1
|
Esteva-Font C, Zheng X, Rudolphi CF, Hansen TPK, Hoorn EJ, Fenton RA. Deletion of the prostaglandin EP4 receptor in the kidney tubule of mature mice alters kidney water handling only in males. Am J Physiol Renal Physiol 2025; 328:F800-F814. [PMID: 40261807 DOI: 10.1152/ajprenal.00071.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator modulating several aspects of kidney function. PGE2 acts via four prostanoid receptors, EP1 to EP4. In renal tubules, EP4 has very low expression, yet a role for EP4 in maintaining water balance has been proposed. The major aim of this study was to clarify the role of the EP4 receptor in the kidney tubule of adult mice for body water homeostasis. To examine this, a mouse model with doxycycline-dependent deletion of EP4 along the renal tubule (Pax8Cre system) was developed and phenotyped with respect to water handling. Two weeks after doxycycline treatment, EP4 mRNA expression (RT-qPCR) was reduced by >80% in the medulla of male and female knockout mice (EP4-/-) compared with controls (EP4+/+). With free access to water, there were no detectable differences between genotypes in food intake, body weight, or plasma biochemistries. Male, but not female, EP4-/- mice had a small but significantly higher basal urinary output with decreased osmolality, concomitant with lower urinary Na+, K+, Cl-, urea, and creatinine concentrations. The urea channel UT-A1 was reduced in the medulla, but otherwise no major differences in the levels of proteins involved in water balance were observed between genotypes. There were no differences between genotypes in their ability to concentrate urine during a 14-h water restriction or after treatment with the vasopressin V2 receptor agonist 1-deamino-8-d-arginine-vasopressin. EP4-/- mice of both sexes excreted an acute water load similarly to control mice. In conclusion, EP4 in the renal tubule has a mild role in renal water handling, but only in male mice. This new model provides a novel tool for assessing the role of EP4 in kidney tubule function in various (patho)physiological conditions independently of developmental abnormalities or systemic effects.NEW & NOTEWORTHY Acting through the EP1-EP4 receptors, prostaglandin E2 (PGE2) modulates various aspects of kidney function. Despite extremely low expression in the collecting duct, EP4 has been proposed to play a key role in regulation of Aquaporin-2 and water balance. In this study, we show that EP4 only plays a mild role in kidney water handling in male mice, calling into question the standard concepts presented in physiology textbooks regarding PGE2 actions on the collecting duct.
Collapse
Affiliation(s)
| | - Xiang Zheng
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Crissy F Rudolphi
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Toke P K Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Kirchhoff R, Chromik MA, Schebb NH. Phagocytosis is differentially regulated by LPS in M1- and M2-like macrophages via PGE 2 formation and EP4 signaling. Prostaglandins Other Lipid Mediat 2025; 178:106998. [PMID: 40383415 DOI: 10.1016/j.prostaglandins.2025.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/30/2025] [Accepted: 05/15/2025] [Indexed: 05/20/2025]
Abstract
Phagocytosis is a key process in human innate immune response. Human macrophages are important phagocytes engulfing and neutralizing pathogens and cell debris. In addition, they modulate the inflammatory process by releasing cytokines and lipid mediators. However, the link between oxylipins and phagocytosis in different macrophage phenotypes remains poorly understood. In order to better understand the link between phagocytosis and the arachidonic acid (ARA) cascade, we established a phagocytosis assay in primary human 'inflammatory' M1- and 'anti-inflammatory' M2-like macrophages from peripheral blood mononuclear cells (PBMC), representing extremes of macrophage phenotypes. The branches of the ARA cascade were investigated by quantitative targeted proteomics and metabolomics. M1-like macrophages show a higher abundance of cyclooxygenase (COX)-2 and its products particularly after LPS stimulus compared to M2-like macrophages. LPS increased phagocytosis in M2-like, but not in M1-like macrophages. We demonstrate that the COX product prostaglandin E2 (PGE2) modulates the differential effects of LPS on phagocytosis: Via the EP4 receptor PGE2 signaling suppresses phagocytosis in primary human macrophages. Thus, blockage of COX, e.g. by non-steroidal anti-inflammatory drugs (NSAID), leads to an increase of phagocytosis also in 'inflammatory' M1-like macrophages. This supports the well-described anti-inflammatory effects of these drugs and underscores the importance of the link between the COX branch of the ARA cascade and the regulation of phagocytosis in human macrophages.
Collapse
Affiliation(s)
- Rebecca Kirchhoff
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany
| | - Michel André Chromik
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, School of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, Wuppertal 42119, Germany.
| |
Collapse
|
3
|
Ma X, Yuan Y, Zhu T, Liu X, Chen R, Zhang X, Qin Z, Zhao J, Feng Y, Li H, Liu Y, Ke J. EP2 Modulates Satellite Glial Cell Activation in Temporomandibular Joint Osteoarthritis Chronic Pain via p-ERK1/2 Signaling. J Dent Res 2025:220345251328889. [PMID: 40254785 DOI: 10.1177/00220345251328889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
The etiology of chronic pain in temporomandibular joint osteoarthritis (TMJOA) is still unclear, making its treatment challenging in clinical practice. Emerging evidence suggests that the activation of satellite glial cells (SGCs) exerts an important role in the development of pain. This study aims to investigate whether and which prostaglandin E receptor (EP) subtypes expressed on peripheral SGCs and how the corresponding EP subtypes modulate SGC activation during TMJOA chronic pain. Immunofluorescence double staining was applied to demonstrate that EP2 and EP3 expressed on the activated SGCs in the trigeminal ganglions of mice. In vitro studies on the cultivation of primary SGCs showed that EP2 antagonist PF-04418948 significantly attenuated SGC activation in a dose-dependent manner, while EP3 agonist sulprostone failed to affect SGC activation. Kyoto Encyclopedia of Genes and Genomes analysis of RNA sequencing and Western blot demonstrated that the EP2-mediated signaling pathways were associated with phosphorylated extracellular signal-regulated kinase 1 and 2 (p-ERK1/2) signaling of mitogen-activated protein kinases (MAPKs). In addition, to verify the involvement of EP2 on SGCs in the activation of SGCs in vivo, a recombinant adeno-associated virus vector containing glial fibrillary acidic protein-shRNA (EP2)-enhanced green fluorescent protein was injected into TMJOA mouse ganglion of the third branch of the trigeminal nerve to knockdown EP2 on the SGCs. Taken together, EP2 modulates SGC activation through MAPK/p-ERK1/2 signaling in the chronic pain of monosodium iodoacetate-induced TMJOA. This study reveals a new mechanism of SGC activation, providing new insights for the treatment of chronic pain in TMJOA.
Collapse
Affiliation(s)
- X Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Anesthesiology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - T Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - R Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - X Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Qin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - J Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - H Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Y Liu
- Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - J Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Lyothier I, Diethelm S, Pothier J, Sifferlen T, Pozzi D, Richard-Bildstein S, Siendt H, Fretz H, Boss C, Wyder L, Jeay S, de Kanter R, Gnerre C, Lehembre F, Meyer DS, Corminboeuf O. Discovery of Novel Aminopyrimidines as Selective EP2 Receptor Antagonists. ChemMedChem 2025:e2500119. [PMID: 40192484 DOI: 10.1002/cmdc.202500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/30/2025] [Indexed: 04/19/2025]
Abstract
EP2 is a G-protein coupled receptor that is activated by prostaglandin E2 (PGE2). Signaling through the EP2 receptor has been shown to play a key role in various processes involved in diseases such as immune disorders or cancer. A new class of selective EP2 antagonists with an attractive in vitro and in vivo profile has been identified. The amide bond in the original screening hit is replaced by various alternatives. The introduction of an aminopyrimidine scaffold results in excellent potency. Improvement of physicochemical and ADME properties is achieved by incorporation of a carboxylic acid moiety, resulting in lead compound 29 exhibiting drug-like properties.
Collapse
Affiliation(s)
- Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Julien Pothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Thierry Sifferlen
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sylvia Richard-Bildstein
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Hervé Siendt
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Heinz Fretz
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Lorenza Wyder
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Dominique S Meyer
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| |
Collapse
|
5
|
Lyothier I, Diethelm S, Pothier J, Sifferlen T, Pozzi D, Richard-Bildstein S, Siendt H, Fretz H, Boss C, Wyder L, Jeay S, de Kanter R, Gnerre C, Lehembre F, Meyer DS, Corminboeuf O. Discovery of ACT-1002-4271 as a Dual Prostaglandin E2 Receptor 2/Prostaglandin E2 Receptor 4 Antagonist with In Vivo Anti-Tumor Efficacy. ChemMedChem 2025:e2500120. [PMID: 40192498 DOI: 10.1002/cmdc.202500120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/30/2025] [Indexed: 04/22/2025]
Abstract
Prostaglandin E2 (PGE2) signaling via receptors prostaglandin E2 receptor 2 (EP2) and prostaglandin E2 receptor 4 (EP4) is involved in various aspects of cancer and has been shown to promote tumor progression, metastasis, and immune evasion. Inhibition of PGE2 signaling by blockade of the EP2 and EP4 receptors has the potential to counteract the tumor-promoting effects of PGE2. Herein, the discovery of compound 30 (ACT-1002-4271), a dual EP2/EP4 antagonist with single-digit nanomolar potency on both receptors, is presented. The medicinal chemistry strategy is based on fine-tuning of the substitution pattern on an EP2 selective starting point to achieve dual EP2/EP4 antagonism. ACT-1002-4271 demonstrated significant antitumor efficacy in an experimental mammary tumour-6 mouse model when administered subcutaneously.
Collapse
Affiliation(s)
- Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Julien Pothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Thierry Sifferlen
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Davide Pozzi
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sylvia Richard-Bildstein
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Hervé Siendt
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Heinz Fretz
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Lorenza Wyder
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Ruben de Kanter
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Dominique S Meyer
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| | - Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, CH-4123, Allschwil, Switzerland
| |
Collapse
|
6
|
Tredicine M, Mucci M, Recchiuti A, Mattoscio D. Immunoregulatory mechanisms of the arachidonic acid pathway in cancer. FEBS Lett 2025; 599:927-951. [PMID: 39973474 PMCID: PMC11995684 DOI: 10.1002/1873-3468.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/21/2025]
Abstract
The arachidonic acid (AA) pathway promotes tumor progression by modulating the complex interactions between cancer and immune cells within the microenvironment. In this Review, we summarize the knowledge acquired thus far concerning the intricate mechanisms through which eicosanoids either promote or suppress the antitumor immune response. In addition, we will discuss the impact of eicosanoids on immune cells and how they affect responsiveness to immunotherapy, as well as potential strategies for manipulating the AA pathway to improve anticancer immunotherapy. Understanding the molecular pathways and mechanisms underlying the role played by AA and its metabolites in tumor progression may contribute to the development of more effective anticancer immunotherapies.
Collapse
Affiliation(s)
- Maria Tredicine
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnological SciencesUniversity of Chieti‐PescaraItaly
- Center for Advanced Studies and TechnologyUniversity of Chieti‐PescaraItaly
| |
Collapse
|
7
|
Ramos AC, Ramos CC, Antunes F, Oliveira RRD. In vivo hypotensive effect of a chemically characterised extract from the leaves of Lippia alba (Mill.) N.E.Br. Nat Prod Res 2024:1-9. [PMID: 39381914 DOI: 10.1080/14786419.2024.2406990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
Lippia alba (erva-cidreira) is often mentioned in Brazilian ethnopharmacological studies. Although its leaves have been used to treat hypertension, few studies have evaluated its hypotensive effects. This work aimed to evaluate the haemodynamic effects of Lippia alba methanolic extract and to characterise its chemical composition. Normotensive rats received an intravenous injection of L. alba extract. Systolic, diastolic, mean arterial pressures, and electrocardiographic data were analysed.1H-qNMR and LC-MS were used to assess the chemical composition. L. alba extract had significant hypotensive effects on systolic, diastolic, and mean arterial pressure. Acteoside was identified as major compound (292.6 ± 2.7 mg/g). Sixty-one other compounds were tentatively identified, mainly phenylethanoids, flavonoids, and iridoids. L. alba extract reduces systolic, diastolic, mean arterial pressure, and appears to be associated with a reduction in heart rate. Acteoside, a known hypotensive compound, may be responsible for these effects, but other structurally similar minority compounds may also contribute.
Collapse
Affiliation(s)
- Amaro Chaves Ramos
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Carolina Chaves Ramos
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Fernanda Antunes
- Laboratório de Clínica e Cirurgia Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Rodrigo Rodrigues de Oliveira
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| |
Collapse
|
8
|
Devchand PR, Dicay M, Wallace JL. Molecular Thumbprints: Biological Signatures That Measure Loss of Identity. Biomolecules 2024; 14:1271. [PMID: 39456204 PMCID: PMC11506567 DOI: 10.3390/biom14101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 10/28/2024] Open
Abstract
Each life is challenged to adapt to an ever-changing environment with integrity-simply put, to maintain identity. We hypothesize that this mission statement of adaptive homeostasis is particularly poignant in an adaptive response, like inflammation. A maladaptive response of unresolved inflammation can seed chronic disease over a lifetime. We propose the concept of a molecular thumbprint: a biological signature of loss of identity as a measure of incomplete return to homeostasis after an inflammatory response. Over time, personal molecular thumbprints can measure dynamic and precise trajectories to chronic inflammatory diseases and further loss of self to cancer. Why is this important? Because the phenotypes and molecular signatures of established complex inflammatory diseases are a far cry from the root of the complex problem, let alone the initial seed. Understanding the science behind key germinating seeds of disease helps to identify molecular factors of susceptibility, resilience, and early dietary or drug intervention. We pilot this hypothesis in a rat colitis model that is well-established for understanding molecular mechanisms of colonic health, disease, and transition of colitis to cancer.
Collapse
Affiliation(s)
- Pallavi R. Devchand
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada; (M.D.); (J.L.W.)
| | | | | |
Collapse
|
9
|
Qiang E, Xu H. PGE 2 synthesis and signaling in the liver physiology and pathophysiology: An update. Prostaglandins Other Lipid Mediat 2024; 174:106875. [PMID: 39019102 DOI: 10.1016/j.prostaglandins.2024.106875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
The liver plays a central role in systemic metabolism and drug degradation. However, it is highly susceptible to damage due to various factors, including metabolic imbalances, excessive alcohol consumption, viral infections, and drug influences. These factors often result in conditions such as fatty liver, hepatitis, and acute or chronic liver injury. Failure to address these injuries could promptly lead to the development of liver cirrhosis and potentially hepatocellular carcinoma (HCC). Prostaglandin E2 (PGE2) is a metabolite of arachidonic acid that belongs to the class of polyunsaturated fatty acids (PUFA) and is synthesized via the cyclooxygenase (COX) pathway. By binding to its G protein coupled receptors (i.e., EP1, EP2, EP3 and EP4), PGE2 has a wide range of physiological and pathophysiology effects, including pain, inflammation, fever, cardiovascular homeostasis, etc. Recently, emerging studies showed that PGE2 plays an indispensable role in liver health and disease. This review focus on the research progress of the role of PGE2 synthase and its receptors in liver physiological and pathophysiological processes and discuss the possibility of developing liver protective drugs targeting the COXs/PGESs/PGE2/EPs axis.
Collapse
Affiliation(s)
- Erjiao Qiang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Hu Xu
- Health Science Center, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
10
|
Esteva-Font C, Geurts F, Hansen TPK, Hoorn EJ, Fenton RA. Inducible deletion of the prostaglandin EP3 receptor in kidney tubules of male and female mice has no major effect on water homeostasis. Am J Physiol Renal Physiol 2024; 327:F504-F518. [PMID: 38961846 DOI: 10.1152/ajprenal.00146.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
The prostaglandin E2 (PGE2) receptor EP3 has been detected in the thick ascending limb (TAL) and the collecting duct of the kidney, where its actions are proposed to inhibit water reabsorption. However, EP3 is also expressed in other cell types, including vascular endothelial cells. The aim here was to determine the contribution of EP3 in renal water handling in male and female adult mice by phenotyping a novel mouse model with doxycycline-dependent deletion of EP3 throughout the kidney tubule (EP3-/- mice). RNAscope demonstrated that EP3 was highly expressed in the cortical and medullary TAL of adult mice. Compared with controls EP3 mRNA expression was reduced by >80% in whole kidney (RT-qPCR) and nondetectable (RNAscope) in renal tubules of EP3-/- mice. Under basal conditions, there were no significant differences in control and EP3-/- mice of both sexes in food and water intake, body weight, urinary output, or clinical biochemistries. No differences were detectable between genotypes in handling of an acute water load or in their response to the vasopressin analog 1-deamino-8-d-arginine-vasopressin (dDAVP). No differences in water handling were observed when PGE2 production was enhanced using 1% NaCl load. Expression of proteins involved in kidney water handling was not different between genotypes. This study demonstrates that renal tubular EP3 is not essential for body fluid homeostasis in males or females, even when PGE2 levels are high. The mouse model is a novel tool for examining the role of EP3 in kidney function independently of potential developmental abnormalities or systemic effects.NEW & NOTEWORTHY The prostanoid EP3 receptor is proposed to play a key role in the kidney tubule and antagonize the effects of vasopressin on aquaporin-mediated water reabsorption. Here, we phenotyped a kidney tubule-specific inducible knockout mouse model of the EP3 receptor. Our major finding is that, even under physiological stress, tubular EP3 plays no detectable role in renal water or solute handling. This suggests that other EP receptors must be important for renal salt and water handling.
Collapse
Affiliation(s)
| | - Frank Geurts
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Toke P K Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
McDonald OF, Wagner JG, Lewandowski RP, Heine LK, Estrada V, Pourmand E, Singhal M, Harkema JR, Lee KSS, Pestka JJ. Impact of soluble epoxide hydrolase inhibition on silica-induced pulmonary fibrosis, ectopic lymphoid neogenesis, and autoantibody production in lupus-prone mice. Inhal Toxicol 2024; 36:442-460. [PMID: 39418113 PMCID: PMC11606782 DOI: 10.1080/08958378.2024.2413373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Acute intranasal (IN) instillation of lupus-prone NZBWF1 mice with crystalline silica (cSiO2) triggers robust lung inflammation that drives autoimmunity. Prior studies in other preclinical models show that soluble epoxide hydrolase (sEH) inhibition upregulates pro-resolving lipid metabolites that are protective against pulmonary inflammation. Herein, we assessed in NZBWF1 mice how acute IN cSiO2 exposure with or without the selective sEH inhibitor TPPU influences lipidomic, transcriptomic, proteomic, and histopathological biomarkers of inflammation, fibrosis, and autoimmunity. METHODS Female 6-week-old NZBWF1 mice were fed control or TPPU-supplemented diets for 2 weeks then IN instilled with 2.5 mg cSiO2 or saline vehicle. Cohorts were terminated at 7 or 28 days post-cSiO2 instillation (PI) and lungs analyzed for prostaglandins, cytokines/chemokines, gene expression, differential cell counts, histopathology, and autoantibodies. RESULTS cSiO2-treatment induced prostaglandins, cytokines/chemokine, proinflammatory gene expression, CD206+ monocytes, Ly6B.2+ neutrophils, CD3+ T cells, CD45R+ B cells, centriacinar inflammation, collagen deposition, ectopic lymphoid structure neogenesis, and autoantibodies. While TPPU effectively inhibited sEH as reflected by skewed lipidomic profile in lung and decreased cSiO2-induced monocytes, neutrophils, and lymphocytes in lung lavage fluid, it did not significantly impact other biomarkers. DISCUSSION cSiO2 evoked robust pulmonary inflammation and fibrosis in NZBWF1 mice that was evident at 7 days PI and progressed to ELS development and autoimmunity by 28 days PI. sEH inhibition by TPPU modestly suppressed cSiO2-induced cellularity changes and pulmonary fibrosis. However, TPPU did not affect ELS formation or autoantibody responses, suggesting sEH minimally impacts cSiO2-triggered lung inflammation, fibrosis, and early autoimmunity in our model.
Collapse
Affiliation(s)
- Olivia F. McDonald
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - James G. Wagner
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Ryan P. Lewandowski
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Lauren K. Heine
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Vanessa Estrada
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
| | - Elham Pourmand
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Megha Singhal
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Jack R. Harkema
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Kin Sing Stephen Lee
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - James J. Pestka
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, MI, USA
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Vu NP, Ali L, Chua TL, Barr DA, Hendrickson HP, Trivedi DJ. Computational Insights into Prostaglandin E 2 Ligand Binding and Activation of G-Protein-Coupled Receptors. ACS APPLIED BIO MATERIALS 2024; 7:579-587. [PMID: 37058420 DOI: 10.1021/acsabm.2c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
G-protein coupled receptors (GPCRs) are eukaryotic integral membrane proteins that regulate signal transduction cascade pathways implicated in a variety of human diseases and are consequently of interest as drug targets. For this reason, it is of interest to investigate the way in which specific ligands bind and trigger conformational changes in the receptor during activation and how this in turn modulates intracellular signaling. In the present study, we investigate the way in which the ligand Prostaglandin E2 interacts with three GPCRs in the E-prostanoid family: EP1, EP2, and EP3. We examine information transfer pathways based on long-time scale molecular dynamics simulations using transfer entropy and betweenness centrality to measure the physical transfer of information among residues in the system. We monitor specific residues involved in binding to the ligand and investigate how the information transfer behavior of these residues changes upon ligand binding. Our results provide key insights that enable a deeper understanding of EP activation and signal transduction functioning pathways at the molecular level, as well as enabling us to make some predictions about the activation pathway for the EP1 receptor, for which little structural information is currently available. Our results should advance ongoing efforts in the development of potential therapeutics targeting these receptors.
Collapse
Affiliation(s)
- Nam P Vu
- Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Luke Ali
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| | - Theresa L Chua
- Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Daniel A Barr
- Department of Chemistry, University of Mary, Bismarck, North Dakota 58504, United States
| | - Heidi P Hendrickson
- Department of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Dhara J Trivedi
- Department of Physics, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
13
|
Corminboeuf O, Diethelm S, Zumbrunn C, Lyothier I, Niggli N, Gnerre C, Jeay S, Lehembre F, Boss C. Design of Dual EP2/EP4 Antagonists through Scaffold Merging of Selective Inhibitors. ChemMedChem 2024; 19:e202300606. [PMID: 37983645 DOI: 10.1002/cmdc.202300606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Prostaglandin E2 (PGE2) plays a key role in various stages of cancer. PGE2 signals through the EP2 and the EP4 receptors, promoting tumorigenesis, metastasis, and/or immune suppression. Dual inhibition of both the EP2 and the EP4 receptors has the potential to counteract the effect of PGE2 and to result in antitumor efficacy. We herein disclose for the first time the structure of dual EP2/EP4 antagonists. By merging the scaffolds of EP2 selective and EP4 selective inhibitors, we generated a new chemical series of compounds blocking both receptors with comparable potency. In vitro and in vivo profiling suggests that the newly identified compounds are promising lead structures for further development into dual EP2/EP4 antagonists for use in cancer therapy.
Collapse
Affiliation(s)
- Olivier Corminboeuf
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Stefan Diethelm
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Cornelia Zumbrunn
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Isabelle Lyothier
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Nadja Niggli
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Carmela Gnerre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Sébastien Jeay
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - François Lehembre
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| | - Christoph Boss
- Drug Discovery, Idorsia Pharmaceuticals Ltd., Hegenheimermattweg 91, 4123, Allschwil, Switzerland
| |
Collapse
|
14
|
Liu Z, Huang H, Yu Y, Jia Y, Li L, Shi X, Wang F. Exploring the Potential Molecular Mechanism of the Shugan Jieyu Capsule in the Treatment of Depression through Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation. Curr Comput Aided Drug Des 2024; 20:501-517. [PMID: 37340752 DOI: 10.2174/1573409919666230619105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/21/2023] [Accepted: 05/11/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Shugan Jieyu Capsule (SJC) is a pure Chinese medicine compound prepared with Hypericum perforatum and Acanthopanacis senticosi. SJC has been approved for the clinical treatment of depression, but the mechanism of action is still unclear. OBJECTIVES Network pharmacology, molecular docking, and molecular dynamics simulation (MDS) were applied in the present study to explore the potential mechanism of SJC in the treatment of depression. METHODS TCMSP, BATMAN-TCM, and HERB databases were used, and related literature was reviewed to screen the effective active ingredients of Hypericum perforatum and Acanthopanacis senticosi. TCMSP, BATMAN-TCM, HERB, and STITCH databases were used to predict the potential targets of effective active ingredients. GeneCards database, DisGeNET database, and GEO data set were used to obtain depression targets and clarify the intersection targets of SJC and depression. STRING database and Cytoscape software were used to build a protein-protein interaction (PPI) network of intersection targets and screen the core targets. The enrichment analysis on the intersection targets was conducted. Then the receiver operator characteristic (ROC) curve was constructed to verify the core targets. The pharmacokinetic characteristics of core active ingredients were predicted by SwissADME and pkCSM. Molecular docking was performed to verify the docking activity of the core active ingredients and core targets, and molecular dynamics simulations were performed to evaluate the accuracy of the docking complex. RESULTS We obtained 15 active ingredients and 308 potential drug targets with quercetin, kaempferol, luteolin, and hyperforin as the core active ingredients. We obtained 3598 targets of depression and 193 intersection targets of SJC and depression. A total of 9 core targets (AKT1, TNF, IL6, IL1B, VEGFA, JUN, CASP3, MAPK3, PTGS2) were screened with Cytoscape 3.8.2 software. A total of 442 GO entries and 165 KEGG pathways (p <0.01) were obtained from the enrichment analysis of the intersection targets, mainly enriched in IL-17, TNF, and MAPK signaling pathways. The pharmacokinetic characteristics of the 4 core active ingredients indicated that they could play a role in SJC antidepressants with fewer side effects. Molecular docking showed that the 4 core active components could effectively bind to the 8 core targets (AKT1, TNF, IL6, IL1B, VEGFA, JUN, CASP3, MAPK3, PTGS2), which were related to depression by the ROC curve. MDS showed that the docking complex was stable. CONCLUSION SJC may treat depression by using active ingredients such as quercetin, kaempferol, luteolin, and hyperforin to regulate targets such as PTGS2 and CASP3 and signaling pathways such as IL-17, TNF, and MAPK, and participate in immune inflammation, oxidative stress, apoptosis, neurogenesis, etc.
Collapse
Affiliation(s)
- Zhiyao Liu
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- High Level Key Disciplines of Traditional Chinese Medicine Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hailiang Huang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- High Level Key Disciplines of Traditional Chinese Medicine Basic Theory of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yuqi Jia
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lingling Li
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Shi
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fangqi Wang
- Department of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
15
|
Ziqubu K, Dludla PV, Mabhida SE, Jack BU, Keipert S, Jastroch M, Mazibuko-Mbeje SE. Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism 2024; 150:155709. [PMID: 37866810 DOI: 10.1016/j.metabol.2023.155709] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/28/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023]
Abstract
The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as "batokines", which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho 2745, South Africa
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Sihle E Mabhida
- Non-Communicable Diseases Research Unit, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Babalwa U Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Susanne Keipert
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Martin Jastroch
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
16
|
Lv X, Gao K, Nie J, Zhang X, Zhang S, Ren Y, Sun X, Li Q, Huang J, Liu L, Zhang X, Zhang W, Liu X. Structures of human prostaglandin F 2α receptor reveal the mechanism of ligand and G protein selectivity. Nat Commun 2023; 14:8136. [PMID: 38065938 PMCID: PMC10709307 DOI: 10.1038/s41467-023-43922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Prostaglandins and their receptors regulate various physiological processes. Carboprost, an analog of prostaglandin F2α and an agonist for the prostaglandin F2-alpha receptor (FP receptor), is clinically used to treat postpartum hemorrhage (PPH). However, off-target activation of closely related receptors such as the prostaglandin E receptor subtype EP3 (EP3 receptor) by carboprost results in side effects and limits the clinical application. Meanwhile, the FP receptor selective agonist latanoprost is not suitable to treat PPH due to its poor solubility and fast clearance. Here, we present two cryo-EM structures of the FP receptor bound to carboprost and latanoprost-FA (the free acid form of latanoprost) at 2.7 Å and 3.2 Å resolution, respectively. The structures reveal the molecular mechanism of FP receptor selectivity for both endogenous prostaglandins and clinical drugs, as well as the molecular mechanism of G protein coupling preference by the prostaglandin receptors. The structural information may guide the development of better prostaglandin drugs.
Collapse
Affiliation(s)
- Xiuqing Lv
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Kaixuan Gao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Jia Nie
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Xin Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Shuhao Zhang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Yinhang Ren
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Xiaoou Sun
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Qi Li
- Reproductive Medicine Center, Xiangya Hospital Central South University, Changsha, China
| | - Jingrui Huang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Lijuan Liu
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Xiaowen Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital Central South University, Changsha, China.
- Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China.
| | - Xiangyu Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University, Beijing, China.
| |
Collapse
|
17
|
Wang T, Han Y, Chen X, Chen W, Li H, Wang Y, Qiu X, Gong J, Li W, Zhu T. Particulate Air Pollution and Blood Pressure: Signaling by the Arachidonate Metabolism. Hypertension 2023; 80:2687-2696. [PMID: 37869894 DOI: 10.1161/hypertensionaha.123.21410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Short-term exposure to ambient particulate matter (PM) can raise blood pressure, but the underlying mechanisms are unclear. We explored whether arachidonate metabolites serve as biological intermediates in PM-associated prohypertensive changes. METHODS This panel study recruited 110 adults aged 50 to 65 years living in Beijing, China. The participants' blood pressure, arterial stiffness, and cardiac and endothelial function were measured up to 7 times. The serum concentrations of arachidonate metabolites were quantified by targeted lipidomics. Ambient concentrations of fine PM (PM2.5), black carbon, and accumulation mode particles were continuously monitored at a station and their associations with the health indicators were evaluated. RESULTS Interquartile range increases in 25 to 96-hour-lag exposure to PM2.5, black carbon, and accumulation mode particles were associated with significant increases in systolic blood pressure (brachial: 0.8-3.2 mm Hg; central: 0.7-2.8 mm Hg) and diastolic blood pressure (brachial, 0.5-1.5 mm Hg; central, 0.5-1.6 mm Hg). At least 1 pollutant was associated with increases in augmentation pressure and heart rate and decreases in reactive hyperemia index and ejection time. The serum concentrations of arachidonate were significantly increased by 3.3% to 14.6% in association with PM exposure, which mediated 9% of the PM-associated increases in blood pressure. The levels of eicosanoids from the cytochrome P450, cyclooxygenase, and lipoxygenase pathways changed with PM exposure, and those from the cytochrome pathway significantly mediated the association between PM exposure and blood pressure. CONCLUSIONS Short-term exposure to particulate air pollution was associated with a prohypertensive change in adults, which was in part mediated by alteration of arachidonate metabolism.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (T.W.)
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- GRiC, Shenzhen Institute of Building Research Co., Ltd., China (X.C.)
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles (W.C.)
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China (Y.W.)
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| |
Collapse
|
18
|
Nayak AP, Javed E, Villalba DR, Wang Y, Morelli HP, Shah SD, Kim N, Ostrom RS, Panettieri RA, An SS, Tang DD, Penn RB. Prorelaxant E-type Prostanoid Receptors Functionally Partition to Different Procontractile Receptors in Airway Smooth Muscle. Am J Respir Cell Mol Biol 2023; 69:584-591. [PMID: 37523713 PMCID: PMC10633839 DOI: 10.1165/rcmb.2022-0445oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Prostaglandin E2 imparts diverse physiological effects on multiple airway cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4). Gs-coupled EP2 and EP4 receptors are expressed on airway smooth muscle (ASM), yet their capacity to regulate the ASM contractile state remains subject to debate. We used EP2 and EP4 subtype-specific agonists (ONO-259 and ONO-329, respectively) in cell- and tissue-based models of human ASM contraction-magnetic twisting cytometry (MTC), and precision-cut lung slices (PCLSs), respectively-to study the EP2 and EP4 regulation of ASM contraction and signaling under conditions of histamine or methacholine (MCh) stimulation. ONO-329 was superior (<0.05) to ONO-259 in relaxing MCh-contracted PCLSs (log half maximal effective concentration [logEC50]: 4.9 × 10-7 vs. 2.2 × 10-6; maximal bronchodilation ± SE, 35 ± 2% vs. 15 ± 2%). However, ONO-259 and ONO-329 were similarly efficacious in relaxing histamine-contracted PCLSs. Similar differential effects were observed in MTC studies. Signaling analyses revealed only modest differences in ONO-329- and ONO-259-induced phosphorylation of the protein kinase A substrates VASP and HSP20, with concomitant stimulation with MCh or histamine. Conversely, ONO-259 failed to inhibit MCh-induced phosphorylation of the regulatory myosin light chain (pMLC20) and the F-actin/G-actin ratio (F/G-actin ratio) while effectively inhibiting their induction by histamine. ONO-329 was effective in reversing induced pMLC20 and the F/G-actin ratio with both MCh and histamine. Thus, the contractile-agonist-dependent differential effects are not explained by changes in the global levels of phosphorylated protein kinase A substrates but are reflected in the regulation of pMLC20 (cross-bridge cycling) and F/G-actin ratio (actin cytoskeleton integrity, force transmission), implicating a role for compartmentalized signaling involving muscarinic, histamine, and EP receptor subtypes.
Collapse
Affiliation(s)
- Ajay P. Nayak
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Elham Javed
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Dominic R. Villalba
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Henry P. Morelli
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sushrut D. Shah
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nicholas Kim
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Rennolds S. Ostrom
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California; and
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Steven S. An
- Rutgers Institute for Translational Medicine and Science, Rutgers University, New Brunswick, New Jersey
| | - Dale D. Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Raymond B. Penn
- Center for Translational Medicine, Jane and Leonard Korman Lung Institute, Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Keller MP, Hudkins KL, Shalev A, Bhatnagar S, Kebede MA, Merrins MJ, Davis DB, Alpers CE, Kimple ME, Attie AD. What the BTBR/J mouse has taught us about diabetes and diabetic complications. iScience 2023; 26:107036. [PMID: 37360692 PMCID: PMC10285641 DOI: 10.1016/j.isci.2023.107036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Human and mouse genetics have delivered numerous diabetogenic loci, but it is mainly through the use of animal models that the pathophysiological basis for their contribution to diabetes has been investigated. More than 20 years ago, we serendipidously identified a mouse strain that could serve as a model of obesity-prone type 2 diabetes, the BTBR (Black and Tan Brachyury) mouse (BTBR T+ Itpr3tf/J, 2018) carrying the Lepob mutation. We went on to discover that the BTBR-Lepob mouse is an excellent model of diabetic nephropathy and is now widely used by nephrologists in academia and the pharmaceutical industry. In this review, we describe the motivation for developing this animal model, the many genes identified and the insights about diabetes and diabetes complications derived from >100 studies conducted in this remarkable animal model.
Collapse
Affiliation(s)
- Mark P. Keller
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelly L. Hudkins
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Anath Shalev
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Sushant Bhatnagar
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, UK
| | - Melkam A. Kebede
- School of Medical Sciences, Faculty of Medicine and Health, Charles Perkins Centre, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| | - Matthew J. Merrins
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Charles E. Alpers
- Department of Pathology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Michelle E. Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Alan D. Attie
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
20
|
Nguyen JN, Chauhan A. Bystanders or not? Microglia and lymphocytes in aging and stroke. Neural Regen Res 2023; 18:1397-1403. [PMID: 36571333 PMCID: PMC10075112 DOI: 10.4103/1673-5374.360345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
As the average age of the world population increases, more people will face debilitating aging-associated conditions, including dementia and stroke. Not only does the incidence of these conditions increase with age, but the recovery afterward is often worse in older patients. Researchers and health professionals must unveil and understand the factors behind age-associated diseases to develop a therapy for older patients. Aging causes profound changes in the immune system including the activation of microglia in the brain. Activated microglia promote T lymphocyte transmigration leading to an increase in neuroinflammation, white matter damage, and cognitive impairment in both older humans and rodents. The presence of T and B lymphocytes is observed in the aged brain and correlates with worse stroke outcomes. Preclinical strategies in stroke target either microglia or the lymphocytes or the communications between them to promote functional recovery in aged subjects. In this review, we examine the role of the microglia and T and B lymphocytes in aging and how they contribute to cognitive impairment. Additionally, we provide an important update on the contribution of these cells and their interactions in preclinical aged stroke.
Collapse
Affiliation(s)
- Justin N. Nguyen
- University of Texas McGovern Medical School at Houston, Houston, TX, USA
| | - Anjali Chauhan
- Department of Neurology, University of Texas McGovern Medical School at Houston, Houston, TX, USA
| |
Collapse
|
21
|
Bruno A, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Cyclooxygenases and platelet functions. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:133-165. [PMID: 37236757 DOI: 10.1016/bs.apha.2022.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cyclooxygenase (COX) isozymes, i.e., COX-1 and COX-2, are encoded by separate genes and are involved in the generation of the same products, prostaglandin (PG)G2 and PGH2 from arachidonic acid (AA) by the COX and peroxidase activities of the enzymes, respectively. PGH2 is then transformed into prostanoids in a tissue-dependent fashion due to the different expression of downstream synthases. Platelets present almost exclusively COX-1, which generates large amounts of thromboxane (TX)A2, a proaggregatory and vasoconstrictor mediator. This prostanoid plays a central role in atherothrombosis, as shown by the benefit of the antiplatelet agent low-dose aspirin, a preferential inhibitor of platelet COX-1. Recent findings have shown the relevant role played by platelets and TXA2 in developing chronic inflammation associated with several diseases, including tissue fibrosis and cancer. COX-2 is induced in response to inflammatory and mitogenic stimuli to generate PGE2 and PGI2 (prostacyclin), in inflammatory cells. However, PGI2 is constitutively expressed in vascular cells in vivo and plays a crucial role in protecting the cardiovascular systems due to its antiplatelet and vasodilator effects. Here, platelets' role in regulating COX-2 expression in cells of the inflammatory microenvironment is described. Thus, the selective inhibition of platelet COX-1-dependent TXA2 by low-dose aspirin prevents COX-2 induction in stromal cells leading to antifibrotic and antitumor effects. The biosynthesis and functions of other prostanoids, such as PGD2, and isoprostanes, are reported. In addition to aspirin, which inhibits platelet COX-1 activity, possible strategies to affect platelet functions by influencing platelet prostanoid receptors or synthases are discussed.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Stefania Tacconelli
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Annalisa Contursi
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, "G.d'Annunzio" University, Chieti, Italy
| | - Paola Patrignani
- Center for Advanced Studies and Technology (CAST), Chieti, Italy; Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University, Chieti, Italy.
| |
Collapse
|
22
|
Lushington R, Camilli S, Pascual F, Lockey RF, Kolliputi N. EP2 inhibition restores myeloid metabolism and reverses cognitive decline. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100082. [PMID: 37780795 PMCID: PMC10509962 DOI: 10.1016/j.jacig.2023.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/02/2022] [Accepted: 09/26/2022] [Indexed: 10/03/2023]
Abstract
Nonsteroidal anti-inflammatory drugs alleviate pain and inflammation by inhibiting the cyclooxygenase pathway. This pathway has various downstream effects, some of which are beneficial. Prostaglandin E2 is a key downstream product in the cyclooxygenase pathway that modulates inflammation. A correlation between aging and increased expression of the prostaglandin E2 receptor, EP2, has been associated with inflammatory processes, cognitive aging, angiogenesis, and tumorigenesis. Therefore, inhibition of EP2 could lead to therapeutic effects and be more selective than inhibiting cyclooxygenase-2. Studies suggest that inhibition of EP2 restores age-associated spatial memory deficits and synaptic proteins and impairs tumorigenesis. The data indicate that EP2 signaling is important in myeloid cell metabolism and support its candidacy as a therapeutic target.
Collapse
Affiliation(s)
- Ryan Lushington
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| | - Samuel Camilli
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| | - Francisco Pascual
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| | - Richard F. Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa
| |
Collapse
|
23
|
Jo D, Jung YS, Song J. Lipocalin-2 Secreted by the Liver Regulates Neuronal Cell Function Through AKT-Dependent Signaling in Hepatic Encephalopathy Mouse Model. Clin Nutr Res 2023; 12:154-167. [PMID: 37214781 PMCID: PMC10193436 DOI: 10.7762/cnr.2023.12.2.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 05/24/2023] Open
Abstract
Hepatic encephalopathy (HE) associated with liver failure is accompanied by hyperammonemia, severe inflammation, depression, anxiety, and memory deficits as well as liver injury. Recent studies have focused on the liver-brain-inflammation axis to identify a therapeutic solution for patients with HE. Lipocalin-2 is an inflammation-related glycoprotein that is secreted by various organs and is involved in cellular mechanisms including iron homeostasis, glucose metabolism, cell death, neurite outgrowth, and neurogenesis. In this study, we investigated that the roles of lipocalin-2 both in the brain cortex of mice with HE and in Neuro-2a (N2A) cells. We detected elevated levels of lipocalin-2 both in the plasma and liver in a bile duct ligation mouse model of HE. We confirmed changes in cytokine expression, such as interleukin-1β, cyclooxygenase 2 expression, and iron metabolism related to gene expression through AKT-mediated signaling both in the brain cortex of mice with HE and N2A cells. Our data showed negative effects of hepatic lipocalin-2 on cell survival, iron homeostasis, and neurite outgrowth in N2A cells. Thus, we suggest that regulation of lipocalin-2 in the brain in HE may be a critical therapeutic approach to alleviate neuropathological problems focused on the liver-brain axis.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoon Seok Jung
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
24
|
Ma H, Hong WS, Chen SX. A progestin regulates the prostaglandin pathway in the neuroendocrine system in female mudskipper Boleophthalmus pectinirostris. J Steroid Biochem Mol Biol 2023; 231:106300. [PMID: 36990161 DOI: 10.1016/j.jsbmb.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023]
Abstract
Sex hormones regulate the reproductive cycle through brain-pituitary axis, but the molecular mechanism is still enigmatic. In the reproductive season, the mudskipper Boleophthalmus pectinirostris possesses a semilunar periodicity spawning rhythm, which coincides with the semilunar periodicity variations in 17α-hydroxyprogesterone, the precursor of 17α,20β-dihydroxy-4-pregnen-3-one (DHP), a sexual progestin in teleosts. In the present study, we investigated in vitro the brain transcriptional differences between DHP-treated tissues and control groups using RNA-seq. Differential expression analysis revealed that 2700 genes significantly differentially expressed, including 1532 up-regulated and 1168 down-regulated genes. The majority of prostaglandin pathway-related genes were dramatically up-regulated, especially the prostaglandin receptor 6 (ptger6). Tissue distribution analysis revealed that ptger6 gene was ubiquitously expressed. In situ hybridization results showed that ptger6, nuclear progestin receptor (pgr), and DHP-induced c-fos mRNA were co-expressed in the ventral telencephalic area, the ventral nucleus of ventral telencephalic area, the anterior part of parvocellular preoptic nucleus, the magnocellular part of magnocellular preoptic nucleus, the ventral zone of periventricular hypothalamus, the anterior tubercular nucleus, the periventricular nucleus of posterior tuberculum, and the torus longitudinalis. DHP significantly enhanced promoter activities of ptger6 via Pgr. Together, this study suggested that DHP regulates the prostaglandin pathway in the neuroendocrine system of teleost fish.
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Wang Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
25
|
Vashistha A, Khan HR. Role of intraluteal and intrauterine prostaglandin signaling in LH-induced luteolysis in pregnant rats. Mol Reprod Dev 2023; 90:260-271. [PMID: 36866418 DOI: 10.1002/mrd.23678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/04/2023]
Abstract
Luteal dysfunctions lead to fertility disorders and pregnancy complications. Normal luteal function is regulated by many factors, including luteinizing hormone (LH). The luteotropic roles of LH have been widely investigated but its role in the process of luteolysis has received little attention. LH has been shown to have luteolytic effects during pregnancy in rats and the role of intraluteal prostaglandins (PGs) in LH-mediated luteolysis has been demonstrated by others. However, the status of PG signaling in the uterus during LH-mediated luteolysis remains unexplored. In this study, we utilized the repeated LH administration (4×LH) model for luteolysis induction. We have examined the effect of LH-mediated luteolysis on the expression of genes involved in luteal/uterine PG synthesis, luteal PGF2α signaling, and uterine activation during different stages (mid and late) of pregnancy. Further, we analyzed the effect of overall PG synthesis machinery blockage on LH-mediated luteolysis during late pregnancy. Unlike the midstage of pregnancy, the expression of genes involved in PG synthesis, PGF2α signaling, and uterine activation in late-stage pregnant rats' luteal and uterine tissue increase 4×LH. Since the cAMP/PKA pathway mediates LH-mediated luteolysis, we analyzed the effect of inhibition of endogenous PG synthesis on the cAMP/PKA/CREB pathway, followed by the analysis of the expression of markers of luteolysis. Inhibition of endogenous PG synthesis did not affect the cAMP/PKA/CREB pathway. However, in the absence of endogenous PGs, luteolysis could not be activated to the full extent. Our results suggest that endogenous PGs may contribute to LH-mediated luteolysis, but this dependency on endogenous PGs is pregnancy-stage dependent. These findings advance our understanding of the molecular pathways that regulate luteolysis.
Collapse
Affiliation(s)
- Akshi Vashistha
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India
| | - Habibur Rahaman Khan
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.,Department of Safety Assessment, Adgyl LifeSciences Private Limited, Bangalore, Karnataka
| |
Collapse
|
26
|
Bin NR, Prescott SL, Horio N, Wang Y, Chiu IM, Liberles SD. An airway-to-brain sensory pathway mediates influenza-induced sickness. Nature 2023; 615:660-667. [PMID: 36890237 PMCID: PMC10033449 DOI: 10.1038/s41586-023-05796-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/03/2023] [Indexed: 03/10/2023]
Abstract
Pathogen infection causes a stereotyped state of sickness that involves neuronally orchestrated behavioural and physiological changes1,2. On infection, immune cells release a 'storm' of cytokines and other mediators, many of which are detected by neurons3,4; yet, the responding neural circuits and neuro-immune interaction mechanisms that evoke sickness behaviour during naturalistic infections remain unclear. Over-the-counter medications such as aspirin and ibuprofen are widely used to alleviate sickness and act by blocking prostaglandin E2 (PGE2) synthesis5. A leading model is that PGE2 crosses the blood-brain barrier and directly engages hypothalamic neurons2. Here, using genetic tools that broadly cover a peripheral sensory neuron atlas, we instead identified a small population of PGE2-detecting glossopharyngeal sensory neurons (petrosal GABRA1 neurons) that are essential for influenza-induced sickness behaviour in mice. Ablating petrosal GABRA1 neurons or targeted knockout of PGE2 receptor 3 (EP3) in these neurons eliminates influenza-induced decreases in food intake, water intake and mobility during early-stage infection and improves survival. Genetically guided anatomical mapping revealed that petrosal GABRA1 neurons project to mucosal regions of the nasopharynx with increased expression of cyclooxygenase-2 after infection, and also display a specific axonal targeting pattern in the brainstem. Together, these findings reveal a primary airway-to-brain sensory pathway that detects locally produced prostaglandins and mediates systemic sickness responses to respiratory virus infection.
Collapse
Affiliation(s)
- Na-Ryum Bin
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Sara L Prescott
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nao Horio
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yandan Wang
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Stephen D Liberles
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
27
|
Gong Z, Li Q, Shi J, Li P, Hua L, Shultz LD, Ren G. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci Immunol 2023; 8:eadd5204. [PMID: 36800412 PMCID: PMC10067025 DOI: 10.1126/sciimmunol.add5204] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023]
Abstract
Neutrophils, the most abundant innate immune cells, function as crucial regulators of the adaptive immune system in diverse pathological conditions, including metastatic cancer. However, it remains largely unknown whether their immunomodulatory functions are intrinsic or acquired within the pathological tissue environment. Here, using mouse models of metastatic breast cancer in the lungs, we show that, although neutrophils isolated from bone marrow (BM) or blood are minimally immunosuppressive, lung-infiltrating neutrophils are robustly suppressive of both T cells and natural killer (NK) cells. We found that this tissue-specific immunosuppressive capacity of neutrophils exists in the steady state and is reinforced by tumor-associated inflammation. Acquisition of potent immunosuppression activity by lung-infiltrating neutrophils was endowed by the lung-resident stroma, specifically CD140a+ mesenchymal cells (MCs) and largely via prostaglandin-endoperoxide synthase 2 (PTGS2), the rate-limiting enzyme for prostaglandin E2 (PGE2) biosynthesis. MC-specific deletion of Ptgs2 or pharmacological inhibition of PGE2 receptors reversed lung neutrophil-mediated immunosuppression and mitigated lung metastasis of breast cancer in vivo. These lung stroma-targeting strategies substantially improved the therapeutic efficacy of adoptive T cell-based immunotherapy in treating metastatic disease in mice. Collectively, our results reveal that the immunoregulatory effects of neutrophils are induced by tissue-resident stroma and that targeting tissue-specific stromal factors represents an effective approach to boost tissue-resident immunity against metastatic disease.
Collapse
Affiliation(s)
- Zheng Gong
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Qing Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Jiayuan Shi
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Peishan Li
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Li Hua
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Guangwen Ren
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University School of Medicine, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
28
|
Significance of Pulmonary Endothelial Injury and the Role of Cyclooxygenase-2 and Prostanoid Signaling. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010117. [PMID: 36671689 PMCID: PMC9855370 DOI: 10.3390/bioengineering10010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The endothelium plays a key role in the dynamic balance of hemodynamic, humoral and inflammatory processes in the human body. Its central importance and the resulting therapeutic concepts are the subject of ongoing research efforts and form the basis for the treatment of numerous diseases. The pulmonary endothelium is an essential component for the gas exchange in humans. Pulmonary endothelial dysfunction has serious consequences for the oxygenation and the gas exchange in humans with the potential of consecutive multiple organ failure. Therefore, in this review, the dysfunction of the pulmonary endothel due to viral, bacterial, and fungal infections, ventilator-related injury, and aspiration is presented in a medical context. Selected aspects of the interaction of endothelial cells with primarily alveolar macrophages are reviewed in more detail. Elucidation of underlying causes and mechanisms of damage and repair may lead to new therapeutic approaches. Specific emphasis is placed on the processes leading to the induction of cyclooxygenase-2 and downstream prostanoid-based signaling pathways associated with this enzyme.
Collapse
|
29
|
Liu K, Zhen W, Bai D, Tan H, He X, Li Y, Liu Y, Zhang Y, Ito K, Zhang B, Ma Y. Lipopolysaccharide-induced immune stress negatively regulates broiler chicken growth via the COX-2-PGE 2-EP4 signaling pathway. Front Immunol 2023; 14:1193798. [PMID: 37207231 PMCID: PMC10189118 DOI: 10.3389/fimmu.2023.1193798] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Aims Immune stress in broiler chickens is characterized by the development of persistent pro-inflammatory responses that contribute to degradation of production performance. However, the underlying mechanisms that cause growth inhibition of broilers with immune stress are not well defined. Methods A total of 252 1-day-old Arbor Acres(AA) broilers were randomly allocated to three groups with six replicates per group and 14 broilers per replicate. The three groups comprised a saline control group, an Lipopolysaccharide (LPS) (immune stress) group, and an LPS and celecoxib group corresponding to an immune stress group treated with a selective COX-2 inhibitor. Birds in LPS group and saline group were intraperitoneally injected with the same amount of LPS or saline from 14d of age for 3 consecutive days. And birds in the LPS and celecoxib group were given a single intraperitoneal injection of celecoxib 15 min prior to LPS injection at 14 d of age. Results The feed intake and body weight gain of broilers were suppressed in response to immune stress induced by LPS which is an intrinsic component of the outer membrane of Gram-negative bacteria. Cyclooxygenase-2 (COX-2), a key enzyme that mediates prostaglandin synthesis, was up-regulated through MAPK-NF-κB pathways in activated microglia cells in broilers exposed to LPS. Subsequently, the binding of prostaglandin E2 (PGE2) to the EP4 receptor maintained the activation of microglia and promoted the secretion of cytokines interleukin-1β and interleukin-8, and chemokines CX3CL1 and CCL4. In addition, the expression of appetite suppressor proopiomelanocortin protein was increased and the levels of growth hormone-releasing hormone were reduced in the hypothalamus. These effects resulted in decreased expression of insulin-like growth factor in the serum of stressed broilers. In contrast, inhibition of COX-2 normalized pro-inflammatory cytokine levels and promoted the expression of Neuropeptide Y and growth hormone-releasing hormone in the hypothalamus which improved the growth performance of stressed broilers. Transcriptomic analysis of the hypothalamus of stressed broilers showed that inhibition of COX-2 activity significantly down-regulated the expression of the TLR1B, IRF7, LY96, MAP3K8, CX3CL1, and CCL4 genes in the MAPK-NF-κB signaling pathway. Conclusion This study provides new evidence that immune stress mediates growth suppression in broilers by activating the COX-2-PGE2-EP4 signaling axis. Moreover, growth inhibition is reversed by inhibiting the activity of COX-2 under stressed conditions. These observations suggest new approaches for promoting the health of broiler chickens reared in intensive conditions.
Collapse
Affiliation(s)
- Kexin Liu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Wenrui Zhen
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Dongying Bai
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Haiqiu Tan
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xianglong He
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yuqian Li
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yanhao Liu
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yi Zhang
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Koichi Ito
- Department of Food and Physiological Models, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanbo Ma
- Department of Animal Physiology, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Science & Technology Innovation Center for Completed Set Equipment, Luoyang, China
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
- *Correspondence: Yanbo Ma,
| |
Collapse
|
30
|
Role of Oxylipins in the Inflammatory-Related Diseases NAFLD, Obesity, and Type 2 Diabetes. Metabolites 2022; 12:metabo12121238. [PMID: 36557276 PMCID: PMC9788263 DOI: 10.3390/metabo12121238] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Oxygenated polyunsaturated fatty acids (oxylipins) are bioactive molecules established as important mediators during inflammation. Different classes of oxylipins have been found to have opposite effects, e.g., pro-inflammatory prostaglandins and anti-inflammatory resolvins. Production of the different classes of oxylipins occurs during distinct stages of development and resolution of inflammation. Chronic inflammation is involved in the progression of many pathophysiological conditions and diseases such as non-alcoholic fatty liver disease, insulin resistance, diabetes, and obesity. Determining oxylipin profiles before, during, and after inflammatory-related diseases could provide clues to the onset, development, and prevention of detrimental conditions. This review focusses on recent developments in our understanding of the role of oxylipins in inflammatory disease, and outlines novel technological advancements and approaches to study their action.
Collapse
|
31
|
Kotlyarov S. Immune Function of Endothelial Cells: Evolutionary Aspects, Molecular Biology and Role in Atherogenesis. Int J Mol Sci 2022; 23:9770. [PMID: 36077168 PMCID: PMC9456046 DOI: 10.3390/ijms23179770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Atherosclerosis is one of the key problems of modern medicine, which is due to the high prevalence of atherosclerotic cardiovascular diseases and their significant share in the structure of morbidity and mortality in many countries. Atherogenesis is a complex chain of events that proceeds over many years in the vascular wall with the participation of various cells. Endothelial cells are key participants in vascular function. They demonstrate involvement in the regulation of vascular hemodynamics, metabolism, and innate immunity, which act as leading links in the pathogenesis of atherosclerosis. These endothelial functions have close connections and deep evolutionary roots, a better understanding of which will improve the prospects of early diagnosis and effective treatment.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
32
|
Fujimori K. Prostaglandin D<sub>2</sub> and F<sub>2α</sub> as Regulators of Adipogenesis and Obesity. Biol Pharm Bull 2022; 45:985-991. [DOI: 10.1248/bpb.b22-00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ko Fujimori
- Department of Pathobiochemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University
| |
Collapse
|
33
|
Shukla D, Bhola ND, Bhola RD, Nimje AM. Efficacy of Preoperative Piroxicam, Diclofenac, Paracetamol With Tramadol and Placebo Tablets for Relief of Postoperative Pain After the Removal of Impacted Mandibular Third Molars: A Randomised Controlled Trial. Cureus 2022; 14:e26839. [PMID: 35974862 PMCID: PMC9375129 DOI: 10.7759/cureus.26839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/28/2022] Open
Abstract
Aim We aimed to analyze the influence of preoperative piroxicam, diclofenac, paracetamol, tramadol, and placebo tablets as measured in the time required for rescue analgesia for postoperative pain relief after the extraction of impacted mandibular third molar. Materials & methods Forty-four patients who needed extraction of impacted mandibular third molar were arbitrarily categorized into four groups namely, piroxicam, diclofenac, paracetamol with tramadol, and placebo. The test medicine was given one hour preoperatively before the surgical removal. The pain was assessed using visual analog scale (VAS) and verbal rating scale (VRS) scores preoperatively and at the third and 24th hours. The time required for escape analgesia was measured. Results The mean VAS and VRS scores showed significant differences across the groups after 24 hours. The mean score was lowest for the patients taking piroxicam (1.30+1.95) and highest for patients taking tramadol + paracetamol (4.50+2.59). As far as escape analgesia is concerned piroxicam group was by far superior. Conclusion The pain scores and the rescue analgesic requirement suggested that piroxicam analgesic significantly reduced pain; moreover, it is a safe as well as an efficacious substitute to the conventional non-steroidal anti-inflammatory drugs (NSAIDs) for mandibular third molar impactions.
Collapse
|
34
|
Elshareif N, Gavini CK, Mansuy-Aubert V. LXR agonist modifies neuronal lipid homeostasis and decreases PGD2 in the dorsal root ganglia in western diet-fed mice. Sci Rep 2022; 12:10754. [PMID: 35750708 PMCID: PMC9232502 DOI: 10.1038/s41598-022-14604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The prevalence of peripheral neuropathy is high in diabetic and overweight populations. Chronic neuropathic pain, a symptom of peripheral neuropathy, is a major disabling symptom that leads to a poor quality of life. Glucose management for diabetic and prediabetic individuals often fail to reduce or improve pain symptoms, therefore, exploring other mechanisms is necessary to identify effective treatments. A large body of evidence suggest that lipid signaling may be a viable target for management of peripheral neuropathy in obese individuals. The nuclear transcription factors, Liver X Receptors (LXR), are known regulators of lipid homeostasis, phospholipid remodeling, and inflammation. Notably, the activation of LXR using the synthetic agonist GW3965, delayed western diet (WD)-induced allodynia in rodents. To further understand the neurobiology underlying the effect of LXR, we used translating ribosome affinity purification and evaluated translatomic changes in the sensory neurons of WD-fed mice treated with the LXR agonist GW3965. We also observed that GW3965 decreased prostaglandin levels and decreased free fatty acid content, while increasing lysophosphatidylcholine, phosphatidylcholine, and cholesterol ester species in the sensory neurons of the dorsal root ganglia (DRG). These data suggest novel downstream interplaying mechanisms that modifies DRG neuronal lipid following GW3965 treatment.
Collapse
Affiliation(s)
- Nadia Elshareif
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Chaitanya K Gavini
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Virginie Mansuy-Aubert
- Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA.
| |
Collapse
|
35
|
Tian J, Du Y, Yu E, Lei C, Xia Y, Jiang P, Li H, Zhang K, Li Z, Gong W, Xie J, Wang G. Prostaglandin 2α Promotes Autophagy and Mitochondrial Energy Production in Fish Hepatocytes. Cells 2022; 11:1870. [PMID: 35740999 PMCID: PMC9220818 DOI: 10.3390/cells11121870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Fatty liver, characterized by excessive lipid droplet (LD) accumulation in hepatocytes, is a common physiological condition in humans and aquaculture species. Lipid mobilization is an important strategy for modulating the number and size of cellular LDs. Cyclooxygenase (COX)-mediated arachidonic acid derivatives are known to improve lipid catabolism in fish; however, the specific derivatives remain unknown. In the present study, we showed that serum starvation induced LD degradation via autophagy, lipolysis, and mitochondrial energy production in zebrafish hepatocytes, accompanied by activation of the COX pathway. The cellular concentration of PGF2α, but not other prostaglandins, was significantly increased. Administration of a COX inhibitor or interference with PGF2α synthase abolished serum deprivation-induced LD suppression, LD-lysosome colocalization, and expression of autophagic genes. Additionally, exogenous PGF2α suppressed the accumulation of LDs, promoted the accumulation of lysosomes with LD and the autophagy marker protein LC3A/B, and augmented the expression of autophagic genes. Moreover, PGF2α enhanced mitochondrial accumulation and ATP production, and increased the transcript levels of β-oxidation- and mitochondrial respiratory chain-related genes. Collectively, these findings demonstrate that the COX pathway is implicated in lipid degradation induced by energy deprivation, and that PGF2α is a key molecule triggering autophagy, lipolysis, and mitochondrial development in zebrafish hepatocytes.
Collapse
Affiliation(s)
- Jingjing Tian
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yihui Du
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Ermeng Yu
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Caixia Lei
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yun Xia
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Peng Jiang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Hongyan Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kai Zhang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhifei Li
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wangbao Gong
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jun Xie
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Guangjun Wang
- Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (J.T.); (Y.D.); (E.Y.); (C.L.); (Y.X.); (P.J.); (H.L.); (K.Z.); (Z.L.); (W.G.)
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
36
|
Montalban E, Giralt A, Taing L, Schut EHS, Supiot LF, Castell L, Nakamura Y, de Pins B, Pelosi A, Goutebroze L, Tuduri P, Wang W, Neiburga KD, Vestito L, Castel J, Luquet S, Nairn AC, Hervé D, Heintz N, Martin C, Greengard P, Valjent E, Meye FJ, Gambardella N, Roussarie JP, Girault JA. Translational profiling of mouse dopaminoceptive neurons reveals region-specific gene expression, exon usage, and striatal prostaglandin E2 modulatory effects. Mol Psychiatry 2022; 27:2068-2079. [PMID: 35177825 PMCID: PMC10009708 DOI: 10.1038/s41380-022-01439-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/16/2021] [Accepted: 01/05/2022] [Indexed: 01/11/2023]
Abstract
Forebrain dopamine-sensitive (dopaminoceptive) neurons play a key role in movement, action selection, motivation, and working memory. Their activity is altered in Parkinson's disease, addiction, schizophrenia, and other conditions, and drugs that stimulate or antagonize dopamine receptors have major therapeutic applications. Yet, similarities and differences between the various neuronal populations sensitive to dopamine have not been systematically explored. To characterize them, we compared translating mRNAs in the dorsal striatum and nucleus accumbens neurons expressing D1 or D2 dopamine receptor and prefrontal cortex neurons expressing D1 receptor. We identified genome-wide cortico-striatal, striatal D1/D2 and dorso/ventral differences in the translating mRNA and isoform landscapes, which characterize dopaminoceptive neuronal populations. Expression patterns and network analyses identified novel transcription factors with presumptive roles in these differences. Prostaglandin E2 (PGE2) was a candidate upstream regulator in the dorsal striatum. We pharmacologically explored this hypothesis and showed that misoprostol, a PGE2 receptor agonist, decreased the excitability of D2 striatal projection neurons in slices, and diminished their activity in vivo during novel environment exploration. We found that misoprostol also modulates mouse behavior including by facilitating reversal learning. Our study provides powerful resources for characterizing dopamine target neurons, new information about striatal gene expression patterns and regulation. It also reveals the unforeseen role of PGE2 in the striatum as a potential neuromodulator and an attractive therapeutic target.
Collapse
Affiliation(s)
- Enrica Montalban
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France.,Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Albert Giralt
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France.,Departament de Biomedicina, Facultat de Medicina, Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.,Production and Validation Center of Advanced Therapies (Creatio), University of Barcelona, Barcelona, Spain
| | - Lieng Taing
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France.,UMR1166, Faculté de Médecine, Sorbonne University, Paris, France
| | - Evelien H S Schut
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laura F Supiot
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laia Castell
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France.,Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Yuki Nakamura
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Benoit de Pins
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France.,Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Assunta Pelosi
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Laurence Goutebroze
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Pola Tuduri
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Wei Wang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA.,Bioinformatics Resource Center, Rockefeller University, New York, NY, USA
| | - Katrina Daila Neiburga
- Babraham Institute, Cambridge, UK.,Bioinformatics Lab, Riga Stradins University, Riga, Latvia
| | - Letizia Vestito
- Babraham Institute, Cambridge, UK.,University College London, London, UK
| | - Julien Castel
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Serge Luquet
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Claire Martin
- Université de Paris, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris, France
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA
| | - Emmanuel Valjent
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Frank J Meye
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Jean-Pierre Roussarie
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, USA. .,Boston University School of Medicine, Department of Anatomy & Neurobiology, Boston, MA, USA.
| | - Jean-Antoine Girault
- Inserm UMR-S 1270, Paris, France. .,Faculty of Sciences and Engineering, Sorbonne Université, Paris, France. .,Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
37
|
Willits AB, Grossi V, Glidden NC, Hyams JS, Young EE. Identification of a Pain-Specific Gene Expression Profile for Pediatric Recurrent Abdominal Pain. FRONTIERS IN PAIN RESEARCH 2022; 2:759634. [PMID: 35295473 PMCID: PMC8915586 DOI: 10.3389/fpain.2021.759634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives: Functional Abdominal Pain (FAP) and Irritable Bowel Syndrome (IBS) are common recurrent abdominal pain diagnoses with the hallmark, lack of inflammation. To identify a biological signature for IBS/FAP in the colon, this study used genetic profiling to uncover gene expression changes associated with IBS/FAP and abdominal pain. Methods: Patients (8 to 17 years) newly diagnosed with IBS or FAP were enrolled in the study. At diagnostic colonoscopy, three rectal biopsies were collected, and gene expression analysis was performed using a Qiagen PCR Array. Relative fold difference in gene expression for 84 pain-associated genes was calculated using the 2-ΔΔ Cq method compared with pain-free controls. Factors affecting pain burden (Pain Burden Interview; PBI) were analyzed, including age, sex, rectal inflammation, and gene expression. Data were analyzed using multiple stepwise linear regression and 2-tailed t tests (P ≤ 0.05). Results: Of the 22 total patients in the study, 19 were diagnosed with either IBS-Constipation (frequency of 5.26%), IBS-Diarrhea (47.37%), IBS-Mixed (10.53%), or FAP (36.84%). IBS/FAP patients reported significantly higher pain burden at the time of diagnosis compared to pain-free controls (p < 0.001), as well as significantly higher abdominal pain (p = 0.01). Of the 84 genes, expression of GRIN1 (p = 0.02), MAPK3 (p = 0.04), P2X4 (p = 0.04), and PTGES3 (p = 0.02) were all significantly associated with PBI score. Discussion: Abdominal pain associated with IBS/FAP in pediatric patients may be linked to the expression of GRIN1, MAPK3, P2X4, and PTGES3, pointing to potential novel therapeutic targets for management of recurring abdominal pain.
Collapse
Affiliation(s)
- Adam B Willits
- Neuroscience Program, KU Medical Center, Kansas City, KS, United States
| | - Victoria Grossi
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, CT, United States
| | - Nicole C Glidden
- Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children's Medical Center, Hartford, CT, United States
| | - Erin E Young
- Neuroscience Program, KU Medical Center, Kansas City, KS, United States.,Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, United States.,Department of Anesthesiology, KU Medical Center, Kansas City, KS, United States
| |
Collapse
|
38
|
Hancock WD, Lei X, Clines GA, Tusing YG, Nozell SE, Ramanadham S. Ca 2+-independent phospholipase A 2β-derived PGE 2 contributes to osteogenesis. Prostaglandins Other Lipid Mediat 2022; 158:106605. [PMID: 34923151 PMCID: PMC8753754 DOI: 10.1016/j.prostaglandins.2021.106605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 02/03/2023]
Abstract
Bone modeling can be modulated by lipid signals such as arachidonic acid (AA) and its cyclooxygenase 2 (COX2) metabolite, prostaglandin E2 (PGE2), which are recognized mediators of optimal bone formation. Hydrolysis of AA from membrane glycerophospholipids is catalyzed by phospholipases A2 (PLA2s). We reported that mice deficient in the Ca2+- independent PLA2beta (iPLA2β), encoded by Pla2g6, exhibit a low bone phenotype, but the cause for this remains to be identified. Here, we examined the mechanistic and molecular roles of iPLA2β in bone formation using bone marrow stromal cells and calvarial osteoblasts from WT and iPLA2β-deficient mice, and the MC3T3-E1 osteoblast precursor cell line. Our data reveal that transcription of osteogenic factors (Bmp2, Alpl, and Runx2) and osteogenesis are decreased with iPLA2β-deficiency. These outcomes are corroborated and recapitulated in WT cells treated with a selective inhibitor of iPLA2 β (10 μM S-BEL), and rescued in iPLA2β-deficient cells by additions of 10 μM PGE2. Further, under osteogenic conditions we find that PGE2 production is through iPLA2β activity and that this leads to induction of Runx2 and iPLA2β transcription. These findings reveal a strong link between osteogenesis and iPLA2β-derived lipids and raise the intriguing possibility that iPLA2β-derived PGE2 participates in osteogenesis and in the regulation of Runx2 and also iPLA2β.
Collapse
Affiliation(s)
- William D Hancock
- Department of Biochemistry and Molecular Biology Virginia Commonwealth University, Richmond, VA, USA
| | - Xiaoyong Lei
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A Clines
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Ying G Tusing
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan E Nozell
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sasanka Ramanadham
- Department of Cell, Developmental, and Integrative Biology, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
39
|
Lian S, Li S, Zhu J, Xia Y, Do Jung Y. Nicotine stimulates IL-8 expression via ROS/NF-κB and ROS/MAPK/AP-1 axis in human gastric cancer cells. Toxicology 2022; 466:153062. [PMID: 34890707 DOI: 10.1016/j.tox.2021.153062] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 02/04/2023]
Abstract
Nicotine, a major alkaloid found in tobacco, is a significant risk factor for gastric cancer. IL-8, a pleiotropic cytokine, plays a vital role in cancer cell metastasis. The role of nicotine in IL-8 expression and the underlying mechanism is currently unknown. Here, we examined the effects of nicotine on IL-8 expression and explored the potential mechanisms in gastric cancer cells. We found that nicotine increases IL-8 expression. Specific inhibitor and mutagenesis studies showed that ROS and MAPK (Erk1/2, p38) were involved in this process. Deletion and site-directed mutagenesis studies indicate the involvement of transcription factor NF-κB and AP-1. ROS and ROS/MAPK (Erk1/2, p38) functioned as the upstream signaling molecules in the activation of NF-κB and AP-1, respectively. AGS gastric cancer cells pretreated with nicotine stimulate angiogenesis in the tumor microenvironment, partially abrogated by silencing IL-8 in AGS cells. In this study, we found that nicotine induces IL-8 expression via ROS/NF-κB and ROS/MAPK (Erk1/2, p38)/AP-1 axis in gastric cancer cells, thus stimulating endothelial cell proliferation and angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Shinan Li
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, Shandong, 272067, China.
| | - Young Do Jung
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea.
| |
Collapse
|
40
|
Kotlyarov S, Kotlyarova A. Involvement of Fatty Acids and Their Metabolites in the Development of Inflammation in Atherosclerosis. Int J Mol Sci 2022; 23:1308. [PMID: 35163232 PMCID: PMC8835729 DOI: 10.3390/ijms23031308] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Despite all the advances of modern medicine, atherosclerosis continues to be one of the most important medical and social problems. Atherosclerosis is the cause of several cardiovascular diseases, which are associated with high rates of disability and mortality. The development of atherosclerosis is associated with the accumulation of lipids in the arterial intima and the disruption of mechanisms that maintain the balance between the development and resolution of inflammation. Fatty acids are involved in many mechanisms of inflammation development and maintenance. Endothelial cells demonstrate multiple cross-linkages between lipid metabolism and innate immunity. In addition, these processes are linked to hemodynamics and the function of other cells in the vascular wall, highlighting the central role of the endothelium in vascular biology.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
41
|
Mutsaers HA, Nørregaard R. Prostaglandin E2 receptors as therapeutic targets in renal fibrosis. Kidney Res Clin Pract 2022; 41:4-13. [PMID: 35108767 PMCID: PMC8816406 DOI: 10.23876/j.krcp.21.222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 11/04/2022] Open
Affiliation(s)
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Correspondence: Rikke Nørregaard Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, DK-8200 Aarhus N, Denmark E-mail:
| |
Collapse
|
42
|
Misheva M, Kotzamanis K, Davies LC, Tyrrell VJ, Rodrigues PRS, Benavides GA, Hinz C, Murphy RC, Kennedy P, Taylor PR, Rosas M, Jones SA, McLaren JE, Deshpande S, Andrews R, Schebb NH, Czubala MA, Gurney M, Aldrovandi M, Meckelmann SW, Ghazal P, Darley-Usmar V, White DA, O'Donnell VB. Oxylipin metabolism is controlled by mitochondrial β-oxidation during bacterial inflammation. Nat Commun 2022; 13:139. [PMID: 35013270 PMCID: PMC8748967 DOI: 10.1038/s41467-021-27766-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/12/2021] [Indexed: 12/19/2022] Open
Abstract
Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial β-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin β-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by β-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial β-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.
Collapse
Affiliation(s)
- Mariya Misheva
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Konstantinos Kotzamanis
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Luke C Davies
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Victoria J Tyrrell
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Patricia R S Rodrigues
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Gloria A Benavides
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christine Hinz
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Robert C Murphy
- Department of Pharmacology, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Paul Kennedy
- Cayman Chemical, 1180 E Ellsworth Rd, Ann Arbor, MI, 48108, USA
| | - Philip R Taylor
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
- UK Dementia Research Institute at Cardiff, Cardiff University, CF14 4XN, Cardiff, UK
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Simon A Jones
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - James E McLaren
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Sumukh Deshpande
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gausstraße 20, 42119, Wuppertal, Germany
| | - Magdalena A Czubala
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Mark Gurney
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Maceler Aldrovandi
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Sven W Meckelmann
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Peter Ghazal
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Daniel A White
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK.
| | - Valerie B O'Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, and School of Medicine, Cardiff University, CF14 4XN, Cardiff, UK.
| |
Collapse
|
43
|
In Silico, In Vitro, and In Vivo Analysis of Tanshinone IIA and Cryptotanshinone from Salvia miltiorrhiza as Modulators of Cyclooxygenase-2/mPGES-1/Endothelial Prostaglandin EP3 Pathway. Biomolecules 2022; 12:biom12010099. [PMID: 35053247 PMCID: PMC8774285 DOI: 10.3390/biom12010099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Tanshinone IIA (TIIA) and cryptotanshinone (CRY) from Salvia miltiorrhiza Bunge were investigated for their inhibitory activity against the cyclooxygenase-2 (COX-2)/microsomal prostaglandin E synthase-1 (mPGES-1)/endothelial prostaglandin 3 (EP3) pathway using in silico, in vitro, in vivo, and ex vivo assays. From the analysis of the docking poses, both diterpenoids were able to interact significantly with COX-2, 5-lipoxygenase (5-LO), platelet-activating factor receptor (PAFR), and mPGES-1. This evidence was further corroborated by data obtained from a cell-free assay, where CRY displayed a significant inhibitory potency against mPGES-1 (IC50 = 1.9 ± 0.4 µM) and 5-LO (IC50 = 7.1 µM), while TIIA showed no relevant inhibition of these targets. This was consistent with their activity to increase mice bleeding time (CRY: 2.44 ± 0.13 min, p ≤ 0.001; TIIA: 2.07 ± 0.17 min p ≤ 0.01) and with the capability to modulate mouse clot retraction (CRY: 0.048 ± 0.011 g, p ≤ 0.01; TIIA: 0.068 ± 0.009 g, p ≤ 0.05). For the first time, our results show that TIIA and, in particular, CRY are able to interact significantly with the key proteins involved not only in the onset of inflammation but also in platelet activity (and hyper-reactivity). Future preclinical and clinical investigations, together with this evidence, could provide the scientific basis to consider these compounds as an alternative therapeutic approach for thrombotic- and thromboembolic-based diseases.
Collapse
|
44
|
Ziemanski JF, Wilson L, Barnes S, Nichols KK. Prostaglandin E2 and F2α Alter Expression of Select Cholesteryl Esters and Triacylglycerols Produced by Human Meibomian Gland Epithelial Cells. Cornea 2022; 41:95-105. [PMID: 34483274 PMCID: PMC8648972 DOI: 10.1097/ico.0000000000002835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
PURPOSE PGF2α analogs are commonly used to treat glaucoma and are associated with higher rates of meibomian gland dysfunction (MGD). The purpose of this study was to evaluate the physiological effects of PGF2α and PGE2 on immortalized human meibomian gland epithelial cells (HMGECs). METHODS HMGECs were immunostained for the 4 PGE2 receptors (EP1, EP2, EP3, and EP4) and 1 PGF2α receptor (FP) and imaged. Rosiglitazone-differentiated HMGECs were exposed to PGF2α and PGE2 (10-9 to 10-6 M) for 3 hours. Cell viability was assessed by an adenosine triphosphate-based luminescent assay, and lipid extracts were analyzed for cholesteryl esters (CEs), wax esters (WEs), and triacylglycerols (TAGs) by ESI-MSMSALL in positive ion mode by a Triple TOF 5600 Mass Spectrometer using SCIEX LipidView 1.3. RESULTS HMGECs expressed 3 PGE2 receptors (EP1, EP2, and EP4) and the 1 PGF2α receptor (FP). Neither PGE2 nor PGF2α showed signs of cytotoxicity at any of the concentrations tested. WEs were not detected from any of the samples, but both CEs and TAGs exhibited a diverse and dynamic profile. PGE2 suppressed select CEs (CE 22:1, CE 26:0, CE 28:1, and CE 30:1). PGF2α dose dependently increased several CEs (CE 20:2, CE 20:1, CE 22:1, and CE 24:0) yet decreased others. Both prostaglandins led to nonspecific TAG remodeling. CONCLUSIONS PGE2 and PGF2α showed minimal effect on HMGEC viability. PGF2α influences lipid expression greater than PGE2 and may do so by interfering with meibocyte differentiation. This work may provide insight into the mechanism of MGD development in patients with glaucoma treated with PGF2α analogs.
Collapse
Affiliation(s)
- Jillian F. Ziemanski
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| | - Landon Wilson
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Stephen Barnes
- University of Alabama at Birmingham, School of Medicine, Department of Pharmacology Toxicology, Birmingham, AL, USA
| | - Kelly K. Nichols
- University of Alabama at Birmingham, School of Optometry, Department of Optometry Vision Science, Birmingham, AL, USA
| |
Collapse
|
45
|
Abayalath N, Malshani I, Ariyaratne R, Zhao S, Zhong G, Zhang G, Manipura A, Siribaddana A, Karunaratne P, Kodithuwakku SP. Characterization of airborne PAHs and metals associated with PM10 fractions collected from an urban area of Sri Lanka and the impact on airway epithelial cells. CHEMOSPHERE 2022; 286:131741. [PMID: 34358888 DOI: 10.1016/j.chemosphere.2021.131741] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) are significant contributors leading to many human health issues. Thus, this study was designed to perform chemical analysis and biological impact of airborne particulate matter 10 (PM10) in the World heritage City of Kandy City in Sri Lanka. 12 priority PAHs and 34 metals, including 10 highly toxic HMs were quantified. The biological effects of organic extracts were assayed using an in vitro primary porcine airway epithelial cell culture model. Cytotoxicity, DNA damage, and gene expressions of selected inflammatory and cancer-related genes were also assessed. Results showed that the total PAHs ranged from 3.062 to 36.887 ng/m3. The metals were dominated by Na > Ca > Mg > Al > K > Fe > Ti, while a few toxic HMs were much higher in the air than the existing ambient air quality standards. In the bioassays, a significant cytotoxicity (p < 0.05) was observed at 300 μg/mL treatment, and significant (p < 0.05) DNA damages were noted in all treatment groups. All genes assessed were found to be significantly up-regulated (p < 0.05) after 24 h of exposure and after 48 h, only TGF-β1 and p53 did not significantly up-regulate (p < 0.05). These findings confirm that the Kandy city air contains potential carcinogenic and mutagenic compounds and thus, exposure to Kandy air may increase the health risks and respiratory tract-related anomalies.
Collapse
Affiliation(s)
- Nirodha Abayalath
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Indeepa Malshani
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, 80000, Sri Lanka
| | - Rajitha Ariyaratne
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry (SKLOG), Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences (CAS), Guangzhou, 510640, PR China
| | - Guangcai Zhong
- State Key Laboratory of Organic Geochemistry (SKLOG), Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences (CAS), Guangzhou, 510640, PR China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry (SKLOG), Guangzhou Institute of Geochemistry (GIG), Chinese Academy of Sciences (CAS), Guangzhou, 510640, PR China
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | | | - Parakrama Karunaratne
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Suranga P Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
46
|
Wang L, Wu Y, Jia Z, Yu J, Huang S. Roles of EP Receptors in the Regulation of Fluid Balance and Blood Pressure. Front Endocrinol (Lausanne) 2022; 13:875425. [PMID: 35813612 PMCID: PMC9262144 DOI: 10.3389/fendo.2022.875425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important prostanoid expressing throughout the kidney and cardiovascular system. Despite the diverse effects on fluid metabolism and blood pressure, PGE2 is implicated in sustaining volume and hemodynamics homeostasis. PGE2 works through four distinct E-prostanoid (EP) receptors which are G protein-coupled receptors. To date, pharmacological specific antagonists and agonists of all four subtypes of EP receptors and genetic targeting knockout mice for each subtype have helped in uncoupling the diverse functions of PGE2 and discriminating the respective characteristics of each receptor. In this review, we summarized the functions of individual EP receptor subtypes in the renal and blood vessels and the molecular mechanism of PGE2-induced fluid metabolism and blood pressure homeostasis.
Collapse
Affiliation(s)
- Lu Wang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Hematology and Oncology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqian Wu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| | - Songming Huang
- Jiangsu Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Nephrology, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Songming Huang, ; Jing Yu,
| |
Collapse
|
47
|
Synthesis and Structure-activity Relationship Study of 2,4-dioxothiazolidin-5-ylidene Derivatives for 15-hydroxyprostaglandin Dehydrogenase Inhibitory Activity, Prostaglandin E2 Release, and Wound Healing Effect. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-021-0071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
An Y, Yao J, Niu X. The Signaling Pathway of PGE 2 and Its Regulatory Role in T Cell Differentiation. Mediators Inflamm 2021; 2021:9087816. [PMID: 34867083 PMCID: PMC8641993 DOI: 10.1155/2021/9087816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/01/2023] Open
Abstract
Prostaglandin E2 (PGE2) is a lipid mediator derived from the fatty acid arachidonic acid. As an essential inflammatory factor, PGE2 has a critical impact on immune regulation through the prostanoid E (EP) receptor pathway. T cells, including CD4+ and CD8+ T cell subsets, play crucial roles in the adaptive immune response. Previous studies have shown that PGE2 is involved in regulating CD4+ T cell differentiation and inflammatory cytokine production via the EP receptor pathway, thereby affecting the development of diseases mediated by CD4+ T cells. In this review, we summarize the signaling pathway of PGE2 and describe the relationship between PGE2 and T cell differentiation. Hence, this review may provide important evidence for immune therapies and may even promote the development of biomedicines.
Collapse
Affiliation(s)
- Yang An
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
| | - Jiameng Yao
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai 200336, China
| | - Xiaoyin Niu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Immunology, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
49
|
Stadtmauer DJ, Wagner GP. Single-cell analysis of prostaglandin E2-induced human decidual cell in vitro differentiation: a minimal ancestral deciduogenic signal†. Biol Reprod 2021; 106:155-172. [PMID: 34591094 PMCID: PMC8757638 DOI: 10.1093/biolre/ioab183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 05/31/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
The decidua is a hallmark of reproduction in many placental mammals. Differentiation of decidual stromal cells is known to be induced by progesterone and the cyclic AMP/protein kinase A (cAMP/PKA) pathway. Several candidates have been identified as the physiological stimulus for adenylyl cyclase activation, but their relative importance remains unclear. To bypass this uncertainty, the standard approach for in vitro experiments uses membrane-permeable cAMP and progestin. We phylogenetically infer that prostaglandin E2 (PGE2) likely was the signal that ancestrally induced decidualization in conjunction with progesterone. This suggests that PGE2 and progestin should be able to activate the core gene regulatory network of decidual cells. To test this prediction, we performed a genome-wide study of gene expression in human endometrial fibroblasts decidualized with PGE2 and progestin. Comparison to a cAMP-based protocol revealed shared activation of core decidual genes and decreased induction of senescence-associated genes. Single-cell transcriptomics of PGE2-mediated decidualization revealed a distinct, early-activated state transitioning to a differentiated decidual state. PGE2-mediated decidualization was found to depend upon progestin-dependent induction of PGE2 receptor 2 (PTGER2) which in turn leads to PKA activation upon PGE2 stimulation. Progesterone-dependent induction of PTGER2 is absent in opossum, an outgroup taxon of placental mammals which is incapable of decidualization. Together, these findings suggest that the origin of decidualization involved the evolution of progesterone-dependent activation of the PGE2/PTGER2/PKA axis, facilitating entry into a PKA-dominant rather than AKT-dominant cellular state. We propose the use of PGE2 for in vitro decidualization as an alternative to 8-Br-cAMP.
Collapse
Affiliation(s)
- Daniel J Stadtmauer
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| | - Günter P Wagner
- Correspondence: Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3091; E-mail: (Günter P. Wagner); Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA. Tel: 203-737-3092; E-mail: (Daniel J. Stadtmauer)
| |
Collapse
|
50
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|