1
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
2
|
Ahmed B, Farb MG, Gokce N. Cardiometabolic implications of adipose tissue aging. Obes Rev 2024; 25:e13806. [PMID: 39076025 DOI: 10.1111/obr.13806] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 03/14/2024] [Accepted: 07/05/2024] [Indexed: 07/31/2024]
Abstract
Adipose tissue is a large endocrine organ that serves numerous physiological functions. As we age, adipose tissue remodels and can develop functional changes that alters its phenotype, potentially contributing to metabolic and cardiovascular disorders. Aging adipose tissue is characterized by regional redistribution of fat, accumulation of senescent cells, fibrosis, and decline in adipocyte differentiation capacities, which collectively impact adipose tissue function and whole body health. A notable transformation involves increased accumulation of intra-abdominal visceral adipose tissue and ectopic fat around internal organs such as the heart, blood vessels, liver, and kidneys that alter their functions. Other changes associated with aging include alterations in adipokine secretion and changes in adipocyte size and numbers. Aging adipocytes play a role in mediating chronic inflammation, metabolic dysfunction, and insulin resistance. Visceral adipose tissue, which increases in volume with aging, is in particular associated with inflammation, angiogenic dysfunction, and microvascular abnormalities, and mediators released by visceral fat may have adverse consequences systemically in multiple target organs, including the cardiovascular system. Understanding mechanisms underlying adipose tissue aging and its impact on cardiovascular health are important for developing interventions and treatments to promote healthy aging and reduce cardiometabolic disease risk.
Collapse
Affiliation(s)
- Bulbul Ahmed
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melissa G Farb
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Rendon CJ, Sempere L, Lauver A, Watts SW, Contreras GA. Anatomical location, sex, and age modulate adipocyte progenitor populations in perivascular adipose tissues. Front Physiol 2024; 15:1411218. [PMID: 39072214 PMCID: PMC11282503 DOI: 10.3389/fphys.2024.1411218] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Perivascular adipose tissue (PVAT) regulates vascular function due to its capacity to synthesize vasoactive products and its mechanical properties. PVATs most abundant cells are adipocytes, and their populations are maintained by the maturation of adipocyte progenitor cells (APC), which may play a pivotal role in the pathogenesis of cardiovascular diseases. However, the distribution of APC within PVAT depots, their potential variation in spatial location, and the influence of sex and age on their abundance remain unknown. We hypothesize that APC abundance in PVAT is affected by location, age, sex and that APC subtypes have specific spatial distributions. PVAT from thoracic and abdominal aorta, and mesenteric arteries, and AT from interscapular, gonadal, and subcutaneous depots from 13-week and 30-week-old females and males Pdgfrα-CreERT2 x LSL-tdTomato mice (n = 28) were analyzed. Abdominal aorta PVAT had fewer progenitors than mesenteric PVAT and gonadal AT. Aging reduced the abundance of APC in the thoracic aorta but increased their numbers in mesenteric PVAT. Females had more APC than males in mesenteric PVAT and gonadal AT depots. APC exhibited unique spatial distribution in the aorta and mesenteric PVAT where they localized neighboring vasa vasorum and arteries. APC subtypes (APC1, APC2, APC3, diff APC) were identified in all PVAT depots. Thoracic aorta PVAT APC3 were located in the adventitia while diff APC were in the parenchyma. This study identified variability in APC populations based on depot, age, and sex. The distinctive spatial distribution and the presence of diverse APC subtypes suggest that they may contribute differently to cardiovascular diseases-induced PVAT remodeling.
Collapse
Affiliation(s)
- C. Javier Rendon
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Lorenzo Sempere
- Department of Radiology and Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Adam Lauver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Stephanie W. Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - G. Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
4
|
Chinnapaka S, Malekzadeh H, Tirmizi Z, Ejaz A. Caloric restriction mitigates age-associated senescence characteristics in subcutaneous adipose tissue-derived stem cells. Aging (Albany NY) 2024; 16:7535-7552. [PMID: 38728252 PMCID: PMC11131987 DOI: 10.18632/aging.205812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/27/2024] [Indexed: 05/12/2024]
Abstract
Adipose tissue regulates metabolic balance, but aging disrupts it, shifting fat from insulin-sensitive subcutaneous to insulin-resistant visceral depots, impacting overall metabolic health. Adipose-derived stem cells (ASCs) are crucial for tissue regeneration, but aging diminishes their stemness and regeneration potential. Our findings reveal that aging is associated with a decrease in subcutaneous adipose tissue mass and an increase in the visceral fat depots mass. Aging is associated with increase in adipose tissue fibrosis but no significant change in adipocyte size was observed with age. Long term caloric restriction failed to prevent fibrotic changes but resulted in significant decrease in adipocytes size. Aged subcutaneous ASCs displayed an increased production of ROS. Using mitochondrial membrane activity as an indicator of stem cell quiescence and senescence, we observed a significant decrease in quiescence ASCs with age exclusively in subcutaneous adipose depot. In addition, aged subcutaneous adipose tissue accumulated more senescent ASCs having defective autophagy activity. However, long-term caloric restriction leads to a reduction in mitochondrial activity in ASCs. Furthermore, caloric restriction prevents the accumulation of senescent cells and helps retain autophagy activity in aging ASCs. These results suggest that caloric restriction and caloric restriction mimetics hold promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using controlled interventions in animals and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established approach for enhancing the stemness of aged stem cells.
Collapse
Affiliation(s)
- Somaiah Chinnapaka
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Hamid Malekzadeh
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zayaan Tirmizi
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Chinnapaka S, Malekzadeh H, Tirmizi Z, Arellano JA, Ejaz A. Nicotinamide Riboside Improves Stemness of Human Adipose-Derived Stem Cells and Inhibits Terminal Adipocyte Differentiation. Pharmaceuticals (Basel) 2023; 16:1134. [PMID: 37631051 PMCID: PMC10458272 DOI: 10.3390/ph16081134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Adipose tissue plays a crucial role in maintaining metabolic homeostasis by serving as a storage site for excess fat and protecting other organs from the detrimental effects of lipotoxicity. However, the aging process is accompanied by a redistribution of fat, characterized by a decrease in insulin-sensitive subcutaneous adipose depot and an increase in insulin-resistant visceral adipose depot. This age-related alteration in adipose tissue distribution has implications for metabolic health. Adipose-derived stem cells (ASCs) play a vital role in the regeneration of adipose tissue. However, aging negatively impacts the stemness and regenerative potential of ASCs. The accumulation of oxidative stress and mitochondrial dysfunction-associated cellular damage contributes to the decline in stemness observed in aged ASCs. Nicotinamide adenine dinucleotide (NAD+) is a crucial metabolite that is involved in maintaining cellular homeostasis and stemness. The dysregulation of NAD+ levels with age has been associated with metabolic disorders and the loss of stemness. In this study, we aimed to investigate the effects of nicotinamide riboside (NR), a precursor of NAD+, on the stemness of human ASCs in cell culture. Our findings reveal that adipogenesis is accompanied by an increase in mitochondrial activity and the production of reactive oxygen species (ROS). However, treatment with NR leads to a reduction in mitochondrial activity and ROS production in ASCs. Furthermore, NR administration improves the stemness-related genes expression in ASCs and mitigates their propensity for adipocyte differentiation. These results suggest that NR treatment holds promise as a potential strategy to rejuvenate the stemness of aged ASCs. Further investigations, including in vivo evaluations using animal models and human studies, will be necessary to validate these findings and establish the clinical potential of this well-established drug for enhancing the stemness of aged stem cells.
Collapse
Affiliation(s)
| | | | | | | | - Asim Ejaz
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
8
|
DeLuca JH, Reilly SM. Culture and Differentiation of Primary Preadipocytes from Mouse Subcutaneous White Adipose Tissue. Methods Mol Biol 2023; 2662:11-24. [PMID: 37076667 PMCID: PMC10583291 DOI: 10.1007/978-1-0716-3167-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Adipocytes are terminally differentiated cells derived from fibroblastic preadipocyte precursors. Here, we describe a method for the isolation and proliferation of preadipocytes from murine subcutaneous white adipose tissue, followed by differentiation in culture to mature adipocytes; we refer to these cells as primary preadipocytes differentiated in vitro (PPDIVs). Compared to adipogenic cell lines, PPDIV metabolism and adipokine secretion more closely resemble in vivo adipocyte biology. While primary mature adipocytes have the greatest in vivo relevance, their fragility and buoyancy make them unsuitable for many cell culture-based methods. PPDIVs can also take advantage of transgenic and knockout mouse models to produce genetically modified adipocytes. Thus, PPDIVs are a valuable resource for studying adipocyte biology in cell culture.
Collapse
Affiliation(s)
- Julia H DeLuca
- Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Shannon M Reilly
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Weill Center for Metabolic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Wang T. Searching for the link between inflammaging and sarcopenia. Ageing Res Rev 2022; 77:101611. [PMID: 35307560 DOI: 10.1016/j.arr.2022.101611] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
10
|
Marino F, Scalise M, Salerno N, Salerno L, Molinaro C, Cappetta D, Torella M, Greco M, Foti D, Sasso FC, Mastroroberto P, De Angelis A, Ellison-Hughes GM, Sampaolesi M, Rota M, Rossi F, Urbanek K, Nadal-Ginard B, Torella D, Cianflone E. Diabetes-Induced Cellular Senescence and Senescence-Associated Secretory Phenotype Impair Cardiac Regeneration and Function Independently of Age. Diabetes 2022; 71:1081-1098. [PMID: 35108360 PMCID: PMC9490451 DOI: 10.2337/db21-0536] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022]
Abstract
Diabetes mellitus (DM) affects the biology of multipotent cardiac stem/progenitor cells (CSCs) and adult myocardial regeneration. We assessed the hypothesis that senescence and senescence-associated secretory phenotype (SASP) are main mechanisms of cardiac degenerative defect in DM. Accordingly, we tested whether ablation of senescent CSCs would rescue the cardiac regenerative/reparative defect imposed by DM. We obtained cardiac tissue from nonaged (50- to 64-year-old) patients with type 2 diabetes mellitus (T2DM) and without DM (NDM) and postinfarct cardiomyopathy undergoing cardiac surgery. A higher reactive oxygen species production in T2DM was associated with an increased number of senescent/dysfunctional T2DM-human CSCs (hCSCs) with reduced proliferation, clonogenesis/spherogenesis, and myogenic differentiation versus NDM-hCSCs in vitro. T2DM-hCSCs showed a defined pathologic SASP. A combination of two senolytics, dasatinib (D) and quercetin (Q), cleared senescent T2DM-hCSCs in vitro, restoring their expansion and myogenic differentiation capacities. In a T2DM model in young mice, diabetic status per se (independently of ischemia and age) caused CSC senescence coupled with myocardial pathologic remodeling and cardiac dysfunction. D + Q treatment efficiently eliminated senescent cells, rescuing CSC function, which resulted in functional myocardial repair/regeneration, improving cardiac function in murine DM. In conclusion, DM hampers CSC biology, inhibiting CSCs' regenerative potential through the induction of cellular senescence and SASP independently from aging. Senolytics clear senescence, abrogating the SASP and restoring a fully proliferative/differentiation-competent hCSC pool in T2DM with normalization of cardiac function.
Collapse
Affiliation(s)
- Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Claudia Molinaro
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Michele Torella
- Department of Translational Medicine, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Marta Greco
- Department of Health Sciences, Magna Græcia University, Catanzaro, Italy
| | - Daniela Foti
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Ferdinando C. Sasso
- Department of Translational Medicine, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King’s College London, London, U.K
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Stem Cell Biology and Embryology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L. Vanvitelli,” Naples, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Græcia University, Catanzaro, Italy
- Corresponding authors: Daniele Torella, , and Eleonora Cianflone,
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Græcia University, Catanzaro, Italy
- Department of Physiology, New York Medical College, Valhalla, NY
- Corresponding authors: Daniele Torella, , and Eleonora Cianflone,
| |
Collapse
|
11
|
Kita A, Saito Y, Miura N, Miyajima M, Yamamoto S, Sato T, Yotsuyanagi T, Fujimiya M, Chikenji TS. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Commun Biol 2022; 5:310. [PMID: 35383267 PMCID: PMC8983691 DOI: 10.1038/s42003-022-03266-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 03/14/2022] [Indexed: 01/13/2023] Open
Abstract
Pathologic diabetic wound healing is caused by sequential and progressive deterioration of hemostasis, inflammation, proliferation, and resolution/remodeling. Cellular senescence promotes wound healing; however, diabetic wounds exhibit low levels of senescent factors and accumulate senescent cells, which impair the healing process. Here we show that the number of p15INK4B + PDGFRα + senescent mesenchymal cells in adipose tissue increases transiently during early phases of wound healing in both non-diabetic mice and humans. Transplantation of adipose tissue from diabetic mice into non-diabetic mice results in impaired wound healing and an altered cellular senescence–associated secretory phenotype (SASP), suggesting that insufficient induction of adipose tissue senescence after injury is a pathological mechanism of diabetic wound healing. These results provide insight into how regulation of senescence in adipose tissue contributes to wound healing and could constitute a basis for developing therapeutic treatment for wound healing impairment in diabetes. Type-2 diabetic adipose tissue impairs transient senescence during wound healing with expression of different components of the senescence-associated secretory phenotype (SASP), and this is associated with deteriorated wound healing.
Collapse
Affiliation(s)
- Arisa Kita
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Yuki Saito
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Norihiro Miura
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maki Miyajima
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sena Yamamoto
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tsukasa Sato
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takatoshi Yotsuyanagi
- Department of Plastic and Reconstructive Surgery, Sapporo Medical University, Sapporo, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takako S Chikenji
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan. .,Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
12
|
Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep 2021; 11:23237. [PMID: 34853352 PMCID: PMC8636588 DOI: 10.1038/s41598-021-02544-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The dysfunction of adipose tissue with aging and the accumulation of senescent cells has been implicated in the pathophysiology of chronic diseases. Recently interventions capable of reducing the burden of senescent cells and in particular the identification of a new class of drugs termed senolytics have been object of extensive investigation. We used an in vitro model of induced senescence by treating both pre-adipocytes as well as mature adipocytes with hydrogen peroxide (H2O2) at a sub-lethal concentration for 3 h for three consecutive days, and hereafter with 20 uM quercetin at a dose that in preliminary experiments resulted to be senolytic without cytotoxicity. H2O2 treated pre-adipocytes and adipocytes showed typical senescence-associated features including increased beta-galactosidase activity (SA-ß-gal) and p21, activation of ROS and increased expression of pro-inflammatory cytokines. The treatment with quercetin in senescent pre-adipocytes and adipocytes was associated to a significant decrease in the number of the SA-β-gal positive cells along with the suppression of ROS and of inflammatory cytokines. Besides, quercetin treatment decreased miR-155-5p expression in both models, with down-regulation of p65 and a trend toward an up-regulation of SIRT-1 in complete cell extracts. The senolytic compound quercetin could affect AT ageing by reducing senescence, induced in our in vitro model by oxidative stress. The downregulation of miRNA-155-5p, possibly through the modulation of NF-κB and SIRT-1, could have a key role in the effects of quercetin on both pre-adipocytes and adipocytes.
Collapse
|
13
|
Metformin Improves Stemness of Human Adipose-Derived Stem Cells by Downmodulation of Mechanistic Target of Rapamycin (mTOR) and Extracellular Signal-Regulated Kinase (ERK) Signaling. Biomedicines 2021; 9:biomedicines9121782. [PMID: 34944598 PMCID: PMC8698459 DOI: 10.3390/biomedicines9121782] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/25/2021] [Indexed: 12/05/2022] Open
Abstract
Adipose tissue plays an important role in regulating metabolic homeostasis by storing excess fat and protecting other organs from lipotoxicity. Aging is associated with central fat redistribution, culminating in a decrease in insulin-sensitive subcutaneous and an increase in insulin-resistant visceral adipose depots. Adipose-derived stem cells (ASCs) play an important role in the regeneration of adipose tissue. Aged ASCs show decreased stemness and regenerative potential due to the accumulation of oxidative stress and mitochondrial dysfunction-related cell damage. Metformin is a well-established anti-diabetic drug that has shown anti-aging effects in different organisms and animal models. In this study, we analyzed the effect of metformin treatment on the stemness of human ASCs in cell culture and whole adipose tissue culture models. Our results demonstrate that metformin improves the stemness of ASCs, reducing their rate of proliferation and adipocyte differentiation. Investigating the possible underlying mechanism, we observed a decrease in the mTOR and ERK activity in metformin-treated ASCs. In addition, we observed an increase in autophagy activity upon metformin treatment. We conclude that metformin treatment improves ASCs stemness by reducing mTOR and ERK signaling and enhancing autophagy. Future in vivo evaluations in animal models and humans will pave the way for the clinical adaptation of this well-established drug for reviving the stemness of aged stem cells.
Collapse
|
14
|
Von Bank H, Kirsh C, Simcox J. Aging adipose: Depot location dictates age-associated expansion and dysfunction. Ageing Res Rev 2021; 67:101259. [PMID: 33515751 PMCID: PMC8379680 DOI: 10.1016/j.arr.2021.101259] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/09/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Adipose tissue has a variety of diverse functions that maintain energy homeostasis. In conditions of excess energy availability, adipose tissue increases its lipid storage and communicates the nutritional abundance to various organs in the body. In conditions of energy depletion, such as fasting, cold exposure, or prolonged exercise, triglycerides stored in adipose tissue are released as free fatty acids to support the shift to catabolic metabolism. These diverse functions of storage, communication, and energy homeostasis are shared between numerous adipose depots including subcutaneous, visceral, brown, beige, intramuscular, marrow, and dermal adipose tissue. As organisms age, the cellular composition of these depots shifts to facilitate increased inflammatory cell infiltration, decreased vasculature, and increased adipocyte quantity and lipid droplet size. The purpose of this review is to give a comprehensive overview of the molecular and cellular changes that occur in various aged adipose depots and discuss their impact on physiology. The molecular signature of aged adipose leads to higher prevalence of metabolic disease in aged populations including type 2 diabetes, cardiovascular disease, Alzheimer's disease, and certain types of cancer.
Collapse
Affiliation(s)
- Helaina Von Bank
- Department of Biochemistry, University of Wisconsin Madison, USA.
| | - Charlie Kirsh
- Department of Biochemistry, University of Wisconsin Madison, USA.
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin Madison, USA.
| |
Collapse
|
15
|
Tchkonia T, Palmer AK, Kirkland JL. New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms. J Clin Endocrinol Metab 2021; 106:e1481-e1487. [PMID: 33155651 PMCID: PMC7947756 DOI: 10.1210/clinem/dgaa728] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
The elderly population is increasing faster than other segments of the population throughout the world. Age is the leading predictor for most chronic diseases and disorders, multimorbidity, geriatric syndromes, and impaired ability to recover from accidents or illnesses. Enhancing the duration of health and independence, termed healthspan, would be more desirable than extending lifespan merely by prolonging the period of morbidity toward the end of life. The geroscience hypothesis posits that healthspan can be extended by targeting fundamental aging mechanisms, rather than attempting to address each age-related disease one at a time, only so the afflicted individual survives disabled and dies shortly afterward of another age-related disease. These fundamental aging mechanisms include, among others, chronic inflammation, fibrosis, stem cell/ progenitor dysfunction, DNA damage, epigenetic changes, metabolic shifts, destructive metabolite generation, mitochondrial dysfunction, misfolded or aggregated protein accumulation, and cellular senescence. These processes appear to be tightly interlinked, as targeting any one appears to affect many of the rest, underlying our Unitary Theory of Fundamental Aging Mechanisms. Interventions targeting many fundamental aging processes are being developed, including dietary manipulations, metformin, mTOR (mechanistic target of rapamycin) inhibitors, and senolytics, which are in early human trials. These interventions could lead to greater healthspan benefits than treating age-related diseases one at a time. To illustrate these points, we focus on cellular senescence and therapies in development to target senescent cells. Combining interventions targeting aging mechanisms with disease-specific drugs could result in more than additive benefits for currently difficult-to-treat or intractable diseases. More research attention needs to be devoted to targeting fundamental aging processes.
Collapse
Affiliation(s)
- Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
- Correspondence and Reprint Requests: James L. Kirkland, MD, PhD, Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA. E-mail:
| |
Collapse
|
16
|
Cooper PO, Haas MR, Noonepalle SKR, Shook BA. Dermal Drivers of Injury-Induced Inflammation: Contribution of Adipocytes and Fibroblasts. Int J Mol Sci 2021; 22:1933. [PMID: 33669239 PMCID: PMC7919834 DOI: 10.3390/ijms22041933] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023] Open
Abstract
Irregular inflammatory responses are a major contributor to tissue dysfunction and inefficient repair. Skin has proven to be a powerful model to study mechanisms that regulate inflammation. In particular, skin wound healing is dependent on a rapid, robust immune response and subsequent dampening of inflammatory signaling. While injury-induced inflammation has historically been attributed to keratinocytes and immune cells, a vast body of evidence supports the ability of non-immune cells to coordinate inflammation in numerous tissues and diseases. In this review, we concentrate on the active participation of tissue-resident adipocytes and fibroblasts in pro-inflammatory signaling after injury, and how altered cellular communication from these cells can contribute to irregular inflammation associated with aberrant wound healing. Furthering our understanding of how tissue-resident mesenchymal cells contribute to inflammation will likely reveal new targets that can be manipulated to regulate inflammation and repair.
Collapse
Affiliation(s)
| | | | | | - Brett A. Shook
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (P.O.C.); (M.R.H.); (S.k.R.N.)
| |
Collapse
|
17
|
Kirkland JL, Tchkonia T. Senolytic drugs: from discovery to translation. J Intern Med 2020; 288:518-536. [PMID: 32686219 PMCID: PMC7405395 DOI: 10.1111/joim.13141] [Citation(s) in RCA: 635] [Impact Index Per Article: 127.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 12/14/2022]
Abstract
Senolytics are a class of drugs that selectively clear senescent cells (SC). The first senolytic drugs Dasatinib, Quercetin, Fisetin and Navitoclax were discovered using a hypothesis-driven approach. SC accumulate with ageing and at causal sites of multiple chronic disorders, including diseases accounting for the bulk of morbidity, mortality and health expenditures. The most deleterious SC are resistant to apoptosis and have up-regulation of anti-apoptotic pathways which defend SC against their own inflammatory senescence-associated secretory phenotype (SASP), allowing them to survive, despite killing neighbouring cells. Senolytics transiently disable these SCAPs, causing apoptosis of those SC with a tissue-destructive SASP. Because SC take weeks to reaccumulate, senolytics can be administered intermittently - a 'hit-and-run' approach. In preclinical models, senolytics delay, prevent or alleviate frailty, cancers and cardiovascular, neuropsychiatric, liver, kidney, musculoskeletal, lung, eye, haematological, metabolic and skin disorders as well as complications of organ transplantation, radiation and cancer treatment. As anticipated for agents targeting the fundamental ageing mechanisms that are 'root cause' contributors to multiple disorders, potential uses of senolytics are protean, potentially alleviating over 40 conditions in preclinical studies, opening a new route for treating age-related dysfunction and diseases. Early pilot trials of senolytics suggest they decrease senescent cells, reduce inflammation and alleviate frailty in humans. Clinical trials for diabetes, idiopathic pulmonary fibrosis, Alzheimer's disease, COVID-19, osteoarthritis, osteoporosis, eye diseases and bone marrow transplant and childhood cancer survivors are underway or beginning. Until such studies are done, it is too early for senolytics to be used outside of clinical trials.
Collapse
Affiliation(s)
- J L Kirkland
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| | - T Tchkonia
- From the, Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN, USA
| |
Collapse
|
18
|
Khosla S, Farr JN, Tchkonia T, Kirkland JL. The role of cellular senescence in ageing and endocrine disease. Nat Rev Endocrinol 2020; 16:263-275. [PMID: 32161396 PMCID: PMC7227781 DOI: 10.1038/s41574-020-0335-y] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
With the ageing of the global population, interest is growing in the 'geroscience hypothesis', which posits that manipulation of fundamental ageing mechanisms will delay (in parallel) the appearance or severity of multiple chronic, non-communicable diseases, as these diseases share the same underlying risk factor - namely, ageing. In this context, cellular senescence has received considerable attention as a potential target in preventing or treating multiple age-related diseases and increasing healthspan. Here we review mechanisms of cellular senescence and approaches to target this pathway therapeutically using 'senolytic' drugs that kill senescent cells or inhibitors of the senescence-associated secretory phenotype (SASP). Furthermore, we highlight the evidence that cellular senescence has a causative role in multiple diseases associated with ageing. Finally, we focus on the role of cellular senescence in a number of endocrine diseases, including osteoporosis, metabolic syndrome and type 2 diabetes mellitus, as well as other endocrine conditions. Although much remains to be done, considerable preclinical evidence is now leading to the initiation of proof-of-concept clinical trials using senolytics for several endocrine and non-endocrine diseases.
Collapse
Affiliation(s)
- Sundeep Khosla
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - Joshua N Farr
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA.
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
19
|
Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Discovery, development, and future application of senolytics: theories and predictions. FEBS J 2020; 287:2418-2427. [PMID: 32112672 PMCID: PMC7302972 DOI: 10.1111/febs.15264] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate with aging and at etiological sites of multiple diseases, including those accounting for most morbidity, mortality, and health costs. Senescent cells do not replicate, can release factors that cause tissue dysfunction, and yet remain viable. The discovery of senolytic drugs, agents that selectively eliminate senescent cells, created a new route for alleviating age‐related dysfunction and diseases. As anticipated for agents targeting fundamental aging mechanisms that are ‘root cause’ contributors to multiple disorders, potential applications of senolytics are protean. We review the discovery of senolytics, strategies for translation into clinical application, and promising early signals from clinical trials.
Collapse
Affiliation(s)
| | - Yi Zhu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
20
|
Li B, Qiao L, Yan X, Shi T, Ren D, Zhao Y, Zhao J, Liu W. mRNA expression of genes related to fat deposition during in vitro ovine adipogenesis. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fat deposition in animals involves adipogenic differentiation guided by transcriptional factors and other key factors. To understand the molecular mechanism underlying ovine adipogenic differentiation, the dynamic mRNA expression of key genes related to fat deposition, including peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid-binding protein 4 (FABP4), FABP5, and cellular retinoic acid-binding protein 2 (CRABP2), were analyzed during in vitro differentiation of ovine preadipocytes. The stromal vascular cells from underneath the tail fat tissue of 1-wk-old sheep were isolated and cultured, and the preadipocytes were induced using a cocktail of 3-isobutyl-1-methylxanthine, insulin, dexamethasone, and troglitazone. The cultivated cells were collected at different time points after induced differentiation. The expression levels of PPAR-γ, FABP4, FABP5, and CRABP2 were studied by quantitative real-time polymerase chain reaction. The expressions of these genes in sheep were compared with those in human and mouse retrieved from the Gene Expression Omnibus DataSets. We observed that the expression of PPAR-γ, FABP4, and FABP5 was increased upon differentiation of ovine preadipocytes, as in humans and mice. The expression of CRABP2 was sharply increased from days 0 to 2 after induced differentiation and was subsequently decreased. This expression pattern of CRABP2 was different from that observed in humans and mice. Our results provide new insights into the function of these genes in fat deposition.
Collapse
Affiliation(s)
- Baojun Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Liying Qiao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Xiaoru Yan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Tao Shi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Duanyang Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Yanyan Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Junxing Zhao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| | - Wenzhong Liu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, People’s Republic of China
| |
Collapse
|
21
|
Palmer AK, Gustafson B, Kirkland JL, Smith U. Cellular senescence: at the nexus between ageing and diabetes. Diabetologia 2019; 62:1835-1841. [PMID: 31451866 PMCID: PMC6731336 DOI: 10.1007/s00125-019-4934-x] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Ageing and diabetes lead to similar organ dysfunction that is driven by parallel molecular mechanisms, one of which is cellular senescence. The abundance of senescent cells in various tissues increases with age, obesity and diabetes. Senescent cells have been directly implicated in the generation of insulin resistance. Recently, drugs that preferentially target senescent cells, known as senolytics, have been described and recently entered clinical trials. In this review, we explore the biological links between ageing and diabetes, specifically focusing on cellular senescence. We summarise the current data on cellular senescence in key target tissues associated with the development and clinical phenotypes of type 2 diabetes and discuss the therapeutic potential of targeting cellular senescence in diabetes.
Collapse
Affiliation(s)
- Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 1st St SW, Rochester, MN, USA
| | - Birgit Gustafson
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital and University of Gothenburg, 413 45, Gothenburg, Sweden
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 1st St SW, Rochester, MN, USA.
| | - Ulf Smith
- Lundberg Laboratory for Diabetes Research, Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital and University of Gothenburg, 413 45, Gothenburg, Sweden.
| |
Collapse
|
22
|
Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL, Kellogg TA, Khosla S, Koerber DM, Lagnado AB, Lawson DK, LeBrasseur NK, Lerman LO, McDonald KM, McKenzie TJ, Passos JF, Pignolo RJ, Pirtskhalava T, Saadiq IM, Schaefer KK, Textor SC, Victorelli SG, Volkman TL, Xue A, Wentworth MA, Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL. Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. EBioMedicine 2019; 47:446-456. [PMID: 31542391 PMCID: PMC6796530 DOI: 10.1016/j.ebiom.2019.08.069] [Citation(s) in RCA: 815] [Impact Index Per Article: 135.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/16/2019] [Accepted: 08/29/2019] [Indexed: 01/01/2023] Open
Abstract
Background Senescent cells, which can release factors that cause inflammation and dysfunction, the senescence-associated secretory phenotype (SASP), accumulate with ageing and at etiological sites in multiple chronic diseases. Senolytics, including the combination of Dasatinib and Quercetin (D + Q), selectively eliminate senescent cells by transiently disabling pro-survival networks that defend them against their own apoptotic environment. In the first clinical trial of senolytics, D + Q improved physical function in patients with idiopathic pulmonary fibrosis (IPF), a fatal senescence-associated disease, but to date, no peer-reviewed study has directly demonstrated that senolytics decrease senescent cells in humans. Methods In an open label Phase 1 pilot study, we administered 3 days of oral D 100 mg and Q 1000 mg to subjects with diabetic kidney disease (N = 9; 68·7 ± 3·1 years old; 2 female; BMI:33·9 ± 2·3 kg/m2; eGFR:27·0 ± 2·1 mL/min/1·73m2). Adipose tissue, skin biopsies, and blood were collected before and 11 days after completing senolytic treatment. Senescent cell and macrophage/Langerhans cell markers and circulating SASP factors were assayed. Findings D + Q reduced adipose tissue senescent cell burden within 11 days, with decreases in p16INK4A-and p21CIP1-expressing cells, cells with senescence-associated β-galactosidase activity, and adipocyte progenitors with limited replicative potential. Adipose tissue macrophages, which are attracted, anchored, and activated by senescent cells, and crown-like structures were decreased. Skin epidermal p16INK4A+ and p21CIP1+ cells were reduced, as were circulating SASP factors, including IL-1α, IL-6, and MMPs-9 and −12. Interpretation “Hit-and-run” treatment with senolytics, which in the case of D + Q have elimination half-lives <11 h, significantly decreases senescent cell burden in humans. Fund NIH and Foundations. ClinicalTrials.gov Identifier: NCT02848131. Senescence, Frailty, and Mesenchymal Stem Cell Functionality in Chronic Kidney Disease: Effect of Senolytic Agents.
Collapse
Affiliation(s)
- LaTonya J Hickson
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, United States of America; Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Larissa G P Langhi Prata
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Shane A Bobart
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Tamara K Evans
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Medicine Clinical Trials Unit, Department of Medicine, Mayo Clinic, United States of America
| | - Nino Giorgadze
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Shahrukh K Hashmi
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Hematology, Department of Medicine, Mayo Clinic, United States of America
| | - Sandra M Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Michael D Jensen
- Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America
| | - Qingyi Jia
- Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America
| | - Kyra L Jordan
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Todd A Kellogg
- Department of Surgery, Mayo Clinic, United States of America
| | - Sundeep Khosla
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America
| | - Daniel M Koerber
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Anthony B Lagnado
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology and Biomedical Engineering, Mayo Clinic, United States of America
| | - Donna K Lawson
- Division of Hospital Medicine, Department of Medicine, Mayo Clinic, United States of America
| | - Nathan K LeBrasseur
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology, Mayo Clinic, United States of America; Department of Physical Medicine and Rehabilitation, Mayo Clinic, United States of America
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Kathleen M McDonald
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Office of Research Regulatory Support, Mayo Clinic, United States of America
| | | | - João F Passos
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology and Biomedical Engineering, Mayo Clinic, United States of America
| | - Robert J Pignolo
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, United States of America; Division of Endocrinology, Department of Medicine, Mayo Clinic, United States of America; Division of Hospital Medicine, Department of Medicine, Mayo Clinic, United States of America; Department of Physiology, Mayo Clinic, United States of America
| | - Tamar Pirtskhalava
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Ishran M Saadiq
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Kalli K Schaefer
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Stephen C Textor
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, United States of America
| | - Stella G Victorelli
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Physiology and Biomedical Engineering, Mayo Clinic, United States of America
| | - Tammie L Volkman
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Medicine Clinical Trials Unit, Department of Medicine, Mayo Clinic, United States of America
| | - Ailing Xue
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Mark A Wentworth
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Office of Research Regulatory Support, Mayo Clinic, United States of America
| | - Erin O Wissler Gerdes
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Department of Medicine Clinical Trials Unit, Department of Medicine, Mayo Clinic, United States of America
| | - Yi Zhu
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America
| | - Tamara Tchkonia
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America.
| | - James L Kirkland
- Cellular Senescence and Translation and Pharmacology Programs, Robert and Arlene Kogod Center on Aging, Mayo Clinic, United States of America; Division of Geriatric Medicine and Gerontology, Department of Medicine, Mayo Clinic, United States of America; Division of Hospital Medicine, Department of Medicine, Mayo Clinic, United States of America; Division of General Internal Medicine, Department of Medicine, Mayo Clinic, United States of America.
| |
Collapse
|
23
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
24
|
Jung JS, Volk C, Marga C, Navarrete Santos A, Jung M, Rujescu D, Navarrete Santos A. Adipose-Derived Stem/Stromal Cells Recapitulate Aging Biomarkers and Show Reduced Stem Cell Plasticity Affecting Their Adipogenic Differentiation Capacity. Cell Reprogram 2019; 21:187-199. [PMID: 31298565 DOI: 10.1089/cell.2019.0010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stromal mesenchymal stem cells (MSCs) have the capability to self-renew and can differentiate into multiple cell types of the mesoderm germ layer, but their properties are affected by molecular aging mechanisms. MSCs can be obtained from adipose tissue termed as adipose-derived stem/stromal cells (ASCs) representing a promising tool for studying age-related diseases in detail. ASCs from young (16 weeks) and old (>108 weeks) rabbits were successfully isolated and propagated. ASCs showed the typical morphology and stained positive for CD105, Vimentin, Collagenase 1A, and negative for CD14, CD90, and CD73, demonstrating their mesenchymal origin. ASCs expressed MSC markers, including MYC, KLF4, CHD1, REST, and KAT6A, whereas pluripotency-related genes, such as NANOG, OCT4, and SOX2, were not expressed. Aged ASCs showed altered protein and mRNA levels of APOE, ATG7, FGF2, PTEN, and SIRT1. Adipogenic differentiation of old visceral ASCs was significantly decreased compared with young visceral ASCs. We successfully established rabbit ASC cultures representing an in vitro model for the analysis of stem cell aging mechanisms. ASCs, obtained from old female rabbits, showed age- and source-specific alteration due to aging of the donor. Stem cell plasticity was altered with age as shown by reduced adipogenic differentiation capacity.
Collapse
Affiliation(s)
- Juliane-Susanne Jung
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Christin Volk
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Christina Marga
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Alexander Navarrete Santos
- 2Center for Medical Basic Research, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Matthias Jung
- 3Department of Psychiatry, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Dan Rujescu
- 3Department of Psychiatry, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| | - Anne Navarrete Santos
- 1Department of Anatomy and Cell Biology, Psychotherapy, Psychosomatic Medicine, Martin Luther University Medical Faculty, Halle, Germany
| |
Collapse
|
25
|
In vitro model of chronological aging of adipocytes: Interrelationships with hypoxia and oxidation. Exp Gerontol 2019; 121:81-90. [DOI: 10.1016/j.exger.2019.03.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/07/2023]
|
26
|
Lewis‐McDougall FC, Ruchaya PJ, Domenjo‐Vila E, Shin Teoh T, Prata L, Cottle BJ, Clark JE, Punjabi PP, Awad W, Torella D, Tchkonia T, Kirkland JL, Ellison‐Hughes GM. Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 2019; 18:e12931. [PMID: 30854802 PMCID: PMC6516154 DOI: 10.1111/acel.12931] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/19/2022] Open
Abstract
Aging leads to increased cellular senescence and is associated with decreased potency of tissue-specific stem/progenitor cells. Here, we have done an extensive analysis of cardiac progenitor cells (CPCs) isolated from human subjects with cardiovascular disease, aged 32-86 years. In aged subjects (>70 years old), over half of CPCs are senescent (p16INK4A , SA-β-gal, DNA damage γH2AX, telomere length, senescence-associated secretory phenotype [SASP]), unable to replicate, differentiate, regenerate or restore cardiac function following transplantation into the infarcted heart. SASP factors secreted by senescent CPCs renders otherwise healthy CPCs to senescence. Elimination of senescent CPCs using senolytics abrogates the SASP and its debilitative effect in vitro. Global elimination of senescent cells in aged mice (INK-ATTAC or wild-type mice treated with D + Q senolytics) in vivo activates resident CPCs and increased the number of small Ki67-, EdU-positive cardiomyocytes. Therapeutic approaches that eliminate senescent cells may alleviate cardiac deterioration with aging and restore the regenerative capacity of the heart.
Collapse
Affiliation(s)
- Fiona C. Lewis‐McDougall
- School of Basic and Medical Biosciences, Faculty of Life Sciences & MedicineKings College LondonLondonUK
| | - Prashant J. Ruchaya
- School of Basic and Medical Biosciences, Faculty of Life Sciences & MedicineKings College LondonLondonUK
| | - Eva Domenjo‐Vila
- School of Basic and Medical Biosciences, Faculty of Life Sciences & MedicineKings College LondonLondonUK
| | - Tze Shin Teoh
- School of Basic and Medical Biosciences, Faculty of Life Sciences & MedicineKings College LondonLondonUK
| | - Larissa Prata
- Robert and Arlene Kogod Center on AgingMayo Clinic College of MedicineRochesterMinnesota
| | - Beverley J. Cottle
- School of Basic and Medical Biosciences, Faculty of Life Sciences & MedicineKings College LondonLondonUK
| | - James E. Clark
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & MedicineKings College LondonLondonUK
| | | | | | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical SciencesMagna Graecia UniversityCatanzaroItaly
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on AgingMayo Clinic College of MedicineRochesterMinnesota
| | - James L. Kirkland
- Robert and Arlene Kogod Center on AgingMayo Clinic College of MedicineRochesterMinnesota
| | - Georgina M. Ellison‐Hughes
- School of Basic and Medical Biosciences, Faculty of Life Sciences & MedicineKings College LondonLondonUK
| |
Collapse
|
27
|
Postmus AC, Sturmlechner I, Jonker JW, van Deursen JM, van de Sluis B, Kruit JK. Senescent cells in the development of cardiometabolic disease. Curr Opin Lipidol 2019; 30:177-185. [PMID: 30913069 PMCID: PMC6530963 DOI: 10.1097/mol.0000000000000602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Senescent cells have recently been identified as key players in the development of metabolic dysfunction. In this review, we will highlight recent developments in this field and discuss the concept of targeting these cells to prevent or treat cardiometabolic diseases. RECENT FINDINGS Evidence is accumulating that cellular senescence contributes to adipose tissue dysfunction, presumably through induction of low-grade inflammation and inhibition of adipogenic differentiation leading to insulin resistance and dyslipidaemia. Senescent cells modulate their surroundings through their bioactive secretome and only a relatively small number of senescent cells is sufficient to cause persistent physical dysfunction even in young mice. Proof-of-principle studies showed that selective elimination of senescent cells can prevent or delay the development of cardiometabolic diseases in mice. SUMMARY The metabolic consequences of senescent cell accumulation in various tissues are now unravelling and point to new therapeutic opportunities for the treatment of cardiometabolic diseases.
Collapse
Affiliation(s)
- Andrea C. Postmus
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ines Sturmlechner
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Johan W. Jonker
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan M. van Deursen
- Departments of Pediatrics and Adolescent Medicine
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bart van de Sluis
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Janine K. Kruit
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
28
|
Luong Q, Huang J, Lee KY. Deciphering White Adipose Tissue Heterogeneity. BIOLOGY 2019; 8:biology8020023. [PMID: 30978929 PMCID: PMC6628053 DOI: 10.3390/biology8020023] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023]
Abstract
Adipose tissue not only stores energy, but also controls metabolism through secretion of hormones, cytokines, proteins, and microRNAs that affect the function of cells and tissues throughout the body. Adipose tissue is organized into discrete depots throughout the body, and these depots are differentially associated with insulin resistance and increased risk of metabolic disease. In addition to energy-dissipating brown and beige adipocytes, recent lineage tracing studies have demonstrated that individual adipose depots are composed of white adipocytes that are derived from distinct precursor populations, giving rise to distinct subpopulations of energy-storing white adipocytes. In this review, we discuss this developmental and functional heterogeneity of white adipocytes both between and within adipose depots. In particular, we will highlight findings from our recent manuscript in which we find and characterize three major subtypes of white adipocytes. We will discuss these data relating to the differences between subcutaneous and visceral white adipose tissue and in relationship to previous work deciphering adipocyte heterogeneity within adipose tissue depots. Finally, we will discuss the possible implications of adipocyte heterogeneity may have for the understanding of lipodystrophies.
Collapse
Affiliation(s)
- Quyen Luong
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Jun Huang
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| | - Kevin Y Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA.
- The Diabetes Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
29
|
Wang F, Zhu H, Hu M, Wang J, Xia H, Yang X, Yang L, Sun G. Perilla Oil Supplementation Improves Hypertriglyceridemia and Gut Dysbiosis in Diabetic KKAy Mice. Mol Nutr Food Res 2018; 62:e1800299. [PMID: 30358922 PMCID: PMC6646911 DOI: 10.1002/mnfr.201800299] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/13/2018] [Indexed: 12/18/2022]
Abstract
SCOPE The aim of this study is to examine whether perilla oil supplementation improves glucolipid metabolism and modulates gut microbiota in diabetic KKAy mice. METHODS AND RESULTS The successfully established diabetic KKAy mice are randomized into four groups: diabetic model (DM), low-dose perilla oil (LPO), middle-dose perilla oil (MPO), and high-dose perilla oil (HPO). C57BL/6J mice are fed a chow diet as normal control (NC). At the end of 12 weeks, mice are euthanized and glucolipid indications are analyzed. Gut microbiota analysis is carried out based on the sequencing results on V4 region of 16S rRNA. Although serum glucose, insulin, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, abundance-based coverage estimator, and shannon are unchanged, serum triglyceride significantly decreases in LPO compared with DM. The histopathological changes of hepatocellular macrovesicular steatosis and adipocyte hypertrophy are ameliorated by perilla oil supplementation. Blautia is significantly decreased in LPO, MPO, and HPO, compared with DM. Nonmetric multidimensional scaling analysis shows NC and LPO are relatively coherent. CONCLUSION These findings indicate that dietary supplementation with perilla oil can improve hypertriglyceridemia and gut dysbiosis in diabetic KKAy mice, which can be associated with potential benefits to human health.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
- Tianjin Institute of Environmental and Operational MedicineTianjinChina
| | - Hangju Zhu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
- Jiangsu Cancer HospitalNanjingChina
| | - Mingyuan Hu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Jing Wang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Hui Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Xian Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Ligang Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, and Department of Nutrition and Food Hygiene, School of Public HealthSoutheast UniversityNanjingChina
| |
Collapse
|
30
|
Sadie-Van Gijsen H. Adipocyte biology: It is time to upgrade to a new model. J Cell Physiol 2018; 234:2399-2425. [PMID: 30192004 DOI: 10.1002/jcp.27266] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Globally, the obesity pandemic is profoundly affecting quality of life and economic productivity, but efforts to address this, especially on a pharmacological level, have generally proven unsuccessful to date, serving as a stark demonstration that our understanding of adipocyte biology and pathophysiology is incomplete. To deliver better insight into adipocyte function and obesity, we need improved adipocyte models with a high degree of fidelity in representing the in vivo state and with a diverse range of experimental applications. Adipocyte cell lines, especially 3T3-L1 cells, have been used extensively over many years, but these are limited in terms of relevance and versatility. In this review, I propose that primary adipose-derived stromal/stem cells (ASCs) present a superior model with which to study adipocyte biology ex vivo. In particular, ASCs afford us the opportunity to study adipocytes from different, functionally distinct, adipose depots and to investigate, by means of in vivo/ex vivo studies, the effects of many different physiological and pathophysiological factors, such as age, body weight, hormonal status, diet and nutraceuticals, as well as disease and pharmacological treatments, on the biology of adipocytes and their precursors. This study will give an overview of the characteristics of ASCs and published studies utilizing ASCs, to highlight the areas where our knowledge is lacking. More comprehensive studies in primary ASCs will contribute to an improved understanding of adipose tissue, in healthy and dysfunctional states, which will enhance our efforts to more successfully manage and treat obesity.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa.,Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, South Africa
| |
Collapse
|
31
|
Royal jelly supplementation reduces skeletal muscle lipotoxicity and insulin resistance in aged obese rats. ACTA ACUST UNITED AC 2018; 25:307-315. [PMID: 29960833 DOI: 10.1016/j.pathophys.2018.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/28/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Consumption of a high-fat diet (HFD) in aged rats is associated with several metabolic disorders. The mechanism of skeletal muscle lipotoxicity and insulin resistance (IR) is multi-factorial, but the exact mechanism of how aging affects these processes unknown. Royal jelly (RJ) is a dietary supplement with many physiological and pharmacological properties. No previous studies have demonstrated the protective effects and mechanism of RJ in aged obese rats. OBJECTIVES The study was carried to investigate the effects of aging and HFD on skeletal muscles, and adipose tissue metabolism and inflammation, in aged rats, and whether RJ could combat such adverse effects. METHODOLOGY A total of 40 male rats were divided into5 groups; young rats fed a standard diet, aged rats fed a standard diet, aged rats fed RJ, aged rats fed a HFD, and aged rats fed both a HFD and RJ for 8 weeks. We investigated changes in body weights (BW), abdominal fat weights, total cholesterol, triglycerides (TG), low density lipoprotein-cholesterol (LDL-c), high density lipoprotein-cholesterol (HDL-c), muscle TG, and IR levels. Also, concentrations of TNF-α receptor 1(TNFR1) were estimated in the serum and adipose tissues. RESULTS Aged, obese rats showed increased BW, adipose weights, IR, and disturbed serum and muscle lipids. Also, TNFR1 was increased. Rats fed RJ showed decreased adiposity, improved lipids' profiles, improved IR, and decreased TNFR1. CONCLUSION Aging and HFD were associated with disturbed metabolism, and muscle lipotoxicity and inflammation, while RJ could counteract muscle lipotoxicity in rats and reduce IR, most likely due to an anti-inflammatory effect.
Collapse
|
32
|
Hoffman JM, Sideri A, Ruiz JJ, Stavrakis D, Shih DQ, Turner JR, Pothoulakis C, Karagiannides I. Mesenteric Adipose-derived Stromal Cells From Crohn's Disease Patients Induce Protective Effects in Colonic Epithelial Cells and Mice With Colitis. Cell Mol Gastroenterol Hepatol 2018; 6:1-16. [PMID: 29928668 PMCID: PMC6008259 DOI: 10.1016/j.jcmgh.2018.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
Mesenteric adipose tissue hyperplasia is a hallmark of Crohn's disease (CD). Recently, we showed that mesenteric adipose-derived stromal cells (ADSCs) from CD, ulcerative colitis, and control patients synthesize and release adipokines in a disease-dependent manner. Here we examined the expression profiles of CD and control patient-derived mesenteric ADSCs and studied the effects of their extracellular mediators on colonocyte signaling in vitro and experimental colitis in vivo. ADSCs were isolated from mesenteric fat of control and CD patients. Microarray profiling and network analysis were performed in ADSCs and human colonocytes treated with conditioned media from cultured ADSCs. Mice with acute colitis received daily injections of conditioned media from patient-derived ADSCs, vehicle, or apolactoferrin. Proliferative responses were evaluated in conditioned media-treated colonocytes and mouse colonic epithelium. Total protein was isolated from cultured colonocytes after treatment with apolactoferrin for Western blot analysis of phosphorylated intracellular signaling kinases. Microarray profiling revealed differential mRNA expression in CD patient-derived ADSCs compared with controls, including lactoferrin. Administration of CD patient-derived medium or apolactoferrin increased colonocyte proliferation compared with controls. Conditioned media from CD patient-derived ADSCs or apolactoferrin attenuated colitis severity in mice and enhanced colonocyte proliferation in vivo. ADSCs from control and CD patients show disease-dependent inflammatory responses and alter colonic epithelial cell signaling in vitro and in vivo. Furthermore, we demonstrate lactoferrin production by adipose tissue, specifically mesenteric ADSCs. We suggest that mesenteric ADSC-derived lactoferrin may mediate protective effects and participate in the pathophysiology of CD by promoting colonocyte proliferation and the resolution of inflammation.
Collapse
Key Words
- ADSC, adipose-derived stromal cell
- CD, Crohn’s disease
- DSS, dextran sodium sulfate
- IBD, inflammatory bowel disease
- IBS, irritable bowel syndrome
- IL, interleukin
- Inflammatory Bowel Disease
- Intestinal Epithelium
- Mesenteric Adipose Tissue
- PCR, polymerase chain reaction
- Preadipocytes
- RT, reverse-transcriptase
- TNBS, trinitrobenzenesulfonic acid
- VEGF, vascular endothelial growth factor
- i.c., intracolonic
Collapse
Affiliation(s)
- Jill M. Hoffman
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Jill Hoffman, PhD, Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, 675 Charles E. Young Drive South, MRL Building 1220, Los Angeles, California 90095. fax: (310) 825-3542
| | - Aristea Sideri
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Jonathan J. Ruiz
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Dimitris Stavrakis
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - David Q. Shih
- Inflammatory Bowel and Immunobiology Research Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Jerrold R. Turner
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charalabos Pothoulakis
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Iordanes Karagiannides
- Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California,Correspondence Address correspondence to: Iordanes Karagiannides, PhD, Inflammatory Bowel Disease Center, Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, 675 Charles E. Young Drive South, MRL Building 1220, Los Angeles, California 90095. fax: (310) 825-3542.
| |
Collapse
|
33
|
Lynes MD, Tseng YH. Deciphering adipose tissue heterogeneity. Ann N Y Acad Sci 2018; 1411:5-20. [PMID: 28763833 PMCID: PMC5788721 DOI: 10.1111/nyas.13398] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023]
Abstract
Obesity is an excess accumulation of adipose tissue mass, and, together with its sequelae, in particular type II diabetes and metabolic syndrome, obesity presents a major health crisis. Although obesity is simply caused by increased adipose mass, the heterogeneity of adipose tissue in humans means that the response to increased energy balance is highly complex. Individual subjects with similar phenotypes may respond very differently to the same treatments; therefore, obesity may benefit from a personalized precision medicine approach. The variability in the development of obesity is indeed driven by differences in sex, genetics, and environment, but also by the various types of adipose tissue as well as the different cell types that compose it. By describing the distinct cell populations that reside in different fat depots, we can interpret the complex effect of these various players in the maintenance of whole-body energy homeostasis. To further understand adipose tissue, adipogenic differentiation and the transcriptional program of lipid accumulation must be investigated. As the cell- and depot-specific functions are described, they can be placed in the context of energy excess to understand how the heterogeneity of adipose tissue shapes individual metabolic status and condition.
Collapse
Affiliation(s)
- Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts and Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
34
|
Stout MB, Justice JN, Nicklas BJ, Kirkland JL. Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty. Physiology (Bethesda) 2017; 32:9-19. [PMID: 27927801 DOI: 10.1152/physiol.00012.2016] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age.
Collapse
Affiliation(s)
- Michael B Stout
- Department of Nutritional Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Jamie N Justice
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - Barbara J Nicklas
- Department of Internal Medicine-Geriatrics, Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina; and
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
35
|
Cleal L, Aldea T, Chau YY. Fifty shades of white: Understanding heterogeneity in white adipose stem cells. Adipocyte 2017; 6:205-216. [PMID: 28949833 PMCID: PMC5638386 DOI: 10.1080/21623945.2017.1372871] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/03/2023] Open
Abstract
The excessive expansion of white adipose tissue underlies the global obesity epidemic. However, not all fat is equal, and the impact of heterogeneity on the development and expansion of different adipose depots is becoming increasingly apparent. Two mechanisms are responsible for the growth of adipose tissue: hyperplasia (increasing adipocyte number) and hypertrophy (increasing adipocyte size). The former relies on the differentiation of adipocyte stem cells, which reside within the adipose stromal vascular fraction. Many differences in gene expression, adipogenesis, and the response to obesogenic stimuli have been described when comparing adipose stem cells from different depots. Considering that there is disparity in the pathogenicity of the depots, understanding this heterogeneity has clinically relevant implications. Here we review the current knowledge surrounding such differences, in the context of development, expansion and therapeutics. Moreover, given the importance of these differences, we suggest that careful consideration for the precise methodologies used, is essential if we are to truly understand the physiologically relevant consequences of this heterogeneity.
Collapse
Affiliation(s)
- Louise Cleal
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Teodora Aldea
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - You-Ying Chau
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
36
|
Gaborit B, Sengenes C, Ancel P, Jacquier A, Dutour A. Role of Epicardial Adipose Tissue in Health and Disease: A Matter of Fat? Compr Physiol 2017. [PMID: 28640452 DOI: 10.1002/cphy.c160034] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epicardial adipose tissue (EAT) is a small but very biologically active ectopic fat depot that surrounds the heart. Given its rapid metabolism, thermogenic capacity, unique transcriptome, secretory profile, and simply measurability, epicardial fat has drawn increasing attention among researchers attempting to elucidate its putative role in health and cardiovascular diseases. The cellular crosstalk between epicardial adipocytes and cells of the vascular wall or myocytes is high and suggests a local role for this tissue. The balance between protective and proinflammatory/profibrotic cytokines, chemokines, and adipokines released by EAT seem to be a key element in atherogenesis and could represent a future therapeutic target. EAT amount has been found to predict clinical coronary outcomes. EAT can also modulate cardiac structure and function. Its amount has been associated with atrial fibrillation, coronary artery disease, and sleep apnea syndrome. Conversely, a beiging fat profile of EAT has been identified. In this review, we describe the current state of knowledge regarding the anatomy, physiology and pathophysiological role of EAT, and the factors more globally leading to ectopic fat development. We will also highlight the most recent findings on the origin of this ectopic tissue, and its association with cardiac diseases. © 2017 American Physiological Society. Compr Physiol 7:1051-1082, 2017.
Collapse
Affiliation(s)
- Bénédicte Gaborit
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,Endocrinology Metabolic Diseases, and Nutrition Department, Pole ENDO, APHM, Aix-Marseille Univ, Marseille, France
| | - Coralie Sengenes
- STROMALab, Université de Toulouse, EFS, ENVT, Inserm U1031, ERL CNRS 5311, CHU Rangueil, Toulouse, France
| | - Patricia Ancel
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France
| | - Alexis Jacquier
- CNRS UMR 7339, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France.,Radiology department, CHU La Timone, Marseille, France
| | - Anne Dutour
- NORT, Aix Marseille Univ, INSERM, INRA, NORT, Marseille, France.,Endocrinology Metabolic Diseases, and Nutrition Department, Pole ENDO, APHM, Aix-Marseille Univ, Marseille, France
| |
Collapse
|
37
|
Darcy J, McFadden S, Bartke A. Altered structure and function of adipose tissue in long-lived mice with growth hormone-related mutations. Adipocyte 2017; 6:69-75. [PMID: 28425851 DOI: 10.1080/21623945.2017.1308990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A major focus of biogerontology is elucidating the role(s) of the endocrine system in aging and the accumulation of age-related diseases. Endocrine control of mammalian longevity was first reported in Ames dwarf (Prop1df) mice, which are long-lived due to a recessive Prop1 loss-of-function mutation resulting in deficiency of growth hormone (GH), thyroid-stimulating hormone, and prolactin. Following this report, several other GH-related mutants with altered longevity have been described including long-lived Snell dwarf and growth hormone receptor knockout mice, and short-lived GH overexpressing transgenic mice. One of the emerging areas of interest in these mutant mice is the role of adipose tissue in their altered healthspan and lifespan. Here, we provide an overview of the alterations in body composition of GH-related mutants, as well as the altered thermogenic potential of their brown adipose tissue and the altered cellular senescence and adipokine production of their white adipose tissue.
Collapse
Affiliation(s)
- Justin Darcy
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Samuel McFadden
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
38
|
Characterization of TGF-β expression and signaling profile in the adipose tissue of rats fed with high-fat and energy-restricted diets. J Nutr Biochem 2016; 38:107-115. [DOI: 10.1016/j.jnutbio.2016.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/29/2016] [Accepted: 07/28/2016] [Indexed: 11/22/2022]
|
39
|
Castro JP, Grune T, Speckmann B. The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol Chem 2016; 397:709-24. [DOI: 10.1515/hsz-2015-0305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
Abstract
White adipose tissue (WAT) is actively involved in the regulation of whole-body energy homeostasis via storage/release of lipids and adipokine secretion. Current research links WAT dysfunction to the development of metabolic syndrome (MetS) and type 2 diabetes (T2D). The expansion of WAT during oversupply of nutrients prevents ectopic fat accumulation and requires proper preadipocyte-to-adipocyte differentiation. An assumed link between excess levels of reactive oxygen species (ROS), WAT dysfunction and T2D has been discussed controversially. While oxidative stress conditions have conclusively been detected in WAT of T2D patients and related animal models, clinical trials with antioxidants failed to prevent T2D or to improve glucose homeostasis. Furthermore, animal studies yielded inconsistent results regarding the role of oxidative stress in the development of diabetes. Here, we discuss the contribution of ROS to the (patho)physiology of adipocyte function and differentiation, with particular emphasis on sources and nutritional modulators of adipocyte ROS and their functions in signaling mechanisms controlling adipogenesis and functions of mature fat cells. We propose a concept of ROS balance that is required for normal functioning of WAT. We explain how both excessive and diminished levels of ROS, e.g. resulting from over supplementation with antioxidants, contribute to WAT dysfunction and subsequently insulin resistance.
Collapse
|
40
|
Chusyd DE, Wang D, Huffman DM, Nagy TR. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Front Nutr 2016; 3:10. [PMID: 27148535 PMCID: PMC4835715 DOI: 10.3389/fnut.2016.00010] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/26/2016] [Indexed: 01/09/2023] Open
Abstract
The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat.
Collapse
Affiliation(s)
- Daniella E Chusyd
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| | - Donghai Wang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Derek M Huffman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tim R Nagy
- Department of Nutrition Science, University of Alabama at Birmingham , Birmingham, AL , USA
| |
Collapse
|
41
|
Robust Early Inflammation of the Peripancreatic Visceral Adipose Tissue During Diet-Induced Obesity in the KrasG12D Model of Pancreatic Cancer. Pancreas 2016; 45:458-65. [PMID: 26495779 PMCID: PMC4854638 DOI: 10.1097/mpa.0000000000000497] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Obesity increases the incidence of multiple types of cancer. Our previous work has shown that a high-fat, high-calorie diet (HFCD) leads to visceral obesity, pancreatic inflammation, and accelerated pancreatic neoplasia in KrasG12D (KC) mice. In this study, we aimed to investigate the effects of an HFCD on visceral adipose inflammation with emphasis on potential differences between distinct visceral adipose depots. METHODS We examined the weight and visceral obesity in both wild-type and KC mice on either control diet (CD) or HFCD. After 3 months, mice were killed for histological examination. Multiplex assays were also performed to obtain cytokine profiles between different adipose depots. RESULTS Both wild-type and KC mice on an HFCD exhibited significantly increased inflammation in the visceral adipose tissue, particularly in the peripancreatic fat (PPF), compared with animals on a CD. This was associated with significantly increased inflammation in the pancreas. Cytokine profiles were different between visceral adipose depots and between mice on the HFCD and CD. CONCLUSIONS Our results clearly demonstrate that an HFCD leads to obesity and inflammation in the visceral adipose tissue, particularly the PPF. These data suggest that obesity-associated inflammation in PPF may accelerate pancreatic neoplasia in KC mice.
Collapse
|
42
|
Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL. Targeting senescent cells enhances adipogenesis and metabolic function in old age. eLife 2015; 4:e12997. [PMID: 26687007 PMCID: PMC4758946 DOI: 10.7554/elife.12997] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/18/2015] [Indexed: 12/22/2022] Open
Abstract
Senescent cells accumulate in fat with aging. We previously found genetic clearance of senescent cells from progeroid INK-ATTAC mice prevents lipodystrophy. Here we show that primary human senescent fat progenitors secrete activin A and directly inhibit adipogenesis in non-senescent progenitors. Blocking activin A partially restored lipid accumulation and expression of key adipogenic markers in differentiating progenitors exposed to senescent cells. Mouse fat tissue activin A increased with aging. Clearing senescent cells from 18-month-old naturally-aged INK-ATTAC mice reduced circulating activin A, blunted fat loss, and enhanced adipogenic transcription factor expression within 3 weeks. JAK inhibitor suppressed senescent cell activin A production and blunted senescent cell-mediated inhibition of adipogenesis. Eight weeks-treatment with ruxolitinib, an FDA-approved JAK1/2 inhibitor, reduced circulating activin A, preserved fat mass, reduced lipotoxicity, and increased insulin sensitivity in 22-month-old mice. Our study indicates targeting senescent cells or their products may alleviate age-related dysfunction of progenitors, adipose tissue, and metabolism. DOI:http://dx.doi.org/10.7554/eLife.12997.001 The likelihood of developing metabolic diseases such as diabetes increases with age. This is, in part, because the cells within fat and other tissues become less sensitive to the hormone insulin as people and other animals get older. Also, the stem cells that give rise to new, insulin-responsive fat cells become dysfunctional with increasing age. This is related to the accumulation of “senescent” cells, which, unlike normal fat cell progenitors, release molecules that are toxic to nearby and distant cells. Xu, Palmer et al. have now investigated if senescent cells interfere with the activity of stem cells from human fat tissue, and if getting rid of these senescent cells might restore the normal activity and insulin responsiveness of aged fat tissue. The experiments revealed that human senescent fat cell progenitors release a protein called activin A, which impedes the normal function of stem cells and fat tissue. Additionally, older mice had higher levels of activin A in both their blood and fat tissue than young mice. Xu, Palmer et al. then analyzed older mice that had been engineered to have senescent fat cells that could be triggered to essentially kill themselves when the mice were treated with a drug. Eliminating the senescent cells from these mice led to lower levels of activin A and more fat tissue (due to improved stem cell capacity to become fully functional fat cells) that expressed genes required for insulin responsiveness. This showed that senescent cells are a cause of age-related fat tissue loss and metabolic disease in older mice. Next, Xu, Palmer et al. treated older mice with drugs called JAK inhibitors, which they found reduce the production of activin A by senescent cells isolated from fat tissue. After two months of treatment, the levels of activin A in the blood and in fat tissue were indeed reduced. The fat tissue in treated mice also showed fewer features associated with the development of diabetes than the fat tissue of untreated mice. As such, these results paralleled those after selectively eliminating the senescent cells. Together these findings suggest that JAK inhibitors or drugs (called senolytics) that selectively eliminate senescent cells may have clinical benefits in treating age-related conditions such as diabetes and stem cell dysfunction. DOI:http://dx.doi.org/10.7554/eLife.12997.002
Collapse
Affiliation(s)
- Ming Xu
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Allyson K Palmer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Husheng Ding
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Megan M Weivoda
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Tamar Pirtskhalava
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Thomas A White
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Anna Sepe
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Kurt O Johnson
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Michael B Stout
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Nino Giorgadze
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Michael D Jensen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - Tamar Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, United States
| |
Collapse
|
43
|
Zhao M, Chen X. Effect of lipopolysaccharides on adipogenic potential and premature senescence of adipocyte progenitors. Am J Physiol Endocrinol Metab 2015; 309:E334-44. [PMID: 26105007 PMCID: PMC4537924 DOI: 10.1152/ajpendo.00601.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/22/2015] [Indexed: 01/13/2023]
Abstract
The elevation of circulating LPS has been associated with obesity and aging. However, whether and how LPS contributes to adipose tissue dysfunction is unclear. In this study, we investigated the effect of LPS on the adipogenic capacity and cellular senescence of adipocyte progenitors. Stromal-vascular cells were isolated from inguinal adipose tissue of C57BL/6 mice and treated with LPS during the different time periods of adipocyte differentiation. We found that LPS treatment for 24 h prior to the induction of differentiation led to the most profound effect on the inhibition of adipogenesis, as evidenced by the morphological changes and the decreased mRNA expression of adipocyte marker genes. In addition, LPS induced features of premature senescence of SV cells, including the activation of p53, the elevation of SA-β-gal activity, and increased hydrogen peroxide production, but not telomere length. Upon LPS treatment, SV cells also developed senescence-associated secretory phenotype (SASP), as demonstrated by the increased expression of TNFα, IL-1β, IL-6, MCP-1, and VEGFα. Blocking LPS-induced NF-κB activation and cytokine production by Bay 11-7082 failed to rescue the impaired adipogenesis and the reduction in PPARγ and Zfp423 expression. On the contrary, rosiglitazone had little effect on cytokine production but corrected the defective adipogenic potential. In conclusion, we demonstrate that LPS inhibits adipogenesis by disrupting the differentiation of adipocyte progenitors in a NF-κB-independent manner; LPS also induces premature senescence of adipocyte progenitors. Our data suggest that LPS could be a potential contributor to the defective adipogenesis and the development of cellular senescence in adipose tissue during obesity and aging.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, Minnesota
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, Minnesota
| |
Collapse
|
44
|
Jeong SJ, Yoo SR, Seo CS, Shin HK. Traditional medicine yanggyuksanhwa-tang inhibits adipogenesis and suppresses proliferator-activated receptor-gamma expression in 3T3-L1 cells. Pharmacogn Mag 2015; 11:502-8. [PMID: 26246724 PMCID: PMC4522835 DOI: 10.4103/0973-1296.160456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/18/2014] [Accepted: 07/10/2015] [Indexed: 11/08/2022] Open
Abstract
Background: Yanggyuksanhwa-tang (YGSHT) is a specific traditional Korean herbal formula for Soyangin according to Sasang constitutional philosophy. Although its biological activities against inflammation and cerebral infarction have been reporting, there is no information about the adipogenic activity of YGSHT. In the present study, we investigated the anti-adipogenic activity of YGSHT to evaluate effects of YGSHT on adipogenesis in vitro. Materials and Methods: Using 3T3-L1 preadipocytes, we induced the cellular differentiation into adipocytes by adding insulin. Anti-adipogenic activity of YGSHT was measured by oil red O staining, triglyceride assay, glycerol-3-phosphate dehydrogenase (GPDH) activity test, and leptin assay. Results: YGSHT extract had no significant cytotoxicity in preadipocytes or differentiated adipocytes. YGSHT reduced the number of lipid droplets and content of triglyceride in adipose cells. YGSHT also significantly inhibited GPDH activity and decreased leptin production compared with control adipocytes. Down-regulation of peroxisome proliferator-activated receptor-gamma (PPAR-γ) expression at the messenger RNA level was observed in YGSHT-treated adipocytes. Conclusion: Taken together, our data suggest that YGSHT has potential as an anti-obesity drug candidate.
Collapse
Affiliation(s)
- Soo-Jin Jeong
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sae-Rom Yoo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Chang-Seob Seo
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyeun-Kyoo Shin
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
45
|
Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY) 2015; 6:575-86. [PMID: 25063774 PMCID: PMC4153624 DOI: 10.18632/aging.100681] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aging process is associated with the development of several chronic diseases. White adipose tissue (WAT) may play a central role in age-related disease onset and progression due to declines in adipogenesis with advancing age. Recent reports indicate that the accumulation of senescent progenitor cells may be involved in age-related WAT dysfunction. Growth hormone (GH) action has profound effects on adiposity and metabolism and is known to influence lifespan. In the present study we tested the hypothesis that GH activity would predict age-related WAT dysfunction and accumulation of senescent cells. We found that long-lived GH-deficient and -resistant mice have reduced age-related lipid redistribution. Primary preadipocytes from GH-resistant mice also were found to have greater differentiation capacity at 20 months of age when compared to controls. GH activity was also found to be positively associated with senescent cell accumulation in WAT. Our results demonstrate an association between GH activity, age-related WAT dysfunction, and WAT senescent cell accumulation in mice. Further studies are needed to determine if GH is directly inducing cellular senescence in WAT or if GH actions on other target organs or alternative downstream alterations in insulin-like growth factor-1, insulin or glucose levels are responsible.
Collapse
|
46
|
Tardif N, Salles J, Guillet C, Tordjman J, Reggio S, Landrier J, Giraudet C, Patrac V, Bertrand‐Michel J, Migne C, Collin M, Chardigny J, Boirie Y, Walrand S. Muscle ectopic fat deposition contributes to anabolic resistance in obese sarcopenic old rats through eIF2α activation. Aging Cell 2014; 13:1001-11. [PMID: 25139155 PMCID: PMC4326920 DOI: 10.1111/acel.12263] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2014] [Indexed: 12/25/2022] Open
Abstract
Obesity and aging are characterized by decreased insulin sensitivity (IS) and muscle protein synthesis. Intramuscular ceramide accumulation has been implicated in insulin resistance during obesity. We aimed to measure IS, muscle ceramide level, protein synthesis, and activation of intracellular signaling pathways involved in translation initiation in male Wistar young (YR, 6-month) and old (OR, 25-month) rats receiving a low- (LFD) or a high-fat diet (HFD) for 10 weeks. A corresponding cellular approach using C2C12 myotubes treated with palmitate to induce intracellular ceramide deposition was taken. A decreased ability of adipose tissue to store lipids together with a reduced adipocyte diameter and a development of fibrosis were observed in OR after the HFD. Consequently, OR fed the HFD were insulin resistant, showed a strong increase in intramuscular ceramide level and a decrease in muscle protein synthesis associated with increased eIF2α phosphorylation. The accumulation of intramuscular lipids placed a lipid burden on mitochondria and created a disconnect between metabolic and regulating pathways in skeletal muscles of OR. In C2C12 cells, palmitate-induced ceramide accumulation was associated with a decreased protein synthesis together with upregulated eIF2α phosphorylation. In conclusion, a reduced ability to expand adipose tissues was found in OR, reflecting a lower lipid buffering capacity. Muscle mitochondrial activity was affected in OR conferring a reduced ability to oxidize fatty acids entering the muscle cell. Hence, OR were more prone to ectopic muscle lipid accumulation than YR, leading to decreased muscle protein anabolism. This metabolic change is a potential therapeutic target to counter sarcopenic obesity.
Collapse
Affiliation(s)
- Nicolas Tardif
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Jérôme Salles
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Christelle Guillet
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Joan Tordjman
- UPMC Inserm U872 Equipe 7 Centre de Recherche des Cordeliers Paris F‐75006France
| | - Sophie Reggio
- UPMC Inserm U872 Equipe 7 Centre de Recherche des Cordeliers Paris F‐75006France
| | | | - Christophe Giraudet
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Véronique Patrac
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | | | - Carole Migne
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Marie‐Laure Collin
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Jean‐Michel Chardigny
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| | - Yves Boirie
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
- CHU Clermont‐Ferrand Service de Nutrition Clinique Clermont‐Ferrand F‐63003France
| | - Stéphane Walrand
- Clermont Université Université d'Auvergne Unité de Nutrition Humaine BP 10448Clermont‐Ferrand F‐63000France
- INRA UMR 1019 UNH CRNH Auvergne Clermont‐Ferrand F‐63000 France
| |
Collapse
|
47
|
Experimental and clinical methods used for fat volume maintenance after autologous fat grafting. Ann Plast Surg 2014; 72:475-83. [PMID: 24618741 DOI: 10.1097/sap.0000000000000117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Management of soft tissue deficits resulting from congenital abnormalities, trauma, systemic disease, and tumors is a particularly challenging field of plastic and reconstructive surgery. Fat grafting, a technique traditionally used in the correction of facial asymmetry, is commonly seen in aesthetic procedures which use the grafted fat for soft tissue augmentation and recontouring. Despite its widespread use in reconstruction and aesthetic surgery, therapeutic modalities applied in fat grafting are crude and the results of this intervention are unpredictable. The aim of this review was to present the most recent evidence regarding experimental studies and designs which confirmed or disproved fat volume expansion or fat maintenance after autologous fat grafting.
Collapse
|
48
|
Zhang GH, Lu JX, Chen Y, Zhao YQ, Guo PH, Yang JT, Zang RX. Comparison of the adipogenesis in intramuscular and subcutaneous adipocytes from Bamei and Landrace pigs. Biochem Cell Biol 2014; 92:259-67. [DOI: 10.1139/bcb-2014-0019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Fat deposition is a complex process involving proliferation, differentiation, and lipogenesis of adipocytes. Bamei and Landrace are considered to represent fat- and lean-type pig breeds. Subcutaneous (SC) and intramuscular (IM) pre-adipocytes were cultured to compare the proliferation and lipogenesis in these breeds. The differentiated adipocytes were exposed to glucose or insulin to evaluate their effects on lipogenesis and lipogenic gene expression. Pre-adipocytes proliferated dramatically faster in SC vs. IM cells, and in Bamei vs. Landrace breeds. Lipogenesis and lipogenic gene expression had a greater increase in Bamei than in Landrace, and in SC vs. IM in the process of differentiation. Glucose markedly promoted lipogenesis and lipogenic gene expression in differentiated adipocytes. The stimulation of high-glucose levels on lipogenesis and ChREBP and lipogenic gene expression was higher in SC than IM adipocytes, and in Bamei vs. Landrace. Insulin largely increased SREBP-1c expression, however it modestly stimulated lipogenesis and lipogenic gene expression, and there was no difference between cell populationsor between breeds. These data demonstrated that regional and varietal differences obviously existed in the development of porcine adipocytes. The proliferation and differentiation capacity of pre-adipocytes, and the adipocyte lipogenesis stimulated by glucose, are stronger in Bamei than Landrace, and in SC vs. IM adipocytes independent of breed.
Collapse
Affiliation(s)
- Guo Hua Zhang
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Jian Xiong Lu
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Yan Chen
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Yong Qing Zhao
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Peng Hui Guo
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Ju Tian Yang
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| | - Rong Xin Zang
- College of Life Science and Engineering, Northwest University for Nationalities, 1 Xibei xin cun, Lanzhou 730030/Gansu Engineering Research Center for Animal Cell, Lanzhou 730030, China
| |
Collapse
|
49
|
Romao JM, He ML, McAllister TA, Guan LL. Effect of age on bovine subcutaneous fat proteome: molecular mechanisms of physiological variations during beef cattle growth. J Anim Sci 2014; 92:3316-27. [PMID: 24894005 DOI: 10.2527/jas.2013-7423] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Fat deposition influences both meat quality and animal productivity. However, it is not clear how fat development is regulated in growing and fattening beef cattle. This study characterized proteomic changes in subcutaneous adipose tissue from steers fed a high-grain diet in an effort to understand the molecular mechanisms of fat development during feedlot production. Eight British-Continental crossbred steers had two subcutaneous adipose tissue biopsies at 12 and 15 mo of age. Protein expression in fat samples was profiled using liquid chromatography-tandem mass spectrometry (LC-MS/MS). During the finishing period, steers increased subcutaneous adipose tissue mass with concomitant changes in the proteome profile, but the nature of these changes varied among steers. The expression of 123 out of 627 identified proteins differed (P <: 0.05) between 2 ages. Functional analyses on differentially expressed proteins revealed that 20.2% of them were associated with cellular growth and proliferation of adipose tissue. There were 17 out of 108 differentially expressed proteins associated with lipid metabolism, which were acyl-CoA synthetase medium-chain family member 1 (ACSM1), annexin A1 (ANXA1), apolipoprotein C-III (APOC3), apolipoprotein H (beta-2-glycoprotein I; APOH), EH-domain containing 1 (EHD1), coagulation factor II (thrombin; F2), gelsolin (GSN), lamin A/C (LMNA), mitogen-activated protein kinase kinase 1 (MAP2K1), myosin, heavy chain 9, non-muscle (MYH9), orosomucoid 1 (ORM1), protein disulfide isomerase family A, member 3 (PDIA3), retinol binding protein 4, plasma (RBP4), renin binding protein (RENBP), succinate dehydrogenase complex, subunit A, flavoprotein (Fp; SDHA), serpin peptidase inhibitor, clade C (antithrombin), member 1 (SERPINC1), and serpin peptidase inhibitor, clade G (C1 inhibitor), member 1 (SERPING1). Further analysis of the expression levels of proteins associated with lipid metabolism indicated a downregulation in the synthesis of fatty acids at the cellular level at 15 compared to 12 mo of age. These results suggest that even though adipose tissue expanded, fat anabolism was reduced in adipocytes during growth, revealing a coordinated balance between subcutaneous fat mass and the cellular abundance of lipogenic proteins to control the rate of fat deposition in growing beef cattle. The findings observed in this study expand our understanding on how proteome of bovine adipose tissue is regulated during growth, which might help the development in the future of new strategies to manipulate adiposity in beef cattle in a manner that improves meat quality and animal productivity.
Collapse
Affiliation(s)
- J M Romao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - M L He
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - T A McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
50
|
Abstract
OBJECTIVES Morbidity associated with geriatric fractures may be attributed, in part, to compromised mesenchymal stem cell (MSC) function within the fracture callus. The Notch signaling pathway is important for the healing of nonskeletal tissues in an age-dependent manner, but the effect of Notch on age-dependent fracture healing and MSC dysfunction has not been substantiated. The objective of this study was to examine Notch signaling in MSCs obtained from young and geriatric mice. METHODS Marrow-derived MSCs were harvested from the femora of 5- and 25-month-old C57BL/6 mice. We assessed in vivo MSC number using CFU-F, proliferation using an Alamar Blue assay, osteoblast differentiation by Alizarin Red S staining, and adipogenic differentiation using Oil Red O staining. Notch receptor and ligand expression was assessed using quantitative PCR, and Notch signaling was assessed by evaluating Notch target gene expression (Hey and HES) under basal conditions and when cells were plated to Jagged-1 ligand. RESULTS MSC from geriatric mice exhibit reduced MSC number (CFU-F), proliferation, adipogenesis, and inconsistent osteogenesis. The highest expressed Notch receptor is Notch 2, and the highest expressed ligand is Jagged-1, but there were no differences in ligand and receptor gene expression between young and old MSCs. Interestingly, geriatric MSCs show decreased basal Notch signaling activity but are fully responsive to Jagged-1 stimulation. CONCLUSIONS These data suggest that therapeutic targeting of Notch signaling should be explored in clinical therapies to improve geriatric fracture healing.
Collapse
|