorders. We performed both in vitro model of Alzheimer's disease, induced by oligomeric Aβ1-42 stimulation, and in in vivo model of spinal cord injury (SCI) in which neuroinflammation plays a crucial role. For in vitro model, the human neuroblastoma SH-SY5Y cell line was first differentiated with retinoic acid (100 μM) for 24 h and then stimulated by oligomeric Aβ1-42 (1 μg/ml) and treated with SP at 0.1- 1-10 μM concentrations for another 24 h. Instead, the in vivo model of SCI was induced by extradural compression of the spinal cord at T6-T8 levels, and animals were treated with SP (10-30-100 mg/kg o.s) 1 and 6 h after SCI. Our results demonstrated that both in in vitro neuroinflammatory model and in vivo model of SCI the treatment with SP significantly reduced NF-κB nuclear translocation and IκBα degradation, as well as decreases COX-2 and iNOS expressions evaluated by Western blot analysis. Moreover, we showed that SP treatment significantly ameliorated histopathology changes and improved motor recovery in a dose-dependent manner. In conclusion, our results demonstrated that SP possesses neuroprotective effects, suggesting it could represent a target for therapeutic intervention in neuroinflammatory disorders.
Collapse
Affiliation(s)
- A Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ׳Alcontres, 31, 98166, Messina, Italy.
| | - M Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ׳Alcontres, 31, 98166, Messina, Italy.
| | - M Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ׳Alcontres, 31, 98166, Messina, Italy.
| | - G Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ׳Alcontres, 31, 98166, Messina, Italy.
| | - I Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ׳Alcontres, 31, 98166, Messina, Italy.
| | - S Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ׳Alcontres, 31, 98166, Messina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University, USA.
| | - E Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D ׳Alcontres, 31, 98166, Messina, Italy.
| |
Collapse
|
32
|
Omidi S, Ebrahimi M, Janmohammadi H, Moghaddam G, Rajabi Z, Hosseintabar-Ghasemabad B. The impact of in ovo injection of l-arginine on hatchability, immune system and caecum microflora of broiler chickens. J Anim Physiol Anim Nutr (Berl) 2019; 104:178-185. [PMID: 31587369 DOI: 10.1111/jpn.13222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 02/01/2023]
Abstract
The present article was conducted to evaluate the effect of in ovo injection of arginine on hatchability, immune system and caecum microflora of broiler chickens. For this reason, 300 fertile eggs were used in a completely randomized design with three experimental treatments. The experimental groups included: 1%-0.5% l-arginine (100 eggs), 2%-1% l-arginine (100 eggs), 3- control [included both sham control (injection of distilled water; 50 eggs) and control (no injection; 50 eggs)], which were injected on d 14 of incubation. After hatching, chicks of each experimental group (0.5% l-arginine, 1% l-arginine, and control groups) were randomly divided into four equal groups (as replicates) and reared for 30 days. Weight and feeding of chickens were recorded. Next, blood samples of chickens were collected on day 30 to evaluate antibody titre. Also, chickens were slaughtered on 24 and 30 days of the experiment to evaluate immune system organs and caecum microflora. Based on the results, in ovo injection of l-arginine had no significant effect on hatchability, body weight, antibody titre, spleen, bursa of Fabricius and thymus weight (p > .05). On the other hand, treatments significantly affected feed intake and feed conversion ratio (p < .05). As a novel finding, in ovo injection of l-arginine increased caecal Lactobacillus (p < .01), while decreasing Coliform and Escherichia Coli bacteria (p < .01). However, treatments did not influence caecal Enterococcus (p > .05). The overall results indicated that in ovo injection of 0.5% l-arginine had a better improving effect on caecal microflora and then considered as a recommended level of the present experiment.
Collapse
Affiliation(s)
- Somayeh Omidi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Marziyeh Ebrahimi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hossein Janmohammadi
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Gholamali Moghaddam
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Zolfaghar Rajabi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
33
|
Camilleri M, Lyle BJ, Madsen KL, Sonnenburg J, Verbeke K, Wu GD. Role for diet in normal gut barrier function: developing guidance within the framework of food-labeling regulations. Am J Physiol Gastrointest Liver Physiol 2019; 317:G17-G39. [PMID: 31125257 PMCID: PMC6689735 DOI: 10.1152/ajpgi.00063.2019] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A reduction in intestinal barrier function is currently believed to play an important role in pathogenesis of many diseases, as it facilitates passage of injurious factors such as lipopolysaccharide, peptidoglycan, whole bacteria, and other toxins to traverse the barrier to damage the intestine or enter the portal circulation. Currently available evidence in animal models and in vitro systems has shown that certain dietary interventions can be used to reinforce the intestinal barrier to prevent the development of disease. The relevance of these studies to human health is unknown. Herein, we define the components of the intestinal barrier, review available modalities to assess its structure and function in humans, and review the available evidence in model systems or perturbations in humans that diet can be used to fortify intestinal barrier function. Acknowledging the technical challenges and the present gaps in knowledge, we provide a conceptual framework by which evidence could be developed to support the notion that diet can reinforce human intestinal barrier function to restore normal function and potentially reduce the risk for disease. Such evidence would provide information on the development of healthier diets and serve to provide a framework by which federal agencies such as the US Food and Drug Administration can evaluate evidence linking diet with normal human structure/function claims focused on reducing risk of disease in the general public.
Collapse
Affiliation(s)
- Michael Camilleri
- 1Clinical Enteric Neuroscience Translational and Epidemiological Research, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Barbara J. Lyle
- 2International Life Sciences Institute North America, Washington, DC,3School of Professional Studies, Northwestern University, Evanston, Illinois
| | - Karen L. Madsen
- 4Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Justin Sonnenburg
- 5Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - Kristin Verbeke
- 6Translational Research in Gastrointestinal Disorders, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Gary D. Wu
- 7Division of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
34
|
Hsiung JT, Kleine CE, Naderi N, Park C, Soohoo M, Moradi H, Rhee CM, Obi Y, Kopple JD, Kovesdy CP, Kalantar-Zadeh K, Streja E. Association of Pre-End-Stage Renal Disease Serum Albumin With Post-End-Stage Renal Disease Outcomes Among Patients Transitioning to Dialysis. J Ren Nutr 2019; 29:310-321. [PMID: 30642656 DOI: 10.1053/j.jrn.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/23/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Serum albumin is a marker of malnutrition and inflammation and has been demonstrated as a strong predictor of mortality in chronic kidney disease (CKD) and end-stage renal disease (ESRD) patients. Yet, whether serum albumin levels in late-stage CKD are associated with adverse outcomes after the transition to ESRD is unknown. We hypothesize that lower levels and a decline in serum albumin in late-stage CKD are associated with higher risk of mortality and hospitalization rates 1 year after transition to ESRD. DESIGN AND METHODS This retrospective cohort study included 29,124 US veterans with advanced CKD transitioning to ESRD between 2007 and 2015. We evaluated the association of pre-ESRD (91 days before transition) serum albumin with 12-month post-ESRD all-cause, cardiovascular, and infection-related mortalities and hospitalization rates as well as the association of 1-year pre-ESRD albumin slope and 12-month post-ESRD mortality using hierarchical multivariable adjustments. RESULTS There was a negative linear association between serum albumin and all-cause mortality, such that risk doubled (hazard ratio [HR]: 2.07, 95% confidence interval [CI]: 1.87, 2.28) for patients with the lowest serum albumin <2.8 g/dL (ref: ≥4.0 g/dL) after full adjustment. A consistent relationship was observed between serum albumin and cardiovascular and infection-related mortality, and hospitalization outcomes. An increase in serum albumin of >0.25 g/dL/year was associated with reduced mortality risk (HR: 0.76, 95% CI: 0.63, 0.91) compared with a slight decline in albumin (ref: >-0.25 to 0 g/dL/year), whereas a decline more than 0.5 g/dL/year was associated with a 55% higher risk in mortality (HR: 1.55, 95% CI: 1.43, 1.68) in fully adjusted models. CONCLUSIONS Lower pre-ESRD serum albumin was associated with higher post-ESRD all-cause, cardiovascular, and infection-related mortalities and hospitalization rates. Declining serum albumin levels in the pre-ESRD period were also associated with worse 12-month post-ESRD mortality.
Collapse
Affiliation(s)
- Jui-Ting Hsiung
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California
| | - Carola-Ellen Kleine
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California; Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Neda Naderi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California; Department of Internal Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christina Park
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California; Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Melissa Soohoo
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California; Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Hamid Moradi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California; Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California
| | - Connie M Rhee
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California
| | - Yoshitsugu Obi
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California
| | - Joel D Kopple
- Division of Nephrology and Hypertension, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, California; UCLA Fielding School of Public Health, Los Angeles, California
| | - Csaba P Kovesdy
- Division of Nephrology, University of Tennessee Health Science Center, Memphis, Tennessee; Nephrology Section, Memphis VA Medical Center, Memphis, Tennessee
| | - Kamyar Kalantar-Zadeh
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California; Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California; UCLA Fielding School of Public Health, Los Angeles, California
| | - Elani Streja
- Harold Simmons Center for Kidney Disease Research and Epidemiology, Division of Nephrology and Hypertension, Department of Medicine, University of California Irvine, School of Medicine, Orange, California; Nephrology Section, Tibor Rubin VA Medical Center, Long Beach, California.
| |
Collapse
|
35
|
Teresa C, Antonella D, de Ville de Goyet Jean. New Nutritional and Therapeutical Strategies of NEC. Curr Pediatr Rev 2019; 15:92-105. [PMID: 30868956 DOI: 10.2174/1573396315666190313164753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/09/2018] [Accepted: 03/06/2019] [Indexed: 11/22/2022]
Abstract
Necrotizing enterocolitis (NEC) is an acquired severe disease of the digestive system affecting mostly premature babies, possibly fatal and frequently associated to systemic complications. Because of the severity of this condition and the possible long-term consequences on the child's development, many studies have aimed at preventing the occurrence of the primary events at the level of the bowel wall (ischemia and necrosis followed by sepsis) by modifying or manipulating the diet (breast milk versus formula) and/or the feeding pattern (time for initiation after birth, continuous versus bolus feeding, modulation of intake according clinical events). Feeding have been investigated so far in order to prevent NEC. However, currently well-established and shared clinical nutritional practices are not available in preventing NEC. Nutritional and surgical treatments of NEC are instead well defined. In selected cases surgery is a therapeutic option of NEC, requiring sometimes partial intestinal resection responsible for short bowel syndrome. In this paper we will investigate the available options for treating NEC according to the Walsh and Kliegman classification, focusing on feeding practices in managing short bowel syndrome that can complicate NEC. We will also analyze the proposed ways of preventing NEC.
Collapse
Affiliation(s)
- Capriati Teresa
- Artificial Nutrition in Pediatric Children's Hospital, Bambino Gesu, Rome, Italy
| | - Diamanti Antonella
- Artificial Nutrition in Pediatric Children's Hospital, Bambino Gesu, Rome, Italy
| | - de Ville de Goyet Jean
- Pediatric Department for the Treatment and Study of abdominal Disease and Abdominal Transplants, ISMETT-UPMC, Palermo, Italy
| |
Collapse
|
36
|
Delgado R, Nicodemus N, Abad-Guamán R, Menoyo D, García J, Carabaño R. Effect of arginine and glutamine supplementation on performance, health and nitrogen and energy balance in growing rabbits. Anim Feed Sci Technol 2019. [DOI: 10.1016/j.anifeedsci.2018.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Nutrient intake and environmental enteric dysfunction among Nepalese children 9-24 months old-the MAL-ED birth cohort study. Pediatr Res 2018; 84:509-515. [PMID: 30030503 DOI: 10.1038/s41390-018-0108-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/04/2018] [Accepted: 06/23/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nutrient deficiencies limit the growth and turnover of intestinal mucosa, but studies assessing whether specific nutrients protect against or improve environmental enteric dysfunction (EED) are scarce. We aimed to investigate associations between nutrient intake and EED assessed by lactulose:mannitol (L:M) ratio, anti-1-antitrypsin, myeloperoxidase (MPO), and neopterin (NEO) among children 9-24 months in Bhaktapur, Nepal. METHODS Among 231 included children, nutrient intake was assessed monthly by 24 h recalls, and 3-month usual intake was estimated using Multiple Source Method. Associations between nutrient intake and L:M ratio (measured at 15 months) were assessed using multiple linear regression, while associations between nutrient intake and fecal markers (measured quarterly) were assessed using Generalized Estimating Equations (GEE) models. RESULTS We found that associations between nutrient intake from complementary food and L:M ratio, alpha-1-antitrypsin (AAT), MPO and NEO were generally negative but weak. The only significant associations between nutrient intake (potassium, magnesium, phosphorous, folate, and vitamin C) and markers for intestinal inflammation were found for MPO. CONCLUSION Negative but weak associations between nutrient intake and markers of intestinal inflammation were found. Significant associations between several nutrients and MPO might merit further investigation.
Collapse
|
38
|
Abstract
The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population.
Collapse
|
39
|
A review on early gut maturation and colonization in pigs, including biological and dietary factors affecting gut homeostasis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.06.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Wang J, Wei Z, Zhang X, Wang Y, Yang Z, Fu Y. Propionate Protects against Lipopolysaccharide-Induced Mastitis in Mice by Restoring Blood-Milk Barrier Disruption and Suppressing Inflammatory Response. Front Immunol 2017; 8:1108. [PMID: 28966615 PMCID: PMC5605562 DOI: 10.3389/fimmu.2017.01108] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Mastitis, an inflammation of the mammary glands, is a major disease affecting dairy animal worldwide. Propionate is one of the main short-chain fatty acid that can exert multiple effects on the inflammatory process. The purpose of this study is to investigate the mechanisms underlying the protective effects of sodium propionate against lipopolysaccharide (LPS)-induced mastitis model in mice. The data mainly confirm that inflammation and blood–milk barrier breakdown contribute to progression of the disease in this model. In mice with LPS, sodium propionate attenuates the LPS-induced histopathological changes, inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) production, myeloperoxidase activity in mammary tissues. Given their importance in the blood–milk barrier, tight junction proteins occludin and claudin-3 are further investigated. Our results show that sodium propionate strikingly increases the expressions of occludin and claudin-3 and reduces the blood–milk barrier permeability in this model. Furthermore, in LPS-stimulated mouse mammary epithelial cells (mMECs), LPS increased the expressions of phosphorylated (p)-p65, p-IκB proteins, which is attenuated by sodium propionate. Finally, we examine the possibility that propionate acts as a histone deacetylase (HDAC) inhibitor, the results show that both sodium propionate and trichostatin A increase the level of histone H3 acetylation and inhibit the increased production of TNF-α, IL-6, and IL-1β in LPS-stimulated mMECs. These data suggest that sodium propionate protects against LPS-induced mastitis mainly by restoring blood–milk barrier disruption and suppressing inflammation via NF-κB signaling pathway and HDAC inhibition.
Collapse
Affiliation(s)
- Jingjing Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengkai Wei
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanan Wang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
41
|
Zhu H, Pi D, Leng W, Wang X, Hu CAA, Hou Y, Xiong J, Wang C, Qin Q, Liu Y. Asparagine preserves intestinal barrier function from LPS-induced injury and regulates CRF/CRFR signaling pathway. Innate Immun 2017; 23:546-556. [PMID: 28728455 DOI: 10.1177/1753425917721631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress causes intestinal inflammation and barrier dysfunction. Corticotrophin-releasing factor (CRF)/CRF receptor (CRFR) signaling pathway has been shown to be important for stress-induced intestinal mucosal alteration. L-Asparagine (ASN) is a powerful stimulator of ornithine decarboxylase and cell proliferation in a variety of cell types, including colonic cells. In the present study, we investigated whether dietary ASN supplementation could alleviate the damage of intestinal barrier function caused by LPS through modulation of CRF/CRFR signaling pathway. Twenty-four weaned pigs were randomly divided into one of four treatments: (1) non-challenged control; (2) Escherichia coli LPS challenged control; (3) LPS + 0.5% ASN; (4) LPS + 1.0% ASN. LPS stress induced villous atrophy, intestinal morphology disruption and decreased claudin-1 expression. ASN supplementation increased intestinal claudin-1 protein expression and alleviated villous atrophy and intestinal morphology impairment caused by LPS stress. In addition, ASN supplementation increased the number of intestinal intraepithelial lymphocytes and reversed the elevations of intestinal mast cell number and neutrophil number induced by LPS stress. Moreover, ASN decreased the mRNA expression of intestinal CRF, glucocorticoid receptors and tryptase. These results indicate that ASN attenuates intestinal barrier dysfunction induced by LPS stress, and regulates CRF/CRFR1 signaling pathway and mast cell activation.
Collapse
Affiliation(s)
- Huiling Zhu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Dingan Pi
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Weibo Leng
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Xiuying Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chien-An Andy Hu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China.,2 Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yongqing Hou
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Jianglin Xiong
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Chunwei Wang
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Qin Qin
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulan Liu
- 1 Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
42
|
Protein Malnutrition During Juvenile Age Increases Ileal and Colonic Permeability in Rats. J Pediatr Gastroenterol Nutr 2017; 64:707-712. [PMID: 27347721 DOI: 10.1097/mpg.0000000000001324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein malnutrition can lead to morphological and functional changes in jejunum and ileum, affecting permeability to luminal contents. Regarding the large intestine, data are scarce, especially at juvenile age. We investigated whether low-protein (LP) diet could modify ileal and colonic permeability and epithelial morphology in young rats. Isocaloric diets containing 26% (control diet) or 4% protein were given to male rats between postnatal days 40 and 60. LP-diet animals failed to gain weight and displayed decreased plasma zinc levels (a marker of micronutrient deficiency). In addition, transepithelial electrical resistance and occludin expression were reduced in their ileum and colon, indicating increased gut permeability. Macromolecule transit was not modified. Finally, LP diet induced shortening of colonic crypts without affecting muscle thickness. These data show that protein malnutrition increases not only ileum but also colon permeability in juvenile rats. Enhanced exposure to colonic luminal entities may be an additional component in the pathophysiology of protein malnutrition.
Collapse
|
43
|
Oso A, Williams G, Oluwatosin O, Bamgbose A, Adebayo A, Olowofeso O, Pirgozliev V, Adegbenjo A, Osho S, Alabi J, Li F, Liu H, Yao K, Xin W. Effect of dietary supplementation with arginine on haematological indices, serum chemistry, carcass yield, gut microflora, and lymphoid organs of growing turkeys. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Rittler P, Schiefer B, Demmelmair H, Koletzko B, Roscher AA, Jacobs R, Krick M, Jauch KW, Hartl WH. Effect of Amino Acid Infusion on Human Postoperative Colon Protein Synthesisin Situ. JPEN J Parenter Enteral Nutr 2017; 29:255-61. [PMID: 15961681 DOI: 10.1177/0148607105029004255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Amino acids are an integral part of parenteral nutrition because of their anabolic action helping to conserve body protein after surgical stress. At the gastrointestinal tract, an adequate supply of amino acids may be particularly important because of the gut's high rate of protein turnover, cell division, and proliferation. However, no information is available about the effects of amino acids on human intestinal protein metabolism after surgery. METHODS Studies were performed in postabsorptive patients 8-10 days after major abdominal surgery. Mass spectrometry techniques (capillary gas chromatography/combustion isotope ratio mass spectrometry) were used to directly determine the incorporation rate of 1-[13C]-leucine into colon mucosal protein. All subjects had a colostomy, which allowed easy access to the colon mucosa, and consecutive sampling from the same tissue was performed during continuous isotope infusion (0.16 micromol/kg min). Isotopic enrichments were determined at baseline and after a 4-hour infusion of amino acids or after infusion of saline (control group). RESULTS Compared with baseline, infusion of amino acids reduced fractional colon protein synthesis significantly by -29.2 +/- 8.3%. This decrease was also significantly different from the corresponding (insignificant) change during saline infusion (+19.4 +/- 26.9%, p < .05 vs amino acid group). CONCLUSIONS After surgery, an amino acid infusion acutely reduces postoperative colon protein synthesis. This effect possibly may be attributed to interactions of specific amino acids (glutamine) with an altered intestinal immune system and enterocyte activity.
Collapse
Affiliation(s)
- Peter Rittler
- Department of Surgery, Klinikum Grosshadern, Munich, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Farshchi MK, Azad FJ, Salari R, Mirsadraee M, Anushiravani M. A Viewpoint on the Leaky Gut Syndrome to Treat Allergic Asthma: A Novel Opinion. J Evid Based Complementary Altern Med 2016; 22:378-380. [PMID: 30208732 PMCID: PMC5871166 DOI: 10.1177/2156587216682169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Asthma is a common respiratory disease characterized by airway inflammation, airway hyperreactivity, and reversible airflow obstruction. Despite current treatments, the prevalence of asthma has increased markedly over decades. According to the theories proposed to explain the pathophysiology of autoimmune diseases in integrative medicine, leaky gut syndrome is a phenomenon of increased intestinal permeability due to the disruption of tight junctions and is thought to be related to many chronic diseases, such as food intolerance, inflammatory bowel disease, rheumatoid arthritis, asthma, and other autoimmune disease. One of the classical approaches used by integrative physicians to treat leaky gut syndrome is to repair intestinal permeability to prevent allergic cascade. Due to several mechanisms that have been mentioned in the protective effects of plant gums and plantain family seeds on the intestinal epithelium, we can propose an effective management for leaky gut syndrome to treat asthma.
Collapse
Affiliation(s)
- Masoumeh Kaboli Farshchi
- School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farahzad Jabbari Azad
- Department of Immunology and Allergy, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roshanak Salari
- Department of traditonal persian Pharmacy, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mirsadraee
- Department of Internal Medicine, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Majid Anushiravani
- School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Majid Anushiravani, MD, PhD, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Shaw AL, Mathews DW, Hinkle JE, Petschow BW, Weaver EM, Detzel CJ, Klein GL, Bradshaw TP. Absorption and safety of serum-derived bovine immunoglobulin/protein isolate in healthy adults. Clin Exp Gastroenterol 2016; 9:365-375. [PMID: 27980432 PMCID: PMC5147394 DOI: 10.2147/ceg.s120118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Previous studies have shown that oral administration of bovine immunoglobulin protein preparations is safe and provides nutritional and intestinal health benefits. The purpose of this study was to evaluate the plasma amino acid response following a single dose of serum-derived bovine immunoglobulin/protein isolate (SBI) and whether bovine immunoglobulin G (IgG) is present in stool or in blood following multiple doses of SBI in healthy volunteers. Methods A total of 42 healthy adults were administered a single dose of placebo or SBI at one of three doses (5 g, 10 g, or 20 g) in blinded fashion and then continued on SBI (2.5 g, 5 g, or 10 g) twice daily (BID) for an additional 2 weeks. Serial blood samples were collected for amino acid analysis following a single dose of placebo or SBI. Stool and blood samples were collected to assess bovine IgG levels. Results The area under the curve from time 0 minute to 180 minutes for essential and total amino acids as well as tryptophan increased following ingestion of 5 g, 10 g, or 20 g of SBI, with a significant difference between placebo and all doses of SBI (p<0.05) for essential amino acids and tryptophan but only the 10 g and 20 g doses for total amino acids. Bovine IgG was detected in the stool following multiple doses of SBI. No quantifiable levels of bovine IgG were determined in plasma samples 90 minutes following administration of a single dose or multiple doses of SBI. Conclusion Oral administration of SBI leads to increases in plasma essential amino acids during transit through the gastrointestinal tract and is safe at levels as high as 20 g/day.
Collapse
Affiliation(s)
| | | | - John E Hinkle
- Life Sciences Consulting and Analytics, EarlyPhase Sciences, Inc., Cary
| | | | - Eric M Weaver
- Executive Management, Prairie Pharms, LLC, Nora Springs
| | | | | | | |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This article summarizes the current and potential future nutritional approaches to stimulate adaptation in intestinal failure. Adaptation in this context usually refers to intestinal adaptation but also involves changes in whole body physiology as well as in eating/drinking behavior. RECENT FINDINGS Adaptation largely depends on residual functional anatomy. Luminal exposure to complex nutrients is the most important trigger for intestinal adaptation. Enteral fat as well as enteral or parenteral short chain fatty acids have a specific stimulatory effect. Zinc and vitamin A status need to be optimized for adaptation to proceed and be maintained. In the context of maintaining sodium and water homeostasis, flushing the remnant intestine because of uncontrolled thirst/drinking must be avoided. Complications of nutritional care such as malnutrition, intestinal failure-associated liver disease, and recurrent line sepsis also need optimal management. SUMMARY Stimulation by luminal nutrients as well as prophylaxis against and treatment of (nutritional) complications are the cornerstones of adaptation to the short bowel situation. Based on ample data from animal studies but only limited evidence in humans specific nutritional stimulators need to be studied more rigorously. As long as such data are missing they can be tried on an individual basis.
Collapse
|
48
|
Osakwe HI, Dragomir C, Nicolescu C, Boia ES. The challenges of managing and following-up a case of short bowel in eastern europe. Int J Surg Case Rep 2016; 26:187-92. [PMID: 27497940 PMCID: PMC4975713 DOI: 10.1016/j.ijscr.2016.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/25/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022] Open
Abstract
Long time hospital stay and cost are reduced by parental home care, while adequate hydration maintenance scheme is sine qua non. Inadequate monitoring system and lack of funding are two important factors that can influence morbidity and mortality. The immune deficient short bowel syndrome patient is always exposed to opportunistic life threatening infections. The lack of sufficient mucosal surface and long time intestinal adaptation process is crucial in determining bowel functional capacity. Intestinal stoma compared to primary anastomosis is debatable in short bowel syndrome surgery.
Introduction This article reflects on the plight of patients with short bowel syndrome (SBS) in developing countries. SBS is life threatening, rare, complex and often not considered a priority by healthcare planners in the developing countries because of the high cost of treatment. Data was collected and analyzed from 3 different hospitals in two different countries (Romania and Austria) from November 2013 to February 2016 Case presentation The patient had an emergency surgery for volvulus as a result of an extensive ischemic necrosis, with just 80 cm of the bowel left and no ileocecal valve after enterectomy. Despite intensive care and surgeries for anastomotic joint ischemic necrosis and intestinal adhesion with just 70 cm of the intestine left after primary anastomosis, the patient remained in a catabolic state (metabolic acidosis, severe malabsorption and loss of nutrients, water and electrolytes through diarrhea) and was transferred overseas where two more surgeries (intestinal stomas) and good intensive care helped to achieve enteral autonomy at the optimal time. Discussion This immune-deficient patient was exposed to various types of bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa). Two years after surgery an acute enterocolitis with salmonella infection and resultant intestinal failure treated in patient’s country of origin failed to achieve enteral nutrition warranting a second overseas transfer. Conclusion The lack of sufficient mucosal surface followed by long time intestinal adaptation process is crucial in determining bowel functional capacity. Long time hospital stay and cost was reduced through a parental home healthcare management training scheme.
Collapse
Affiliation(s)
- Henry Ifeanyi Osakwe
- University of Medicine and Pharmacy "Victor babes" Timisoara, Address: Str. Etolia 11 Dumbravita, Timis, Romania.
| | - Cristina Dragomir
- University of Medicine and Pharmacy Timisoara, Address: Str. Architect Ion Mincu B95. Apt. 22, Romania.
| | - Cristian Nicolescu
- University of Medicine "Vasile Goldis" Arad, Address: Calea victoriei 1-3, Arad, Romania.
| | - Eugen Sorin Boia
- University of medicine and pharmacy "victor Babes" Timisoara, Address: Str. Iosif Nemoianu 2, Timisoara, Romania.
| |
Collapse
|
49
|
Abstract
Glutamine, reviewed extensively in the last century, is a key substrate for the splanchnic bed in the whole body and is a nutrient of particular interest in gastrointestinal research. A marked decrease in the plasma glutamine concentration has recently been observed in neonates and adults during acute illness and stress. Although some studies in newborns have shown parenteral and enteral supplementation with glutamine to be of benefit (by decreasing proteolysis and activating the immune system), clinical trials have not demonstrated prolonged advantages such as reductions in mortality or risk of infections in adults. In addition, glutamine is not able to combat the muscle wasting associated with disease or age-related sarcopenia. Oral glutamine supplementation initiated before advanced age in rats increases gut mass and improves the villus height of mucosa, thereby preventing the gut atrophy encountered in advanced age. Enterocytes from very old rats continuously metabolize glutamine into citrulline, which allowed, for the first time, the use of citrulline as a noninvasive marker of intestinal atrophy induced by advanced age.
Collapse
Affiliation(s)
- Dominique Meynial-Denis
- D. Meynial-Denis is with the Unit of Human Nutrition (UNH), French National Institute for Agricultural Research (INRA), Joint Research Unit (UMR) 1019, Center for Research in Human Nutrition (CRNH) Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
50
|
Batool R, Butt MS, Sultan MT, Saeed F, Naz R. Protein-energy malnutrition: a risk factor for various ailments. Crit Rev Food Sci Nutr 2015; 55:242-53. [PMID: 24915388 DOI: 10.1080/10408398.2011.651543] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The wheel of industrialization that spun throughout the last century resulted in urbanization coupled with modifications in lifestyles and dietary habits. However, the communities living in developing economies are facing many problems related to their diet and health. Amongst, the prevalence of nutritional problems especially protein-energy malnutrition (PEM) and micronutrients deficiencies are the rising issues. Moreover, the immunity or susceptibility to infect-parasitic diseases is also directly linked with the nutritional status of the host. Likewise, disease-related malnutrition that includes an inflammatory component is commonly observed in clinical practice thus affecting the quality of life. The PEM is treatable but early detection is a key for its appropriate management. However, controlling the menace of PEM requires an aggressive partnership between the physician and the dietitian. This review mainly attempts to describe the pathophysiology, prevalence and consequences of PEM and aims to highlight the importance of this clinical syndrome and the recent growth in our understanding of the processes behind its development. Some management strategies/remedies to overcome PEM are also the limelight of the article. In the nutshell, early recognition, prompt management, and robust follow up are critical for best outcomes in preventing and treating PEM.
Collapse
Affiliation(s)
- Rizwana Batool
- a National Institute of Food Science & Technology, University of Agriculture , Faisalabad , Pakistan
| | | | | | | | | |
Collapse
|