1
|
Sardzikova S, Andrijkova K, Svec P, Beke G, Klucar L, Minarik G, Bielik V, Kolenova A, Soltys K. High Diversity but Monodominance of Multidrug-Resistant Bacteria in Immunocompromised Pediatric Patients with Acute Lymphoblastic Leukemia Developing GVHD Are Not Associated with Changes in Gut Mycobiome. Antibiotics (Basel) 2023; 12:1667. [PMID: 38136701 PMCID: PMC10740403 DOI: 10.3390/antibiotics12121667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Graft-versus-host disease (GvHD) is a severe complication after hematopoietic stem cell transplantation (HSCT). Our study focused on identifying multidrug-resistant (MDR) gut bacteria associated with GvHD-prone guts and association with gut microbiota (GM) diversity, bacteriome, and mycobiome composition in post-HSCT patients. We examined 11 pediatric patients with acute lymphoblastic leukemia (ALL), including six with GvHD, within three time points: seven days pre-HSCT, seven days post-, and 28 days post-HSCT. The gut microbiome and its resistome were investigated using metagenomic sequencing, taxonomically classified with Kraken2, and statistically evaluated for significance using appropriate tests. We observed an increase in the abundance of MDR bacteria, mainly Enterococcus faecium strains carrying msr(C), erm(T), aac(6')-li, dfrG, and ant(6)-la genes, in GvHD patients one week post-HSCT. Conversely, non-GvHD patients had more MDR beneficial bacteria pre-HSCT, promoting immunosurveillance, with resistance genes increasing one-month post-HSCT. MDR beneficial bacteria included the anti-inflammatory Bacteroides fragilis, Ruminococcus gnavus, and Turicibacter, while most MDR bacteria represented the dominant species of GM. Changes in the gut mycobiome were not associated with MDR bacterial monodominance or GvHD. Significant α-diversity decline (Shannon index) one week and one month post-HSCT in GvHD patients (p < 0.05) was accompanied by increased Pseudomonadota and decreased Bacteroidota post-HSCT. Our findings suggest that MDR commensal gut bacteria may preserve diversity and enhance immunosurveillance, potentially preventing GvHD in pediatric ALL patients undergoing HSCT. This observation has therapeutic implications.
Collapse
Affiliation(s)
- Sara Sardzikova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Kristina Andrijkova
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| | - Peter Svec
- Department of Pediatric Hematology and Oncology, Children’s Haematology and Oncology Clinic, Faculty of Medicine, Comenius University in Bratislava, 833 40 Bratislava, Slovakia
| | - Gabor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Lubos Klucar
- Institute of Molecular Biology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Gabriel Minarik
- Medirex Group Academy n.p.o., Novozamocka 67, 949 05 Nitra, Slovakia
| | - Viktor Bielik
- Department of Biological and Medical Science, Faculty of Physical Education and Sport, Comenius University in Bratislava, 814 69 Bratislava, Slovakia
| | - Alexandra Kolenova
- Department of Pediatric Hematology and Oncology, Children’s Haematology and Oncology Clinic, Faculty of Medicine, Comenius University in Bratislava, 833 40 Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 841 04 Bratislava, Slovakia
| |
Collapse
|
2
|
Illek B, Fischer H, Machen TE, Hari G, Clemons KV, Sass G, Ferreira JAG, Stevens DA. Protective role of CFTR during fungal infection of cystic fibrosis bronchial epithelial cells with Aspergillus fumigatus. Front Cell Infect Microbiol 2023; 13:1196581. [PMID: 37680748 PMCID: PMC10482090 DOI: 10.3389/fcimb.2023.1196581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/19/2023] [Indexed: 09/09/2023] Open
Abstract
Lung infection with the fungus Aspergillus fumigatus (Af) is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function. We established a fungal epithelial co-culture model to examine the impact of Af infection on CF bronchial epithelial barrier function using Af strains 10AF and AF293-GFP, and the CFBE41o- cell line homozygous for the F508del mutation with (CF+CFTR) and without (CF) normal CFTR expression. Following exposure of the epithelial surface to Af conidia, formation of germlings (early stages of fungal growth) was detected after 9-12 hours and hyphae (mature fungal growth) after 12-24 hours. During fungal morphogenesis, bronchial epithelial cells showed signs of damage including rounding, and partial detachment after 24 hours. Fluorescently labeled conidia were internalized after 6 hours and more internalized conidia were observed in CF compared to CF+CFTR cells. Infection of the apical surface with 10AF conidia, germlings, or hyphae was performed to determine growth stage-specific effects on tight junction protein zona occludens protein 1 (ZO-1) expression and transepithelial electrical resistance (TER). In response to infection with conidia or germlings, epithelial barrier function degraded time-dependently (based on ZO-1 immunofluorescence and TER) with a delayed onset in CF+CFTR cell monolayers and required viable fungi and apical application. Infection with hyphae caused an earlier onset and faster rate of decline in TER compared to conidia and germlings. Gliotoxin, a major Af virulence factor, caused a rapid decline in TER and induced a transient chloride secretory response in CF+CFTR but not CF cells. Our findings suggest growth and internalization of Af result in deleterious effects on bronchial epithelial barrier function that occurred more rapidly in the absence of CFTR. Bronchial epithelial barrier breakdown was time-dependent and morphotype-specific and mimicked by acute administration of gliotoxin. Our study also suggests a protective role for CFTR by turning on CFTR-dependent chloride transport in response to gliotoxin, a mechanism that will support mucociliary clearance, and could delay the loss of epithelial integrity during fungal development in vivo.
Collapse
Affiliation(s)
- Beate Illek
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Horst Fischer
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Terry E. Machen
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Gopika Hari
- UCSF Benioff Children's Hospital Oakland, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA, United States
| | - Jose A. G. Ferreira
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, United States
| |
Collapse
|
3
|
Zha C, Peng Z, Huang K, Tang K, Wang Q, Zhu L, Che B, Li W, Xu S, Huang T, Yu Y, Zhang W. Potential role of gut microbiota in prostate cancer: immunity, metabolites, pathways of action? Front Oncol 2023; 13:1196217. [PMID: 37265797 PMCID: PMC10231684 DOI: 10.3389/fonc.2023.1196217] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
The gut microbiota helps to reveal the relationship between diseases, but the role of gut microbiota in prostate cancer (PCa) is still unclear. Recent studies have found that the composition and abundance of specific gut microbiota are significantly different between PCa and non-PCa, and the gut microbiota may have common and unique characteristics between different diseases. Intestinal microorganisms are affected by various factors and interact with the host in a variety of ways. In the complex interaction model, the regulation of intestinal microbial metabolites and the host immune system is particularly important, and they play a key role in maintaining the ecological balance of intestinal microorganisms and metabolites. However, specific changes in the composition of intestinal microflora may promote intestinal mucosal immune imbalance, leading to the formation of tumors. Therefore, this review analyzes the immune regulation of intestinal flora and the production of metabolites, as well as their effects and mechanisms on tumors, and briefly summarizes that specific intestinal flora can play an indirect role in PCa through their metabolites, genes, immunity, and pharmacology, and directly participate in the occurrence, development, and treatment of tumors through bacterial and toxin translocation. We also discussed markers of high risk PCa for intestinal microbiota screening and the possibility of probiotic ingestion and fecal microbiota transplantation, in order to provide better treatment options for clinic patients. Finally, after summarizing a number of studies, we found that changes in immunity, metabolites.
Collapse
Affiliation(s)
- Cheng Zha
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Zheng Peng
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kunyuan Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Kaifa Tang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Urology & Andrology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiang Wang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lihua Zhu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bangwei Che
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Li
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shenghan Xu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Huang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Yu
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wenjun Zhang
- Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Rogers AP, Mileto SJ, Lyras D. Impact of enteric bacterial infections at and beyond the epithelial barrier. Nat Rev Microbiol 2023; 21:260-274. [PMID: 36175770 DOI: 10.1038/s41579-022-00794-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/09/2022]
Abstract
The mucosal lining of the gut has co-evolved with a diverse microbiota over millions of years, leading to the development of specialized mechanisms to actively limit the invasion of pathogens. However, some enteric microorganisms have adapted against these measures, developing ways to hijack or overcome epithelial micro-integrity mechanisms. This breach of the gut barrier not only enables the leakage of host factors out of circulation but can also initiate a cascade of detrimental systemic events as microbiota, pathogens and their affiliated secretions passively leak into extra-intestinal sites. Under normal circumstances, gut damage is rapidly repaired by intestinal stem cells. However, with substantial and deep perturbation to the gut lining and the systemic dissemination of gut contents, we now know that some enteric infections can cause the impairment of host regenerative processes. Although these local and systemic aspects of enteric disease are often studied in isolation, they heavily impact one another. In this Review, by examining the journey of enteric infections from initial establishment to systemic sequelae and how, or if, the host can successfully repair damage, we will tie together these complex interactions to provide a holistic overview of the impact of enteric infections at and beyond the epithelial barrier.
Collapse
Affiliation(s)
- Ashleigh P Rogers
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Steven J Mileto
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia. .,Department of Microbiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
van Praagh J, Havenga K. What Is the Microbiome? A Description of a Social Network. Clin Colon Rectal Surg 2023; 36:91-97. [PMID: 36844706 PMCID: PMC9946720 DOI: 10.1055/s-0043-1760863] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The gut microbiome has coevolved with its hosts over the years, forming a complex and symbiotic relationship. It is formed by what we do, what we eat, where we live, and with whom we live. The microbiome is known to influence our health by training our immune system and providing nutrients for the human body. However, when the microbiome becomes out of balance and dysbiosis occurs, the microorganisms within can cause or contribute to diseases. This major influencer on our health is studied intensively, but it is unfortunately often overlooked by the surgeon and in surgical practice. Because of that, there is not much literature about the microbiome and its influence on surgical patients or procedures. However, there is evidence that it plays a major role, showing that it needs to be a topic of interest for the surgeon. This review is written to show the surgeon the importance of the microbiome and why it should be taken into consideration when preparing or treating patients.
Collapse
Affiliation(s)
- J.B. van Praagh
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Klaas Havenga
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Lin H, Lin J, Pan T, Li T, Jiang H, Fang Y, Wang Y, Wu F, Huang J, Zhang H, Chen D, Chen Y. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction. Cell Death Dis 2023; 14:68. [PMID: 36709322 PMCID: PMC9884241 DOI: 10.1038/s41419-023-05589-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/29/2023]
Abstract
Autoimmune hepatitis (AIH) is an immune-mediated inflammatory liver disease with unclear pathogenesis. The gut microbiota and intestinal barrier play an essential role in AIH. Polymeric immunoglobulin receptor (pIgR) is a central component of mucosal immunity. Herein, we aimed to test the hypothesis that pIgR plays a pivotal role in maintaining gut microbiota homeostasis and gut barrier integrity in an AIH mouse model. The expression of intestinal pIgR shows the variation tendency of falling after rising with the aggravation of experimental AIH (EAH). The deletion of Pigr exacerbates liver damage in EAH. Furthermore, we identified a distinct microbiota profile of Pigr-deficient EAH mice, with a significant increased aboundance in the Oscillospiraceae family, particularly the Anaeromassilibacillus genus. Such a situation occurs because the loss of Pigr inhibits MEK/ERK, a key signal pathway whereby pIgR transports immunoglobulin A (IgA), resulting in reduced IgA secretion, which leads to the destruction of intestinal epithelial tight junction proteins and intestinal flora disturbance. Increased intestinal leakage causes increased translocation of bacteria to the liver, thus aggravating liver inflammation in EAH. Treatment with the Lactobacillus rhamnosus GG supernatant reverses liver damage in EAH mice but loses its protective effect without pIgR. Our study identifies that intestinal pIgR is a critical regulator of the adaptive response to S100-induced alterations in gut flora and the gut barrier function, which closely correlates with liver injury. Intestinal upregulation of pIgR could be a novel approach for treating AIH.
Collapse
Affiliation(s)
- Hongwei Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jing Lin
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Tongtong Pan
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Ting Li
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huimian Jiang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yan Fang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Yuxin Wang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Faling Wu
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Jia Huang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Huadong Zhang
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China
| | - Dazhi Chen
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| | - Yongping Chen
- Liver Disease Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University, Hepatology Institute of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
- Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Wenzhou, 325000, Zhejiang, China.
- Hangzhou Medical College, Hangzhou, 310059, Zhejiang, China.
| |
Collapse
|
7
|
Safavipour S, Tabeidian SA, Toghyani M, Foroozandeh Shahraki AD, Ghalamkari G, Habibian M. Laying performance, egg quality, fertility, nutrient digestibility, digestive enzymes activity, gut microbiota, intestinal morphology, antioxidant capacity, mucosal immunity, and cytokine levels in meat-type Japanese quail breeders fed different phytogenic levels. Res Vet Sci 2022; 153:74-87. [PMID: 36327622 DOI: 10.1016/j.rvsc.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
A total of 180 female Japanese quail breeders were allocated to 5 treatments with 6 replicates of 6 birds and fed a diet supplemented with 0, 125, 250, 500, or 1000 mg/kg of a phytogenic feed additive (PFA) in a 9-wk experiment. Egg weight, feed efficiency, shell breaking strength and calcium content, specific gravity, Haugh unit, and percentages of fertile eggs increased with increasing PFA levels (P < 0.05). Increasing of PFA levels increased nutrient digestibility, dietary AMEn, and activities of digestive enzymes in the pancreas and intestinal digesta (P < 0.05). Supplementation of PFA reduced Escherichia coli (P < 0.05), Clostridium spp. (P < 0.05) and Salmonella spp. counts (P < 0.05), while increased Lactobacillus and Bifidobacterium spp. counts in the ileal and cecal contents (P < 0.05). Dietary PFA increased jejunal villus height and decreased ileal crypt depth (P < 0.05). Serum diamine oxidase activity and D-lactate level were decreased with increase in PFA level (P < 0.05). Increasing PFA levels increased glutathione peroxidase activity in the pancreas, small intestine, and cecal tonsil, but decreased malondialdehyde contents (P < 0.05). Birds fed PFA exhibited increased levels of secretory IgA in the intestinal mucosa (P < 0.05), and increased the percentage of CD3+ T cells, ratio of CD4+/CD8+ T cells, and cytokine concentrations in the cecal tonsils (P < 0.05). In conclusion, PFA could improve gut health and nutrient utilization and, therefore, benefit productivity, egg quality, and fertility in quails.
Collapse
Affiliation(s)
- Saeed Safavipour
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Sayed Ali Tabeidian
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Majid Toghyani
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | | | - Gholamreza Ghalamkari
- Department of Animal Science, Faculty of Agriculture, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Mahmood Habibian
- Young Researchers and Elite Club, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| |
Collapse
|
8
|
Candida Worsens Klebsiella pneumoniae Induced-Sepsis in a Mouse Model with Low Dose Dextran Sulfate Solution through Gut Dysbiosis and Enhanced Inflammation. Int J Mol Sci 2022; 23:ijms23137050. [PMID: 35806054 PMCID: PMC9266745 DOI: 10.3390/ijms23137050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen and a commensal organism that is possibly enhanced in several conditions with gut dysbiosis, and frequently detectable together with Candida overgrowth. Here, K. pneumoniae with or without Candida albicans was daily orally administered for 3 months in 0.8% dextran sulfate solution-induced mucositis mice and also tested in vitro. As such, Candida worsened Klebsiella-DSS-colitis as demonstrated by mortality, leaky gut (FITC-dextran assay, bacteremia, endotoxemia, and serum beta-glucan), gut dysbiosis (increased Deferribacteres from fecal microbiome analysis), liver pathology (histopathology), liver apoptosis (activated caspase 3), and cytokines (in serum and in the internal organs) when compared with Klebsiella-administered DSS mice. The combination of heat-killed Candida plus Klebsiella mildly facilitated inflammation in enterocytes (Caco-2), hepatocytes (HepG2), and THP-1-derived macrophages as indicated by supernatant cytokines or the gene expression. The addition of heat-killed Candida into Klebsiella preparations upregulated TLR-2, reduced Occludin (an intestinal tight junction molecule), and worsened enterocyte integrity (transepithelial electrical resistance) in Caco-2 and enhanced casp8 and casp9 (apoptosis genes) in HepG2 when compared with heat-killed Klebsiella alone. In conclusion, Candida enhanced enterocyte inflammation (partly through TLR-2 upregulation and gut dysbiosis) that induced gut translocation of endotoxin and beta-glucan causing hyper-inflammatory responses, especially in hepatocytes and macrophages.
Collapse
|
9
|
The protective effect and potential mechanisms of eugenol against Salmonella in vivo and in vitro. Poult Sci 2022; 101:101801. [PMID: 35338975 PMCID: PMC8957058 DOI: 10.1016/j.psj.2022.101801] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) continues to be a serious concern to the poultry industry as a bacterial foodborne zoonosis, which generally results in intestinal inflammation and barrier dysfunction or even death. Eugenol is a phenolic compound with various pharmacological activities involved antioxidant, anti-inflammatory, and antibacterial effects, which is expected to be an effective nonantibiotic therapy. The purpose of this study was to explore the protective effects of eugenol in the cellular and broiler models of S. Typhimurium infection and the possible underlying mechanisms. The results of animal infection showed that eugenol treatments enhanced the relative weight gains and survival rates of broilers with a reduction of the organ bacterial load and intestinal ultrastructural injury. Moreover, eugenol significantly inhibited the mRNA levels of myeloid differentiation factor 88 (MyD88) and toll-like receptor-4 (TLR4), then declined the phosphorylation of p65 and IκBα of NF-κB pathway and the expressions of inflammatory factors (TNF-α, IL-1β, IL-2, and IL-18) in duodenum tissues, while maintained the expressions of intestinal tight junction proteins (ZO-1, claudin-1, occludin). Further experiments in vitro revealed that eugenol markedly inhibited the adhesion and invasion of S. Typhimurium to RAW264.7 or IEC-6 cells, then reduce bacterial multiplication in IEC-6 or DF-1 cells. In conclusion, eugenol could defend broilers from S. Typhimurium infection by stabilizing the intestinal mucosal barrier and relieving inflammatory response, as well as inhibiting bacterial adhesion and invasion to cells.
Collapse
|
10
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
11
|
Markham NO, Bloch SC, Shupe JA, Laubacher EN, Thomas AK, Kroh HK, Childress KO, Peritore-Galve FC, Washington MK, Coffey RJ, Lacy DB. Murine Intrarectal Instillation of Purified Recombinant Clostridioides difficile Toxins Enables Mechanistic Studies of Pathogenesis. Infect Immun 2021; 89:e00543-20. [PMID: 33468584 PMCID: PMC8090962 DOI: 10.1128/iai.00543-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/09/2021] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile is linked to nearly 225,000 antibiotic-associated diarrheal infections and almost 13,000 deaths per year in the United States. Pathogenic strains of C. difficile produce toxin A (TcdA) and toxin B (TcdB), which can directly kill cells and induce an inflammatory response in the colonic mucosa. Hirota et al. (S. A. Hirota et al., Infect Immun 80:4474-4484, 2012) first introduced the intrarectal instillation model of intoxication using TcdA and TcdB purified from VPI 10463 (VPI 10463 reference strain [ATCC 43255]) and 630 C. difficile strains. Here, we expand this technique by instilling purified, recombinant TcdA and TcdB, which allows for the interrogation of how specifically mutated toxins affect tissue. Mouse colons were processed and stained with hematoxylin and eosin for blinded evaluation and scoring by a board-certified gastrointestinal pathologist. The amount of TcdA or TcdB needed to produce damage was lower than previously reported in vivo and ex vivo Furthermore, TcdB mutants lacking either endosomal pore formation or glucosyltransferase activity resemble sham negative controls. Immunofluorescent staining revealed how TcdB initially damages colonic tissue by altering the epithelial architecture closest to the lumen. Tissue sections were also immunostained for markers of acute inflammatory infiltration. These staining patterns were compared to slides from a human C. difficile infection (CDI). The intrarectal instillation mouse model with purified recombinant TcdA and/or TcdB provides the flexibility needed to better understand structure/function relationships across different stages of CDI pathogenesis.
Collapse
Affiliation(s)
- Nicholas O Markham
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sarah C Bloch
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John A Shupe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Erin N Laubacher
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Audrey K Thomas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Heather K Kroh
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kevin O Childress
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - F Christopher Peritore-Galve
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Robert J Coffey
- Division of Gastroenterology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - D Borden Lacy
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Courtney CM, Onufer EJ, McDonald KG, Steinberger AE, Sescleifer AM, Seiler KM, Tecos ME, Newberry RD, Warner BW. Small Bowel Resection Increases Paracellular Gut Barrier Permeability via Alterations of Tight Junction Complexes Mediated by Intestinal TLR4. J Surg Res 2021; 258:73-81. [PMID: 33002664 PMCID: PMC7937530 DOI: 10.1016/j.jss.2020.08.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Short bowel syndrome resulting from small bowel resection (SBR) is associated with significant morbidity and mortality. Many adverse sequelae including steatohepatitis and bacterial overgrowth are thought to be related to increased bacterial translocation, suggesting alterations in gut permeability. We hypothesized that after intestinal resection, the intestinal barrier is altered via toll-like receptor 4 (TLR4) signaling at the intestinal level. METHODS B6 and intestinal-specific TLR4 knockout (iTLR4 KO) mice underwent 50% SBR or sham operation. Transcellular permeability was evaluated by measuring goblet cell associated antigen passages via two-photon microscopy. Fluorimetry and electron microscopy evaluation of tight junctions (TJ) were used to assess paracellular permeability. In parallel experiments, single-cell RNA sequencing measured expression of intestinal integral TJ proteins. Western blot and immunohistochemistry confirmed the results of the single-cell RNA sequencing. RESULTS There were similar number of goblet cell associated antigen passages after both SBR and sham operation (4.5 versus 5.0, P > 0.05). Fluorescein isothiocyanate-dextran uptake into the serum after massive SBR was significantly increased compared with sham mice (2.13 ± 0.39 ng/μL versus 1.62 ± 0.23 ng/μL, P < 0.001). SBR mice demonstrated obscured TJ complexes on electron microscopy. Single-cell RNA sequencing revealed a decrease in TJ protein occludin (21%) after SBR (P < 0.05), confirmed with immunostaining and western blot analysis. The KO of iTLR4 mitigated the alterations in permeability after SBR. CONCLUSIONS Permeability after SBR is increased via changes at the paracellular level. However, these alterations were prevented in iTLR4 mice. These findings suggest potential protein targets for restoring the intestinal barrier and obviating the adverse sequelae of short bowel syndrome.
Collapse
Affiliation(s)
- Cathleen M Courtney
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Emily J Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Keely G McDonald
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Allie E Steinberger
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Anne M Sescleifer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Kristen M Seiler
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Maria E Tecos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri
| | - Rodney D Newberry
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Brad W Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
13
|
Shini S, Aland RC, Bryden WL. Avian intestinal ultrastructure changes provide insight into the pathogenesis of enteric diseases and probiotic mode of action. Sci Rep 2021; 11:167. [PMID: 33420315 PMCID: PMC7794591 DOI: 10.1038/s41598-020-80714-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/24/2020] [Indexed: 01/27/2023] Open
Abstract
Epithelial damage and loss of barrier integrity occur following intestinal infections in humans and animals. Gut health was evaluated by electron microscopy in an avian model that exposed birds to subclinical necrotic enteritis (NE) and fed them a diet supplemented with the probiotic Bacillus amyloliquefaciens strain H57 (H57). Scanning electron microscopy of ileal mucosa revealed significant villus damage, including focal erosions of epithelial cells and villous atrophy, while transmission electron microscopy demonstrated severe enterocyte damage and loss of cellular integrity in NE-exposed birds. In particular, mitochondria were morphologically altered, appearing irregular in shape or swollen, and containing electron-lucent regions of matrix and damaged cristae. Apical junctional complexes between adjacent enterocytes were significantly shorter, and the adherens junction was saccular, suggesting loss of epithelial integrity in NE birds. Segmented filamentous bacteria attached to villi, which play an important role in intestinal immunity, were more numerous in birds exposed to NE. The results suggest that mitochondrial damage may be an important initiator of NE pathogenesis, while H57 maintains epithelium and improves the integrity of intestinal mucosa. Potential actions of H57 are discussed that further define the mechanisms responsible for probiotic bacteria’s role in maintaining gut health.
Collapse
Affiliation(s)
- Shaniko Shini
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia.
| | - R Claire Aland
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD, 4071, Australia
| | - Wayne L Bryden
- School of Agriculture and Food Sciences, University of Queensland, Gatton, QLD, 4343, Australia
| |
Collapse
|
14
|
Vernay T, Cannie I, Gaboriau F, Gall SDL, Tamanai-Shacoori Z, Burel A, Jolivet-Gougeon A, Loréal O, Bousarghin L. Bacteroides fragilis prevents Salmonella Heidelberg translocation in co-culture model mimicking intestinal epithelium. Benef Microbes 2020; 11:391-401. [PMID: 32720833 DOI: 10.3920/bm2020.0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salmonella Heidelberg is one of the most common serovar causing foodborne illnesses. To limit the development of digestive bacterial infection, food supplements containing probiotic bacteria can be proposed. Commensal non-toxigenic Bacteroides fragilis has recently been suggested as a next-generation probiotic candidate. By using an original triple co-culture model including Caco-2 cells (representing human enterocytes), HT29-MTX (representing mucus-secreting goblet cells), and M cells differentiated from Caco-2 by addition of Raji B lymphocytes, bacterial translocation was evaluated. The data showed that S. Heidelberg could translocate in the triple co-culture model with high efficiency, whereas for B. fragilis a weak translocation was obtained. When cells were exposed to both bacteria, S. Heidelberg translocation was inhibited. The cell-free supernatant of B. fragilis also inhibited S. Heidelberg translocation without impacting epithelial barrier integrity. This supernatant did not affect the growth of S. Heidelberg. The non-toxigenic B. fragilis confers health benefits to the host by reducting bacterial translocation. These results suggested that the multicellular model provides an efficient in vitro model to evaluate the translocation of pathogens and to screen for probiotics that have a potential inhibitory effect on this translocation.
Collapse
Affiliation(s)
- T Vernay
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - I Cannie
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - F Gaboriau
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - S David-Le Gall
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Z Tamanai-Shacoori
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - A Burel
- Plateforme microscopie électronique MRic/ISFR Biosit/campus Santé, Rennes 1, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - A Jolivet-Gougeon
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - O Loréal
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - L Bousarghin
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| |
Collapse
|
15
|
Zhang A, Sodhi CP, Wang M, Shores DR, Fulton W, Prindle T, Brosten S, O'Hare E, Lau A, Ding H, Jia H, Lu P, White JR, Hui J, Sears CL, Hackam DJ, Alaish SM. A Central Role for Lipocalin-2 in the Adaptation to Short-Bowel Syndrome Through Down-Regulation of IL22 in Mice. Cell Mol Gastroenterol Hepatol 2020; 10:309-326. [PMID: 32330729 PMCID: PMC7327842 DOI: 10.1016/j.jcmgh.2020.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS In short-bowel syndrome (SBS), inadequate intestinal adaptation is responsible for the majority of complications, including sepsis, liver failure, and death. In this study, we sought to further delineate the adaptive response to identify potential therapeutic targets. METHODS We performed a 75% small-bowel resection (SBR) or sham operation on C57Bl/6J wild-type (WT), lipocalin-2 (LCN2)-/-, and interleukin 22 (IL22)-/- mice. Exogenous IL22 was administered to SBR WT mice. Cecal fecal matter from SBR WT and SBR LCN2-/- mice were transplanted into germ-free mice. Intestinal permeability, inflammation, proliferation, and the microbiome were evaluated 1 week after surgery. CD4+IL22+ laminal propria lymphocytes were sorted by flow cytometry. Naïve T cells were polarized to T-helper cells with or without LCN2. RESULTS A 75% SBR in a mouse re-creates the increased intestinal permeability, enterocyte proliferation, and intestinal dysbiosis seen in SBS. LCN2 expression increases after 75% SBR, and this increase can be abrogated with broad-spectrum antibiotic treatment. LCN2-/- mice have less intestinal inflammation, increased IL22 expression, and greater adaptation as evidenced by less intestinal permeability, increased carbohydrate enzyme expression, less weight loss, and less dysbiosis after 75% SBR than WT mice. The proinflammatory and anti-adaptive effects of LCN2 can be transferred to germ-free mice via a fecal transplant. Administration of exogenous IL22 improves adaptation and restores the normal microbiome after 75% SBR in WT mice. CONCLUSIONS LCN2 promotes inflammation and slows intestinal adaptation through changes in the microbiome and IL22 inhibition in a mouse SBS model. Strategies to reduce LCN2 may offer novel therapeutic approaches to enhance adaptation in SBS.
Collapse
Affiliation(s)
- Ailan Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chhinder P Sodhi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Menghan Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Darla R Shores
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William Fulton
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas Prindle
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Serena Brosten
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth O'Hare
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander Lau
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hua Ding
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hongpeng Jia
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peng Lu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Justin Hui
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cynthia L Sears
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David J Hackam
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel M Alaish
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
16
|
Kanmani P, Kim H. Beneficial effect of immunobiotic strains on attenuation of Salmonella induced inflammatory response in human intestinal epithelial cells. PLoS One 2020; 15:e0229647. [PMID: 32150574 PMCID: PMC7062243 DOI: 10.1371/journal.pone.0229647] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Probiotic bacteria have the ability to modulate host immune responses and have potent therapeutic functional effects against several diseases, including inflammatory diseases. However, beneficial effects of probiotics are strain specific and their interactions with host immune cells to modulate inflammatory response are largely unknown. Intestinal epithelial cells (IECs), which are the first line of defense against invading pathogens, and connects between commensals/probiotics and immune system; therefore, in this study, we used human IECs to assess the probiotic effects of three selected Lactobacillus strains in vitro. An HT-29 colonic epithelial cell and HT-29/blood mononuclear cells co-culture system were stimulated with Lactobacillus followed by Salmonella for different hours, after which the mRNA level of cytokines, β-defensin-2 and negative regulators for TLR signaling and protein levels of ZO-1 and IκB-α were analyzed by real-time polymerase chain reaction and western blot analysis. L. brevis decreased Salmonella induced IL-6, IL-8, MCP-1 and IL-1β levels, whereas L. pentosus suppressed IL-6 and MCP-1 in HT-29 cells. Moreover, L. brevis was able to increase the mRNA levels of A20, Tollip, SIGIRR and IRAKM, while L. pentosus reduced the levels of A20, and IRAKM in response to Salmonella. In addition, decrease in protein level of TNF-α and increase in mRNA level of IL-10 was observed in L. brevis and L. pentosus treated HT-29 cells. Lactobacillus strains were differentially modulated ZO-1 and p-IκB-α in HT-29 cells treated with Salmonella. Overall, the results of this study indicate that Lactobacillus strains attenuate Salmonella induced inflammatory responses through beneficial modulation of TLR negative regulators and the NF-κB pathway.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Hojun Kim
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
A review of β-glucans as a growth promoter and antibiotic alternative against enteric pathogens in poultry. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933917000241] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Inorganic nitrate prevents the loss of tight junction proteins and modulates inflammatory events induced by broad-spectrum antibiotics: A role for intestinal microbiota? Nitric Oxide 2019; 88:27-34. [DOI: 10.1016/j.niox.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
|
19
|
Jariwala R, Mandal H, Bagchi T. Indigenous lactobacilli strains of food and human sources reverse enteropathogenic E. coli O26:H11-induced damage in intestinal epithelial cell lines: effect on redistribution of tight junction proteins. MICROBIOLOGY-SGM 2017; 163:1263-1272. [PMID: 28771130 DOI: 10.1099/mic.0.000507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The aim of the study was to investigate the neutralizing effect of lactobacilli isolated from indigenous food and human sources on enteropathogenic Escherichia coli (EPEC) O26 : H11-induced epithelial barrier dysfunction in vitro. This was assessed by transepithelial electrical resistance (TEER) and permeability assays using intestinal cell lines, HT-29 and Caco-2. Furthermore, the expression and distribution of tight junction (TJ) proteins were analysed by qRT-PCR and immunofluorescence assay, respectively. The nine strains used in the study were from different species viz. Lactobacillus fermentum, Lactobacillushelveticus, Lactobacillus salivarius and Lactobacillus plantarum. All strains were able to reverse the decrease in TEER and corresponding increase in permeability across E. coli-infected monolayers. Maximum reversal was observed after 18 h [up to 93.8±2.0 % by L. rhamnosus GG followed by L. fermentum IIs11.2 (92.6±2.2 %) and L. plantarum GRI-2 (91.9±0.9 %)] of lactobacilli exposure following EPEC O26 : H11 infection. All strains were able to redistribute the TJ proteins to the cell periphery either partially or completely. Moreover, L. helveticus FA-7 was also able to significantly increase the mRNA expression of ZO-1 and claudin-1 (2.5-fold and 3.0-fold, respectively; P<0.05). The rapid reversal observed by these strains could be mostly because of the redistribution rather than increased mRNA expression of TJ proteins. In conclusion, L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 were good in all the aspects studied, and the other strains were good in some aspects. L. helveticus FA-7, L. fermentum FA-1 and L. plantarum GRI-2 can therefore be used for potential therapeutic purpose against intestinal epithelial dysfunction.
Collapse
Affiliation(s)
- Ruchi Jariwala
- Department of Microbiology and Biotechnology Centre, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Hemanti Mandal
- Department of Microbiology and Biotechnology Centre, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, Gujarat, India
| | - Tamishraha Bagchi
- Department of Microbiology and Biotechnology Centre, Faculty of Science, M. S. University of Baroda, Vadodara 390 002, Gujarat, India.,Present address: Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| |
Collapse
|
20
|
Hattay P, Prusator DK, Tran L, Greenwood-Van Meerveld B. Psychological stress-induced colonic barrier dysfunction: Role of immune-mediated mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 28300333 DOI: 10.1111/nmo.13043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Evidence suggests that patients with irritable bowel syndrome (IBS) exhibit increases in gut permeability and alterations in tight junction (TJ) protein expression. Although psychological stress worsens IBS symptoms, the mechanisms by which stress enhances gut permeability and affects TJ protein expression remain to be determined. Here, we test the hypothesis that chronic intermittent psychological stress activates the release of proinflammatory cytokines to alter TJ proteins and promotes increased gut permeability. METHODS Male Fischer-344 rats were subjected to 1 hour of water avoidance stress (WAS) or SHAM stress per day for 7 days. Following the stress protocol, colonic permeability was measured via transepithelial electrical resistance (TEER) and macromolecular flux of horseradish peroxidase (HRP). In tissue isolated from rats exposed to the WAS or SHAM stress, TJ proteins claudin-2, junctional adhesion molecule-A (JAM-A) and zonula occluden-1 (ZO-1) were measured via Western blotting, histological appearance of the colonic segments was assessed via hematoxylin and eosin staining, and an inflammatory cytokine panel was quantified via quantitative reverse transcription-polymerase chain reaction. KEY RESULTS Repetitive daily exposure to WAS decreased the TEER, increased the macromolecular flux of HRP, and altered the expression of claudin-2, JAM-A and ZO-1 proteins within colonic tissue compared to SHAM controls. In the absence of a histologically defined inflammation, the cytokine profiles of WAS-treated animals revealed an increase in interleukin-1β and tumor necrosis factor (TNF)-α. Subsequent analysis revealed a significant positive correlation between TNF-α and expression of TJ protein claudin-2. CONCLUSIONS & INFERENCES Our findings suggest that chronic stress increases colonic permeability via sub-inflammatory cytokine-mediated remodeling of TJ protein expression.
Collapse
Affiliation(s)
- P Hattay
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,VA Medical Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
21
|
Morrison S, Pastor J, Quintela J, Holst J, Hartmann B, Drackley J, Ipharraguerre I. Short communication: Promotion of glucagon-like peptide-2 secretion in dairy calves with a bioactive extract from Olea europaea. J Dairy Sci 2017; 100:1940-1945. [DOI: 10.3168/jds.2016-11810] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/05/2016] [Indexed: 12/31/2022]
|
22
|
Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins (Basel) 2017; 9:toxins9020060. [PMID: 28208612 PMCID: PMC5331439 DOI: 10.3390/toxins9020060] [Citation(s) in RCA: 281] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction proteins as receptors for attachment and subsequent internalization, while others modify or destroy the tight junction proteins by different pathways and thereby provide a gateway to the underlying tissue. This review aims to deliver an overview of the tight junction structures and function, and its role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to avoid damages of the intestinal barrier or to minimize consequences from infections.
Collapse
|
23
|
Effects of Morinda officinalis Polysaccharide on Experimental Varicocele Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:5365291. [PMID: 28090212 PMCID: PMC5206431 DOI: 10.1155/2016/5365291] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/14/2016] [Indexed: 12/16/2022]
Abstract
Morinda officinalis is a traditional Chinese herbal medicine, which has been used to tonify the kidney and strengthen yang for a long time in China. In this study, the effects of M. officinalis Polysaccharide (MOP) on experimental varicocele adolescent rats were investigated. The result showed that varicocele destroyed the structure of the seminiferous epithelium and decreased the TJ protein expression (Occludin, Claudin-11, and ZO-1), testosterone (T) concentration in the left testicular tissue and serum, and serum levels of inhibin B (INHB), while increasing the levels of cytokines (TGF-β3 and TNF-α) in the left testicular tissue, as well as serum levels of gonadotropin-releasing hormone (GnRH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), and antisperm antibody (AsAb). MOP repaired the damaged seminiferous epithelium and TJ and reduced the levels of cytokines (TGF-β3 and TNF-α) as well as serum levels of GnRH, FSH, LH, and AsAb, while upregulating TJ protein expression, T level in the left testicular tissue and serum, and serum INHB levels. In summary, we conclude that MOP promotes spermatogenesis and counteracts the varicocele-induced damage to the seminiferous epithelium and TJ, probably via decreasing cytokines (TGF-β3 and TNF-α) levels and regulating the abnormal sex hormones levels in experimental varicocele rats.
Collapse
|
24
|
Lee SJ, Jung YH, Ryu JM, Jang KK, Choi SH, Han HJ. VvpE mediates the intestinal colonization of Vibrio vulnificus by the disruption of tight junctions. Int J Med Microbiol 2016; 306:10-9. [DOI: 10.1016/j.ijmm.2015.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023] Open
|
25
|
Singh AP, Aijaz S. Generation of a MDCK cell line with constitutive expression of the Enteropathogenic E. coli effector protein Map as an in vitro model of pathogenesis. Bioengineered 2015; 6:335-41. [PMID: 26430918 DOI: 10.1080/21655979.2015.1096456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Enteropathogenic E. coli (EPEC) cause diarrhea and are the major cause of mortality in developing countries. EPEC use a type III secretion system to deliver effector proteins into the host epithelial cells. To understand the functions of these effectors, majority of studies on EPEC pathogenesis have relied on infections of animals or cell lines with wild type strains of EPEC or mutant strains deficient in one or more effectors. While these studies have provided valuable data, it can be difficult to assess functions of an individual effector in the presence of other EPEC effectors. Recent studies have reported the use of transient transfections with plasmids encoding various EPEC effectors into different cell lines. However, variable transfection efficiencies and expression levels of the effector proteins coupled with their expression for relatively short periods of time pose a problem if the long term effects of these effectors need to be examined. We have generated a MDCK cell line with constitutive expression of the EPEC effector Map (Mitochondrial associated protein) for efficient stable expression of EGFP-tagged Map. We observed that the constitutive expression of Map increased the permeability of charged and non-charged molecules. We also generated polyclonal antibodies against Map and checked for their specificity in MDCK-Map expressing cells. Map has been reported to contribute to the onset of diarrhea but the underlying mechanism is yet to be identified. The MDCK-Map cell line and the anti-Map antibodies generated by us can be used for in vitro studies to examine the role of Map in EPEC pathogenesis.
Collapse
Affiliation(s)
- Anand Prakash Singh
- a Centre for Molecular Medicine; Jawaharlal Nehru University ; New Delhi, India
| | - Saima Aijaz
- a Centre for Molecular Medicine; Jawaharlal Nehru University ; New Delhi, India
| |
Collapse
|
26
|
Sumitomo T. Group A Streptococcus translocates across an epithelial barrier via degradation of intercellular junctions. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Klebsiella pneumoniae translocates across the intestinal epithelium via Rho GTPase- and phosphatidylinositol 3-kinase/Akt-dependent cell invasion. Infect Immun 2014; 83:769-79. [PMID: 25452552 DOI: 10.1128/iai.02345-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogen that causes hospital-acquired septicemia and is associated with the recent emergence of community-acquired pyogenic liver abscess (PLA). Clinical typing suggests that K. pneumoniae infections originate from the gastrointestinal reservoir. However, the underlying mechanism remains unknown. Here, we have sought to determine how K. pneumoniae penetrates the intestinal barrier. We identified that bacteremia and PLA clinical isolates adhered to and invaded intestinal epithelial cells. Internalization of K. pneumoniae in three different human colonic cell lines was visualized by confocal microscopy and three-dimensional (3D) imaging. Using a Transwell system, we demonstrated that these K. pneumoniae isolates translocated across a polarized Caco-2 monolayer. No disruptions of transepithelial electrical resistance and altered distribution of tight junction protein ZO-1 or occludin were observed. Therefore, K. pneumoniae appeared to penetrate the intestinal epithelium via a transcellular pathway. Using specific inhibitors, we characterized the host signaling pathways involved. Inhibition by cytochalasin D and nocodazole suggested that actin and microtubule cytoskeleton were both important for K. pneumoniae invasion. A Rho inhibitor, ML141, LY294002, and an Akt1/2 inhibitor diminished K. pneumoniae invasion in a dose-dependent manner, indicating that Rho family GTPases and phosphatidylinositol 3-kinase (PI3K)/Akt signaling were required. By a mouse model of gastrointestinal colonization, in vivo invasion of K. pneumoniae into colonic epithelial cells was demonstrated. Our results present evidence to describe a possible mechanism of gastrointestinal translocation for K. pneumoniae. Cell invasion by manipulating host machinery provides a pathway for gut-colonized K. pneumoniae cells to penetrate the intestinal barrier and access extraintestinal locations to cause disease.
Collapse
|
28
|
Wu Z, Mirza H, Tan KSW. Intra-subtype variation in enteroadhesion accounts for differences in epithelial barrier disruption and is associated with metronidazole resistance in Blastocystis subtype-7. PLoS Negl Trop Dis 2014; 8:e2885. [PMID: 24851944 PMCID: PMC4031124 DOI: 10.1371/journal.pntd.0002885] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/08/2014] [Indexed: 01/13/2023] Open
Abstract
Blastocystis is an extracellular, enteric pathogen that induces intestinal disorders in a range of hosts including humans. Recent studies have identified potential parasite virulence factors in and host responses to this parasite; however, little is known about Blastocystis-host attachment, which is crucial for colonization and virulence of luminal stages. By utilizing 7 different strains of the parasite belonging to two clinically relevant subtypes ST-4 and ST-7, we investigated Blastocystis-enterocyte adhesion and its association with parasite-induced epithelial barrier disruption. We also suggest that drug resistance in ST-7 strains might result in fitness cost that manifested as impairment of parasite adhesion and, consequently, virulence. ST-7 parasites were generally highly adhesive to Caco-2 cells and preferred binding to intercellular junctions. These strains also induced disruption of ZO-1 and occludin tight junction proteins as well as increased dextran-FITC flux across epithelial monolayers. Interestingly, their adhesion was correlated with metronidazole (Mz) susceptibility. Mz resistant (Mzr) strains were found to be less pathogenic, owing to compromised adhesion. Moreover, tolerance of nitrosative stress was also reduced in the Mzr strains. In conclusion, the findings indicate that Blastocystis attaches to intestinal epithelium and leads to epithelial barrier dysfunction and that drug resistance might entail a fitness cost in parasite virulence by limiting entero-adhesiveness. This is the first study of the cellular basis for strain-to-strain variation in parasite pathogenicity. Intra- and inter-subtype variability in cytopathogenicity provides a possible explanation for the diverse clinical outcomes of Blastocystis infections.
Collapse
Affiliation(s)
- Zhaona Wu
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Haris Mirza
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Kevin Shyong Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Backert S, Boehm M, Wessler S, Tegtmeyer N. Transmigration route of Campylobacter jejuni across polarized intestinal epithelial cells: paracellular, transcellular or both? Cell Commun Signal 2013; 11:72. [PMID: 24079544 PMCID: PMC3850506 DOI: 10.1186/1478-811x-11-72] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 09/18/2013] [Indexed: 02/08/2023] Open
Abstract
Intact intercellular junctions and cellular matrix contacts are crucial structural components for the formation and maintenance of epithelial barrier functions in humans to control the commensal flora and protect against intruding microbes. Campylobacter jejuni is one of the most important zoonotic pathogens causing food-borne gastroenteritis and potentially more severe diseases such as reactive arthritis or Guillain–Barré syndrome. Crossing the intestinal epithelial barrier and host cell invasion by C. jejuni are considered to represent the primary reasons of gut tissue damage in humans and various animal model systems including monkeys, piglets, rabbits, hamsters and ferrets. C. jejuni is also able to invade underlying tissues such as the lamina propria, can enter the bloodstream, and possibly reach distinct organs such as spleen, liver or mesenteric lymph nodes. However, the molecular mechanisms as well as major bacterial and host cell factors involved in these activities are poorly understood. Various models exist by which the pathogen can trigger its own transmigration across polarized intestinal epithelial cells in vitro, the paracellular and/or transcellular mechanism. Recent studies suggest that bacterial factors such as flagellum, serine protease HtrA and lipooligosaccharide LOS may play an active role in bacterial transmigration. Here we review our knowledge on transmigration of C. jejuni as well as some other Campylobacter species, and discuss the pros and cons for the route(s) taken to travel across polarized epithelial cell monolayers. These studies provide fresh insights into the infection strategies employed by this important pathogen.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Biology, Institute for Microbiology, Friedrich Alexander University Erlangen/Nuremberg, Staudtstr, 5, D-91058, Erlangen, Germany.
| | | | | | | |
Collapse
|
30
|
Shao Y, Guo Y, Wang Z. β-1,3/1,6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poult Sci 2013; 92:1764-73. [PMID: 23776263 DOI: 10.3382/ps.2013-03029] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study investigated the protective effect of β-1,3/1,6-glucan on gut morphology, intestinal epithelial tight junctions, and bacterial translocation of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Ninety Salmonella-free Arbor Acre male broiler chickens were randomly divided into 3 groups: negative control group (NC), Salmonella Typhimurium-infected positive group (PC), and the Salmonella Typhimurium-infected group with dietary 100 mg/kg of β-1,3/1,6-glucan supplementation (T) to determine the effect of β-1,3/1,6-glucan on intestinal barrier function. Salmonella Typhimurium challenge alone significantly decreased villus height (P < 0.001), villus height/crypt depth ratio (P < 0.05), and the number of goblet cells (P < 0.001) in the jejunum at 14 d postinfection (dpi), but significantly increased the number of intestinal secretory IgA (sIgA)-expressing cells at 14 dpi (P < 0.01) and total sIgA levels in the jejunum at 7 (P < 0.05) and 14 dpi (P < 0.01) compared with the unchallenged birds (NC). Dietary β-1,3/1,6-glucan supplementation not only significantly increased villus height, villus height/crypt depth ratio, and the number of goblet cells (P < 0.01), but also increased the number of sIgA-expressing cells (P < 0.05) and sIgA content in the jejunum at 14 dpi (P < 0.01) in birds challenged with Salmonella Typhimurium in comparison with Salmonella Typhimurium challenge alone. β-1,3/1,6-Glucan addition had significant inhibitory effects (P < 0.05) on cecal Salmonella colonization levels and liver Salmonella invasion of the Salmonella Typhimurium-infected birds compared with the PC group. Intestinal tight junction proteins claudin-1, claudin-4, and occludin mRNA expression in the jejunum at 14 dpi was significantly decreased by Salmonella Typhimurium challenge alone (P < 0.01) compared with that of the NC group, whereas β-1,3/1,6-glucan supplementation significantly increased claudin-1 and occludin mRNA expression (P < 0.01) at 14 dpi in the jejunum of the Salmonella Typhimurium-infected birds in comparison with the PC group. Our results indicate that dietary β-1,3/1,6-glucan can alleviate intestinal mucosal barrier impairment in broiler chickens challenged with Salmonella Typhimurium.
Collapse
Affiliation(s)
- Yujing Shao
- College of Animal Science and Technology, China Agricultural University, Beijing, People's Republic of China
| | | | | |
Collapse
|
31
|
Law RJ, Gur-Arie L, Rosenshine I, Finlay BB. In vitro and in vivo model systems for studying enteropathogenic Escherichia coli infections. Cold Spring Harb Perspect Med 2013; 3:a009977. [PMID: 23457294 DOI: 10.1101/cshperspect.a009977] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) belong to a group of bacteria known as attaching and effacing (A/E) pathogens that cause disease by adhering to the lumenal surfaces of their host's intestinal epithelium. EPEC and EHEC are major causes of infectious diarrhea that result in significant childhood morbidity and mortality worldwide. Recent advances in in vitro and in vivo modeling of these pathogens have contributed to our knowledge of how EPEC and EHEC attach to host cells and subvert host-cell signaling pathways to promote infection and cause disease. A more detailed understanding of how these pathogenic microbes infect their hosts and how the host responds to infection could ultimately lead to new therapeutic strategies to help control these significant enteric pathogens.
Collapse
Affiliation(s)
- Robyn J Law
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | | | |
Collapse
|
32
|
Groschwitz KR, Wu D, Osterfeld H, Ahrens R, Hogan SP. Chymase-mediated intestinal epithelial permeability is regulated by a protease-activating receptor/matrix metalloproteinase-2-dependent mechanism. Am J Physiol Gastrointest Liver Physiol 2013; 304:G479-89. [PMID: 23306080 PMCID: PMC3602679 DOI: 10.1152/ajpgi.00186.2012] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mast cells regulate intestinal barrier function during disease and homeostasis. Secretion of the mast cell-specific serine protease chymase regulates homeostasis. In the present study, we employ in vitro model systems to delineate the molecular pathways involved in chymase-mediated intestinal epithelial barrier dysfunction. Chymase stimulation of intestinal epithelial (Caco-2 BBe) cell monolayers induced a significant reduction in transepithelial resistance, indicating decreased intestinal epithelial barrier function. The chymase-induced intestinal epithelial barrier dysfunction was characterized by chymase-induced protease-activated receptor (PAR)-2 activation and matrix metalloproteinase (MMP)-2 expression and activation. Consistent with this observation, in vitro analysis revealed chymase-induced PAR-2 activation and increased MAPK activity and MMP-2 expression. Pharmacological and small interfering RNA-mediated antagonism of PAR-2 and MMP-2 significantly attenuated chymase-stimulated barrier dysfunction. Additionally, the chymase/MMP-2-mediated intestinal epithelial dysfunction was associated with a significant reduction in the tight junction protein claudin-5, which was partially restored by MMP-2 inhibition. Finally, incubation of Caco-2 BBe cells with chymase-sufficient, but not chymase-deficient, bone marrow-derived mast cells decreased barrier function, which was attenuated by the chymase inhibitor chymostatin. Collectively, these results suggest that mast cell/chymase-mediated intestinal epithelial barrier function is mediated by PAR-2/MMP-2-dependent pathways.
Collapse
Affiliation(s)
- Katherine R. Groschwitz
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and ,2Division of Immunobiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Wu
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Heather Osterfeld
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Richard Ahrens
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Simon P. Hogan
- 1Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
33
|
Ceelen L, Haesebrouck F, Vanhaecke T, Rogiers V, Vinken M. Modulation of connexin signaling by bacterial pathogens and their toxins. Cell Mol Life Sci 2011; 68:3047-64. [PMID: 21656255 PMCID: PMC11115019 DOI: 10.1007/s00018-011-0737-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 05/12/2011] [Accepted: 05/17/2011] [Indexed: 02/07/2023]
Abstract
Inherent to their pivotal tasks in the maintenance of cellular homeostasis, gap junctions, connexin hemichannels, and pannexin hemichannels are frequently involved in the dysregulation of this critical balance. The present paper specifically focuses on their roles in bacterial infection and disease. In particular, the reported biological outcome of clinically important bacteria including Escherichia coli, Shigella flexneri, Yersinia enterocolitica, Helicobacter pylori, Bordetella pertussis, Aggregatibacter actinomycetemcomitans, Pseudomonas aeruginosa, Citrobacter rodentium, Clostridium species, Streptococcus pneumoniae, and Staphylococcus aureus and their toxic products on connexin- and pannexin-related signaling in host cells is reviewed. Particular attention is paid to the underlying molecular mechanisms of these effects as well as to the actual biological relevance of these findings.
Collapse
Affiliation(s)
- Liesbeth Ceelen
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
34
|
Gomes AF, Guimarães EV, Carvalho L, Correa JR, Mendonça-Lima L, Barbosa HS. Toxoplasma gondii down modulates cadherin expression in skeletal muscle cells inhibiting myogenesis. BMC Microbiol 2011; 11:110. [PMID: 21592384 PMCID: PMC3116462 DOI: 10.1186/1471-2180-11-110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/18/2011] [Indexed: 01/06/2023] Open
Abstract
Background Toxoplasma gondii belongs to a large and diverse group of obligate intracellular parasitic protozoa. Primary culture of mice skeletal muscle cells (SkMC) was employed as a model for experimental toxoplasmosis studies. The myogenesis of SkMC was reproduced in vitro and the ability of T. gondii tachyzoite forms to infect myoblasts and myotubes and its influence on SkMC myogenesis were analyzed. Results In this study we show that, after 24 h of interaction, myoblasts (61%) were more infected with T. gondii than myotubes (38%) and inhibition of myogenesis was about 75%. The role of adhesion molecules such as cadherin in this event was investigated. First, we demonstrate that cadherin localization was restricted to the contact areas between myocytes/myocytes and myocytes/myotubes during the myogenesis process. Immunofluorescence and immunoblotting analysis of parasite-host cell interaction showed a 54% reduction in cadherin expression at 24 h of infection. Concomitantly, a reduction in M-cadherin mRNA levels was observed after 3 and 24 h of T. gondii-host cell interaction. Conclusions These data suggest that T. gondii is able to down regulate M-cadherin expression, leading to molecular modifications in the host cell surface that interfere with membrane fusion and consequently affect the myogenesis process.
Collapse
Affiliation(s)
- Alessandra F Gomes
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, (Av, Brasil 4365), Rio de Janeiro (21040-361), Brazil
| | | | | | | | | | | |
Collapse
|
35
|
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010. [PMID: 21040540 DOI: 10.1186/1757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. RESULTS C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. CONCLUSION These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.
Collapse
Affiliation(s)
- Lisa D Kalischuk
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, T1J 4B1, Lethbridge, AB, Canada.
| | | | | |
Collapse
|
36
|
Kalischuk LD, Leggett F, Inglis GD. Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog 2010; 2:14. [PMID: 21040540 PMCID: PMC2987776 DOI: 10.1186/1757-4749-2-14] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/01/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Recent epidemiological analyses have implicated acute Campylobacter enteritis as a factor that may incite or exacerbate inflammatory bowel disease (IBD) in susceptible individuals. We have demonstrated previously that C. jejuni disrupts the intestinal barrier function by rapidly inducing epithelial translocation of non-invasive commensal bacteria via a transcellular lipid raft-mediated mechanism ('transcytosis'). To further characterize this mechanism, the aim of this current study was to elucidate whether C. jejuni utilizes M cells to facilitate transcytosis of commensal intestinal bacteria. RESULTS C. jejuni induced translocation of non-invasive E. coli across confluent Caco-2 epithelial monolayers in the absence of disrupted transepithelial electrical resistance or increased permeability to a 3 kDa dextran probe. C. jejuni-infected monolayers displayed increased numbers of cells expressing the M cell-specific marker, galectin-9, reduced numbers of enterocytes that stained with the absorptive enterocyte marker, Ulex europaeus agglutinin-1, and reduced activities of enzymes typically associated with absorptive enterocytes (namely alkaline phosphatase, lactase, and sucrase). Furthermore, in Campylobacter-infected monolayers, E. coli were observed to be internalized specifically within epithelial cells displaying M-like cell characteristics. CONCLUSION These data indicate that C. jejuni may utilize M cells to promote transcytosis of non-invasive bacteria across the intact intestinal epithelial barrier. This mechanism may contribute to the inflammatory immune responses against commensal intestinal bacteria commonly observed in IBD patients.
Collapse
Affiliation(s)
- Lisa D Kalischuk
- Agriculture and Agri-Food Canada, 5403 1st Avenue South, T1J 4B1, Lethbridge, AB, Canada.
| | | | | |
Collapse
|
37
|
Elli L, Roncoroni L, Doneda L, Ciulla MM, Colombo R, Braidotti P, Bonura A, Bardella MT. Imaging analysis of the gliadin direct effect on tight junctions in an in vitro three-dimensional Lovo cell line culture system. Toxicol In Vitro 2010; 25:45-50. [PMID: 20850517 DOI: 10.1016/j.tiv.2010.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 12/23/2022]
Abstract
Tight junctions play a pivotal role in maintaining the integrity of the intestinal barrier. Their alteration is involved in the pathogenesis of celiac disease. Our aim was to investigate the gliadin effect on the tight junction proteins in an in vitro three-dimensional cell culture model through imaging analyses. Lovo multicellular spheroids were treated with enzymatically digested (PT) gliadin 500 μg/mL and its effect on actin, occludin and zonula occludens-1, was evaluated by means of confocal laser microscopy, transmission electron microscopy and image capture analysis. Compared to untreated spheroids, PT-gliadin-treated ones showed enlargement of the paracellular spaces (9.0±6.9 vs. 6.2±1.7 nm, p<0.05) at transmission electron microscopy and tight junction protein alterations at confocal microscopy and image analyses. In untreated cell cultures thickness of the fluorescence contour of actin, zonula occludens-1 and occludin appeared significantly larger and more intense than in the treated ones. In occludin planimetric analysis the lengths of the integral uninterrupted cellular contour appeared longer in untreated than in PT-gliadin treated spheroids (71.8±42.8 vs. 23.4±25.9 μm, p<0.01). Our data demonstrated that tight junction proteins are directly damaged by gliadin as shown by means of quantitative imaging analysis.
Collapse
Affiliation(s)
- Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
SOFI MHANIEF, BHATNAGAR ARCHANA, SAPRA SAVEETA, MAHMOOD AKHTAR, MAJUMDAR SIDHARTHA. INFLUENCE OF INTESTINAL SURFACTANT LIKE PARTICLES ON DIFFERENTIAL ACTIVATION OF SECONDARY SIGNALING MOLECULES DURING SALMONELLA TYPHIMURIUM INFECTION. J Food Saf 2010. [DOI: 10.1111/j.1745-4565.2010.00219.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Enteropathogenic Escherichia coli changes distribution of occludin and ZO-1 in tight junction membrane microdomains in vivo. Microb Pathog 2009; 48:28-34. [PMID: 19833191 DOI: 10.1016/j.micpath.2009.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 09/25/2009] [Accepted: 10/06/2009] [Indexed: 02/08/2023]
Abstract
Diarrhea is a disease caused by enteropathogenic Escherichia coli (EPEC) infection, which caused the deaths of several hundred thousand children each year. However, the molecular mechanisms underlying EPEC infection in vivo are not fully understood. In the present study, we used the C57BL/6J mouse as an in vivo model of EPEC infection and investigated the effect of EPEC on tight junction (TJ) structure and barrier function. TJ ultrastructure was studied by transmission electron microscopy and a small molecule tracer biotin was used to examine the paracellular permeability of the colon. The distribution of TJ proteins occludin and ZO-1 in the epithelium was investigated by immunofluorescence microscopy. Our results demonstrated that TJ structure was disrupted following EPEC infection. And the morphological changes of TJ were accompanied by increased paracellular permeability which led to impairment of TJ barrier function. Immunofluorescency analysis revealed that occludin and ZO-1 were translocated from villous membrane to the cytoplasm in intestinal epithelial cells during EPEC invasion. Moreover, wild-type EPEC and the mutant EPEC strain, DeltaespF, had similar effects on barrier function and TJ protein localization at 5 days postinfection. Our findings demonstrate that EPEC infection in vivo led to disruption of tight junction barrier function. These results may provide insights into the molecular mechanism of the pathogenesis of EPEC infection.
Collapse
|
41
|
Merrifield DL, Dimitroglou A, Bradley G, Baker RTM, Davies SJ. Soybean meal alters autochthonous microbial populations, microvilli morphology and compromises intestinal enterocyte integrity of rainbow trout, Oncorhynchus mykiss (Walbaum). JOURNAL OF FISH DISEASES 2009; 32:755-66. [PMID: 19490393 DOI: 10.1111/j.1365-2761.2009.01052.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Abstract Rainbow trout were fed either a diet containing fishmeal (FM) as the crude protein source or a diet containing 50% replacement with soybean meal (SBM) for 16 weeks. An enteritis-like effect was observed in the SBM group; villi, enterocytes and microvilli were noticeably damaged compared with the FM group. The posterior intestine microvilli of SBM-fed fish were significantly shorter and the anterior intestine microvilli significantly less dense than the FM-fed fish. Electron microscopy confirmed the presence of autochthonous bacterial populations associated with microvilli of both fish groups. Reduced density of microvilli consequently led to increased exposure of enterocyte tight junctions, which combined with necrotic enterocytes is likely to diminish the protective barrier of the intestinal epithelium. No significant differences in total viable counts of culturable microbial populations were found between the groups in any of the intestinal regions. A total of 1500 isolates were tentatively placed into groups or genera, according to standard methods. Subsequent partial 16S rRNA sequencing revealed species that have not been identified from the rainbow trout intestine previously. Compared with the FM group levels of Psychrobacter spp. and yeast were considerably higher in the SBM group; a reduction of Aeromonas spp. was also observed.
Collapse
Affiliation(s)
- D L Merrifield
- Aquaculture and Fish Nutrition Research Group, School of Biological Sciences, University of Plymouth, Devon PL4 8AA, UK.
| | | | | | | | | |
Collapse
|
42
|
Moyer AL, Ramadan RT, Novosad B, Astley R, Callegan MC. Bacillus cereus-induced permeability of the blood-ocular barrier during experimental endophthalmitis. Invest Ophthalmol Vis Sci 2009; 50:3783-93. [PMID: 19264886 PMCID: PMC2880527 DOI: 10.1167/iovs.08-3051] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE The purpose of this study was to determine to what extent blood-retinal barrier (BRB) permeability occurred during experimental Bacillus cereus endophthalmitis and whether tight junction alterations were involved in permeability. METHODS Mice were intravitreally injected with 100 colony-forming units of B. cereus, and eyes were analyzed at specific times after infection for permeability to fibrin and albumin, quantitation of intraocular plasma constituent leakage, production of inflammatory cytokines, and alterations in tight junction protein localization and expression at the level of the retinal pigment epithelium. RESULTS B. cereus induced the leakage of albumin and fibrin into the aqueous and vitreous humor by 8 hours after infection. BRB permeability occurred as early as 4 hours and increased 13.30-fold compared with uninfected controls by 8 hours. Production of proinflammatory cytokines IL-6, MIP-1alpha, IL-1beta, and KC increased over the course of infection. In the retina, ZO-1 disruption began by 4 hours and was followed by decreasing occludin and ZO-1 expression at 4 and 8 hours, respectively. Tubulin condensation and RPE65 degradation occurred by 12 hours. A quorum-sensing mutant B. cereus strain caused BRB permeability comparable to that of wild-type B. cereus. Wild-type and mutant B. cereus sterile supernatants induced blood-ocular barrier permeability similarly to that of wild-type infection. CONCLUSIONS These results indicate that BRB permeability occurs during the early stages of experimental B. cereus endophthalmitis, beginning as early as 4 hours after infection. Disruption of tight junctions at the level of the retinal pigment epithelium may contribute to barrier breakdown. Quorum-sensing dependent factors may not significantly contribute to BRB permeability.
Collapse
Affiliation(s)
- A. L. Moyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - R. T. Ramadan
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - B. Novosad
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - R. Astley
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - M. C. Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
43
|
Mullin JM, Skrovanek SM, Valenzano MC. Modification of Tight Junction Structure and Permeability by Nutritional Means. Ann N Y Acad Sci 2009; 1165:99-112. [DOI: 10.1111/j.1749-6632.2009.04028.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Alarcon I, Evans DJ, Fleiszig SMJ. The role of twitching motility in Pseudomonas aeruginosa exit from and translocation of corneal epithelial cells. Invest Ophthalmol Vis Sci 2009; 50:2237-44. [PMID: 19136693 PMCID: PMC2739834 DOI: 10.1167/iovs.08-2785] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The authors have shown that twitching motility, a pilus-mediated form of bacterial surface movement, is required for Pseudomonas aeruginosa virulence in a murine model of keratitis. To study the role of twitching motility in virulence, Pseudomonas traversal of multilayered corneal epithelia in vitro was investigated. METHODS Translocation of multilayered corneal epithelia was investigated with the invasive strain PAK and isogenic twitching motility mutants. Rabbit corneal epithelial cells were grown to multilayers with filters and inoculated on their apical surfaces with 10(6) colony-forming unit bacteria, and translocating bacteria were quantified by viable counts of the basal chamber. Transepithelial resistance (TER) was recorded. Cellular exit of P. aeruginosa after invasion was quantified with modified gentamicin survival assays, and the role of apoptosis in exit was explored. RESULTS PAK translocated the epithelia as early as 1 hour after infection, and by 8 hours apical and basal numbers of bacteria were similar. Bacterial translocation did not reduce TER. Each twitching motility mutant (pilU, pilT with pili, pilA lacking pili) was defective in translocation (>2 log reduction vs. PAK; P < 0.005). All twitching mutants were competent for cell invasion but defective in cellular exit, accumulating intracellularly to numbers exceeding those of PAK. Inhibiting apoptosis reduced the cellular exit of PAK. CONCLUSIONS These results show that twitching motility enables P. aeruginosa to translocate corneal epithelial layers and suggest that it contributes to epithelial cell exit by a mechanism involving apoptosis. The relationship between these in vitro findings and the role of twitching motility in P. aeruginosa virulence in vivo remains to be determined.
Collapse
Affiliation(s)
- Irania Alarcon
- Program in Microbiology, University of California, Berkeley, California
| | - David J. Evans
- School of Optometry, University of California, Berkeley, California
- College of Pharmacy, Touro University-California, Vallejo, California
| | - Suzanne M. J. Fleiszig
- Program in Microbiology, University of California, Berkeley, California
- School of Optometry, University of California, Berkeley, California
| |
Collapse
|
45
|
Interactions of the intestinal epithelium with the pathogen and the indigenous microbiota: a three-way crosstalk. Interdiscip Perspect Infect Dis 2008; 2008:626827. [PMID: 19259328 PMCID: PMC2648619 DOI: 10.1155/2008/626827] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 08/08/2008] [Indexed: 12/24/2022] Open
Abstract
The mucosal surfaces of the gastrointestinal tract harbor a vast number of commensal microbiota that have coevolved with the host, and in addition display one of the most complex relationships with the host. This relationship affects several important aspects of the biology of the host including the synthesis of nutrients, protection against infection, and the development of the immune system. On the other hand, despite the existence of several lines of mucosal defense mechanisms, pathogenic organisms such as Shigella and Salmonella have evolved sophisticated virulence strategies for breaching these barriers. The constant challenge from these pathogens and the attempts by the host to counter them set up a dynamic equilibrium of cellular and molecular crosstalk. Even slight perturbations in this equilibrium may be detrimental to the host leading to severe bacterial infection or even autoimmune diseases like inflammatory bowel disease. Several experimental model systems, including germ-free mice and antibiotic-treated mice, have been used by various researchers to study this complex relationship. Although it is only the beginning, it promises to be an exciting era in the study of these host-microbe relationships.
Collapse
|
46
|
Sun J, Kintner J, Schoborg RV. The host adherens junction molecule nectin-1 is downregulated in Chlamydia trachomatis-infected genital epithelial cells. MICROBIOLOGY-SGM 2008; 154:1290-1299. [PMID: 18451037 DOI: 10.1099/mic.0.2007/015164-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nectin-1, a member of the immunoglobulin superfamily, is a Ca(2+)-independent cell adhesion protein implicated in the organization of E-cadherin-based adherens junctions (AJs) and claudin-based tight junctions (TJs) in epithelial cells. Nectin-1 also regulates cell-cell adhesion and cell polarization in a Cdc42- and Rac-dependent manner. Western blot analyses demonstrated that accumulation of host nectin-1 is decreased by 85 % at 48 hours post-infection (h.p.i.) in Chlamydia trachomatis serovar E-infected HeLa cells. Time-course experiments demonstrated that this decrease was sustained to 60 h.p.i. Nectin-1 downregulation in C. trachomatis-infected cells was prevented by both chloramphenicol exposure and prior inactivation of the chlamydiae with UV light, demonstrating that active C. trachomatis replication was required. Penicillin G-exposure studies demonstrated that nectin-1 accumulation was also altered during persistent infection. Finally, RT-PCR analyses indicated that chlamydial infection did not alter accumulation of any nectin-1 transcripts, demonstrating that nectin-1 accumulation is reduced at a post-transcriptional level. Intesrestingly, N-cadherin-dependent cell-cell junctions can be disrupted by C. trachomatis infection, as reported by Prozialeck et al. (2002). Because interaction of nectin molecules on adjacent cells is essential for AJ formation, these data suggest that C. trachomatis may disrupt AJs, at least in part, by diminishing nectin-1 accumulation. Notably, release of chlamydiae-infected epithelial cells has been observed both in vitro from polarized monolayers and in vivo from tissues, suggesting that chlamydia-modulated downregulation of adhesion molecules and the subsequent disruption of host cell adherence may be involved in chlamydial dissemination or pathogenesis.
Collapse
Affiliation(s)
- Jingru Sun
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Jennifer Kintner
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Robert V Schoborg
- Department of Microbiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
47
|
Schultz M, Lindström AL. Rationale for probiotic treatment strategies in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2008; 2:337-55. [PMID: 19072384 DOI: 10.1586/17474124.2.3.337] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic inflammatory bowel diseases (IBD), such as Crohn's disease and ulcerative colitis, are recurrent and aggressive inflammatory disorders that are most likely the result of an overly aggressive immune response to ubiquitous intestinal antigens in a genetically susceptible host. Despite decades of intense research, our knowledge of factors causing IBD remains incomplete and, therefore, conventional therapy to induce and maintain remission works in a symptomatic fashion, merely suppressing the immune response. Probiotic bacteria have long been known to confer health benefits, especially with regard to intestinal disorders. Although there is mounting evidence from in vitro and animal experiments supporting the use of probiotics in IBD, clinical trials have not provided definite evidence for the therapeutic effect of probiotic therapy in IBD to date. This is with the notable exception of pouchitis and the maintenance of remission in ulcerative colitis, whereas Crohn's disease and active ulcerative colitis do not seem amenable to probiotic intervention. The next 5 years will see more trials targeting specific clinical settings using tailor-made probiotic combinations, taking into account our increasing knowledge of individual probiotic properties and the diversity of these microorganisms.
Collapse
Affiliation(s)
- Michael Schultz
- Department of Medical and Surgical Sciences, Medicine Section, University of Otago Medical School, PO Box 913, Dunedin, New Zealand.
| | | |
Collapse
|
48
|
Moyer AL, Ramadan RT, Thurman J, Burroughs A, Callegan MC. Bacillus cereus induces permeability of an in vitro blood-retina barrier. Infect Immun 2008; 76:1358-67. [PMID: 18268029 PMCID: PMC2292856 DOI: 10.1128/iai.01330-07] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/06/2007] [Accepted: 01/28/2008] [Indexed: 11/20/2022] Open
Abstract
Most Bacillus cereus toxin production is controlled by the quorum-sensing-dependent, pleiotropic global regulator plcR, which contributes to the organism's virulence in the eye. The purpose of this study was to analyze the effects of B. cereus infection and plcR-regulated toxins on the barrier function of retinal pigment epithelium (RPE) cells, the primary cells of the blood-retina barrier. Human ARPE-19 cells were apically inoculated with wild-type or quorum-sensing-deficient B. cereus, and cytotoxicity was analyzed. plcR-regulated toxins were not required for B. cereus-induced RPE cytotoxicity, but these toxins did increase the rate of cell death, primarily by necrosis. B. cereus infection of polarized RPE cell monolayers resulted in increased barrier permeability, independent of plcR-regulated toxins. Loss of both occludin and ZO-1 expression occurred by 8 h postinfection, but alterations in tight junctions appeared to precede cytotoxicity. Of the several proinflammatory cytokines analyzed, only interleukin-6 was produced in response to B. cereus infection. These results demonstrate the deleterious effects of B. cereus infection on RPE barrier function and suggest that plcR-regulated toxins may not contribute significantly to RPE barrier permeability during infection.
Collapse
Affiliation(s)
- A L Moyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center,Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
49
|
Karcher D, Applegate T. Survey of Enterocyte Morphology and Tight Junction Formation in the Small Intestine of Avian Embryos. Poult Sci 2008; 87:339-50. [DOI: 10.3382/ps.2007-00342] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
50
|
Sofi MH, Bhatnagar A, Sapra S, Mahmood A, Majumdar S. Immunoregulatory role of intestinal surfactant-like particles during Salmonella typhimurium infection. Int J Biol Sci 2007; 3:446-54. [PMID: 18026566 PMCID: PMC2078610 DOI: 10.7150/ijbs.3.446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2007] [Accepted: 11/01/2007] [Indexed: 01/22/2023] Open
Abstract
Surfactants like particles (SLP) are secreted by Intestinal epithelium. These particles have the ability to lower surface tension of intestinal epithelial cells and contain small amounts of surfactant specific proteins A, B, and D. In the intestinal lumen they are known to function as lubricants and/or as a vehicle to deliver digestive enzymes to the luminal fluid. These particles have been found to have the ability in binding of uropathogenic E.coli. But their immunological function is not known. The present study was designed to assess the role of the SLP in the regulation of immune response during Salmonella (S) typhimurium infection using a rat an enteric model. The animals were divided in four different groups including control (PBS), rats fed fat diet (corn oil), rats fed fat diet followed with S. typhimurium infection and rats with S. typhimurium infection alone. The Peyer's patches (PP), intraepithelial (IE) and lamina propria (LP) mononuclear cells were isolated from the above-mentioned groups. These mononuclear cells were then incubated in presence of S. typhimurium lysate alone, SLP alone and S. typhimurium lysate and SLP together. T cell markers CD4 and CD8, cytokines mainly pro-inflammatory ones including IFN-γ, TNF-α, IL-12 etc were studied under such conditions. In addition histological studies were also carried out under these conditions. We report in this study that SLP plays an important role in modulating the cytokine level during infection. The pro-inflammatory cytokines were found significantly reduced in SLP induced diet along with the infection group compared to the infection group alone. Histopathological studies revealed the breakdown of duodenal villi after infection while only broadening of villi was observed in rats given corn oil induced SLP along with infection. These results suggested an important immuno-modulatory role for SLP during Salmonella infection.
Collapse
Affiliation(s)
- M Hanief Sofi
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education, Research (PGIMER), Chandigarh, India.
| | | | | | | | | |
Collapse
|